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ABSTRACT 
This research aims to develop a method that is capable and reliable for identifying 

significant regions in Genome-Wide Association Study based on Spline regression. We 

evaluate the optimal parameters in the Splines by smoothing and tuning p-values obtained 

from two methods, Sequence Kernel Association Test using normal weight (SKAT normal 

weight) and Generalized Higher Criticism (GHC) for testing SNP-set. False positive (FP) and 

True positive (TP) rates were evaluated under different genetic models for disease with 

significant thresholds adjusted for multiple hypothesis testing based on the permutation 

method. The simulated data used in this research are constructed from a control data set in a 

study of Crohn’s disease which is repeated 1,500 replicates for studies of size 3,000 cases and 

3,000 controls. The simulation result shows that the optimal parameter in the Splines on the 

p-value of SKAT normal weight and GHC under the one disease SNP model simulation are at 

the degree of freedom 1,000. GHC is shown to be preferable in terms of comparing FP and TP 

rates but it is disadvantageous compared to SKAT in terms of computational burden time. 

Finally, the optimal parameter of both methods was applied to real data on Crohn’s disease. 

Both methods found the important regions of genes NOD2 which are strongly associated with 

the development and the importance of gene NOD2 which causes Crohn’s disease. 

Keywords: Sequence kernel association test; Generalized higher criticism; Permutation test; 

Spline regression; B-spline; GWAS 

doi: 10.14456/scitechasia.2021.5 
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1. Introduction
A Genome-wide association study 

(GWAS) is the study of the association of 

different individuals in the genetic variant 

with a phenotype. GWAS typically focuses on 

the association between the Single Nucleotide 

Polymorphism (SNPs) with a phenotype 

which is the data that plays a very important 

role in identifying the location of DNA which 

causes the disease [1]. SNPs do not directly 

cause the disease, but they can indicate the 

risk of disease. Many diseases are still unable 

to determine the exact gene locations that 

cause the disease. There are also hundreds of 

thousands of SNPs  that need to analyzed, so 

the computational burden is another issue. 

Therefore, identifying significant regions of 

disease-gene association in high dimensional 

genomewide studies is developed and 

evaluated. A computationally efficient method 

for obtaining the optimal tuning parameter is 

also evaluated using simulation. 

The simplest and most commonly used 

method for analyzing SNPs and the disease is 

a single SNP analysis that can identify SNPs 

that cause the disease by analyzing only one 

location at a time. It is the traditional testing 

method that has been considered as the 

approach for genetic association analysis [2-

3]. However, the results of the single-SNP 

analysis are not sufficiently informative to 

interpret without explicit references to linkage 

disequilibrium (LD) patterns of candidate 

variants [4]. Many studies have discovered 

that SNPs that cause the disease can be 

located at the same chromosome [5-7]. The 

Sequence Kernel Association Test (SKAT) 

was proposed to analyze the association 

between SNP-set with disease outcome under 

a logistic kernel machine model. This method 

aggregates individual SNP score statistics in 

the SNP set and efficiently compute SNP-set 

level p-values [8]. SKAT is a supervised and 

flexible computationally efficient regression 

method to test for the association between 

common or rare variants and disease [9-12]. 

SKAT performance depends on weight 

configuration. Therefore, varying weights of 

SKAT testing models are used in this research 

to find the appropriate weight. They are 1) 

default weight 2) Madsen and Browning 

weight 3) inverse means weight, and 4) 

normal weight. We then compare and select 

the best method to study in the next step. 

Generalized Higher Criticism (GHC) 

has been recently proposed for testing 

multiple SNPs in genome-wide association 

studies. The technique uses a correlation 

matrix to construct a new test statistic. The 

GHC method is flexible to the correlation 

structure and is computationally efficient, 

providing a p-value without the need for the 

simulation of the null distribution [13]. 

Finally, the efficiency SKAT and GHC were 

selected to find the region where the SNP-set 

together affects the disease by using Spline 

Regression [14].  

In this research, a novel method that is 

capable of reducing the FP rate using spline 

regression to identify the significant regions in 

the genome-wide association study is 

developed and evaluated. The adjusting 

p-value using b-spline with the cubic function 

that gives optimal smoothing and tuning 

parameters is considered. 

Another important aspect of GWAS is 

the testing of many hypotheses 

simultaneously, resulting in high false 

positives and incorrectly ascribing scientific 

significance to a statistical test [15]. 

Bonferroni adjustment is a popular method for 

controlling the probability of the type I error. 

However this approach tends to be highly 

constringent and conservative [16-17]. 

Therefore, the permutation method was 

selected as the alternative way of controlling 

the type I error rate which is based on the 

nonparametric method. It is a good choice for 

the hypothesis test of unknown distribution. 

This approach will be estimating the sampling 

distribution of a test statistic under the null 

hypothesis that a set of genetic variants does 

not affect the outcome. In this research, 

10,000 replicates were used to compute the 

multivariate sampling distribution under the 

null hypothesis with no gene effect. This 
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approach provides a highly reliable 

distribution and gives the exact p-value of the 

test statistics [18-19]. The genotype data [20] 

was used in this simulation study from 1,504 

individuals in the 1958 British Birth Cohort on 

Chromosome 16 which is being associated 

with Crohn's disease. But It is not clear that 

which SNPs or genes are responsible for this 

disease. 

Therefore, the objective of this research 

is to find the optimal parameters of b-spline to 

identify the significant SNP-set from the 

SKAT and GHC methods. True positive (TP) 

and false positive (FP) rates use the 

permutation threshold as considered to find 

the efficiency method. Finally, the optimal 

parameters of both methods were selected to 

apply to the real data from the WTCCC study 

on Crohn’s disease [20]. 

 

2. Methods  
This section will present the Spline 

Regression which was selected to identify 

the gene regions. The permutation method 

was selected for finding the appropriate 

thresholds of the theoretical SKAT and 

GHC methods. 

2.1 Spline regression 

A spline [21] is a piece-wise 

polynomial with the piece defined by a 

sequence of knots in the range of X 

 

1 2 k ,       
 

such that the pieces join smoothly at 

the knots. For a spline of degree m, one 

usually requires the polynomial and their 

first m-1 derivatives to agree at the knots, so 

that m-1 derivatives are continuous. A 

spline of degree m can be represented as: 

 
m k

j m

j j j

j 0 j 1

A(X) = b X + (X - ) ,
= =

                (1) 

 

where the notation 

 

( ) j j

j

X ,X
X .

0 ,otherwise

−   
−  = 


 

 

A(X) is the spline function of degree 

m. b
j
 is the associated spline coefficient  

with k knots and there are k+1 polynomial 

of degree m. X j  is the set of basis function 

and  is the coefficients for the polynomial 

[22]. 

 The most popular spline is the cubic 

spline 
k

2 3 3

0 1 2 3 j j

j 1

A(X) = b + b X + b X + b X + (X - ) .
=

   (2) 

A much better representation of 

splines for computation is as linear 

combinations of a set of basis splines called 

Basis splines (B-spline) which are non-zero 

over a limited range of knots. A B-spline is 

a curve created from sub-curves in each 

range that can change the coefficient of the 

control point, which will affect the shape of 

the curve only near the control point. This 

makes the B-spline curves easy to shape and 

does not affect the overall curve. These sub-

curves are created using the n polynomial. 

The value of n affects the smoothness of the 

curves. The basic properties of B-spline 

throughout this work, let r
1
, r

2
,..., r

k
 be the 

order of knots included in a real interval 

[a, b] . A spline of order p ≥ 0 is a piecewise 

polynomial function of order p such that its 

derivatives up to order p-1 are continuous at 

every knot r
1
, r

2
,..., r

k
. The set of splines order 

p over the knots r = r
1
, r

2
,..., r

k
 is a vector 

space of dimension p + k + 1.  

A spline basis is the truncated power 

basis:{x0 , x1,..., xp ,(x - r
1
)p ,...,(x - r

k
)p}. Reference 

[23] introduced B-spline as more adapted to 

computational implementation of spline 

regression.  

B-spline is a spline with a non-zero 

over [x
k
, x

p+k+1
] for some k. For 
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i = 1,2,..., p + k + 1, the i - th  B-spline of 

order p is noted N
i,p

(x) and defined by  

          

N
i,p

(x) =
x - r

i

r
i+p

- r
i

N
i,p-1

(x) +
r
i+p+1

- x

r
i+p+1

- r
i+1

N
i+1,p-1

(x).    (3) 

 

In this research, a B-spline was 

selected fitting the p-value which uses a 

function in R for calculating the basis. 

Therefore, the main problem was finding 

the optimal parameter of bs function in R. 

The parameter of bs() function is bs(x, df = 

null, knots = null, degree = 3) where x is a 

predictor, df is degree of freedom, knots are 

the internal breakpoints to set the default 

which based on quantile of x and degree of 

3 which is the cubic spline. We compute B-

spline coefficients for regression quantile B-

spline with fixed knots and specify the df. 

The optimal df can be obtained from tuning 

which will specify the df value in one 

hundred increments in the range of 100 -

900. 

 

2.2 Permutation method  

A permutation method (also called a 

randomization test, re-randomization test, or 

an exact test) is a nonparametric method for 

estimating the sampling distribution of a test 

statistic under the null hypothesis that a set 

of genetic variants has no effect on the 

outcome. This approach provides a highly 

reliable distribution of the test statistic but 

requires many samples generated under the 

null model. If the labels are exchangeable 

under the null hypothesis, then the resulting 

tests yield exact significance levels [18]. A 

permutation test is a good choice for 

hypothesis test of unknown distribution. It 

works regardless of the shape and size of the 

population to give the exact p-value [24]. In 

this research, we use 10,000 replicates for 

computing the multivariate sampling 

distribution under the null hypothesis with 

no gene effect and to establish significance 

thresholds giving a Type I error close to 

0.05. We use linear interpolation for finding 

the thresholds  

 

2.3 SNP-set methods 

The Sequence Kernel Association 

Test or SKAT [17] is the test for the joint 

effects of multiple variants in a region of the 

genome on the disease which the regions 

were defined by genes. P-values were 

calculated for an association underlying the 

test procedure that can be viewed within the 

kernel machine regression framework [9, 

25]. The semiparametric logistic regression 

model was used in the feature of SKAT 

including the parametric and nonparametric 

functions component effect the conditional 

probability of a dichotomous outcome [26]. 

The semiparametric logistic regression 

model for the ith
 individual is 

  

  i 0 i ilogitP(y 1) ' h( ),= =  + +α C T     (4) 

 

where y
i
 is a binary disease outcome taking 

values 0 (no disease) or 1 (disease) where 

i =1, 2, …, n, 
0α  is an intercept term,  is 

the vector of regression coefficients for the 

covariates C
i
 and T

i
 are the observed 

variants and are related to  disease through a 

nonparametric function h( ) , which is 

assumed to lie in a functional space 

generated by a positive semidefinite kernel 

function K( ),  [17]. H
0

: h(T) = 0  is the 

null hypothesis of no association between 

the disease and gene region which were 

tested by assuming that the n 1  vector 

1 n= [h( ),..., h( )]h T T  for the genetic effects 

of the n  subjects follows a distribution with 

mean 0 and covariance K , where   is a 

variance component. The semiparametric 

logistic regression model [10] is equivalent 

to 

 

            (5) 
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where  is a vector of 

regression coefficients for the p  observed 

variants in the gene region with each b
j

following an arbitrary distribution with 

mean of 0 and a variance of  where 

w
j

is a pre-specified weight for variant j 

and  is the variance component. The null 

hypothesis is equivalent to the 

hypothesis  which may be tested 

with a variance-component score test statistic 

    ˆ ˆS ( ) ( ),= − −Y K Y                  (6) 

where = K TWT ,  is the predicted mean 

of Y = (y
1
,…,y

n
¢)  under H

0
 that is

,  and  are 

estimated under the null model by 

regressing y  on the covariate C  and 

T = [T
1
,...,T

n
] is an n p  matrix with

elements variant j of individual i , and  

W = diag(w
1
, ..., w

p
) contains the weights

of the p variants. SKAT uses the variance-

component score test statistic to test the null 

of no genetic effect but exploits the 

semiparametric regression approach in 

computing K . The form for K  used by 

SKAT is an n n  symmetric matrix with 

elements K(T
i
,T

¢i
)  that measures genetic

similarity between the i - th  and i - th  

subjects in the study. The weighted linear 

kernel 
p

i i ij i i

j 1

( , ) = w T T 

=

K T T was selected 

in this paper. Weight functions can be 

specified in the SKAT package in R which 

are based on the Beta density function 

Beta(x
j
:a,b)

w
j
=

x
j

a-1(1- x
j
)b-1

B(a,b)
,0 < x

j
< 1; a, b > 0, (7)

where B denotes the beta function, a  and b
are prespecified scale and shape parameters 

and x
j
 is the estimated minor allele

frequency (MAF) for SNP j using all cases 

and controls. Four weights were considered 

which are default, Madsen and Browning, 

inverse mean and normal weight.  

The default weight chooses a small a 

and large b as Beta(x
j
:1,25)  which

substantially up-regulates rare variants and 

down-regulates common variants [10]. The 

Madsen and Browning weight was defined 

as Beta(x
j
:0.5,0.5) , which corresponds to

w
j
=1/ MAF

j
(1- MAF

j
) ; that is w

j
is the 

inverse of the variance of the genotype 

marker j. The inverse mean is equivalent to 

Beta(x
j
:0.5,1)the weight based on function

w
j
= 1/ x

j
. The normal weight is 

Beta(x
j
:10,10) which gives the appearance 

of a symmetrical distribution similar to the 

normal distribution [17].  

Generalized Higher Criticism or 

GHC [13,17] is the method for testing 

associated gene regions by using single 

variant statistics and their correlation matrix 

to construct a new test statistic and its 

distribution. Considering the 

parametrization of P(y
i
= 1)  for the j- th

variant in a set of p  variants, 

       
0i i j i, jl = +ogit ,P y =1( +)  C       (8)   

where b
j
 is the effect of the j- th  variant

and T
i, j

 is the observed j- th variant with

the i - th  subject, and the other terms are as 

in the previous section. The GHC approach 

exploits the fact that while p  might be large 

in the test of the global null ,  in a 

genetic construct variants are likely to be 

correlated and generally only a small subset 
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of variants are signals for association.  In 

other words, a sparse set of the 

 is not zero. GHC aims to 

account for both sparse signals and 

correlation among SNPs when combining 

individual marker test statistics. 

Let 
j 1, j n, j(T ,...,T ) =T  be the vector of 

observed variants at the j-th marker, 

1 n(y ,…,y )=Y  be the observed disease 

status and  
1 n

ˆ ˆ ˆ( , )=     be the 

predicted mean for Y under the assumption 

of no genetic effect.  The statistical the 

score for j , is under the global null 

 

      

'
j

j
'
j j

ˆ( )
Z ,

− 
=

T Y

T PT
                  (9) 

   

of 1P W WC(C CWC) w−= −  and 

 1 1 n n
ˆ ˆ ˆ ˆW diag (1 ), , (1 )=  −   −  . These 

individual variants test the statistics of 

asymptotically jointly distributed as 

 where the (i,k)th  

component of  is estimated  by 
 

               (10)                                

 

Define S(t)  by  
 

       
j

p

{|z | t}

j 1

S(t) = .

=

1              (11) 

 

The generalized higher criticism test 

statistic, defined as 
 

   (12) 

   

where  is the standard normal 

distribution function and , 

calculated by accounting for the correlation 

between the 
jZ s . The p-value 

         P(GHC) ≥ T
GHC

                  (13)    

is also calculated accounting the correlation. 

The algorithm behind both methods is 

implemented in the R packages SKAT [8] 

and GHC [27], respectively. 

 

3. The Data and Model Simulation 

 The genotype data used in this 

simulation are the SNPs on Chromosome 16 

from 1,504 unaffected individuals in the 

WTCCC study of Crohn's disease. The 13, 

479 SNPs from each individual are used to 

construct two haplotypes to give a total of 

3,008 haplotypes for use in the simulation 

study. The simulation is repeated 1,500 

times for a study size of 3,000 cases and 

3,000 controls.  

The new genotype data were 

generated and assigned disease status based 

on two disease SNPs. The first SNP 

rs3789038 is located at position 

50711672bp in gene HMOX2 and has MAF 

equal to 0.31. The second, SNP rs3785142 

has MAF equal 0.48 and is located at 

position 50753236bp in gene CYLD. There 

is a total of 7 SNPs in the data on gene 

HMOX2 with pairwise correlation ranging 

between 0.93 and 0.99, with median 0.99, 

while there are 8 SNPs in the data on CYLD 

having pairwise correlations between 0.51 

and 0.99, with the median equal to 0.93. 

[17]. 

The model for one disease SNP used 

to generate disease status is 

 

           
0 1

0 1

+ T

+ T

e
P(diseased | T) =

1 + e







,           (14)

  

where T  is the number of copies of the rare 

allele of the disease SNP, 
0 is a pre-

specified baseline relative risk of disease 

and 
1 is the gene effect. In this study, 0.1, 

0.2, 0.4 and 0.7 are arbitrarily chosen for 

gene effect of 
1 and we found that small 

gene effects are able to classify rare variants 
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better than large gene effects. Therefore, we 

have chosen the gene effect equal to 0.2. 

The disease model for two disease 

SNPs is 

     
0 1 1 2 2

0 1 1 2 2

+ T + T

1 2 + T + T

e
P(diseased | T , T ) =

1 + e



 

 


.  (15) 

This model assumes the two disease 

SNPs act linearly on the logit scale and two 

situations are investigated. The first is for 

gene effect 
1 = 0.1 and 

2 = 0.2 while in  

the second case the gene effects are fixed at 

1 = 0.2 and 2 = 0.1. Once again small 

gene effects for 1 and 2 give a better 

result in classifying rare variants. The 

example genotype data in simulation were 

shown in Table 1. The haplotypes are next 

coded to 0 (major allele) and 1 (minor 

allele) and used to construct pairs of 

parental genotypes using randomly selected 

haplotypes. Each pair of parental genotypes 

are then used to construct the genotype of an 

individual in the study.  The disease status 

(y = 0,1) is determined using the probability 

from the logistic regression in Equation 5 

and 6, respectively. The cases and controls 

are generated under the randomly selected 

assumption and disease SNP are rs3789038 

and rs3785142.  

Determining the status of an 

individual is performed by considering 

random numbers from the uniform 

distribution to compare with the probability. 

If the probability value is more than the 

random numbers, we define as case (disease 

= 1) and control otherwise (no disease = 0). 

The SNPs are coded in three fashions, with 

0, 1, and 2 corresponding to homozygotes 

for the major allele, heterozygotes, and 

homozygotes for the minor allele, 

respectively. The genotype data from 

generating simulated data is shown in Table 

1. 

Table 1.  The genotype data from generating simulated data 3,000 cases and 3,000 controls. 
Individual Disease status SNP1 SNP2 SNP13,479 

1 1 0 1 2 2 

2 1 2 1 1 1 

1 

3000 1 0 0 1 1 

3001 0 2 1 1 1 

3002 0 0 1 1 0 

0 

6000 0 0 0 0 1 

4. Simulation Study
In this research we considered the 

efficiency of the model by using the false 

positive (FP) and true positive (TP) rates. 

The FP is the number of disease SNPs or 

SNP-set that are not identified, whereas the 

TP is the number of times the disease SNPs 

were detected. The result in this research are 

based on 1,500 replicates. The equation for 

calculating FP and TP rates in the study are 

as follows:    

#significant SNP except disease SNP
FP   .

#Atotal SNPs #Atotalreplicates
=


 (16) 

TP =
#significant SNP in disease SNP 

#A total replicates
.   (17) 

In this research, we present the 

simulation result of SKAT and GHC with 

B-spline for two cases, one disease SNP

case and two disease SNPs case.
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Case I: One disease SNP 

The FP and TP rates of SKAT normal 

and GHC of rs3789038 and rs3785142 as 

disease SNP with gene effect size 
1

 = 0.2 

are provided in Table 2. The result has 

shown that when the degree of freedom 

increases FP and TP rates are decreasing. In 

this case, both methods were confirmed by 

the simulation results which show that b-

spline under the degree of freedom 1,000 

which is the optimal parameter with the 

lowest FP and high TP. 

b
1

Table 2. The FP and TP rates from SKAT normal and GHC with B-spline based on 

permutation threshold with rs3789038 and rs3785142 as disease SNP and effect size  = 0.2

d.f. 
Disease SNP rs3789038 Disease SNP rs3785142 

SKAT normal GHC SKAT normal GHC 

FP TP FP TP FP TP FP TP 

400 0.01505 0.95 0.00860 0.91 0.01440 0.50 0.01271 0.58 

500 0.01082 0.93 0.00784 0.88 0.01124 0.60 0.01049 0.60 

600 0.01152 0.88 0.00703 0.86 0.01003 0.70 0.00861 0.60 

700 0.01087 0.86 0.00668 0.83 0.00925 0.74 0.00791 0.61 

800 0.01030 0.85 0.00728 0.83 0.00846 0.78 0.00740 0.62 

900 0.00963 0.86 0.00616 0.81 0.00782 0.80 0.00684 0.62 

1000 0.00953 0.86 0.00616 0.81 0.00771 0.79 0.00679 0.62 

1100 0.00953 0.86 0.00616 0.81 0.00771 0.79 0.00679 0.62 

1200 0.00953 0.86 0.00615 0.81 0.00771 0.79 0.00679 0.62 

Table 3.  The TP and FP rates of SKAT normal and GHC method with B-spline based on 

permutation threshold with rs3789038 and rs3785142 as disease SNP. 

d.f. 


2
= 0.2 and 

1
= 0.1 

1
= 0.1 and 

2
= 0.2 

SKAT normal GHC SKAT normal GHC 

FP TP FP TP FP TP FP TP 

400 0.07079 0.99 0.03029 0.95 0.08264 0.88 0.03595 0.85 

500 0.05783 0.98 0.02557 0.94 0.06972 0.88 0.02970 0.85 

600 0.05165 0.97 0.02169 0.93 0.06147 0.91 0.02427 0.85 

700 0.04779 0.96 0.02002 0.93 0.05660 0.91 0.02202 0.85 

800 0.04483 0.95 0.01909 0.92 0.05273 0.92 0.02053 0.85 

900 0.04224 0.96 0.01808 0.91 0.04953 0.94 0.01908 0.85 

1000 0.04180 0.95 0.01796 0.91 0.04901 0.93 0.01900 0.85 

1100 0.04180 0.95 0.01796 0.91 0.04901 0.93 0.01900 0.85 

1200 0.04180 0.95 0.01796 0.91 0.04901 0.93 0.01900 0.85 

The FP rate of SKAT normal is seen 

at 0.00953 to be higher than GHC but this 

comes at a higher TP rate 0.86. The FP rate 

of the GHC is 0.00616 and the TP rate is 

0.81 show that there is a small degree of 

difference in the FP and TP.  

In the case of rs3785142 as disease 

SNP, the result has shown that when the 

degree of freedom increases FP and TP rates 

are roughly increasing. The simulation 

results show b-spline under the degree of 

freedom 1,000 which is the optimal 

parameter with the lowest FP and high TP. 

The FP rate of SKAT normal is seen at 

0.00771 to be higher than GHC but this 

comes at a higher TP rate 0.79. The FP rate 

of the GHC is 0.00679 and the TP rate is 

0.62, which show that there is a small 

difference in FP while much higher TP.  

Case II: Two disease SNPs 

Comparisons of the FP and TP rates 

of SKAT normal and GHC of rs3789038 

and rs3785142 under the disease model for 

two disease SNP are shown in Table 3. The 

FP and TP rates for SKAT normal and GHC 

with a gene effect sizes of 
2
= 0.2 and 

1
 = 

0.1. This is consistent with the finding in 

Table 2. The simulation results show that b-

spline under the degree of freedom 1,000 is 
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the optimal parameter with the lowest FP. 

The FP rate of SKAT normal is seen at 

0.04180 to be higher than GHC but this 

comes at a higher TP rate of 0.95. The FP 

rate of the GHC is 0.01796 and the TP rate 

is 0.91. 

In the case of the gene effect size 
1

= 

0.1 and 
2
= 0.2, the result has shown that 

when the degree of freedom increases, FP 

and TP rates are increasing. The simulation 

results show that b-spline under the degree 

of freedom 1,000 which is the optimal 

parameter with the lowest FP and a high TP. 

The FP rate of SKAT normal is seen at 

0.04901 to be higher than GHC but this 

comes as higher than the TP rate of 0.93. 

The FP rate of the GHC is 0.01900 and the 

TP rate is 0.85 showings an above moderate 

difference in FP and TP. 

The finding confirmed that the GHC 

outperforms SKAT normal. The different 

disease SNP affects the efficiency of the 

model which is SNP rs3789038 is driving 

the disease gene relationship in the 

simulation model. The ROC curves of the 

disease model for one disease SNP are 

shown in Fig. 1 and Fig. 2 and two disease 

SNP in Fig. 3 and Fig. 4, respectively.


1

Fig. 1.  The ROC curve for FP and TP rates from SKAT and GHC with B-spline with rs3789038 as 

disease SNP and effect size = 0.2 


1

Fig. 2.  The ROC curve for FP and TP rates from SKAT and GHC methods using B-spline with 

rs3785142 as disease SNPs and effect size = 0.2 
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
2


1

Fig. 3.  The ROC curve for FP and TP rates from SKAT and GHC method using B-spline with 

rs3789038 and rs3785142 as disease SNP and respective effect sizes of = 0.2 and = 0.1 


1


2

Fig. 4. The ROC curve for FP and TP rates from SKAT and GHC method using B-spline with 

rs3789038 and rs3785142 as disease SNP and respective effect sizes of = 0.1 and = 0.2 

The result shows that SKAT and 

GHC give a comparable result. The optimal 

degree of freedom of both methods is 1,000. 

The example of the B-spline for declaring 

the significance of SKAT normal (a) and 

GHC (b) with degree of freedom 1,000 for 

one and two disease SNPs genetic models 

are shown in Fig. 5 and Fig. 6, respectively. 
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(a)  (b) 

Fig. 5.  The horizontal line of permutation threshold for declaring significant of SKAT normal (a) and 

GHC (b) with B-spline df 1,000 for one disease SNP genetic model. 

(a)    (b) 

Fig. 6.  The horizontal line of permutation threshold for declaring significant of SKAT normal (a) and 

GHC (b) with B-spline df 1,000 for two disease SNP genetic model. 

5. Real Data Application
Both methods that were evaluated in 

the previous section can be applied to real 

data to define the location of SNP or the 

region that causes the disease. The data set 

used has 13,479 SNPs on Chromosome 16 

which comprise 2,005 cases and 1,500 

controls of Crohn’s disease studies. Table 4 

shows the SNPs which are declared as 

significant by SKAT normal and GHC with 

B-spline. SKAT normal found four regions.

The largest region called region 7 located at

114,090 basepairs and contains a cluster of

27 SNPs. There are 7 SNPs located within

an intron gene 174 (a region inside a gene),

12 SNPs were located in NOD2, and 8 

SNPs were located in CLDY gene, 

respectively. Other significant genes were 

LOC646828, intron gene 89 and SMG1P5. 

Moreover, the GHC method found four 

regions, the largest region is called region 7 

located at 114,090 basepairs and contains a 

cluster 27 SNPs. There are 7 SNPs located 

within an intron (a region inside a gene), 12 

SNPs located in NOD2 and 8 SNPs located 

in the CLDY gene, respectively. Other 

significant genes were SMG1P5, 

LINC01566, and intron gene 173. 

 The result obtained from the real 

data shows that both methods give the same 
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regions that cause the disease. Especially, 

both methods were finding gene NOD2 

which declared to concern Crohn’s disease 

[28-30]. However, when comparing the 

performance, all GHC with B-spline give a 

lower FP in the simulation studies. In 

addition, GHC has an advantage in terms of 

lower computational cost. Therefore, it is 

clearly seen that GHC with B-spline is 

preferable. 

 

Table 4.  Gene on Chromosome 16 declared as significant SKAT and GHC method without 

and with B-spline for the WTCCC study of Crohn’s disease.   
Region SKAT normal with B-spline GHC with B-spline 

1 LOC646828, Intron Gene 89 - 

2 - - 

3 SMG1P5 SMG1P5 

4 - LINC01566 

5 Intron Gene 151, KIF18BP1 - 

6 - Intron Gene 173 

7 Intron Gene 174, NOD2, CYLD Intron Gene 174, NOD2, CYLD 

   

6. Discussion and Conclusion 
 Identifying an optimal parameter and 

appropriate thresholds for declaring 

significance are two important and related 

problems remaining to be solved. It is 

desirable to have an optimal parameter. The 

findings showed that b-spline under the 

degree of freedom 1,000 is the optimal 

parameter for all conditions. Obviously, 

when setting the degree of freedom more 

than 1,000 the FP and TP rates are 

unvarying.  Defining the degree of freedom 

over the number of variables (SNP-sets) 

causes the B-spline to overfit with the data 

set. Moreover, if we are increasing the 

degree of freedom it will take a lot of time 

to fit the B-spline. If we compared the 

efficiency of the model using FP and TP 

rates, SKAT normal is highly TP and FP 

while GHC with B-spline is less than TP 

and gives the lower FP. Both methods have 

different advantages and disadvantages, 

SKAT normal gives a high FP while GHC 

gives the lower FP which we focus on 

reducing. But it is difficult to specify the 

efficiency of the model. It can be seen that 

both models obtain the same region in real 

data application analysis. There are many 

factors that should be considered as well, 

such as the computation. In the process of 

obtaining the SKAT and GHC p-value, it 

was found that the GHC takes the most time 

to analyze, about 750 hours while SKAT 

normally used only about 100 hours. It is 

clear that SKAT normal is very 

advantageous and can reduce computational 

time while efficiency is the same as GHC. 

In the section of real data analysis, it 

was found that both methods found 

particularly important regions. Region 4 was 

involved in genes 174, NOD2 and CYLD. 

Many researchers found that gene NOD2 is 

strongly associated with the development 

and important genetic variant cause Crohn’s 

disease [28-30]. Finally, the researchers 

expect that this method will be able to apply 

to other diseases that have not yet been able 

to identify the SNP-sets that affect the 

disease. 
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