
ICL Technical Journal 4(4): CAFS-ISP
Book

Published Version

ICL TJ special issue on CAFS-ISP

Lanum, A W, Carmichael, J W S, Hutt, A T F, Haworth, Guy
ORCID logoORCID: https://orcid.org/0000-0001-9896-1448,
Macphail, N, Tagg, R M, Wiles, P R, Corbin, C E H, Kay, M H,
Burnard, L, Walker, D and Babb, E (1985) ICL Technical
Journal 4(4): CAFS-ISP. ICL Technical Journal, 4 (4). Peter
Peregrinus Ltd. on behalf of International Computers Ltd.,
London, pp. 1-175. Available at
https://centaur.reading.ac.uk/97557/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: https://www.fujitsu.com/uk/imagesgig5/ICL-Technical-Journal-v04i04.pdf

Publisher: Peter Peregrinus Ltd. on behalf of International Computers Ltd.

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

TECHniCAl
j o u R m i

Volume 4 Issue 4
November 1985

iC L
T C p u n ip p i The ICL Technical Journal is published twice a year by

1/¼ in n n i Peter Peregrinus Ltd. on behalf of International
JO U R rln L Computers Ltd.

Editor
J. Howlett
ICL House, Putney, London SW15 1SW, UK

Editorial Board

J. Howlett (Editor)
H.M. Cropper
D.W. Davies
G.E. Felton
M.D. Godfrey

CJ. Hughes
(British Telecom Research Laboratories)
K.H. Macdonald
J.M. Pinkerton
E.C.P. Portman

All correspondence and papers to be considered for publication should be
addressed to the Editor.

1986 subscription rates: annual subscription £16.00 UK, £19.00 overseas,
airmail supplement £8.00, single copy £10.00. Cheques should be made out to
‘Peter Peregrinus Ltd.’, and sent to Peter Peregrinus Ltd., Station House,
Nightingale Road, Hitchin, Herts. SG5 ISA, UK, telephone: Hitchin (s.t.d.
0462) 53331.

The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.

Publisher
Peter Peregrinus Ltd.
PO Box 8, Southgate House, Stevenage, Herts. SGI 1HQ, UK

This publication is copyright under the Berne Convention and the Inter
national Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy of
an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.
©1985 International Computers Ltd.

Printed by A.McLay & Co. Ltd., London and Cardiff ISSN 0142-1557

J C L
TCCHNCfll
JOURnflL

Contents
Volume 4 Issue 4

Foreword
Asa W. Lanum 351

History of the ICL content-addressable file store (CAFS)
J.W.S. Carmichael 352

History of the CAFS relational software
A.T.F. Hutt 358

The CAFS system today and tomorrow
G.McC. Haworth 365

Development of the CAFS-ISP controller product for
Series 29 and 39 systems
N. Macphail 393

CAFS-ISP: issues for the application designer
R.M. Tagg 402

Using secondary indexes for large CAFS databases
P.R. Wiles 419

Creating an end-user CAFS service
C.E.H. Corbin 441

Textmaster — a document-retrieval system using CAFS-
ISP
M.H. Kay 455

ICL Technical Journal November 1985 349

CAFS and text: the view from academia
L. Burnard 468

Secrets of the sky: the IRAS data at Queen Mary College
D. Walker 483

CAFS file-correlation unit
E. Babb 489

Patents relating to the ICL content-addressable file store
CAFS 504

Notes on the authors 506

Subject index to Volume 4 511

Author index to Volume 4 518

350 ICL Technical Journal November 1985

Foreword

On the 21st April 1985 it was announced that the Queen’s Award for
Technological Achievement had been presented to ICL in recognition of the
successful innovation represented by the development of CAFS-ISP.

The problem of accessing large amounts of data in a structured manner, so as
to present usable information within a reasonable time, began to be recognised
as early as 1962. The CAFS system is a combined hardware and software
solution to this problem. Additionally, it is especially well positioned because
throughout the development there has been a clear understanding that any
technological breakthroughs achieved in solving the problem must fit into the
real world of existing customer data and equipment.

The CAFS-ISP product clearly represents a breakthrough worthy of the
Queen’s Award, and as such is one of the unique technological advances in the
data-processing industry today. As a vehicle it is just now being recognised by
other organisations trying to provide comparable data-access capabilities.

This issue of the ICL Technical Journal reviews the history of the development
of CAFS from the first recognition and formalisation of the problem through
to the evolution of the physical solution, and also the history of the supporting
software. In addition it illustrates the use of the product in the real world,
showing how this has extended from the original closely defined problem of
data access to include the processing of text and other forms of information by
real users to solve real problems.

Asa W. Lanum
Director and General Manager, ICL Applied Systems

ICL Technical Journal November 1985 351

History of the ICL content-addressable
file store (CAFS)

J.W.S. Carmichael
ICL Mainframe Systems, Slough, Berkshire

Abstract

The paper is a chronological review of the development of CAFS from an
original notion through successive stages of research, development and
integration to a standard ICL product. It is essentially the author's
historical review included in the 1985 Report of the CAFS Group Working
Party of the ICL Computer Users Association.

1 Introduction

The origin of CAFS as a concept was the explicit recognition that the
activities of a living organisation of co-operating people are not totally
ordered, so that their interactions must be regarded as an interplay of order
and disorder. The use of information to maintain their organised behaviour is
therefore also characterised by an element of disorder, in its fundamental
sense of intrinsic unpredictability, and so, whenever a large amount of data is
stored on magnetic media, some applications will require that it be accessed
by search. The traditional approach to solving this problem has been to build
indexes to cope with the more predictable searches. This is fine as far as it
goes, but not all searches can be predicted, and if one tries to build indexes to
cope with every eventuality - by, in effect, totally inverting the file - the task
of managing the indexes, particularly when the data is volatile, can become
intolerable.

Two very relevant quotations from Vic Mailer1 are:

‘There are, in fact, instances where the indexes can occupy between two
and four times the volume occupied by the data to which they refer a
perfectly absurd situation’. \ .. It should not be assumed that indexable
operations cover the totality of useful functions . . . Indexes are really
very primitive projections of files and consequently their utility should
not always be taken for granted’.

Content addressing, or associative processing, is a natural way of trying to
circumvent these difficulties. Very natural, in fact, since we are all very
familiar with the marvellous effects we can achieve using these techniques in
retrieval from the memories in our heads. Laymen have always assumed that

352 ICL Technical Journal November 1985

computers work this way; look at the computers in 2001, Doctor Who or
Blake’s Seven to see how ordinary people think they behave.

In the early 1960s there was much speculation in the academic world on the
potential value of associative stores, but few suggestions regarding prac
ticable techniques for making such a store of adequate capacity at acceptable
cost. In 1962 Gordon Scarrott, working with Roy Mitchell in the Ferranti
computer department, was stimulated by this situation to point out to their
management that if a store, of adequate capacity to be useful, conceptually
rotates as a consequence of its operating principle - for example a magnetic
drum or a delay line - then the mean time required for access by search is half
the revolution time, exactly the same as for access to a known address. Hence
associative access can be achieved with existing technology, without an
additional access time penalty. However, in 1962 the concept of a ‘data base’
had not become common and consequently the need for store access by
automated search was not widely recognised. Moreover, there were no
resources available for exploratory development, and so no physical work
was initiated at the time.

2 Initial project

In 1969 George Coulouris, then lecturer in computer science at Imperial
College, suggested to Gordon Scarrott a joint project with ICL’s Research &
Advanced Development Centre to identify the intrinsic requirements for file
storage and to propose ways for meeting such requirements - a suggestion
that was immediately accepted. The late Roy Mitchell, then a senior member
of the staff of RADC, took responsibility for the project, collaborating with
John Evans, one of George Coulouris’s senior students.

At that time moving-head disc storage devices were not in common use.
Nevertheless, in December 1969 Roy Mitchell had proposed a combination
of disc store, key store and comparator, search evaluation unit and retrieval
unit. He coined the term ‘CAFS’ to refer to the system, a name by which this
combination of mechanisms is still known. Initially there was some confusion
about whether the ‘A’ stood for ‘addressable’ or ‘addressed’, but this issue has
long been resolved in favour of ‘addressable’ since the system permits
addressing by content but does not enforce it.

It is noteworthy that most of the individual events (i.e. comparisons) in the
CAFS searching system take place as soon as the data becomes available
from the disc store, so that Roy Mitchell’s design was in effect a ‘data flow’
system as now defined. But of course the term ‘data flow’ was not used in
1969.

Since CAFS is an engineering innovation, its most basic feature, the
autonomous searching mechanism, should be regarded as a novel and
advantageous synthesis of ends and means. Gordon Scarrott and Roy
Mitchell proposed the means in 1962, George Coulouris and John Evans

ICL Technical Journal November 1985 353

recognised the ends in 1969, and Roy Mitchell proposed the synthesis in 1969.
On this foundation others, notably Ed Babb in connection with hardware
and Tom Addis with software, proposed additional valuable features during
the development, and Vic Mailer maintained the momentum of the project
over a difficult period when ICL was preoccupied with defining and
launching the 2900.

During 1970 proposals for investigating and evaluating the characteristics of
a CAFS device progressively took shape. Coulouris and Evans undertook
technical research in the USA, leading to the publication of CAFS Report
No. 1: ‘Some characteristics of real time data management systems'. The
specification of a joint project between ICL and Imperial College was
submitted for possible support to the Advanced Computer Technology
Project. In June CAFS Report No. 2 gave ‘An outline of the CAFS
programming interface’.

In 1971 Roy Mitchell’s design for an experimental machine was adopted in a
project, funded under an ACTP contract, for the construction of a prototype
at RADC. The principles of the machine which became known as CAFS
Mark 1 were published at IFIP 71 in a paper by Coulouris, Evans and
Mitchell entitled ‘An approach to content-addressing in data bases'. During
1971 Vic Mailer joined Roy Mitchell at Stevenage, to undertake applications
studies, software management and experimental evaluation. A large number
of potential applications within ICL itself were identified, including systems
in Group Purchasing, Spares Inventory, Personnel, and Production Schedul
ing. On a wider scale, major possibilities were identified, even at this early
stage, in police systems, in the hospital service, in matching jobs and
applicants, in services provided by libraries and information publishers, and
in the preparation of government and trade statistical analyses.

3 Prototypes

1972 saw the completion of the Mark 1 prototype, and the start of an
extensive testing programme. It was soon confirmed that data stored on discs
could be searched and retrieved by the unique hardware developed by the
RADC team at speeds far in excess of those possible using traditional
software techniques. The Mark 1 machine used an 8 Mbyte exchangeable disc
attached to a 1900 series host, and already had the characteristic separation
of functions between key store and comparator unit, search evaluation unit
and retrieval unit. The Journal of the British Computer Society, Computer
Journal, published another paper by Coulouris, Evans, and Mitchell entitled
‘Towards content-addressing in data bases’2. The success of these trials
justified initial contacts with the Post Office, for a study of the Directory
Enquiries problem, and with the IEE’s INSPEC service as an example of a
document storage and retrieval application.

By 1973 enough experience had been acquired for the design of a replacement
machine to be started. This was intended to be a further research and

354 ICL Technical Journal November 1985

experimental device, but already considerable debate had started within the
company on not only how, but also whether, CAFS could eventually be
incorporated into the official company product line, and what procedures
and standards should be followed to transfer information smoothly between
the research and manufacturing processes. Meanwhile, the Mark 1 machine
was successfully demonstrated to the Post Office Directory Enquiries
management, and the outline of a possible PODQ trial was agreed.

1974 saw the construction of two prototype Mark 2 CAFS machines.
Although it was clear that the major future market would be associated with
what at that time was called the ‘new range’, subsequently the 2900 series, it
was natural that the CAFS developments should be continued on the stable
foundation of 1900 architecture. The Mark 2 CAFS was designed to search
data held on EDS 60 discs, using multiple read heads and amplifiers to read
and search up to 10 tracks at a time; this multiplicity, which has sometimes
been mistaken for an essential characteristic of a CAFS device, was in fact
adopted as a means of boosting the data transfer rate to one which matched
that of the CAFS searching and evaluation mechanism. A modified 7503 was
used as the control processor, which interfaced with the host and directed the
activity of the underlying CAFS components. A VDU was installed at Hemel
Hempstead for preliminary experiments on Directory Enquiries; not surpris
ingly, these highlighted many requirements for enhancements and corrections
to the pilot software, but also generated sufficient enthusiasm to justify
progress to an extended trial.

In 1975 a CAFS Exploitation Review Committee was established to co
ordinate future policy. It considered how to take advantage of the Depart
ment of Industry’s procedures for assistance under the preproduction orders
scheme. Some interest was aroused in the CCA (predecessor of the present
CCTA) for the possible application of CAFS in public service applications in,
for example, PRISM, DHSS and the Home Office. An initial submission was
also made to the European Commission. A PODQ Project Team was
established within ICL.
Throughout the mid 1970s the CAFS team at RADC made steady progress in
the development of software products and techniques, exploring possible
ways of exploiting CAFS as a search engine more fully. Major advances were
registered by Ed Babb and Len Crockford in the definition of data models to
describe an online database in a manner which permitted relational process
ing with optimal efficiency. The facilities of the enquiry language also
underwent continual pragmatic refinement, with particular attention to
psychological factors affecting the usability of the enquiry commands. The
implications of CAFS for database design and structure provoked much
lively debate between proponents of IDMS on the one hand and of CAFS on
the other; there was not much prevision of the eventual mutually beneficial
synthesis of the two approaches.

During 1976 and 1977, as such development work proceeded, a programme
for the transition of CAFS to full product status was developed. The

ICL Technical Journal November 1985 355

prototype applications were to be consolidated, and practical experience in
live application conditions acquired at a limited number of sites, actively
cooperating with ICL and with each other. This would initially require the
manufacture of a small batch of machines, following the architecture of the
Mark 2 engines but conforming more closely to normal manufacturing
conventions. A CAFS marketing manager was appointed; formal disclosure
procedures were set up to control the flow of information from the centre of
the company through approved units of the sales organisations, to candidate
customer pilot sites. The PODQ trial also advanced, with the transfer of the
CAFS enquiry software from Stevenage to the PODQ Project Team at
Bracknell, where it was modified to incorporate the various specific require
ments that the pioneering experiments had defined.

During 1978 the main Post Office Directory Enquiry trials took place.
Terminals in the telephone exchanges at Leeds and Leatherhead were
connected to the CAFS machine installed at ICL Bracknell, where the
records of 7 000 000 subscribers were held; this represented about half of the
national directory. All the technical criteria for the trial were triumphantly
met; for example, an average response time of 2.5 s had been specified, and
over the whole trial the observed average was 1.7. There was also noteworthy
and very positive feedback from the operators of the trial service. They very
quickly found the best ways to use the facilities - how much or how little
search information to enter, which terms were the most successful search
keys, how best to proceed with incomplete information, and so forth. They
also all reported that the system was much more enjoyable and satisfying to
operate than the previous ‘conventional’ techniques. All these reactions are
now commonplace, but at the time they were valuable confirmation that we
had been proceeding on the right lines.

4 Official product

The main event of 1979, from the CAFS point of view, was the announcement
of CAFS 800 - the first marketed version of the CAFS Mark 2 machine - as
an official ICL product. One of the first of these was installed in ICL’s own
Group Information Systems, where the first application with live data was
the personnel system. Over the next two years a total of 14 such machines
were installed, in very different organisations and covering an exceedingly
wide range of applications. At mid 1985, 12 of these machines were still in
successful active service. These machines naturally attracted a great deal of
interest, and were seen as fully confirming the claims for the principles of
CAFS that had been made over the years. On the other hand, with a
complicated architecture and somewhat outmoded technology, they were
adjudged to be expensive at some £250000 each. Nevertheless, although it
was difficult to justify such expenditure in advance, nearly all users reported
very satisfactory, although hard to quantify, benefits as a result of using a
CAFS service, whether in reduced tactical and ad hoc programming,
improved quality of data, or greater accessibility of information.

356 ICL Technical Journal November 1985

The success of the CAFS 800 programme led naturally to the development
and implementation of CAFS-ISP (information search processor), bringing
CAFS into the mainstream of ICL’s product line. From now on CAFS was to
be progressively incorporated in the standard environment of VME, to
become automatically associated with standard file and database structures,
and to be available in the standard hardware of the 2966 family of systems.
CAFS-ISP was officially launched at a well attended open meeting of the
CAFS User Group - perhaps it should then have been called the CAFS
Intending User Group - in April 1982.

Before the end of June 1985 the 500th order had been received for CAFS
modules with 2966 family systems; of these some 450 had been installed, on
over 300 systems, in a dozen countries around the world. In addition, April
1985 saw the launch of the Series 39 mainframes, with the announcement that
from now on CAFS would be an automatic constituent of every ICL
mainframe system.

The success of CAFS stems from the combined efforts of many people, too
many for all to be cited here. So let this review conclude by signalling the
invaluable contribution of two groups:

- the pioneers in RADC, without whose flair, vision and pertinacity there
would have been no CAFS product

- the CAFS User Group, whose serious commitment has convinced the
world of the importance of the concept and the product

References

1 MALLER, V.A.J.: The content addressable file store — CAFS’, ICLTech. J ., 1979, 1 (3),
265-279, (includes a useful bibliography).

2 COULOURIS, G.F., EVANS, J.M. and MITCHELL, R.W.: Towards content addressing
in data bases’, Computer J., 1972, 15 (2), 95-98.

ICL Computer Users Association (UK), CAFS SIG: ‘Exploiting CAFS-ISP’, Working
Party Report, July 1984. (2nd Amended Reprint, July 1985), ICLCUA (UK), PO Box 42,
Bracknell, Berks, RG12 2LQ, UK.

ICL Technical Journal November 1985 357

History of the CAFS relational software

A.T.F. Hutt
ICL Management Support Business Centre, Reading, Berkshire

Abstract

The paper is a chronological review of the development of the relational
software that now forms part of the CAFS system. It is essentially the
author’s personal recollections of this history, in which he was deeply
involved.

1 The beginning

The origins of the product go back to 1969, when the Computer Department of
the BBC Television Service, under Mr C. Lashmar, built the first release of the
Television Management System'. The purpose of this system was to maintain
records of the costs incurred while producing television programmes and to
provide details of these costs to those involved in the work. Once this system
was in service, user reaction led to the production of several subsequent
versions and to the point in mid-1972 when further developments were
dependent on the use of better concepts and more advanced methods. Once
this situation was recognised, Mr Lashmar approached ICL and South
ampton University with a proposal to sponsor, jointly, a bursary aimed at
finding a practical solution to these problems. The bursary was established in
1973 by BBC Television, ICL and the university to investigate ways of using
database techniques to produce large information systems; the author of this
paper was awarded the bursary and started work on the project in May 1973.
So one could say that the development of the CAFS relational software started
with an advertisement for a senior designer to work on this bursary for three
years.

2 The bursary

This bursary had the advantages for all parties involved that it offered the
holder and Southampton University the opportunity to perform research in a
comparatively untouched field of study, and if successful would provide the
BBC with a solution to problems it needed to solve and ICL with a
contribution to its product line. It says much for the foresight of Professor
Barron of Southampton and Mr T. Brooks of ICL that most of these hopes
have been fulfilled.

At the time of starting, the overall plan for the project was to spend 6 months
with the BBC reviewing their system and the rest of the time at Southampton:
12 months on system architecture and design, 12 months on system

358 ICL Technical Journal November 1985

construction and the remaining 6 months on writing up a doctoral thesis. This
overall plan governed the work until August 1976 when the thesis was
presented for examination. The following paragraphs describe briefly the work
carried out in these periods.

2.1 The BBC

The six months spent here were very instructive. I had spent the previous seven
years designing the Edinburgh Multi-Access System EMAS2 and the file store
and file-management systems for VME-B3,4,5; consequently, this was the first
opportunity I had had to investigate a large application suite. My overall
impression of the Television Management System was that it was very large
and it was difficult for anybody to grasp its full extent; furthermore, that instead
of writing Cobol code large parts of the system could be generated using
modern database-management systems.

Being familiar with both top-down system design methods and database
design methods I spent a lot of effort producing a model of the Television
Management System which was both comprehensive and easy to understand.
Later, this proved to be the sort of system description which ICL subsequently
modelled in the Data Dictionary System6.

2.2 The architecture phase

This started with a series of system studies and discussions with those working
on other database systems; it was to have a major impact on the rest of the
project.

At this time the main specifications for both the Codasyl and Relational
Database Systems7 “ 11 had been produced and I was faced with
understanding how they could be exploited to solve the BBC problem.
Fortunately, help was at hand. In 1974 IFIP established a Working Group
known as TC2, concerned with the development of database-management
systems. This group was significant because it held meetings12 - 14 that took a
very broad view of the subject and in particular was prepared to discuss the
advantages of the Codasyl and Relational systems. I joined the group and
spent very worthwhile weeks in Corsica, Belgium and the Black Forest with
Ted Codd, Chris Date, Peter Stocker and many others learning about their
work on relational systems, and this convinced me that the solution to the
BBC problem must be based on the relational model.

As a result of these inputs the specification of a system began to emerge; the
main features it would support were

- an application design methodology
- a five-level schema supporting the methodology, each level taking the form

of a relational database
- a family of relational languages to access both the users’ data and the

definitions of this data.

ICL Technical Journal November 1985 359

This system was known as the Relational Data Base Management System
(RDBMS)15 “ 17 and is the direct forerunner of the CAFS software delivered by
ICL.

2.3 System development

The specification of the system having been produced, the next task was to
produce the system itself; this dominated the rest of the project.

Southampton University and the BBC both had ICL 1900 computers, and
after a lot of discussion it was decided, on grounds of portability, to program
RDBMS in the language Coral 66. The early work was carried out at
Southampton but it soon became apparent that larger computing resources
were needed and the project was transferred to the 1906A at the Atlas
Laboratory at Chilton in Berkshire. With a large and powerful machine, and
the Atlas Laboratory staff who were extremely supportive, work progressed
rapidly and in December 1975 I had an early prototype which did in fact
support a large number of the system facilities. In fact, this was only the second
working relational system in Britain, the only other being the Peterlee
Research Test Vehicle18, and was one of only about six world-wide, other
prototypes running at the same time being System R from IBM19 and
INGRES20.

2.4 Writing up

The need to write my doctoral thesis meant that I could no longer carry on
programming RDBMS; however, the BBC, ICL and the university, and by this
time the National Research & Development Council (NRDC) had recognised
the value of the work and put together a two-man team to continue the work.

Writing the thesis gave me the opportunity to revise and upgrade most of the
specification and to carry out some performance and sizing work using the
system. The thesis was presented in September 1976 and led immediately to the
next phase.

3 Exploitation of the system by ICL

I returned to ICL in 1976 and began to consider this question: how was this
novel system, the result of a successful research project, to be integrated into
the ICL product line and developed so as to become a standard product
available to all customers? The rest of the paper is about the solution to the
problem.

3.1 Keeping it going

The first task, clearly, was to ensure that the project continued. Letters to the
Managing Director, setting out the situation, resulted in the work being given
top management support and the project moved from its base in the Product

360 ICL Technical Journal November 1985

Marketing Group to the Product Development Group. The BBC agreed to
house the project and Southampton University and the NRDC agreed jointly
to the continuing use of the 1906A at the Atlas Laboratory; and all parties
agreed to a continuing project staff of three.

These arrangements continued for a further 18 months until Christmas 1978,
when the project was finally absorbed into ICL.

3.2 Decision to produce RDBMS

The big question asked in ICL was how could RDBMS fit into the product
line. In 1977 ICL was developing IDMS and the Data Dictionary System as
the mainline products and was committed to the Codasyl Network Data
Model; and these major products, aimed at very-large-scale applications such
as very big stores management problems, provided facilities beyond the
resources of RDBMS. Eventually the decision was made to produce RDBMS
as a small, easy-to-use system aimed at the user who had little or no database
experience but wished to develop his own simple system.

This decision led to questions about the usability of RDBMS: it would need to
be changed so as to make it simpler to understand and easier to use. Thus there
followed a series of workshops and reviews involving staff at all levels in the
company from Ed Mack, then Director of Product Development, downwards.
In the end everyone became convinced that it would be possible to turn
RDBMS into a product for the market envisaged and the project was formally
transferred from its research status to a product-line development.

3.3 The Personal Data System

The process of simplification and redesign was extremely painful. Large parts
of the research work had to be discarded because they were aimed at a higher
level of complexity than was currently required, and care had to be taken that
nothing was lost that might be required if and when the product was
redeveloped as a full relational database system. The outcome of this work was
the specification of the Personal Data System, PDS21.

The first release, PDS 50, was for the ME29 and 2904 machines in 1980;
it was later released for the 2900 VME machines as PDS 70. This was a
significant milestone on the development route of the RDBMS software
because it recorded that as a result of a great deal of effort in a variety of
directions RDBMS had been successfully transformed from a research vehicle
to a product-line item.

3.4 Querymaster 50

The understanding gained from the development of the Personal Data System
enabled the RDBMS project to tackle its next major challenge, the
development of Querymaster.

ICL Technical Journal November 1985 361

During the 1970s it had been stated on several occasions that it would be
possible to produce a relational database interface to a Codasyl system, but no
such working system was produced during that decade. The first realisation of
the claim was in 1981 with Querymaster 5022 on the ME29 range, which does
in fact give a fully integrated interface between IDMS and the relational
system.

The development of the first version of Querymaster had the objective of
providing a read-only version of the Personal Data System which would
interface with traditional files and IDMS databases; furthermore, as most of
the IDMS database definitions were in the Data Dictionary, the product had
to interface with the latter also in order to use those definitions. Major
improvements were made to this first version, as described in the next section.

There are only two other relational interfaces to IDMS; both run on the IBM
version, which were produced by a Polish team led by Dr. Staniszkis23.

3.5 Improving Querymaster 50: the Level 100 releases

The version of PDS and Querymaster just described were very early versions
and implement only a small part of the RDBMS functionality specified in my
doctoral thesis. Experience of customers’ reactions to these products led to the
decision to implement the remainder: this represented a massive upgrading of
the products and involved first dismantling them, then adding the new
functionality and finally rebuilding them.

This major project was carried out in the first 6 months of 1982 and resulted in
thefirst working system becoming available on field trial on the 14th July 1982
- a date well remembered by all those involved. Over a longer period the work
resulted in Querymaster 110 on VME machines and 120 on ME29; and in
PDS 110 on VME and 120 on ME29.

3.6 Relational interface to CAFS

One of the main shortcomings of the RDBMS products was that, being aimed
essentially at the end user, they provided no means for the applications
programmer to use the relational facilities. This was removed by the
development and release of the Relational CAFS Interface, RCI24; released in
1984, it provides much of the functionality of Querymaster in a form that
allows an application program to process the information retrieved.

3.7 CAFS-ISP

The release of Querymaster and the Personal Data System meant that the
concept of end users interacting directly with the data in their machines had
been firmly established, and there was now to be expected a demand for
improved performance in these products.

362 ICL Technical Journal November 1985

At the ICL Stevenage laboratory the CAFS project team had been developing
their hardware and software and there had been plenty of spirited discussion
between the CAFS and RDBMS teams on the relative merits of different
approaches. The time had now come for a joint development to meet the
demands on the product line. There was vigorous debate on the virtue and
possibility of marrying the CAFS machine and the relational software, and
it became clear that this was the way forward. A hectic 6 months followed,
during which designs and plans were put in place so that the CAFS hardware
could meet the new requirements of handling ICL standard discs and data
formats, and the various software products such as IDMS and RDBMS could
be adapted to accommodate the CAFS hardware. The successful completion
of all this work was signalled in 1983 by the release of the Series 200
Querymaster products, CAFS-ISP and all the software needed to support
these.

4 Summary, conclusion and acknowledgments

The programme of work that has been described started 13 years ago as an
academic research project sponsored by the BBC and Southampton
University, and has led to a range of products that are widely and increasingly
used by ICL customers throughout the world. Perhaps the most important
conclusion is the very gratifying one, that the belief of those who initiated and
gave early support to the work has proved so well founded.

A large number of people throughout ICL have worked to bring the
programme to its present successful state; I have mentioned a few in the course
of the paper and would like now to thank all who have contributed to the
achievements.

References

1 LASHMAR, C.W.: The control of MIS: management and methods’, in ‘Management
information systems’, Infotech State of the Art Report 21, Infotech Information Ltd., UK,
1974.

2 ‘EMAS users guide’, Edinburgh University, 1970.
3 ‘VME introduction’, ICL Technical Publication RP0071, 1981.
4 HUTT, A.T.F.: ‘A data base approach to system architecture’, Information Processing 1974,

Proc. IFIP Congress, 5th-10th Aug. 1974, North Holland, Sweden.
5 ‘VME file store management’, ICL Technical Publication R00183/02, 1984.
6 ‘Data Dictionary System’, ICL Technical Publication 6514, 1982.
7 ‘CODASYL DBTG subset specifications’, Oct 1973, available from ACM or British

Computer Society.
8 CODD, E.F.: A relational model for large shared data banks’, Comm. ACM, 1970, 13,

377-387.
9 CODD, E.F.: ‘A data sub-language based on relational calculus’, Proc. 1971 ACM-

SIGFIDET Workshop on Data Description, Access and Control, available from ACM.
10 CODD, E.F.:‘Normalised data base structure: a brief tutorial’, Proc. 1971 ACM-SIGFIDET

Workshop on Data Description, Access and Control, available from ACM.
11 CODD, E.F.: ‘Further normalisation of the data base relational model’, Courant Computer

Science Symposium 6, 1972, Data base systems, RUSTIN, R. (ed.), Prentice-Hall.
12 ‘Proc IFIP TC-2 working conference on data base management systems’, Cargese, Corsica,

lst-5th April 1974, North Holland, 1974.

ICL Technical Journal November 1985 363

13 ‘Proc. IFIP-TC2 special working conference on ‘A technical in-depth evaluation ot the
DDL’, Namur, Belgium, 13th 17th Jan 1975.

14 ‘Proc. IFIP-TC2 working conference on modelling in data base management systems',
Freudenstadt, West Germany, 5th-9th Jan 1976.

15 HUTT, A.T.F.: ‘RDBMS reference manual', Southampton University, 1975.
16 HUTT, A.T.F.: ‘A relational data base management system’, Doctoral Thesis, Southampton

University, 1976.
17 HUTT, A.T.F.: ‘A relational data base management system’, Wiley, 1979.
18 TODD, S.J.P.: ‘PRTV: a technical overview’, IBM Scientific Centre Report UKSC 0075,

May 1975.
19 ASTRAHAN, M.M.: ‘System R: relational approach to data base management’, ACM

Trans, on Data Base Syst., 1976, 1, (2).
20 'INGRES Reference Manual’, Relational Technology Inc., Berkeley, California, USA, 1982.
21 ‘Personal data system CPD57’, ICL Technical Publication RP1077, 1980.
22 ‘Using Querymaster’, ICL Technical Publication RP1143, 1981.
23 STANISZKIS, W. et ai: ‘NDMS prototype user’s guide’, Rapporto CRAI 84-23, CRAI,

Rende, Calabria, Italy, Oct. 1983.
24 ‘Relational CAFS interface user guide (RCI). 100’, ICL Technical Publication R00251,1984.

364 ICL Technical Journal November 1985

The CAFS system today and tomorrow

G.McC. Haworth
ICL Management Support Business Centre, Reading, Berkshire

Abstract

The CAFS search engine is a real machine in a virtual machine world; it
is the hardware component of ICL’s CAFS system. The paper is an
introduction and prelude to the set of papers in this volume on CAFS
applications. It defines the CAFS system and its context together with the
function of its hardware and software components. It examines CAFS’
role in the broad context of application development and information
systems; it highlights some techniques and applications which exploit
the CAFS system. Finally, it concludes with some suggestions for
possible further developments.

‘Search out thy wit for secret policies
And we will make thee famous through the world’

Henry VI, 1:3

1 Foundations

The late 1960s saw ICL’s leading architects designing the new range of
computer systems that was to become the 2900 Series. Specifically, those
responsible for the operating system were required to:

- provide a cost-effective environment for developing and running
applications

- adopt an architecture to fulfil changing requirements and exploit new
technological opportunities.

From the start, the designers acknowledged the rapid and accelerating
process of innovation which characterises the IT industry. They recognised
that the common computing processes would migrate from application
software via system software and microcode to special-purpose hardware.
The result based on the twin concepts of the virtual machine and the
procedure call was the virtual machine environment, VME.

File searching is clearly a common process and was identified as such in 1969.
Maintained file-projection indexes and data infrastructure are not always
appropriate or cost-effective for data-retrieval. Research in this area pro
duced the CAFS.800 search engine and development led to the CAFS-ISP

ICL Technical Journal November 1985 365

DOS
model ond ^
control

languages,forms, viewdata

QuickBuild packages
program s

the
relational

cso DC I systenn

QM RCI

I DMS
RECMAN RAMs

MAMPHY

MMI

applications
and tools

CAFS system
software

VME base
software

CAFS system
h a rdw are

corporate

da ta
a s s e t s

Fig. 1 The CAFS system in context

product1. The integration of CAFS-ISP into the VME virtual machine
environment is evidence of the robust architectural foundations laid down at
the outset.

2 The CAFS system

Initial success with CAFS.8002 5 demonstrated the effectiveness of the
hardware approach to file searching. It achieved a quantum leap in
performance, searching at ‘disc-speeds' and transferring a major part of the
normal mainframe load from the central processor to the peripheral CAFS
engines.

366 ICL Technical Journal November 1985

ICL set out to incorporate CAFS as a standard subsystem within VME. An
engine specification similar to that of CAFS.800 was combined with synergy
requirements as follows:

- retrieve records satisfying criteria expressed as a combination of Boolean
logic and threshold functions

- calculate during the search such derived data as are commonly required
- return a ‘projected’ set of hit records
- search existing data, whether stored in files or databases
- co-exist with current hardware and current workloads
- operate below existing or industry-standard interfaces

The programme resulted in what is now called the CAFS system. This is
defined here and currently comprises five elements, one hardware and four
software, as follows:

- the CAFS-ISP hardware search engine, here abbreviated to ‘CAFS’
- the VME CAFS search option, CSO
- the direct CAFS interface, DCI
- the relational system:

Querymaster for ad hoc and production data queries
the relational CAFS interface, RCI, an extension of Cobol

Fig. 1 shows the CAFS system in its context of target data, VME support and
application software.

For the sake of brevity, it is convenient to use rather a large number of
abbreviations in describing the system and its functions. These are explained
when first introduced and listed in the glossary at the end of the paper.

2.1 CAFS engine

This is attached to a disc control module (DCM), through which data not
being searched by CAFS passes directly as normally. The engine consists of
five main components, as shown in Fig. 2:

- the logical format unit (LFU)
- the key. channels (KCs)

select

Fig. 2 The CAFS engine

ICL Technical Journal November 1985 367

- the search evaluation unit (SEU)
- the retrieval unit (RU)
- the retrieval processor (RP)

2.1.1 Logical format unit: The LFU provides input to the other components,
advising them where to find relevant fields in the records. It has been given
information about the data-file’s logical block and record formats. It
examines the incoming data stream, identifies starts and ends of records and
fields and in some cases examines the content of the record.

type data data data type
of SIF identifier length of SIF

Fig. 3 The self-identifying format for data

A record that can be searched by CAFS has a fixed-length part followed
perhaps by a variable-length part. The latter may be a string, an array of
fixed-length fields or data in self-identifying format (SIF). The unit picks out
the appropriate types of data stored in this last format, illustrated above.

2.1.2 Key channels: The search criterion, i.e. the set of conditions that a
record must satisfy to qualify as a ‘hit’, is of the general form

logical condition (LC) & {interfield comparisons} (IFC)

for example:

(LC) age < 30 & 2 from [experience = insurance, banking, audit] &
(IFC) achievement > target

LC combines Boolean and quorum terms using the Boolean operators
‘AND’, ‘OR’ and ‘NOT’; the terms are evaluated from the results of
component atomic conditions of the form:

FIELD masked by MASK is in RELATION to LITERAL
where the relationship is = , / , > , < , > or <

The example above features one Boolean and one quorum term. The Boolean
term has one atomic condition; the quorum term has three.

Two features add to the CAFS functionality. First, CAFS can detect whether
records satisfy nominated subconditions within LC. Secondly, CAFS can
mask a field to ignore unknown or irrelevant parts of the field; this endows it
with a powerful fuzzy-matching capability.

In evaluating the complete criterion, the key channels and search evaluation
unit deal with LC and the back-end retrieval processor deals with IFC.

368 ICL Technical Journal November 1985

A battery of 16 key channels performs the first part of evaluating LC; not all
will be needed in every case. Each channel examines one atomic condition
and signals in parallel with the others and via three bit-stores whether their
masked field contains value(s) less than, equal to or greater than their literal.

None of the bit-stores will be set if the field does not exist, one will be set for a
single-valued item and any number will be set according to the content of a
multivalued field. For example, the text item ‘QUICK BROWN FOX’ in SIF
format when compared with FOX will use the VME EBCDIC collating
sequence to signal BROWN < FOX, FOX = FOX and QUICK > FOX.

The software surrounding CAFS uses some KCs; VME for example uses one.
The LC can therefore involve a maximum of 12-15 atomic conditions.

2.1.3 Search evaluation unit: The SEU declares whether the record satisfies
LC as well as the nominated subconditions within LC. It has a battery of 16
search evaluation processors (SEPs), programmed to operate in concert to
indicate in a ‘task word’ whether the condition LC and/or the nominated
subconditions are true or false. They are assisted in this task by two further
subunits as illustrated in Fig. 4. The quorum processor (QP) evaluates all,
possibly weighted, quorum expressions. The select processor (SP) broadcasts
the QP results and interim SEP results to the SEPs.

Finally, the SEU increments counts of records satisfying the LC condition
and the nominated subconditions by examining the task word.

KCs

Fig. 4 The selection evaluation unit

ICL Technical Journal November 1985 369

2.1.4 Retrieval unit. This unit is told by the LFU which bytes of the record to
retrieve as if that record had satisfied the LC. It stores retrieved records in the
retrieval processor’s (RP’s) 32 kbyte store for analysis. The record is
subsequently prefixed by an identifier, length and task word if it satisfies LC
and discarded if it does not.

The RU also notes the end of a logical block of data in the RP store for
checkpointing purposes.

2.1.5 Retrieval processor: Up to this stage, the CAFS engine works as a
strictly synchronous pipeline processor. The RP’s activity, however, is store-
buffered as described above. This allows the front end of the CAFS engine in
an extreme case to work thousands of records ahead of an RP examining a
physical cluster of records satisfying LC.

The RP has two roles. One is to calculate data derived from the file search as
a whole; the second is to be the final arbiter about passing data back to the
host mainframe. These are separable functions; the RP, after returning a
nominated number of records to the mainframe, can cease to retrieve but
continue to analyse the whole file.

The RP may calculate a number of functions in a user-determined sequence.
It evaluates the set of interfield comparisons constituting IFC. It computes
the maxima, minima and totals of values in specified fields. At any point in
this sequence, the record could be rejected as a candidate for passing back to
the mainframe.

The data-delivery rate of current discs limits CAFS search speed except in
high-hit-rate situations where the load on the retrieval processor can become
a limiting factor. Record reduction is done by the RU in parallel with record
selection but handling hit records and evaluating functions take time.

In summary, and in relational database terms, the key channel and search
evaluation units jointly perform the SELECT operation and the retrieval unit
performs the PROJECT operation.

It can be seen that the CAFS engine employs powerful, parallel and purpose-
built hardware focused on a common task previously done by conventional
von Neumann software.

The elapsed times of tasks unassisted by CAFS have been improved by
factors typically of 10-100 when CAFS was introduced. At the same time,
much if not almost all the work has been transferred from the central
processor to the CAFS engine, as was intended; in one verified case. 99-94%
of the mainframe load was removed.

Appendix l gives a more detailed model of the search and retrieval
performance of the CAFS engine together with information showing how the

370 ICL Technical Journal November 1985

objective of coexistence has been met. The first ICLCUA report6 includes the
results of the first CAFS performance tests.

The following four sections describe the software interfaces to the CAFS
engine which enable the prospective user to tap the search power of the
hardware.

2.2 CAFS search option

The objective of this software is to enable existing programs to use CAFS'
search power without requiring any change to the code. Such programs will
be ones which we do not wish to or cannot change. The former category
includes operational programs which have been well run-in, low-priority
‘one-offs’ as well as the year-end undocumented antique of apocryphal
importance and complexity. The latter category includes packages and
applications generated by QuickBuild.

CSO is addressed to the classic batch suite of Cobol and Cobol-like programs
which select records from a file using a known criterion and process the ‘hit’
records.

CSO allows selection on the basis of a Boolean-only criterion; quorum logic
and interfield comparison cannot be used to eliminate records. Further, CSO
cannot be used by the other three software interfaces to CAFS.

The CSO interface is a single system control language (SCL) command
SET_CAFS_CRITERIA (STCC)7 with parameters for defining the relevant
record format(s) and the selection criterion. This causes selection intelligence
and CAFS instructions to be interposed (Fig. 5) at record-access method
(RAM) level between the target data file and the program.

For example, suppose a program ISSUEDEMAND processes a file
MYMASTER containing records of several different types, each starting with
a four-character field, TYPE. The program is only interested in records
where:

TYPE = 4 and AMOUNT_OWING ^ £300000.00

The following SCL boosts the performance of ISSUEDEMAND:

ASSIGN_FILE (MYMASTER, MAINFILE, LEVEL = C)
STCC (LNAME = MAINFILE,

ITEMS = TYPE (1:4) & AMOUNT_OWING (9:9),
CONDITION = “(TYPE EQ 4) and
(AMOUNT_OWING GE 300000)”)

ISSUEDEMAND

ISSUEDEMAND continues to evaluate returned records as normally

ICL Technical Journal November 1985 371

because it has not been changed in any way. It finds that each record is a hit
and that the file appears to be only 0-001% or whatever of its previous size.
The program completes its task a great deal sooner than before.

b e fo re CSO o f f e r CSO

d a t a

program

SCL CAFS RAM

I » I « I I I ■
C A FS- IS P

v i n i 111

d a t a

Fig. 5 Before and after CSO

The reduction in elapsed time and use of system resources is governed
entirely by the hit rate on the file; the smaller the hit rate, the greater is the
improvement. CSO users would normally expect to see a considerable
improvement in performance, and with an interface consisting of one SCL
command it is not difficult to try a number of experiments.

2.3 Direct CAFS interface

The direct CAFS interface (DCI) is the only software interface with the
objective of providing all the facilities of the CAFS engine to the user. It does
so via the standard VME procedure call, which is almost universal and
independent of the host language used. Character-string parameters in high-
level syntax are passed from user-software to DCI at runtime and fully
validated8,9.

The other three software interfaces tailor CAFS’ functionality to the needs of

372 ICL Technical Journal November 1985

their respective users for the sake of simplicity. For example, only DCI
provides quorum evaluation, management of multiple types of SIF data, full
subcondition counting and access to the full range of CAFS’ RP facilities.
DCI is therefore ‘the closest approach to the original sound’ and logistically
the best way to gain hands-on experience of the CAFS engine itself.

DCI is the interface for high-level language programmers, for those not
requiring the high-level relational CAFS interface and for the most
sophisticated CAFS applications, possibly requiring the highest performance.

In addition to providing a procedural interface to CAFS, DCI provides
facilities in the following categories:

- file management: open, read and close file
- TP transaction management: save, restore, end phase etc.
- text management: SIF to/from legible conversion, trailers
- DCI package runtime control: checks and diagnostics

The minimum sequence of DCI tasks, not using CAFS RP functions, will:

- open a file for CAFS searching
- define the target record’s format and retrieval requirements
- define the search criterion LC, IFC being null
- read the next retrieved record
- close the file being CAFS searched.

Three criteria using three subconditions indicate the range of DCI’s selection
capability:

Cl = FEATURE EQ ‘dglazing’
C2 = FEATURE EQ ‘garage’
C3 = FEATURE EQ ‘gardens’

- Houses below £50 000 in Finetown with two of the three features:
PRICE LT 50000 and TOWN EQ ‘FINETOWN’ AND QUORUM
THRESHOLD 1 Cl C2 C3

- Must Jiave garage and double-glazing: anything near Crewe or a Cheshire
house not in Shambletown:

Cl AND C2 AND (POSTCODE EQ ‘CW!’ OR
(TYPE EQ 1 AND COUNTY EQ ‘Cheshire’ AND TOWN NE
‘SHAMBLETOWN’))

- How many properties have double-glazing or garage or garden?
Define LC = C1 AND C2 AND C3 AND FALSE to reject all records
in RU
Request counts on the three subconditions C l, C2 and C3

DCI needs CAFS to access data, in contrast to the relational system which
uses both CAFS and non-CAFS modes of data access. It addresses only

ICL Technical Journal November 1985 373

record manager (RECMAN) files but it is ICL’s intention to extend it to
address IDMS databases.

To date, DCI has been used from Application Master, Reportmaster,
Querymaster, Cobol, Fortran77, Pascal, RPG2, SCL, Algol68 and from
Filetab and Rapport.

2.4 Relational system

In contrast to the two CAFS interfaces so far described, ICL’s relational
system was not designed especially for CAFS. Its objectives and methods
were established10 in the knowledge of parallel work on data models and
CAFS.800 but before the appearance of the current CAFS engine. A common
emphasis on data retrieval and the ability to search existing data provided the
basis for the successful integration of the relational CAFS engine and the
relational software. The results obtained should encourage ICL’s customers
to bring the power of CAFS to their existing and developing systems.

ICL’s complete relational system is provided as three separate products; these
are the personal database system PDS, the end-user query language Query-
master (QM) and the relational CAFS interface (RCI), a Cobol language
extension.

PDS is classified here as part of the CAFS context rather than part of the
CAFS system. PDS data is searchable by CAFS but the PDS software itself
does not include CAFS-search capability. QM and RCI make automatic and
transparent use of CAFS as appropriate.

The objectives of ICL’s relational system were:

- to widen the community of data users
- to mesh with other data management products and preferred system

development methodologies
- to retain the flexibility to exploit new techniques.

The aim of providing effective access to a wider community implies that the
data should be presented to users in a simple and uniform way and that the
special knowledge required of the user should be reduced to a minimum.
Low-level details, for example of data storage, should be of interest only to
the small minority responsible for providing a relational data-access platform
to the majority. Keeping detailed information in place is essential in the
division of labour necessary in any organisation. Here, to provide read-access
to data, it is only the senior analyst/programmers and query-service pro
viders who work below the relational level with more intimate details of data
storage.

The relational system data model presented to the users includes a tabular

374 ICL Technical Journal November 1985

data structure without user-visible navigation links between tables. The
tables presented to the end-user or the Cobol programmer are the results of
using the relational operators SELECT, PROJECT and JOIN. This data
model conforms with Ted Codd's restated definition of a relational
database1 *. It also adopts a duality principle by allowing programming uses
of the relational interface to be tested out interactively.

The data model is enriched by knowledge of the inter-relationships between
the entities represented by the tables of data1213. It is therefore not necessary
for the Querymaster user to join tables explicitly unless there is some choice
or ambiguity about the inter-relationship of one table with another. This
results in shorter queries and less risk of user confusion. RCI users enjoy
analogous benefits.

The relational products intended for use with shared data are designed to
integrate with and work off the data dictionary system DDS. Data dictionary
systems are increasingly being regarded as necessary control centres model
ling both the using organisation and its systems development. DDS provides
documentation on the accessibility of data by groups of users and avoids the
need to duplicate information on the format or storage of data. In the case of
CAFS, new dictionary definitions have been introduced to document the
encoding of text data in CAFS SIF format and to control CAFS searching of
IDMS areas.

The relational system addresses existing data in both IDMS and RECMAN
formats; here, therefore, a high-level definition of a logical database has been
coupled with a Codasyl (Conference on data systems languages) definition of
a physical database and the resulting system enjoys the complementary
benefits of the relational and Codasyl approaches.

It is part of the marketing mythology in the industry that the Codasyl and
relational approaches to data management are in conflict; in fact they address
different levels of database definition, as noted above and illustrated in Fig. 6,
and fit well together, as this work has shown. The theory of update logistics
and semantics at the relational level is incomplete; ICL has therefore retained
the Codasyl standards for update and data-integrity enforcement.

The technological flexibility of the relational system is amply demonstrated
by the integration of CAFS support and by subsequent developments such as
the interface to graphics facilities on a workstation.

The design of the CAFS support for the relational system had to balance the
great benefits offered by CAFS against the preservation of a simple and
consistent view of data wherever these came into conflict. Every function
offered by the system is supported whether CAFS is available or not in order
to simplify the user interface. The system maps the large variety of Cobol data
types to a smaller range of relational data types, regardless of the CAFS
engine’s ability to handle the physical data.

ICL Technical Journal November 1985 375

logical da tab ase

tab les , rows , items

CAFS system software

OM RC1

system software

RECMAN I DM S (X)

t i l l 1 1 1

CAF S - 1 SP

i i i i i i i r

relational da tab ase

re la tional sof tw are

physical d a ta b a s e

relational hardware

Fig. 6 Physical and logical databases

In practice, a major part of the CAFS functionality has been exploited in
supporting the relational model. Comparisons are supported on all data
types and the ability to handle the SIF format has been made available in its
single most valuable manifestion - word-searching of free text with fuzzy

376 ICL Technical Journal November 1985

matching. The quorum capability of CAFS has not been made available
directly as it does not fit easily with the implicit approach to the specification
of joins. The CAFS retrieval processor is employed to count and make
interfield comparisons. The combined use of (partial) primary key selection
and CAFS searching is the most important performance optimisation
introduced by the RECMAN CAFS software; it is faithfully exploited by the
relational system.

In the IDMS context, the relational system and the IDMS database manager
co-operate to perform the necessary selection and retrieval. The user’s
independence from the choice of RECMAN or IDMS data storage has been
preserved. The introduction of CAFS support has not altered the form in
which end users pose their enquiries except for the provision of word
searching and fuzzy matching.

The availability of CAFS influenced the relational system’s rules for opti
mised data retrieval. The system looks for the best ‘opening move’, as most
enquiries allow no choice of navigation path after selecting the first record
type. This is a good approach where hit rates are small; the optimiser does not
have volumetric information on which to base its choice, but users can give
specific advice on the ‘opening move’ where this is appropriate.

The relational system on the whole uses designed-in data infrastructure such
as record keys and IDMS sets and indexes. It supplements these data access
techniques by using CAFS for serial or partly keyed scans whenever possible.
Both access optimisation and CAFS exploitation are rule-based strategies
and are defined in detail in the product manuals14,15.

2.4.1 Querymaster: Querymaster provides a wide range of users with an
online relational query service to shared data, typically an IDMS database
with additional RECMAN files. The user conducts a dialogue with the
product to select a query view; within that query view, the user can explore
the availability of data and select and retrieve data by means of enquiries in a
simple language. The product displays and prints tabular data, stores
temporary results, sorts and provides summary information such as totals at
required control breaks.

The user’s task is much simplified since Querymaster selects the navigation
path and resolves names to decide which record types are to be accessed, how
they are to be joined and where CAFS is to be used. A query is presented as a
simply structured command with data selection conditions following the
keyword ‘WHERE’, e.g.:

LIST CUST-NAME, ORDER-NO, ORDER-DATE, QUANTITY,
PRODUCT-DESC WHERE COUNTY STARTSWITH ‘LANC’
AND ORDER-DATE = 1.10.84 TO 31.10.84

The query view is created by the VME command CREATE_QUERY_VIEW

ICL Technical Journal November 1985 377

from a definition in a DDS data dictionary. When the shared data is fully
described in DDS, the task of creating and documenting a new query view is
reduced to the selection of data to be viewed and the tailoring of that view to
the particular requirements of its users.

Querymaster supports the online nature of enquiry not only with CAFS but
also with comprehensive ‘help’ facilities and parameterised macros for the
significant proportion of repeatedly used ‘production’ queries.

The combination of Querymaster and CAFS, as illustrated by Corbin16,
enables end-users across a wide ability spectrum to express their data-
retrieval requirements and satisfy their substantial latent demand for timely
information.

2.4.2 Relational CAFS interface: RCI is a Cobol language extension,
providing both a program interface to CAFS and a read-only relational
interface to data. RCI looks like a serial-file handler to the programmer who
is presented with relational views (qv SQL) of the data. Behind the relational
interface, RCI is using the standard SELECT, PROJECT and JOIN
operators to compose these relational views.

The principal objectives of RCI were to provide:

- a transparent Cobol interface to CAFS
- a read-only relational interface to IDMS/RECMAN data
- value-based privacy to add to Codasyl’s item-based privacy
- additional program/data independence for simpler maintenance
- simplified programming and higher levels of productivity
- selection on and processing of text fields

The Cobol programmer manipulates the data views through four new verbs
provided by the Cobol system:

START
READ
SAVE

RESTORE

creates an instance of the view, fixing selection parameters
delivers the next record of the view instance
preserves the state of a view instance at the end of a TP
phase
restores the view instance state at the start of next TP phase

The data environment of an RCI-enhanced Cobol module includes a set of
relational views known as an application view and defined in DDS. The latter
is analogous to Querymaster's query view and can be tested using
Querymaster.

Other features of RCI are common to Querymaster and have been covered
above in the section on the relational system.

378 ICL Technical Journal November 1985

3 The CAFS context

Fig. 1 illustrates the wider system of which the CAFS subsystem is a part. The
four elements of this are:

- the operating system: VME
- the physical data-management systems: PDS, RECMAN & IDMS
- the required man-machine interfaces (MMIs): languages, forms, Viewdata
- the system-development control mechanism: DDS

VME provides support for the CAFS system by managing resources at the
record (RECMAN) and physical magnetic media (MAMPHY) levels. VME
also provides job control, operator control and monitoring facilities related
to CAFS.

An important synergy objective for the CAFS system was that it should
address existing data on files and databases. Physical data on VME is held in
personal databases (PDS), RECMAN files and IDMS/IDMSX Codasyl-
standard databases.

PDS databases are in fact implemented in a published format over a set of
index-sequential (ISAM) files. PDS users can deploy CAFS on PDS-held
data by using DCI or, via a DDS-held retrodefinition of the files, the
relational system.

The range of CAFS-searchable standard file types includes the most common
ones including serial, ordered serial, index sequential and hash random but
does not include files containing spanned records or nonembedded keys. The
primary key of an ISAM file can be used to focus a CAFS search to a small
range within the file. This facility implies that the primary key should be
chosen not only to distinguish one record from another but also to provide
the most useful physical record clustering within the file.

IDMS databases are made CAFS-searchable on an area-by-area basis. The
relevant areas are reformatted in a single-pass process by resequencing the
order of information within each page. CAFS’ projection facility is used to
convert physical IDMS records into subrecords as defined in the IDMS
subschema; there is therefore a strong argument for tailoring subschemas to
anticipated CAFS searches.

Computer systems are today being made available to a wider range of users
than ever before. This has raised the relative importance of the man-machine
interface in the considerations of system designers. CAFS facilities have been
provided below the three key interfaces of conventional language, forms and
viewdata.

Finally, it is commonly recognised today that the activities of system
development need to be co-ordinated around a central model of the host

ICL Technical Journal November 198S 379

organisation and its computer systems. The data dictionary system (DDS)17
continues to be the key ICL component for modelling and controlling all
phases of such development, driving the use of all the products in the CAFS
systems and adjacent to it; the preceding discussion of the relational system
gives a good example of its role.

4 CAFS exploitation

At the moment, the number of CAFS engines ordered runs well into four
figures. CAFS-capable systems can be found in all sectors of the market
served by 2900 and Series 39 mainframe computers; no one sector of central
or local government, public utilities, health, manufacturing, retail, insurance,
education, police or defence dominates the others, nor does any single type of
application dominate. There are simultaneous trends to extend the usefulness
of existing systems, perform research and analysis online, create end-user
services and enhance searching in operational systems - in line with the four
areas of activity targetted by the four software interfaces CSO, DCI, QM and
RCI. The escalation of this activity confirms the original premise that data
searching is an unavoidable computing process of fundamental importance.

The application papers which follow in this issue examine specific systems
which have been developed. The following notes cross-reference these
applications, introduce others and highlight some useful techniques for
CAFS exploitation. The second ICLCUA CAFS User Group report18 is
another useful source of application examples and techniques.

4.1 Using the CAFS search option

CSO can be used in conjunction with Cobol programs and with the
QuickBuild components Application Master (AM) and Reportmaster (RM)
which open files in Cobol style.

It is not necessary that the selection condition employed in the Cobol
program should be expressible in CSO terms. As CSO acts as a primary filter,
it is only necessary that the CSO condition should be identical to or weaker
than the program condition. If this is not so, use of CSO will not pass all hit
records to the program and will implicitly change the role and the output of
the program. Where the CSO condition is a weakened form, the program will
probably reject some of the records it receives. An extreme example is where
CSO is only used to retrieve records of the right type from a multirecord-type
file.

4.2 Using the direct CAFS interface

This section is confined to DCI-specific techniques for exploiting CAFS. It
focuses on DCI’s role with regard to research activity, weak typing, text,
quorum searching, data profiling and software packages.

380 ICL Technical Journal November 1985

Burnard19 and Walker20 describe research activities in the arts and sciences
which have been facilitated by DCI/CAFS. In both cases, investigations
previously conducted in a batch offline stop-start mode are now being
completed online. Researchers are now interacting with their data, continu
ally testing and refining their hypotheses in a more creative environment.
Clear evidence is available that CAFS is not just speeding up the logistics of
research work but making it more penetrative and productive.

Research work is not of course an academic monopoly; in an increasingly
competitive world, all organisations are seeking to use their resources more
effectively. The ability to manage large volumes of semistructured data is a
key asset in this context and is assisted by the next technique to be discussed.

The CAFS-searchable self-identifying data format (SIF) provides a latebind-
ing mechanism whereby we can defer typing data too strongly at the data-
modelling stage. For example, consider the hierarchy of object categories in
Fig. 7.

o rg a n is a t io n s

su p p lie rs

/ \
c lie n ts

p r e f e r r e d backup UK E urope key c o u n tr ie s w o rld

/ \
m ajor m inor

Fig. 7 A hierarchy of object categories

The categories vary from generic to specific as we move down the tree, a data
model which preserves more meaning than the normal single-level entity
model. Given another perspective in the model, the hierarchy becomes part of
an object lattice. The data model supports queries which will vary from
generic to specific; a mechanism which can type the data to suit the query in
hand at runtime is clearly desirable.

SIF data, as the name implies, precedes each item of data with an identifier;
data is no longer strongly typed by position. CAFS can mask the identifier
just as it can mask the data values; it can ignore irrelevant or over-specific
aspects of the categorisation. By a suitable binary choice of identifiers, specific
categories can be converted into generic categories by CAFS masking.

Text management is one area in which varieties o f ‘data’ will naturally occur.
DCI’s ability to search text is already being fully exploited and is described in
detail elsewhere18,19,21

We examine now the uses of quorum searching. Whereas Boolean selection is

ICL Technical Journal November 1985 381

for exact data matching, quorum selection is for speculative searching. A
defined but variable threshold allows records to qualify as sufficiently
interesting on the basis of their proximity to some ideal target. Different
factors can be weighted to reflect their relative importance. Boolean selection
is appropriate when the data is determined by the selection criterion; quorum
selection is better when the selection criterion is determined by the data.

For example, a personnel department will be seeking the best available
candidate; a recruitment consultancy will respond with a shortlist of credible
candidates; a detective is concentrating on the most likely suspects; a
company naming a new product chooses a name which cannot be confused
with those of its competitors' products; an inventor seeks out patents which
are adjacent to the topic of his invention. Again, quorum selection is
preferable to Boolean selection if the input data for the selection criterion is
unreliable.

Quorum evaluation incidentally illustrates the necessity of searching; it is a
calculation which cannot in general be supported by file indexes.

DCI helps the user to infer some facts from a mass of detailed data. CAFS’
ability to accumulate a number of counts can be used to profile the values of a
particular data item, to demonstrate the shape of the data. A distribution
function can be built up by one or more CAFS scans; the results can then be
displayed, say via Querymaster, in histogram, pie-chart or some other
preferred form of management graphics. A subsequent interaction might
focus on some sector of the distribution in search of greater detail; users
might include market researchers, quality-control engineers and statisticians.

Turning now to the software industry, a number of software houses are
actively working to interface their packages to CAFS via DCI. It supports
fully dynamic data-management tools and has low runtime overheads.
Logica with Rapport are the first to bring a CAFS version of their product to
market; others are in the pipeline.

Where packages have not been developed to exploit DCI implicitly, the user
may still have the opportunity to do so if the product is an 'open' one with
user procedures. The QuickBuild components Application Master,
Reportmaster and Querymaster all come in this category; they can call DCI
modules direct as well as using RCI via Cobol. The two CAFS interfaces QM
and DCI can be usefully combined together to give both a relational interface
and full CAFS selection capability.

4.3 Using Querymaster

Corbin’s paper16 describes the experience of one large user in setting up and
using an end-user service. Although computer literacy is on the increase, the
introduction of end-user computing in an organisation may involve a change
of culture, attitudes, strategy and procedures.

382 ICL Technical Journal November 1985

There is a clear trend to providing higher and higher levels of management
and decisionmaking with direct IT support. Data processing (DP) depart
ments are delivering support systems to operational staff, professional IT
workers and the middle if not the top ranks of management.

The availability of production and ad hoc query facilities is a key component
of this system provision. Querymaster supported by CAFS facilitates in situ
enquiry on core corporate data, data extraction from core data to informa
tion centres and enquiry within an information centre.

The Querymaster documentation clearly defines the ‘queryview controller’
role of the individual responsible for setting up one or more end-user query
services. His use of such queryview-tailoring facilities as subsetting, renaming
and macros can help end-users significantly.

Experience at Southern Water16 shows its staff adding use of the query
service to their regular work pattern. Where query requirements can be
covered by a number of predefined macros, the site might consider integrat
ing that query activity with existing TP services through use of RCI.

DP departments will find that good core systems attract peripheral data use
of an occasional or ad hoc nature. The profile of data use may even change.
They will also find that the provision of ready data access highlights the
quality of the existing data or the lack of it; the importance of this most
intangible of corporate resources will be very obvious.

4.4 Using the relational CAFS interface

RCI presents serial files to a Cobol program in the same way as Querymaster
presents tables of information to the end user.

RCI can therefore be used simply to boost the performance of programs
which are already searching in serial fashion. This is similar in style to CSO’s
use except that a simple transformation of the code is required, substituting
RCI calls for the existing Cobol calls.

RCI can provide single-stream input from multiple files as required by such
products as Reportmaster (RM). It can select on text at word level without
the Cobol program needing to recognise this new format. It can simplify the
read-only manipulation of IDMS data, substituting a serial-file interface for
Codasyl DML (data-manipulation language) and its implicit and sometimes
difficult currency concept.

The Viewdata interface is perhaps the most attractive' interface to computer
systems for the general public; it has a directive screen format in familiar
colour television packaging. Viewdata applications on ICL mainframes use
the Bulletin TP/Cobol application product.

ICL Technical Journal November 1985 383

Berkshire County Council were the first to couple Viewdata and CAFS’
search power using RCI; they have provided the public with a CAFS-based
library catalogue searchable from some ten terminals in Reading’s new
central library, replacing constrained searching by author, subject or title by
free matching on title. Berkshire demonstrated the value of the Query-
master/RCI duality; they prototyped the program’s relational interface with
QM and successfully ran the system three working days after taking receipt of
RCI.

The deliberate similarities between QM and RCI have another benefit. As the
pattern of ad hoc and production enquiry identifies itself, a QM service can be
partially replaced by a screen-based production query service using RCI. This
has usability and operational benefits in that form-filling is simpler than the
QM language syntax and the TP environment is more closely controlled than
the MAC environment.

RCI has raised the level of the interface between program and data, with three
distinct effects. It has enabled programmers to get their programs right
earlier; it has removed sources of error, replacing program-coding by a DDS-
definition process, and it has increased the independence between program
and data, insulating code from such changes as a migration from files to
database or vice versa. It has also brought discernible productivity improve
ments by taking on the common chores of data manipulation which have to
date been the lot of all programmers.

A major and skilled site, estimating a telephone-directory enquiry system as a
2 man-year project, completed the work in 13 man-days by combining
fourth-generation QuickBuild MMI techniques with RCI/CAFS.

4.5 System synthesis

A wide range of design considerations have been described
elsewhere618,2122. This section therefore confines itself to the framework for
information system analysis and design.

A suitable framework will include a methodology and will support the use of
a range of development tools. The development process will identify a
number of phases, for example:

IT strategy, system prioritisation, business system specification, busi
ness requirements specification, design, implementation, testing, tran
sition, live running, maintenance.

Each phase will have defined input, output, decision points and criteria
against which to optimise; most importantly, there will be criteria defining
whether to proceed, double back or abandon the development process.

Given a clear framework, it should be clear where CAFS-related decisions

384 ICL Technical Journal November 1985

need to be made. Although different methodologies differ even in their
naming and bounding of the above phases, some comments can be made.
Note particularly that it is always possible to lose the clarity of the phased
approach by making low-level decisions too early.

In the CAFS context, the business-system specification giving the high-level
definition of the system’s scope can be more ambitious. A broad range of
medium-priority requirements will be supported without major design effort.
In the business-requirements specification, CAFS will improve the feasible
performance targets that can be defined. Finally, CAFS simplifies the design
process by removing the need for some of the data infrastructure with
consequent benefits for the remaining phases.

5 Future directions

The CAFS system can be developed in many ways. This section is the
author’s personal view of the options available.

On the hardware front, it is reasonable to assume that future implemen
tations of the current CAFS engine will keep pace with disc and data-input
technology, taking advantage of VLSI and more powerful constituent
microprocessors. As the balance of system costs changes, it is possible that
CAFS capability could migrate further from the system centre, from the disc
control module to the disc drive itself.

CAFS microcode improvements have already come through in the product.

5.1 Further integration

A likely feature of ICL’s product development will be the further integration
between the components of the CAFS system and between the CAFS system
and its environment. Already, VME has extended the range of CAFS-
searchable files and improved coexistence between CAFS and TP activity;
both IDMS and Querymaster have been further tuned to facilitate CAFS
searches. ICL’s intention is that DCI will be supported by DDS and extended
to IDMS data; in the wake of DCI, the software industry is integrating a
number of packages with CAFS.

The further integration of indexing and CAFS-searching techniques is an
interesting prospect, covered in detail elsewhere21-23,24. A ‘secondary index’
or ‘coarse index’, a search cell index rather than a record index, focuses CAFS
searching onto relevant subsections of a file. This technique has already been
essential on major projects with large files24 and could usefully be made
generally available as a development of VME’s RECMAN facilities. Tagg21
models the performance impact of secondary indexing.

Knowledge-engineering technology will have an increasing role to play in the
future CAFS system. Pilot systems have been developed using Adviser for

ICL Technical Journal November 1985 385

performance sizing and end-user guidance. In the latter case, a dialogue with
the user leads to the generation of the appropriate Querymaster command.

5.2 Text and office

The CAFS engine was designed with both data and text in mind. Query-
master and RCI handle elementary text on a small scale while DCI provides
more comprehensive text-manipulation facilities. CAFS-exploiting ‘text’
tools and applications have not yet surfaced, although Kay23 gives an
indication of the possibilities.

CAFS development will continue in the context of future international
standards on character-representation and text management.

5.3 Relational database engine

The current CAFS engine performs selection and projection on physical
records or relational tables. Babb25 has shown how further specialised
hardware can be developed to perform these operations on logical records or
general relational views. The hardware simulates joining data by performing
selection on a virtual join.

International standards are crystallising at the Structured Query Language
(SQL) level; SQL is likely to be more useful as a meeting point for the
computer industry than as a language for computer users. The definition of
standards in this and other areas encourages the development of customised
hardware systems to support those interfaces.

6 Summary and conclusions

This paper has defined ICL’s current CAFS system, has described the
functionality of its hardware and software components and has shown how
they work together and in the context of the VME environment. It has given
some indication of the way the software interfaces are exploited, as a prelude
to the other articles in this volume.

CAFS successfully performs the generic process of data searching with data-
driven parallel hardware. Encouraged by the story so far, the author has
hazarded an opinion of CAFS future development.

We live in an age of increasing hardware design capability. With increased
customisation, we may look forward to the classic general-purpose von
Neumann mainframe being replaced by open systems of specialised
hardware-based servers. The CAFS system is an example of such a server.

Acknowledgment

In my turn, I acknowledge with pleasure the significant efforts of past and

386 ICL Technical Journal November 1985

present colleagues whose combined skills have produced the CAFS system. I
thank Tom Lake, now of Intercept Systems, for his first-hand insights into the
architecture of ICL’s relational software and the ICLCUA(UK) CAFS
Working Party for stimulating discussions over the past four years. Finally, I
thank Jack Howlett for his comments on this paper but claim sole credit for
any remaining errors and omissions.

References

1 CARMICHAEL, J.W.S.: ‘History of the ICL content-addressable file store (CAFS)', ICL
Tech. J., 1985, 4 (4), 352-357.

2 SCARROTT, G.G.: ‘Wind of change’, ICLTech. J., 1978, 1 (1), 35-49.
3 MALLER, V.A.J.: ‘The content addressable file store - CAFS', ICL Tech. J., 1979, 1 (3),

265-279.
4 CARMICHAEL, J.W.S.: ‘Personnel on CAFS: a case study', ICL Tech. J., 1981, 2 (3),

244-252.
5 CROCKFORD, L.E.: ‘Associative data management system', ICLTech. J„ 1982, 3 (1),

82-96.
6 ICL Computer Users Association (UK) CAFS SIG: ‘Exploiting CAFS-ISP’, Working

Party Report, July 1984 (2nd Amended Reprint, July 1985), ICLCUA (UK), PO Box 42,
Bracknell, Berks. RG12 2LQ, UK.

7 ‘VME programmer’s guide’, ICL Technical Publication R00475/01, 1985.
8 ‘Direct CAFS Interface programming guide (DCI.100)', ICL Technical Publication

R00421/01, 1985.
9 ‘Direct CAFS Interface reference card (DCI.100)’, ICL Technical Publication R00431/01,

1985.
10 HUTT, A.T.F.: ‘History of the CAFS relational software’, ICL Tech. J., 1985,4(4), 358-364.
11 CODD, E.F.: ‘Relational database: a practical foundation for productivity’ (1981 ACM

Turing Award Lecture), CACM, 1982, 25 (2), Feb.
12 CODD, E.F.: ‘Extending the database relational model to capture more meaning’, ACM

Trans. Database Syst., 1979, 4 (4), 397-434.
13 BABB, E.: ‘Joined normal form: a storage encoding for relational databases’, ACM Trans.

Database Syst., 1982, 7 (4), 588-614.
14 ‘Using DDS to prepare a query view (QM.250)’, ICL Technical Publication R00434/01,

1985.
15 ‘The Relational CAFS Interface: user guide (RCI.100)’, ICL Technical Publication

R00251/01, 1985.
16 CORBIN, C.E.H.: ‘Creating an end-user CAFS service’, ICLTech. J., 1985,4 (4), 441-454.
17 ‘Data Dictionary System: the DDS model (DDS.700)’, ICL Technical Publication

R00408/01, 1985.
18 ICL Computer Users Association (UK) CAFS SIG: ‘CAFS in action’, Nov 1985, ICLCUA

(UK), PO Box 42, Bracknell, Berks. RG12 2LQ, UK.
19 BURNARD, L.: ‘CAFS and text: the view from academia’, ICL Tech. J., 1985, 4 (4),

468-482.
20 WALKER, D.: ‘Secrets of the sky: the IRAS data at Queen Mary College’, ICLTech. J.,

1985, 4 (4), 483-488.
21 TAGG, R.M.: ‘CAFS-ISP: issues for the application designer’, ICLTech. J., 1985, 4 (4),

402-418.
22 ‘CAFS exploitation - a practical guide’, ICL Technical Publication R30053/01, 1985.
23 KAY, M.H.: ‘Textmaster - a document-retrieval system using CAFS-ISP’, ICL Tech. J.,

1985, 4 (4), 455-467.
24 WILES, P.R.: ‘Using secondary indexes for large CAFS databases’, ICLTech. J., 1985,4 (4),

419^140.
25 BABB, E.: ‘CAFS file-correlation unit’, ICLTech. J., 1985, 4 (4), 489-503.

ICL Technical Journal November 1985 387

Bibliography

1 ‘IDMS part 2: database establishment (IDMS.400/IDMSX.400)’, ICL Technical Publica
tion R00154/03 (3rd Amended Reprint), 1985.

2 ‘IDMS part 3: using a database (IDMS.400/IDMSX.400)’, ICL Technical Publication
R00155/03 (3rd Amended Reprint), 1985.

3 ‘IDMS part 4: database programming (IDMS.400/IDMSX.400)’, ICL Technical Public
ation R00156/03 (3rd Amended Reprint), 1985.

4 ‘IDMS part 5: database design (IDMS.400/IDMSX.400)’, ICL Technical Publication
R00153/03 (3rd Amended Reprint), 1985.

5 'Using Querymaster (QM.250)’, ICL Technical Publication R00433/01, 1985.
6 ‘Running Querymaster in VME (QM.250)', ICL Technical Publication R00435/01, 1985.
7 ‘Querymaster (QM.250) user's reference card’, ICL Technical Publication R00436/01, 1985.

Appendix 1
Connectivity, coexistence and performance

The trend has been to increase mainframe to disc channel connectivity. This
increases the accessibility of the data and reduces the performance-
interference between separate processes. Greater mainframe-CAFS connect
ivity also implies that a major search task can be syndicated to a larger
battery of CAFS engines working in concert; ten engines can search about 25
Mbytes/s.

The CAFS engine attaches to the DCM on 2966-family machines (2953,2957,
2958, 2966 and 2988) and on Series 39. Single-OCP 2900s can connect to six
CAFS engines; dual and superdual configurations can connect to eight
engines. On Series 39, the connectivity is greater. Single-node Level 30s can
connect to 36 CAFS engines and Level 80s to 72.

The Series 39 DCM is the high-speed disc controller (HSDC) and connects to
one CAFS engine. On the 2900, the DCU/2 disc-control unit and more
commonly the decision support controller (DSC) unit connect to two CAFS-
compatable DCMs.

The maximum disc-drive strings on the various controllers are:

HSDC: 8*FDS 300 or 4*FDS 2500 or 16 MDSS ‘retained’ drives
MDSS drives are EDS 80s, FDS I60s or FDS 640s

- DCU/2 DCM: 16 MDSS drives
- DSC DCM: 32 MDSS drives

We have already seen that some of the synergy and coexistence objectives are
being met. CAFS attaches to standard DCMs working with standard discs. It
is also the case that CAFS searches most standard RECMAN files, PDS
databases and IDMS databases. In the case of IDMS, a single-pass reformat
procedure sets up areas of the database for CAFS searching.

Coexistence objectives also require that a ‘long’ CAFS search should be

388 ICL Technical Journal November 1985

interruptible by a ‘short’ transaction processing task. It would probably be
undesirable for a single-record fetch to queue behind a 40-track full-cylinder
CAFS scan on an FDS 640. VME therefore fragments CAFS searches, each
fragment searching consecutive blocks on a disc-cylinder and being no longer
than a system-parameter defined number of tracks.

On 2966s etc., the maximum-fragment parameter default of ten tracks can be
changed at system setup time to any value. The value must be chosen to
balance the needs of the existing workload against the need to exploit CAFS
searching.

On Series 39, multiblock fetches and CAFS searches travel second class;
single block fetches travel first class. The HSDC exercises the right to pre
empt long tasks on the disc channel when a short task arrives. Given this
degree of HSDC intelligence, the maximum-fragment parameter is
unnecessary.

CAFS can search data at some 3-6 Mbytes/s, outrunning the delivery rate of
the fastest FDS 2500 drives. In practice, therefore, the following parameters
always affect the data search speed of a CAFS engine:

- DS: the maximum formatted-data delivery rate of the disc drive
- BF: the blocking factor; block-size choice effect on delivery rate
- FF: the fragment factor; governed by the temporal dissection of the CAFS

search into search fragments
- PF: packing factor; the proportion of the data blocks occupied by the

records relevant to the CAFS search.

The basic upper limit on searching speed is therefore:

file search rate <D S*B F*FF Mbytes/s
data search rate < DS*BF*FF*PF Mbytes/s

Other factors such as disc head movement, rotational latency, file fragmenta
tion, buffer management and process multiplexing all subtract from the data
rate as perceived by the application program or the end user. Note, however,
that these aspects of performances are standard and preceded the introduc
tion of CAFS.

The disc speeds DS of the drives are M7696 Mbytes/s (MDSS), 2-22910
Mbytes/s (FDS 300) and 2-83277 Mbytes/s (FDS 2500).

The blocking factor BF is also specific to the drive concerned. Below are
listed BFs for the three drives where the block size is chosen as N kbytes or as
a maximal value for that number of blocks/track:

Blocking factors are more significant on the faster drives and the best block
sizes vary from drive to drive.

ICL Technical Journal November 1985 389

MDSS disc drives

Block size,
bytes

Blocks/
track

Bytes/
track

Blocking
factor

2048 9 18432 0-939641
3072 6 18432 0-939641
4096 4 16384 0-835237
6144 3 18 432 0-939641
9216 2 18 432 0-939641*

18 432 1 18432 0-939641

2057 9 18513 0-943770
3155 6 18930 0-965029
4801 4 19204 0-978997
6447 3 19341 0-985981
9739 2 19478 0-992965

19616 1 19616 1-000000

FDS 300 disc drives

Block size, Blocks/ Bytes/ Blocking
bytes track track factor

2048 15 30 720 0-804525
3072 10 30720 0-804525
4096 8 32 768 0-858160
6144 5 30 720 0-804525
9216 4 36 864 0-965431*

18 432 2 36864 0-965431

2100 15 31500 0-824953
3412 10 34120 0-893568
4404 8 35 232 0-922690
7316 5 36 580 0-957993
9300 4 37 200 0-974230

19 092 2 38 184 1 000000

FDS 2500 disc drives

Block size. Blocks/ Bytes/ Blocking
bytes, track track factor

2048 18 36 864 0-785142
3072 13 39 936 0-850570
4096 10 40 960 0-872380
6144 7 43 008 0-915999*
9216 4 36 864 0-785142

18 432 2 36 864 0-785142

2164 18 38 952 0-829613
3188 13 41 444 0-882688
4276 10 42 760 0-910717
6356 7 44492 0-947606

11476 4 45904 0-977679
23 476 2 46 952 1 -000000

390 ICL Technical Journal November 1985

The fragment factor (FF) reflects the fact that the CAFS search is fragmented
by VME. The interfragment overhead is typically two disc revolutions or
some 33 ms:

FF = (max fragment size)/(max fragment size + 2)

Taking into account the parameters DS, BF and FF and adopting the
asterisked block sizes, we can calculate ‘typical’ effective CAFS file search
speeds as 0-922 Mbytes/s (MDSS), 1-793 Mbytes/s (FDS 300) and 2-290
Mbytes/s (FDS 2500).

The last parameter to be discussed is the data packing factor PF. Data is not
usually 100% packed in a file for many reasons. Varieties of red-tape
accompany the object data, several record types may coexist in a file and
dynamic data should be packed at lower densities to avoid overflow.

Low packing densities have a proportionate effect on the data search rate of
CAFS, but this does not mean that they subtract from the value of CAFS.
Unused file space and non-target data types are the first examples of CAFS’
effectiveness in filtering out disc space which is irrelevant to the search and to
any subsequent processing.

The Series 39 figures below indicate retrieval processor times for various
tasks. In the worst case of short records and a high hit rate, the RP
component of CAFS will not keep pace with the search rate at the CAFS
front end.

130 ps = overhead per hit record (260 ps on 2966s etc.)
(L+ 8)/3-5 ps = output transfer time for the L-byte record

87 ps = overhead per function call
200 ps = function adding totalling on an 8-byte field
250 ps = function comparing two 2-byte fields
500 ps = function comparing two 20-byte fields

When the high hit rate is a local phenomenon, a cluster of records satisfying
the LC condition, the buffering within CAFS helps to maintain the output
performance of the engine.

Appendix 2
Glossary of abbreviations

ADRAM alien data record access method
AM Application Master
AV application view (RCI)
AVM application virtual machine
BF blocking factor
CAFS content-addressable file store
Codasyl Conference on data systems languages

ICL Technical Journal November 1985 391

cso
DCI
DCM
DCU/2
DDS
DML
DS
DSC
EDS
FDS
FF
HSDC
ICLCUA
IDMS
IFC
ISAM
ISP
KC
LC
LFU
MAM PHY
MIP
MMI
OCP
PDS
PF
PLI
QM
QP
RAM
RCI
RECMAN
RM
RP
RSI
RU
RV
SCL
SEP
SEU
SIF
SP
SQL
STCC
SV
TNF
TPMS
VME

VME CAFS search option
direct CAFS interface
disc control module
disc control unit
data dictionary system
data manipulation language (Codasyl, IDMS)
disc speed
decision support controller
exchangeable-disc store
fixed-disc store
fragment factor
high-speed disc controller
ICL Computer Users’ Association
integrated data management system
interfield comparisons
index sequential access method
information search processor
key channel
logical condition
logical format unit
physical magnetic media
misleading index of performance
man-machine interface
order code processor
personal database system
packing factor
programming language instruction
Querymaster
quorum processor
record access method
relational CAFS interface
record manager
Reportmaster
retrieval processor
restricted system interface
retrieval unit
relational view (RCI)
system control language
search evaluation processor
search evaluation unit
self-identifying format
select processor
Structured Query Language
SET-CAFS-CRITERIA (SCL for CSO)
system version (software set)
third normal form
transaction processing management system
virtual machine environment

392 ICL Technical Journal November 1985

Development of the CAFS-ISP controller
product for Series 29 and 39 systems

N. Macphail
ICL Mainframe Systems Division, West Gorton, Manchester

Abstract

The paper describes the development of the standard product-line
CAFS-ISP. It covers objectives, design, implementation and enhance
ment capability.

1 Overall objectives

The corporate strategy for CAFS was agreed by Christmas 1979. A product
would be developed for the 2900 series based on the CAFS 8001'2 but with
facilities more suited to a standard integrated product. Extensions of the
strategy would result in CAFS being used on other systems as VLSI
technology matured.

The words ‘standard integrated product’ meant that:

- CAFS-ISP should search existing customer disc drives instead of specially
modified disc drives.

- The existing customer data should be searchable without modification.
- The product should interface to VME in a way consistent with existing

practice, adding the selection and retrieval facilities of CAFS without
detracting from normal direct-access disc work.

- The existing superstructure products such as Querymaster, PDS, IDMS
etc. should be able to utilise the new facilities using existing methods.

- The technology used should be state of the art to enable the CAFS-ISP to
be fitted as standard by reducing the cost and size substantially.

- The availability of CAFS-ISP as a standard product would allow software
products to be planned to capitalise on its speed of operation.

- The design should make allowance for the next generation of disc drives.

2 System design

Over the next year systems resolution meetings were held to specify the top
level design. As a result four specifications were derived (see Fig. 1):

- The Relative Interface specification PSD which defined the interface
between superstructure products and the VME operating system. This

ICL Technical Journal November 1985 393

Fig. 1 Structure of system interfaces and related specifications

PSD is now superseded by the Common Target Machine - CAFS PSD
2.8.32.

- The Absolute Interface specification PSD 42.9.8 which defined the
interface between the VME operating system and the CAFS controller.

- The CAFS controller specification PSD 44.4.1 which defined the function
ality of the hardware.

- The file, block, record and item formats searched by CAFS-R specification
PSD 46.33.1.1, which defined the data structures CAFS would search.

It was this structure of specifications which enabled product design of the
various systems components to proceed independently of each other at
Bracknell, Reading, Kidsgrove and Manchester. The product plans were
similarly co-ordinated and controlled.

3 Realisation of objectives

Mainframe Systems already had a Device Control Unit on 2900 series,
known as DCU2, which utilised a Universal Fixed and Exchangeable Disc
Storage coupler UFEDS2. The UFEDS2 connects to EDS 80, EDS 160 and
EDS 640 disc storage modules. The design approach was to connect to these
drives, which transferred data at a maximum of 1-2 Mbytes/s. To allow for
future devices the design target was set at 3-6 Mbytes/s. So that data could be
continually retrieved by the search engine, simultaneously with post process
ing by a microprocessor, the retrieval buffer for retrieved data was designed
to operate at 7-2 Mbytes/s, allowing alternate beat operation. The concept of

394 ICL Technical Journal November 1985

multiplexing disc streams was abandoned because the data rates of the discs
were fast approaching the capabilities of the integrated circuit logic then in
use (see Fig. 2).

Fig. 2 Overall block diagram

CAFS 800 used a special data format, CAFS Self Identifying Format (SIF).
This format was especially useful for text as it allowed, in effect, multiple
variable-length fields. However, standard 2900 formats were based on one or
more fixed fields followed by an optional single variable field. A new method
of working was defined, called Table Defined Format, which allowed CAFS-
ISP to search VME formats. To accommodate Self Identifying Format this
was made a special case of the variable field in Table Defined Formats.

The structure of CAFS was now significantly different from CAFS 800. No
longer was there a back-end processor with its own dedicated specially
modified drives. CAFS-ISP used the existing drives with a converted
standard disc coupler and standard system software. The advantages of this
standard approach have been manifold.

4 Technology

CAFS 800 was implemented in small-scale-integration (SSI) on 6000-series
printed circuit boards (PCBs). There were approximately 76 integrated
circuits per PCB and over 100 PCBs. The whole was contained in a full-size
cabinet.

The state-of-the-art technology in 1980 was medium-scale technology,
transistor-transistor logic (TTL), on 8000-series PCBs with 30 PCBs per logic
bin, two logic bins per cabinet. The DCU2 used one logic bin offering two
UFEDS2 disc couplers. We had to fit two CAFS into 30 PCB positions.
Furthermore, as we were using converted UFEDS2 couplers, we would have
to fit these into the new logic bin. These considerations reduced us to only
nine PCBs per CAFS: a reduction factor of over six to one in integrated

ICL Technical Journal November 1985 395

circuits. We could now fit two CAFS-ISP units together with their disc
controllers in half a cabinet.

We chose low-power Schottky TTL to keep the compact design cool. We
designed in medium-scale integration and proprietary very-large-scale in
tegration (VLSI) and used programmable logic arrays where possible to
reduce the design size. Many a system resolution meeting centred around
whether one function was superior to another, each trying to occupy the last
few integrated circuit positions while the design team fought to reserve room
for modifications. Well, we made it.

5 Design structure

The design was conceived as comprising six units (see Figs. 2 and 3):

- the data multiplexing units, which, by being inserted in the dataflow,
allowed CAFS-ISP to scan disc or mainframe data as required
the logical formatter unit (LFU), whose purpose is to unravel the data
structures, signalling starts and ends of records and fields, directing key
channels to examine relevant fields and marking fields and logical block
headers for retrieval

to retrieval
processor

logical
formatter
unit

-15

4-7
£-11

0-3
key
channels

task word

- ¢:quorum

select

retrieval
unit

scan highway

Fig. 3 Block diagram of search engine

Key:
---------data ------------control

- the key channel units which contained the keys being searched for as well
as their bit masks for fuzzy searching. Another component of the key
channel PCBs were the search evaluation processors (SEPs) containing the
Boolean expressions which determined both the relative and logical
operators combining the results of masked key comparisons of the data

396 ICL Technical Journal November 1985

stream. 16 key channels and SEPs are accommodated on four PCBs
- the search evaluation unit now consisted of only the select processor and

the quorum processor. The former enabled selective feedback of SEP
results into other SEPs. The latter enabled the various Boolean terms to be
assigned weights and for decisions as to whether records were hits to be
based on majority logic by testing for a user-defined threshold being
exceeded. The outputs of the SEPs are reported in a taskword to the
retrieval unit. The topmost bit marks the record as a hit or a miss

- the retrieval unit counts the incidence of the taskword bits other than the
most significant bit for list count purposes. The CAFS engine has three
levels of pipelining by record. This means that a record is scanned by the
key channels as it comes from disc and is stored in a retrieval buffer by the
retrieval unit. During the next record the search evaluation is completed.
During a third possible record the retrieval unit writes away the taskword
and length of the first record into the retrieval buffer store. If the taskword
is marked as a miss then the retrieval unit merely restores its pointers to
the start of the first record in the retrieval buffer and proceeds to overwrite
it with the second. Otherwise it writes the second record immediately
following the first. Obviously the second record and third records have to
be stored somewhere while the first records processing is completed. The
retrieval unit contains first-in-first-out buffers to cope. The retrieval unit
also contains storage for the field identifier store used in SIF searches to
mark selected identifiers for retrieval

- the retrieval processor contains the 32 kbyte retrieval buffer as well as the
microprocessor which performs post processing such as totalling and
interfield comparisons. The microprocessor is supported by working store,
program store and support logic. Resident control programs are held in
programmable read-only memories. Their purpose is to carry out diagnos
tic functions and to support loading and dumping of the main control
program. There are 16 kbytes of resident program and diagnostic test data.
The loadable main control program is 32 kbytes long. Both programs are
written in Pascal with CALM (assembly language) sections for fast
operation where required.

The logical formatter, key channels, search evaluation and retrieval units are
properly the CAFS high-speed engine logic where all operations are at the
rate disc data arrives or faster. The logic is sychronous and runs at 3-6
Mbytes/s. Some of the engines beats are idle beats if no data is available! (This
is the majority of time on the EDS 80 family of disc drives.)

The data multiplexing unit provides the means of interfacing the CAFS-ISP
to the host UFEDS. The retrieval processor provides a protocol engine to
match VME requirements as specified in the Absolute Interface specification.
Both of these units can be considered as support units for the CAFS engine
and are candidates for future further integration with the disc controller.

The performance of the engine springs from the 16 parallel groups of key
channels and search evaluation units as well as the parallel select and quorum

ICL Technical Journal November 1985 397

processors all running at clock speed. Conventional software-based search
engines are orders of magnitude slower: one only needs to consider the
number of instructions required for simple key channel comparisons and
masking, multiply by 16 and the data rate to form an impression of the
processor power required.

The engine itself will keep pace with disc data even at 100% hit rates.
However, post processing by the retrieval processor microprocessor becomes
an overhead at high hit rates, degrading the engine performance. The design
intent is to perform in low hit rate conditions, i.e. to find ‘a noodle in a
hatrack’, or a needle in a haystack. It is also a design intent for the CAFS
traffic to be about 10% of the total disc traffic, i.e. the new fast operations of
ad hoc enquiries should coexist with existing processing such as TP, batch
and MAC. Unlike CAFS 800, CAFS-ISP is intended for use on live data
which is continuously being updated by customer applications.

6 Overview of VME CAFS-ISP operations

The user’s enquiry is passed to VME where the task is scheduled along with
other tasks. VME looks at the physical search area required by the task and
splits it into a number of fragments, for example ten tracks. Fragments from
different tasks are then sent to the disc controller. CAFS-ISP can only
process one fragment at a time. The disc controller is initialised (the seek) and
proceeds in parallel to move the disc heads to the correct cylinders. When a
disc drive is in the right position to read the data VME sends the rest of the
command sequence.

In the case of CAFS-ISP the command sequence is

- set partial results
- set task specification
- retrieve data
- read partial results.

The purpose of the read partial results is to save counts of taskword bits and
the results of post processing functions such as totalling until the next
fragment is sent for that task. It follows that VME restores the partial results
just before the next fragment for the same task is searched.

Each time a fragment is sent the CAFS-ISP is provided by VME with a
compiled set of search criteria for that task in the set task specification. The
data in this command deals with items such as

- a description of the logical block header structure
- a description of the record field structure, which key channel to search

which field, the lengths of the fields
- the unmasked key data for each key channel
- the mask values for each key channel

398 ICL Technical Journal November 1985

- the compiled search evaluation program for each search evaluation
processor

- the quorum and select processor programs, the number of taskword bit
counters in use

- various retrieval parameters such as the identifiers in SIF format which
should be retrieved as well as the functions to be used in post processing.

CAFS-ISP can be provided with over 13 kbytes of such data. Normally only
about 2 kbytes are sent.

The retrieve data command causes the disc data to be scanned and hit records
which are in the retrieval buffer to be transferred to the host.

Of course, events may occur which prematurely terminate a search fragment.
These events could be errors detected in the search, its data or the hardware
or just the exceeding of a system or unit limit. In such circumstances CAFS-
ISP must offer the ability to restart at the correct error-free or complete unit
of search. CAFS-ISP and VME use the logical block to define this unit of
search. CAFS always checkpoints after each logical block to achieve correct
recovery. The user is of course unaware of this activity.

If a disc cyclic redundancy error (CRC error) is detected by the disc controller
then VME will recover the data and correct it. In this case a modified
command sequence is sent by VME. A new command write scan data is sent
immediately before the retrieve data command. The effect is that data is
scanned from the mainframe instead of the discs so that the now corrected
data is properly included in the search. The search then continues normally
on the next fragment.

7 The Decision Support Controller (DSC)

Following the release of the CAFS-ISP to customers a further product the
DSC was implemented. The objective of this product was to further
integrate the CAFS-ISP into the Device Control Unit while increasing the
number of disc storage units connectable to a UFEDS controller.

The result of this development was an increase in disc connectivity from 32 to
63 disc storage modules. ICL could now offer a DCU, a UFEDS with 32
streams and a CAFS-ISP in half a cabinet instead of a whole cabinet. CAFS-
ISP was now integral with the controller. By adding features a further
UFEDS and CAFS-ISP could be added to give the full connectivity.

8 CAFS-ISP on Series 39

The challenge of CAFS-ISP on Series 39 was to couple the search engine to
the new High Speed Disc Controller (HSDC). This meant being able to
interface with the new C8K CMOS technology, coexist in the new low-line

ICL Technical Journal November 1985 399

cabinets and match the fast operation of the FDS 300 and FDS 2500 disc
storage modules.

The changes to the design were in the areas of the data multiplexing unit and
the retrieval processor. The data multiplexing unit now accommodated the
increased transfer rates of the FISDC as well as the differences in interfaces.
Series 39 incorporates advances in maintenance diagnostic techniques so
CAFS was enhanced to carry out its own static testing and to report errors
both to VME and to a customer display panel to allow remote diagnostics.
The resident control program in PROM was doubled to 32 kbytes to
accommodate the test programs and data.

The retrieval processor also accommodates slight changes in protocol
deriving from the LAN connection philosophy on Series 39. The whole was
squeezed into the low-line cabinet which in one instance contains the CAFS-
ISP, two FD 300 drives, the HSDC and power supplies: a further increase in
integration of units. The HSDC itself integrated the DCU as well as the
UFEDS, and now we have drives as well, in the same cabinet.

A further implementation of CAFS-ISP was for the FD 2500 controller where
dual CAFS-ISPs were implemented, allowing dual-channel CAFS operation
with the associated HSDCs.

It has been mentioned that CAFS contains a lot of memory, 13 kbytes in the
search engine and 96 kbytes in the retrieval processor. The former is one of
the deciding factors in selecting a VLSI technology. The close coupling of
logic and memory in units operating in parallel was not achievable effectively
in gate array designs such as C8K. Even state-of-the-art gate arrays
containing memory are not sufficiently flexible. The future for CAFS lies in
the VLSI technologies of standard cell or full custom.

9 Future enhancements

The exploitation of CAFS-ISP in ICL products will continue along the lines
set by the corporate strategy and Statements of Direction.

- New disc storage modules with increased capacity and faster transfer rates
will require a faster CAFS engine.

- The need to reduce cost will bring about further integration and size
reduction using VLSI techniques. The VLSI CAFS-ISP should be more
suitable for integration with products which are lower in the price range
and more populous than mainframe products.

- New facilities to search text and further relational operations such as joins
and projections are likely: see the paper by Babb on the file-correlation
unit3.

The benefits of fast selection and retrieval will continue to permeate existing
products and applications while engendering new applications for our

400 ICL Technical Journal November 1985

customers. It is already clear, and is illustrated by the papers in this issue of
the ICL Technical Journal, that the CAFS concepts are of fundamental
importance in data processing and that the field of application of the device is
continually expanding.

References

1 CARMICHAEL, J.W.S.: ‘History of the ICL content-addressable file store (CAFS)’, ICL
Tech. J., 19S5, 4 (4), 352-357.

2 HAWORTH, G.McC.: ‘The CAFS system today and tomorrow’, ICL Tech J 1985 4 (4)
365-392.

3 BABB, E.: ‘CAFS file-correlation unit’, ICL Tech. J., 1985, 4 (4), 489-503.

ICL Technical Journal November 1985 401

CAFS-ISP:
issues for the application designer

R.M. Tagg
Independent Consultant. 6 Beechwood Avenue, Little Chalfont, Bucks. HP6 6PH

Abstract

CAFS-ISP brings new possibilities in improved response time and
throughput on VME applications. The paper suggests some approaches
for designers who have to decide the optimum exploitation of CAFS-ISP
in proposed applications, often in conjunction with other performance
tuning techniques.

1 Introduction

In spite of the best efforts of its progenitors and its marketing, CAFS has
become regarded in many users’ minds as some sort of performance panacea
which will somehow obviate much of the effort in designing physical
databases.

In the author’s opinion, such a view is both unjustified and ill advised. A
better view is that a new tool has been added to the designer’s toolbox.
Having an extra tool does not necessarily make the design task simpler,
unless that tool renders several other tools obsolete. However, the balance of
when to use each tool will change, and there may need to be a rethink by the
designer before confidently using the fuller set of tools to obtain optimum
performance in all cases.

This paper explores some of the design issues raised by the arrival of the
CAFS-ISP tool in the designer’s toolbox, and suggests some approaches
which could be applied in some of the typical applications where CAFS could
be used in conjunction with other performance tuning tools.

2 The application designer’s environment

2.1 Available software

A designer with the task of delivering a VME application within tight
performance requirements is becoming increasingly likely to have the CAFS-
ISP option available. Historical background and technical definition of
CAFS-ISP are contained in the companion papers by Hamish Carmichael1,
and Guy Haworth2, respectively.

402 ICL Technical Journal November 1985

As well as such facilities as RCI, DCI and CSO*, which are geared to the
development task only, the designer may also have such tools as ISAM,
IDMS/IDMSX and Querymaster, all of which could form building blocks
within the operational system finally offered to the users. In some cases more
specialised facilities such as those based on the ADMS database system (see
Reference 3) may be used. Press announcements have also been made about
the potential use of certain third-party relational DBMS such as Rapport or
SIR in conjunction with CAFS. Finally secondary indexing facilities can be
introduced either through IDMSX, through a third-party DBMS or through
specially tailored extensions to the files in question.

2.2 Classes of applications

Many approaches have been taken to classifying applications. For the
purposes of this paper and for helping to indicate contrasting situations in
designing with CAFS, the following six-dimensional breakdown is proposed:

Dimension 1: Inputlprocessing mode

- Batch, i.e. waiting, either for logical or performance reasons, until a
specified amount of data has arrived before proceeding with further
processing

- TP, i.e. carrying out processing in immediate consequence of each
individual unit of arriving data

Dimension 2: Output mode

- Data driven, i.e. produced as part of the processing which is automatically
triggered by batch or TP data input

- User driven, i.e. produced as a result of a request by a user for an ad hoc
query, or a refinement of a previous query, or by invocation of a ‘canned’
report procedure

Dimension 3: Volatility

- This is a spectrum between those applications where data arrives at a high
rate and those where the database is relatively static. TP mode usually
implies high volatility, but batch could be either high or low

Dimension 4: Data sharing

- This is again a spectrum. Some applications involve data which is accessed
by many users, by many different functions or access paths, or even by
other applications beyond the designer’s immediate concern. Others are
stand-alone or function-specific

*These and other abbreviations used in the paper are interpreted in the Glossary forming
Appendix 2 to the paper by Haworth2 in this issue.

ICL Technical Journal November 1985 403

Dimension 5: Data structure

- Also spectrum-like: at one extreme is the case of a single main entity-type
of a relatively high number of occurrences, with a number of subsidiary
‘look-up’ entity-types. At the other extreme there might be a number of
equally major entity-types with various relationships between them, as
well as minor entity-types. The simpler structures could possibly be forced
into a single file or record-type; the latter could not

Dimension 6: Data value format

- Strictly formatted data, i.e. predefined attributes with corresponding data
values. Each record (entity) occurrence is expected to have a value for
every attribute

- Sparsely formatted data, i.e. where attributes and their values are only
recorded where they occur

- Free-format data, i.e. where no structure other than that implicit in
interword spaces and other punctuation is apparent. Free text would fall
in this class, but text as a value of a specific attribute would imply one of
the first two classes

- Non-character-encoded data, i.e. image, digitised voice etc.

In practice, the designer’s application will often involve a number of
subapplications, each with its particular blend in these six dimensions. An
initial question which must be asked is which of the subapplications are the
more fertile grounds for potential use of CAFS? Once the answers to this
question have been determined, the use of CAFS must then be optimised in
connection with other tools. The next section of this paper discusses the
initial question, after which the specific optimisation issues are addressed.

3 Identifying the fertile subapplications for using CAFS

Adopting a very broad brush, one could characterise a suitable CAFS-ISP
subapplication as:

- any input mode
- output mode is user-driven
- volatility is low to medium
- data sharing is in terms of multiple ad hoc questioners of the same data

view (rather than involving fundamentally different views)
- data structure is simple or of limited complexity (in the terms used in the

previous section)
- any character-encoded data value format

Justifications for the comments on each dimension are offered below:

Input/processing mode: CAFS is a means of accelerating output rather than
input, so it is irrelevant whether input is by batch or TP.

404 ICL Technical Journal November 1985

Output mode: Data-driven output, especially when triggered by TP input and
processing, is largely selected by the use of single identifiers or keys which
specify one particular point in the database to be accessed. CAFS does not
accelerate such single-key searches.

Some automatic reports triggered by batch processing may, however, be
accelerated by CAFS, although it is possible that the turn-round cycle of the
batch processing may not justify the faster timings produced by CAFS. But
again, machine capacity constraints would be eased by farming out of the
searching effort to the CAFS unit.

With user-driven output, the advantages of CAFS are best seen on, first,
invocation of ‘canned’ reports; and secondly, on ‘longstop’ searches. A
‘canned’ report is one whose selection criteria and format are already defined,
but parameters may be supplied at run time, and each invocation operates on
the state of the data in the files at a particular time. The user requires the
report ‘regardless’, that is to say he does not need to carry out preliminary
research queries to find out whether the selection criteria are sensible.

If the user wishes to test the water before initiating potentially long (even with
CAFS, on very large files) searches, he will probably be assisted more by
secondary indexes (which could provide quick counts of likely hits without
accessing the data) than by CAFS. However unless all data is indexed, which
is expensive on both storage and updating, there is always a risk that indexes
may not be able to help give any hit volume estimates. This is referred to as
the ‘longstop’ case - the user has no option but to embark on the file scan,
and here CAFS will make a significant difference.

Volatility: High volatility can detract from the speed advantages of CAFS by
progressively upsetting the match between the logical and physical sequence
of a file. In normal ISAM terms, this would be manifested through increasing
overflow which would periodically have to be reset by a reorganisation which
might be expensive and inconvenient on a large active-round-the-clock file. A
tailored ‘change file’ approach might be more efficient, but still has a similar
problem in terms of periodic consolidation of changes into the main file.

There is also the question of whether enquirers require up-to-the-minute (or
even second) accuracy, and, if so, what about updates to the end of the file
that arrive after the search has already started? The tradeoffs in this area will
be discussed in more detail later.

Data sharing: Different users may require fundamentally different views
involving the same data - for example one user department might be
interested in customer orders and another in the finished product stocks in
warehouses. This may require a more normalised database design which
could act against the interests of efficient CAFS searching, which depends on
a single record type with all data relevant to each occurrence contained in one
record of the file.

ICL Technical Journal November 1985 405

Data structure: By the definition in Section 2 above, the complex structures
are the ones where it is difficult to force the data into a single record type
(sharing or no sharing), hence bringing the same difficulty as for the previous
dimension. One example would be a police incident reporting system where it
was required to keep separate details on suspect persons and on suspect
vehicles and to allow these to be related in many ways.

Data value format: Strictly formatted data presents no problems, nor does
sparsely formatted data which is particularly appropriate to the CAFS self-
identifying format (SIF). Free text can also be handled in SIF by defining a
field code which precedes each word in the text, together with trailers that
delimit sentences, paragraphs, sections etc. The overhead of the field codes
and trailers is offset by the saving on the detail of indexing (see Sections 4.1
and 4.5 below). At present, the masking and comparison facilities, although
they can operate at the bit level, are not sophisticated enough to go beyond
character encoding e.g. to bit patterns of image or voice except, in theory, for
exact equality.

4 Detailed design issues

4.1 Use of secondary indexing in conjunction with CAFS

4.1.1 Rationale for use of secondary indexes: Although the impression is
sometimes given that secondary indexes are made redundant by the applic
ation of CAFS searching, this has never been the mainstream of CAFS
thinking (see Reference 4). Secondary indexing is still required if it is a user
requirement to have responses to queries, based on conditions involving non
prime-key fields, within a small number of seconds on files of any size. A
discussion of the use of secondary indexes in a very-large-scale project (the
computerisation of PAYE) is given by Wiles5.

Table 1 gives some examples of the limits of what can be achieved with CAFS
alone when the user response time requirement is given at various levels.

Table 1 Achievements using CAFS alone

Required
response
time

Maximum file size assuming
CAFS searching at

Examples of files of

1 Mbyte/s
(FDS 640)

2-8 Mbyte/s
(FDS 2500)

2 s ‘immediate' 2 Mbyte 5-6 Mbytes 20k-50k stock items
4k-10k letters/memos

10 s ‘panel-game
speed’

10 Mbyte 28 Mbytes 10k-30k personnel records
1-3 filing cabinet drawers

1 min ‘while you
wait’

60 Mbyte 168 Mbytes 300k-800k potential clients
100k-300k abstracts

1 h ‘come back
later’

3600 Mbyte 10080 Mbytes regional health index
insurance policy files
inland revenue
credit records

406 ICL Technical Journal November 1985

Even though some of the longer times may be acceptable for a final answer to
a query, they will often be unsuitable when the user is in ‘research mode’ - e.g.
if he is trying to find out how many records meet a given subcriterion before
searching on a more compound condition. Searching for a ‘needle in a
haystack’ is often a multistage operation - users will not be happy if after an
hour’s searching the message comes back ‘no hits found’ or, worse, ‘500 000
hits found’.

So as well as for some searches which are known to require very quick
response, secondary indexing is often also required to support ‘count-only’
queries which are preliminary to a main search - ‘immediate’ or ‘panel-game’
speed is usually wanted.

Secondary indexes are also often needed to support queries which involve
relational joins between different files,since otherwise the second (and further
files) will have to be searched repeatedly. This issue is addressed separately in
Section 4.3 below.

Finally, there may also be a need for asecondary index for updating purposes.
The ideal primary key (if ISAM is used) is one which helps to limit the range
of CAFS searches on many occasions (e.g. surname in a personnel file).
However, updating may be on some other key (e.g. personal number), access
through which could be provided by a secondary key to allow immediate
updating.

4.1.2 Optimising the use of secondary indexes with CAFS: Various authors4
have proposed combining indexes and CAFS by the use of relatively coarse
indexing, where an index entry points to a ‘search cell’ rather than an
individual record. The search cell, which can vary in size between a block and
a cylinder, is then subsequently searched by CAFS for the precise location of
the qualifying data and any non-index-aided conditions.

This suggests that there should be a way of deciding the optimum search cell
size for a particular set of circumstances. The formula below expresses that
part of the search time which depends on search cell size:

Tj = [1 — (1 — h)*/r] [tx + a]c/x (+ index search time)

where 7j = search time per cylinder of file-extent
h = hit rate (proportion of records hit)
x = search cell size (bytes)
r = record length (bytes)
t = CAFS search time per byte (inverse of delivery rate)
a = CAFS cell search initialisation time
c = cylinder size (bytes)

The assumptions on which this formula is based are:

- the query uses one criterion, supported by a secondary index
- hits are spread over the file completely at random (no fortuitous clustering

ICL Technical Journal November 1985 407

between secondary key values and primary key values)
- a binomial distribution of hits per search cell applies
- the file is large enough and the hit rate low enough that the search cell

start-up time a is constant (average seek + average rotational delay +
CAFS unit setup).

The index search time is omitted from further analysis as it is likely to be
small compared with the other part. In any case the only situation where the
time would depend on x would be if the index was held as a series of bit maps
with one bit per search cell for each key value.

Fig. 1 Variation of search time 7, with size of search cell

Cell-by-cell searches

FDS 2500 7476 bytes per block
six blocks per track hit rate 1:N bytes

The family of graphs in Fig. 1 show how the resulting value of Tj varies with
different choices of x and h/r (the hit rate per byte of file). Values for the
constants were chosen as follows:

r = 200 bytes
t = 1/2-8 fis (equivalent to FDS 2500 delivery rate of 2-8 Mbyte/s)
a = 32 ms
c = 15 x FDS 2500 tracks

408 ICL Technical Journal November 1985

A block size of £ of a track has been assumed; the search cell must be an
integral number of blocks.

Perhaps surprisingly, there are no minimum points on the graphs which
would indicate an optimum search cell size in between the smallest possible
and the largest possible. Instead there seem to be two cases: for hit rates above
around 1 per 100 kbytes of file the maximum cell size is best, while for lower
hit rates the minimum is optimal. The first case approximates to full CAFS
search of the whole file, whereas the second case in extreme terms implies
minimum use of CAFS and relying primarily on the indexing.

The 1 per 100 kbytes dividing line for hit rate applies to FDS 2500 discs. For
FDS 640 the comparable figure is around 1 per 30-40 kbytes.

Possibly the most serious criticism of the model used to establish the graphs
above is that each search cell hit is assumed to require a separate initialisation
time. Thus if two adjacent search cells were hits, they would both require the
32 ms overhead. An alternative model has been considered which assumes
that the record-handling software interfacing with CAFS could be altered to
provide some optimisation:

T2 is the search time per cylinder assuming that if adjacent search cells are hit
the 32 ms overhead is only required for the first cell of a string of adjacent
cells in each cylinder.

The formula used is as follows:

T2 = [1 - (1 - /t)*/r] [ix + a(l - h)xlr-\c/x
+ a[l — (1 —/i)*/r] [1 - (1 - fc)c,r]

The family of graphs analogous to those for Tj is shown in Fig. 2.

Fig. 2 does show a small area where minima occur, i.e. for hit rates around 1
in 74 000 bytes, but the minima are all very near the smallest cell size,
certainly less than one track. It also pushes up the hit rate required to justify
large cell sizes to around 1 in 40 000 bytes (around 1 in 15 000-bytes on FDS
640).

The only other assumption that might significantly affect the graphs further is
the level of clustering of key values. A case in point is if the primary key of an
ISAM file were ‘Surname’ and a secondary index existed on the Russell
Soundex Code. A hit on Soundex Code would be able to be limited to specific
areas of the file, since the first character is the same in both keys and the
succeeding digits in the Soundex Code do represent possible groups of
alphabetic letters. However, it is felt that these cases are special and that no
general rules can be applied.

ICL Technical Journal November 1985 409

600r

Fig. 2 Variation of search time T2 with size of search cell

Cell string searches

FDS 2500 7476 bytes per block
six blocks per track hit rates 1:N bytes

The conclusion appears to be that small search cells are the best unless a very
high hit rate is the norm, or unless searching is restricted to a secondary key
with a significant level of clustering. In practice, of course, hit rates will vary
very widely. Very often a user will want estimates of the number of records hit
before embarking on a retrieval. With a secondary index these can be
performed entirely within the index. If the hit rate is very high, and the user
requires retrieval, then it may be faster to initiate a full scan without use of the
indexes. Otherwise the index/small cell combinations would be used.

4 .2 B a lan cin g re tr ie v a l a n d u p d a te p e rfo rm a n c e in vo la tile a p p lica tio n s

If a retrieval subapplication is preceded by a TP or batch one, or if the timing
of updating of the database is critical, then there will often be a design balance
to be struck between optimising for retrieval and optimising for updating.

410 ICL Technical Jpurnal November 1985

In theory, the single-record-type, denormalised data structures preferred by
CAFS make the updating task less complex. But in practice some of the
methods which are good for retrieval can degrade update performance, e.g.

- associated secondary indexes
- maintaining a match between physical sequence and logical primary key

sequence
- holding multiple-valued fields
- duplicating identifiers and other data from ‘parent’ entities

Secondary indexes, as we have seen in Section 4.1, may have to be used in
conjunction with CAFS. Updating secondary indexes immediately for each
update transaction is very time-consuming if volatility is high. Deferred index
updating is often practised (transactions are batched for the index update
run) with the new data searchable sequentially in a change file. However, in
certain conditions (e.g. joins), change files can prove a heavy overhead if they
are allowed to grow, since they have to be searched separately on many
occasions - see Section 4.3 below.

The tradeoff here is essentially one of frequency of index updating; this could
vary from yearly down to daily, and possibly even to more frequently (e.g.
triggered by the change file reaching a certain size).

T
A possible model is Dmax =

vFt

where Dmax = maximum number of days before reindexing
Tmax = maximum allowable increase in search time due to having to

scan change file
v = volatility rate, i.e. proportion of records in file added, modified

(affecting indexes) or deleted per day
F = file size
t = CAFS scan time (as in Section 4.1)

Assuming Tmax = 1 s, and a file size itself searchable in 1 s, then Dmax = \/v,
giving 10 days for 10% volatility, 100 days for 1% and so on. If the file is 100
times larger (e.g. 280 Mbytes on FDS 2500), then Dmax is 100 times smaller -
i.e. 1 day for 1% volatility. If the file is used in joins, then only 1/10 or even
1/100 s extra may be acceptable. Compression of change files may help, but
the message is that the equations on change file size should always be worked
out where volatility is high and deferred index updating is practised.

Sequence is an issue in volatile applications because programs inserting new
records can quickly find that there is no room in the normal ISAM physical
address and are forced into putting the records into overflow. This affects the
performance of partial CAFS searches. On the other hand, a lower packing
density could slow down the overall rate of searching. As above, the solution
has to come through frequent reorganisations, which may be expensive as
they are likely to involve rebuilding any associated secondary indexes as well.

ICL Technical Journal November 1985 411

Multiple-valued fields may be introduced into a file structure used for CAFS
searching; this can be done either by denormalising ‘child’ entities, thus
introducing repeating groups, or through coding of text in SIF (see Section
4.5 below). An example would be qualifications and universities attended for
persons on a personnel file. A test for ‘field-name = value’ will result in a hit if
any of the occurrences of that field within a record have the correct value. In
volatile applications, however, there is a risk that some updates (e.g. new
qualifications in the example) may involve increasing the number of occur
rences of certain fields, hence lengthening the records. Since records cannot be
fragmented, this means they have to be regenerated in another place, possibly
in overflow or a change file, and wasted space may be left behind. This adds
further to the build-up of data needing reorganisation.

Of course there are other problems with multiple-valued fields. A search for
QUALIFICATION = BA AND UNIVERSITY = CAMBRIDGE would
find anyone who had a BA from any university, as long as they had done
something at CAMBRIDGE. To avoid this, some concept of corresponding
values has to be introduced. Another famous condition is
QUALIFICATION NOT = COBOL which would retrieve everyone who
held a qualification other than COBOL, even if they did also have COBOL.

Duplicated data from ‘parent’ entities is often recommended for CAFS search
optimisation, to save cross-reference look-ups and increase the searching
achievable in one CAFS pass. An example would be holding customer details
in each order record in a file of sales orders. The implication of this on
updating is in terms of what happens when the parent entities themselves gel
updated. In some cases they are relatively static, but others that are less so
could result in the same change having to be repeated in all the records that
contain that duplicated data. So a possible message seems to be don’t
collapse volatile parent entity types!

In connection with this last point, if an associated TP subapplication
contains quite complex access paths, it may be too damaging to update
performance to force it to work on a CAFS-optimised file structure. If up-to-
the-second correctness of query output is not vital, it might be better to
decouple the retrieval subsystem and run an extraction process to set up the
denormalised CAFS file from the normalised TP database.

4.3 Making relational joins between multiple CAFS files

In some situations it may be impossible to force a denormalised, single
record-type file structure. The designer could be left with several files, each
CAFS-searchable, but also needing to be related. This is by no means a rare
situation in practice - most commercial systems have several different major
entity-types.

The ‘pure’ CAFS approach would consist of first finding the records
qualifying from a search of the first file, and from these ascertaining the

412 ICL Technical Journal November 1985

conditions (e.g. matching keys) to be applied to the second file. The second file
then has to be searched several times, each for a different set of key matching
criteria. With Querymaster this involves a separate scan of the second file for
each key found in the first; ADMS is rather more efficient, throwing up to 15
keys at a time at the second file with an implied ‘OR’.

Practical experience suggests that the volume of ‘intermediate results’ in
relational joins can be very variable indeed, and can certainly not be relied on
to be in single or even double figures only. Some further performance
assistance is therefore virtually always necessary if the files are much above
the 100 kbytes level. Laboratory versions of CAFS included the ‘file
correlator’4 for this specific purpose, but this is not yet committed as an
enhancement to CAFS-ISP.

At present, then, the designer is thrown back once again onto the use of
indexes. To some extent it may be possible to limit this by having the most
frequently used match key as the prime key, but this may clash with search
partitioning optimisation or updating optimisation. A technique when there
are just two match keys is to duplicate the whole file, with one copy with each
of the match keys as prime keys, but for too many keys this could become
expensive in storage. Secondary keys may already be needed for other search
reasons, and match keys may have to be included as additional secondary
keys.

In volatile applications there can be further problems when joins are
involved, because some records that should be included may not yet be
indexed and have to be searched for in change files. If the volume of
intermediate results in a join is higher, the penalty of searching the change
files a large number of times could be unacceptable. Thus the issue comes
back to that of frequency of updating indexes, which was discussed earlier.

4.4 Using CAFS searching on IDMS databases

CAFS searching can be applied to IDMS databases for two main reasons:

- to simplify the physical structure (e.g. by dropping indexes, access path
support sets and ‘processing convenience’ record types) and hence to
improve update performance

- to improve retrieval performance on unanticipated (‘longstop’) query
types on specific record types

IDMS has some limitations with respect to CAFS searching: it does not
automatically prevent variable-length records from becoming fragmented, so
searching where fragments exist may be inaccurate although one is informed;
it does not have a mechanism for limiting CAFS searches as in the case of the
ISAM primary key, other than by using page ranges. Also, the IDMS
common practice of mixing record types on a page in clusters (where member

ICL Technical Journal November 1985 413

records are stored ‘VIA’ a set linking them to the owner records) may be less
suitable for CAFS searching than a single-record type AREA or series of
AREAs.

However, there is a big advantage in keeping a file in need of CAFS searching
within IDMS namely that Querymaster can use the other sets and indexes
for carrying out searches involving several record types, and will use CAFS
searching where its rules indicate that this would be advantageous. This
avoids many of the problems mentioned in Section 4.3 above.

Having decided to make a record-type searchable by CAFS, most design
issues are mandatory6. The arguments over denormalisation have already
been discussed. Some possible partitioning of the record type into a number
of separate areas or page ranges on such bases as live against historical, date
of transaction, alphabetic range or geographical grouping could be appro
priate. An example would be partitioning insurance policies by period of
cover. Dropping of indexes or access path sets will depend on the total data
volume and the response requirement.

Although the decision to use CAFS searching on an IDMS database is
essentially a physical one and would be presumed to relate to specifications in
the Storage Schema rather than the Schema, there are some design issues
connected with CAFS usage that do affect Schema design. The chief example
is denormalisation. Since the Schema-to-Storage Schema mapping does not
allow restructuring, any denormalised structures must be defined in the
Schema. Thus there may be differences between the Schema data structure
and the 'natural' mapping of the Conceptual Schema.

A final point concerns the use of IDMS in conjunction with CAFS-searchable
ISAM files. This may be appropriate if the database contains one very high
volume record type on which unpredictable searching is required. If update
access paths are fairly simple, then such a record type might better be taken
outside the IDMS database. Possible examples could occur where there is a
large volume of insurance policies, health-care patients or members of some-
association, with transaction data for only a small proportion of the
population.

4.5 Using CAFS for text searching

Text searching appears to be a fruitful application for CAFS searching for a
number of reasons:

- it is a 'natural' storage and retrieval system arrival of data involves little
processing other than making it available for searching

- it is normally single-record-typc - i.c. a collection of'documents’ or other
bibliographic objects

- the text is relatively easily handled by the CAFS S1F (self-identifying
format), together with markers for delimiting the scope of text structure
units such as paragraphs, sections etc.

414 ICL Technical Journal November 1985

Applying the lessons of Section 4.1 above, some form of secondary indexing
will still be required in conjunction with CAFS, both for estimating the
number of hits and for giving acceptable response on low hit-rate searches
against very large databases. With text the hit rate per byte of file is likely to
be lower than for formatted data. For example, a user looking to obtain ten
documents from a database of 1 0 0 0 0 abstracts each of an average of 1 0 0

words x six characters is creating a hit rate of 1 in 600 0 0 0 bytes, which is well
below the critical level proposed in Section 4.1.

On the question of updating, one suggested approach is to update the index
relatively infrequently and maintain a change file under the guise of an
accessions pool. This pool would be nonindexed and would be CAFS
searched before the main file, since more recent documents might well be of
more interest. The user could be given hits for the pool and for the main file
(via the indexes) separately. The tradeoff here is how large to keep the pool
and how to ‘housekeep’ older accessions into the indexed main file.

Even with full indexing on text words, there will still be some queries which
fall into the longstop category. An example is a fuzzy match when the leading
characters are unknown. In this case the indexes will not be of any help, and
full CAFS scan will be necessary. In the cases of quorum and weighted
searches the indexes may help provide an initial screen of documents having
none of the required words, but if the remainder is large it might be better to
scan directly - response required would probably not be critical.

The designer may also have to make a choice about the detail held in any
indexes, unless their format is predefined by the software. If proximity
searching is required, i.e. how many words apart two chosen words appear in
a document, then full details of word occurrence position would need to be
held. Otherwise less detail could be used - at the extreme only a bit map of
qualifying search cells or documents need to be held.

Another choice concerning the index is whether multiple concordances are
worthwhile. Some user queries might stipulate that the required words must
appear in the title, the abstract, or the full text, whereas others might want
documents containing the same words in any position. It has been proposed7
that separate concordances (i.e. separate indexes for each searchable area of
documents) could be used. Certainly these would be efficient if bit maps were
used to hold the indexes and the search cells were large enough to keep the bit
maps fairly short. The main alternative is to choose different SIF fieldnames
for the words according to where they appear, which would enable the
criterion of where the word occurs to be evaluated when the search cells
pointed to by the main index are scanned.

4.6 Avoiding degradation of concurrent TP

A further design issue which has already received attention is that of how to
stop long CAFS scans from causing an unacceptable degradation on TP

ICL Technical Journal November 1985 415

response. The main way of solving this problem is by setting a CAFS
fragment size to limit how much of the files can be searched before TP
operations are given a chance to use the disc channel. Fragments are not the
same as search cells, but they may be of similar size (e.g. between 1 track and 1

cylinder). No models or rules of thumb are suggested here - the topic is
addressed in Reference 6 .

Avoiding TP degradation is also a possible reason for separating the TP
subapplication from the retrieval subapplication, if it is acceptable to run
retrieval from periodically copied or updated files.

5 Summary of design parameters

The lessons of Sections 4.1 to 4.5 are summarised in Table 2.

Table 2 Design parameters

Type of database
Parameter Considerations

All database types

Complementary use of secondary indexes

Size of search cells

Frequency of index updating and change
file housekeeping

Use of multiple-valued fields

Holding duplicated ‘parent’ data

ISAM databases

Choice of primary key

Duplicating files involved in several joins,
using different primary keys

Frequency of reorganisation

- response times required for anticipated
queries and updating

- size of file
- need for count of hits with successive

refinement
- relational joining: match keys
- appears to be no ‘in-between’
- for high hit rates, full search
- for low hit rates, indexing to block
- volatility of file
- need for up-to-second correct answers
- level of jcjined queries using indexes
- cost of indexing runs
- Risk of extension of record length, hence

fragmentation or overflow
- frequency of queries involving both these

fields and single-valued fields
- volatility of parent entity types
- frequency of queries involving both these

fields and ‘home-entity’ fields

- useful partitioning of searching i.e.
starting/finishing at given key values

- main key used in TP updating
- match key used in relational joins
- cost of storage and keeping in step
- cost of secondary indexing
- response requirements on joined queries
- volatility of file
- frequency of queries partitioned by primary

key values
- cost of reorganisation runs

416 ICL Technical Journal November 1985

ISAM against IDMS

IDMSX databases

Dropping of IDMS access-path sets,
entry point records, IDMSX indexes
Use of multiple IDMSX AREAs for
record type

Text databases

Text ‘accessions pool’

Detail of indexing on text words
Use of separate concordances

Databases with TP input mode

Size of SEARCH-FRAGMENT

Decoupling CAFS search file from TP
database

- variable length, volatile data
- likelihood of partitioned searches
- cross-referencing to different record types

- volume of records
- response time requirements
- likelihood of partitioned searches
- progression of data from live to historic

- weighting of interest towards most recent
accessions

- (see indexing/change file updating)
- need for proximity searching
- frequency of searches on words in specific

sections of document
- size of index entries
- hit rate

- response requirement of concurrent TP on
same file

- volatility of file
- complexity of TP processes
- cost of storage and copying
- need for up-to-second correct answers

6 General conclusions

It should be dear from the length of the list in Section 5 above that, to get the
best use of CAFS, a designer may have to take a number of parameters into
account. Although some physical structures may be rendered unnecessary in
certain cases, it seems likely that most existing aids to performance will
continue to be used in conjunction with CAFS.

The opportunity to drop all access path sets and secondary indexes is only
really an option up to file sizes of 10 Mbytes (or 28 Mbytes on the new FDS
2500 discs) unless response times on single file searches of over 10 s are
permitted. Where joins are involved in answering queries, even files down to
1 0 0 kbytes may still need to be indexed to avoid response being slowed by
high volumes of intermediate hits. Indexes are also likely to be valuable for
providing counts of expected hits to the user.

Equally, even with a fairly high level of indexing, there is still much to be
gained by the use of CAFS, particularly where the search is fuzzy or of a type
where the indexes do not provide much help, or where queries on a particular
field are so rare as not to justify the cost of storing and maintaining the extra
indexing. It is perhaps this order of magnitude improvement in ‘longstop’
cases where CAFS will show the greatest gain for large files.

ICL Technical Journal November 1985 417

Acknowledgment

This paper arose from work done in a consultancy capacity when evaluating
a CAFS-based proposal for a client. The assistance of client personnel and
the ICL marketing staff involved is acknowledged. Acknowledgments are
also due to Hamish Carmichael and Guy Haworth for discussions, comments
and the provision of useful documents and again to Guy Haworth for
assistance on the timing formulae and the figures for the graphs.

References

1 CARMICHAEL, J.W.S.: 'History of the ICL content-addressable file store (CAFS)'. ICL
Tech. J., 1985. 4 (4), 352-357.

2 HAWORTH, G.McC.: ‘The CAFS system today and tomorrow'. ICL Tech. J.. 1985. 4 (4),
365-392.

3 CROCKFORD, L.E.: 'Associative data management system'. ICL Tech. ./., 1982, 3 (1).
82-96.

4 MALLER, V.A.J.: 'The content addressable file store - CAFS'. ICL Tech. ./., 1979, 1 (3).
265-279.

5 WILES, P.R.: 'Using secondary indexes for large CAFS databases', ICL Tech. J., 1985. 4 (4).
419-440.

6 ICL Computer Users Association (UK), CAFS User Group: 'Exploiting CAFS-ISP',
Working Party Report, July 1984 (2nd Amended Reprint, July 1985), ICLCUA (UK). PO
Box 42, Bracknell. Berks. RG12 2LQ, UK.

7 CARMICHAEL, J.W.S.: 'Application of ICL's content addressable filestore to text storage
and retrieval', in 'Protext /: Proceedings of the first international conference on text
processing systems', MILLER, J.J.H. (Ed.), Boole Press, Dublin, 1984.

418 ICL Technical Journal November 1985

Using secondary indexes for large
CAFS databases

P.R. Wiles
ICL Inland Revenue Project, Telford, Shropshire

Abstract

The Inland Revenue have implemented a pilot CAFS-based system for
tracing taxpayers from their names and addresses. This system is in live
use on a taxpayer database of around 4 million records. It has now been
decided to extend this system to cover the whole country, which will
mean an increase of the database size to around 48 million records, and
a major increase in the number of searches which must be supported
per second. This workload is outside the realms of possibility with the
existing CAFS hardware and software, and the paper discusses the use
of secondary indexing techniques to reduce the number of blocks which
must be searched by CAFS per enquiry.

1 Introduction

The Inland Revenue receives a large amount of correspondence from
taxpayers and outside bodies. A lot of this is ‘unreferenced’, i.e. it does not
contain the reference number of the taxpayer to whom it refers. On the
previous manual system this reference number for PAYE taxpayers was the
‘Employer Reference’. In the new computerised PAYE system it is the
National Insurance Number (NINO).

Under both systems it is very difficult to associate this correspondence with
the relevant taxpayer, and time-consuming manual methods are currently
employed to trace the associated reference number. Thus the Inland Revenue
has investigated the use of computerised techniques to trace taxpayers from
the information which is normally available in this correspondence -
principally the taxpayer’s name and address.

A CAFS-based system has been implemented to provide this function. It
enables a tax officer to identify the NINO, and the responsible tax district, of
any taxpayer whose name and address contain a given set of words. The
system is currently in use at the Inland Revenue’s Centre l office in Scotland.
This computerised centre has been in use for some years, and thus it is a
suitable site for a pilot tracing system.

The Centre 1 tracing system contains details of around 4 million taxpayers,
and handles a peak workload of around one trace every two seconds. It runs
on an ICL 2966 with a single CAFS unit.

ICL Technical Journal November 1985 419

An online transaction within a TPMS (transaction processing) service
provides the tracing service. It displays a screen format onto which the tax
officer enters those details of the name and address that he or she has and
judges will be most effective in the search. These details are used by the
tracing application code to initiate a CAFS search on the tracing database. If
any taxpayers are found by this search, their details are displayed on the same
screen format. If there are too many to fit onto one screen a ‘paging’
mechanism is used to display later ones once the tax officer has seen the
earlier entries.

The data required in the tracing database is held in a large Indexed
Sequential (ISAM) file. The key of each record consists of the first five
characters of the taxpayer’s surname, followed by his or her NINO, followed
by other characters to ensure uniqueness. The average length of a record is
150 characters.

The application code invokes the ISAM record access facilities, specifying a
search program which would normally include an indication of part or all of
the prime key of the file (specifically the taxpayer’s surname). This key is used
to determine the range of blocks in the file which contain all the entries for the
given surname or surname stem. These blocks are then searched by CAFS
and any records which contain the specified surname and address words are
returned to the application.

The tax officer may specify ‘fuzzy’ words (e.g. ‘B?AT’, which may be satisfied
by ‘BOAT’, ‘BEAT’, ‘BRAT’ and so on). In addition, if a search fails to find a
single address, he may specify a ‘quorum’, saying (in effect) ‘well, can you find
any address which satisfies three out of the four words I specified?’ Both of
these facilities are mapped directly on to CAFS facilities by the tracing
application software.

It is rarely necessary to enter complete words. The first few characters of the
more significant words in the address are usually more effective in providing
an accurate match than a complete surname and a complete address word.
This saves keying time for the user, as well as minimising the effect of
inconsistency of spelling between the stored records and the tracing inform
ation. Experience with the pilot system shows that, after a relatively short
experience, users become adept at deciding how much or how little to enter,
and at picking out which terms within a name and address will provide the
best discrimination.

2 National tracing system

Replication of the COP system is now under way across all tax districts, and
the Inland Revenue wish to extend this tracing facility to all the tax officers
who have access to the computerised systems. This will involve an order-of-
magnitude increase in both the volume of data held and the number of
messages which must be handled by the tracing system, compared with the

420 ICL Technical Journal November 1985

pilot system. The Inland Revenue expects that, by the time the complete
PAYE system is in place, the national tracing system will be expected to
handle 15 name-and-address tracing messages a second. This includes the
messages arising from the recent decision to add Schedule D (self-employed)
taxpayers to the COP system.

The tracing database in a national tracing system is expected to contain 48
million records, with an average record size of 150 bytes. With a packing
density of 85%, this amounts to just under 8500 Mbytes of data.

Normally, large files such as these would be placed on FDS 2500 discs.
However, these files are to be accessed via CAFS, and sizing studies show that
the target message rate will give rise to very high disc utilisations which can
be alleviated by using FDS 300 discs instead. It is expected that the tracing
database will be duplexed, and if so it will occupy 64 FDS 300 discs in all.

A block size which allows six blocks to a track is used. This is a compromise
between the small block sizes required for random accesses to the file and the
larger block sizes which optimise serial processing, for example in a batch
updating job.

The principal constraints on the message throughput rate will be the disc
utilisation and controller utilisation. Controller utilisation is not normally an
important factor but when the controller includes a CAFS unit it may
become so. It is important to use as many CAFS units as possible; i.e. one for
every two discs.

With the configuration derived from these parameters, it is clear that it is not
possible to allow each tracing enquiry to search, on average, more than 72
contiguous tracks on an FDS 300 disc. Yet sizing studies show that, using a
four-character surname stem, the ISAM RAM will on average search 1238
tracks per enquiry. Thus to meet the required message throughput rate it is
necessary to significantly reduce the number of tracks searched by CAFS per
enquiry. This is to be achieved by a new software development, currently
called the Advanced CAFS Option (or ACO), which offers a secondary
indexing capability for CAFS databases.

3 Using secondary indexes

3.1 Indexing large data files

A CAFS data file contains a number of records, each of which holds a number
of fields. These fields may be identified either by their position within the
record, or by a ‘self-identifying format’ (SIF) field number, which can be
recognised by the CAFS unit. Fixed fields occur once and only once in each
record. SIF fields may occur none, once or more than once in a record.

Any field in a record may be used to identify one or more records within the
file which hold a specific value in that field. One field in particular can be

ICL Technical Journal November 1985 421

chosen as the primary key. and the file as a whole may be sorted on the value
held in that field. It is sensible if this is a fixed field, which must occur once
and only once in each record.

Any field within the record may be used to construct an index to the file. An
index lists all the values which occur in that field (the keywords), and
identifies those records which contain each specific keyword. If the file is
ordered by that field, then this is the primary key to the file. The standard
indexed sequential key is an example of a primary key. The primary key is
usually selected such that each value of the key identifies a single record
within the file.

A secondary index is an index based upon some field other than the primary
key. It may identify all the records which hold specific values in a specific-
fixed field the Alternate Key index to an Indexed Sequential file is an
example of this - or it may be less precise, indicating merely the portions of
the file in which the records with particular values lie.

It is relatively easy to ensure that each value of a primary key identifies a
unique record. It is much more difficult to ensure the same about a secondary
key, and in general is not worth the trouble.

A secondary index which indicates the range of records within the file holding
instances of particular field values is particularly useful in conjunction with
CAFS, as it may be used to restrict the portion of the file over which the
power of the CAFS search facility may be applied. For example, it is possible
to consider the file to be made up of a number of equal-sized search units
(blocks or multiples of blocks) and construct a secondary index which
identifies the set of search units holding any particular value in a particular
field. The effectiveness of such an index may be varied by changing the size of
each search unit, or the portion of the field value that is contained in the index
(the stem size), or even the block size or packing density of the file. A larger
stem size, or a smaller search unit size, will lead to a more effective (but
bigger) index; a smaller stem or a larger search unit size leads to a coarser (i.e.
less effective) index but a smaller and hence more manageable one.

A conventional secondary index must identify specific records, and thus tends
to be very large but very effective. A secondary index as is proposed to be
used here relies upon the power of CAFS to identify the required records from
a relatively small search area. The index itself can thus be less effective.

A field which is used in a secondary index should be one which offers a
reasonable number of distinct values, especially if a search unit is large
enough to contain many records. Thus it is possible to construct secondary
indexes for the Inland Revenue tracing database based upon, for example,
surnames, words which occur in addresses, postcodes or parts of postcodes,
and so on. A single secondary index may contain values from a number of
different fields; this is especially useful given that an address as held in the

422 ICL Technical Journal November 1985

tracing database consists of four different SIF field values corresponding to
the four lines available for the address in Inland Revenue correspondence.
Thus by using a secondary index based upon the taxpayer’s address, it is
possible during a tracing enquiry to read the secondary index entry for each
significant word or word stem specified by the tax officer, and from this
obtain for each word the set of search units which contain that word. The
CAFS search can then be confined to those search units which are obtained
by taking the intersection of all these individual sets. Suppose, for example,
that a tax officer instigates a search over a rather small example database for:

Surname: WILES Address: LAWN CENTRAL TELFORD

The Indexed Sequential file index may indicate that surnames starting with
WILES occupy search units 190-205 in this file. A secondary index may
indicate that, taking four-character stems, the three address words occur in
(among others) the following search units.

LAWN 190, 194, 195, 200, 201, 202, 204, 205
CENT 190, 191, 194, 196, 197, 200, 201, 203, 205
TELF 190, 191, 194, 195, 200, 204

Thus a CAFS search which is confined to the intersection of these three sets
will only scan search units 190, 194 and 200. This amounts to three search
units, whereas a search determined solely by the surname would scan 16
search units.

Fig. 1 illustrates the way in which a secondary index is used with an Indexed
Sequential file.

The tax officer may also specify a quorum, used in the normal CAFS sense,
and the computation of the set of units to search is then more complex than
merely taking the intersection of each keyword’s search unit set.

For example, if A, B and C are the sets of search units corresponding to three
keywords, the simple computation if all three terms must appear in the
chosen search units is:

A and B and C

whereas if it is sufficient to find units with any two out of the three, then the
computation is:

(A and B) or (B and C) or (C and A)

Extending the example used above, a search for WILES and any two out of
LAWN, CENTRAL, TELFORD would scan search units:

190, 191, 194, 195, 200, 201, 204, 205

ICL Technical Journal November 1985 423

ISAM Keyword
index stem

X \ r 7
Keyword tile

\ _________ ,.

V
reference file

---------- V
secondary index

Fig. 1 Layout of a file with a secondary index

or eight units, rather than the 16 specified by the ISAM index alone. Thus
using a quorum will give a shorter search than if no address keywords were
used at all, but it is considerably worse than if a simple and condition is used,
and will take a great deal more computation to determine the search unit set.

Names of types of road (CLOSE, AVENUE, STREET, ROAD, LANE etc)
would not normally be required as part of an address-based secondary index,
although some (CLOSE and LANE for example) could be significant in a
surname-based index. For simplicity of creating the secondary indexes, it is
best to handle all words in the address as significant, and set them up as keys
to the secondary index. The index entries for these words would identify a
great many (possibly all) search units, which would make them useless in

424 ICL Technical Journal November 1985

restricting the size of a search. However, a skilled tax officer would not use
such common words in a tracing enquiry, and thus their presence in the
secondary index would have no significance other than the space that they
occupy (which would be negligible).

3.2 Characteristics of an address-based secondary index

An important characteristic of any secondary index is the size of the stem
used to access the index. This is a function of the number of distinct values of
the field upon which the index is based - in this case on the total number of
different words occurring in taxpayer’s addresses. It is also a function of the
ways in which these words are distributed across the population. It is obvious
that some words occur in many more addresses than others.

Information which illustrates this distribution is derived from a file contain
ing a list of all the taxpayers handled by Centre 1. This file (the Centre 1
Index) contains about 2T6 million addresses. Each address contains on
average 5-85 words. There are 197 523 distinct words in these addresses.
About 40% of the words contain numeric characters, and are thus house or
flat numbers or parts of postcodes.

Table 1 Cumulative-frequency table for Centre 1 Index

Percentage
of stems

Maximum addresses holding any given stem

stem = 20 stem = 8 stem = 5 stem = 4 stem = 3

100 398698 398698 399056 401 186 412844
99 609 688 1644 3511 10418
98 286 303 605 1394 4407
97 214 228 345 695 2250
96 149 167 274 411 1232
95 102 117 234 317 737
90 26 30 76 180 277
85 11 12 29 72 219
80 6 6 14 33 142
75 4 4 8 18 70
70 3 3 5 11 36
65 2 2 4 7 19
60 2 2 3 5 12
55 1 1 2 4 8
50 2 3 5
45 2 2 4
40 2 3
35 1 2
30 2
25 2
20 1

The number of occurrences of each distinct stem in this file, for various stem
sizes, is shown in Table 1 in the form of a cumulative-frequency table. This
shows first of all the number of addresses which hold the most common stem.

ICL Technical Journal November 1985 425

1 0 0 % of all stems occur in this number of addresses, or less. It then shows
that 99% of all stems occur in many fewer addresses each, and so on. Thus,
for example, for a four-character stem:

50% of all stems occur in three addresses or few'er each
95% of all stems occur in 102 addresses or few'er each
99% of all stems occur in 3511 addresses or fewer each

100% of all stems occur in 401 186 addresses or fewer each.

Most interestingly, only 1 % of all distinct four-character stems occur in more
than 3511 addresses each, and no stem occurs in more than 401 186 addresses.
The stem which occurs in the most addresses is GLAS, which is in 18% of all
addresses in the Centre 1 Index.

Of the various stem sizes considered, a stem of four characters appears to be
of the most use. It is the largest stem which it is practical to require a tax
officer to type, and yet it gives a significant discriminatory power - over twice
that of a three-character stem, for instance.

The total number of distinct stems, for different stem sizes, is of great
importance to the eventual size of a secondary index. This information is not
available directly. Fig. 2 shows how the numbers increase with the population
size, and is based upon data extracted at various points while analysing the
Centre 1 Index. However, these graphs do not allow extrapolation to the
numbers which will be found across the entire country. The absolute
maximum number of four-character stems is:

364 + 363 + 362 + 36

or 1 727 604. This includes all combinations of up to four letters and digits.
Most of these combinations will not occur in practice, even in postcodes. If it
is assumed that an address word stem contains at least one vowel, and that a
postcode component contains one or two letters and one or two digits, then
the useful maximum limit for four-character stems is around 200000. This
figure will be used in sizing the Inland Revenue tracing system.

Examination of the numbers of occurrences of selected words in the Centre 1
Index, in different sized samples of addresses, shows that the ratio

number of occurrences of word in sample
number of addresses in sample

for any given word is reasonably constant whatever the sample size. It is thus
reasonable to extrapolate from the number of occurrences of a particular
word in the sample represented by the Centre 1 Index (around 2T6 million
addresses) to the number of occurrences of that word to be expected in the full
National Index of 48 million addresses (although there will be exceptions to
this, such as GLASGOW or words beginning with MAC which can be
expected to be particularly prevalent in a Scottish-based index).

426 ICL Technical Journal November 1985

nu
m

be
r

of
 s

te
m

s
(x

 1
00

0)
200

j — i— i— i— i— i— i— i— i— i------------------------------------ 1--- 1

1 2 3 U 5 6 7 8 9 10 15 20
sample s ize (x 100 000)

Fig. 2 Tendency of numbers of distinct stems with sample size
Key
0: 20-character stems

+: eight-character stems
x : five-character stems
- : four-character stems
■ three-character stems

ICL Technical Journal November 1985 427

Table 1 shows the way in which different words occur in different numbers of
addresses. It is necessary to determine the corresponding spread of words
across search units, as this will determine the effectiveness of a secondary
index based upon address words.

TK = number of distinct stems occurring in one or more records

t = number of records containing the most common stem

n(i) = number of stems which occur in just / records (for i = 1, 2, 3 , . . . , t)

TU = total number of search units in data file.

It is required to determine the number of search units which contain a
keyword that occurs in i records. If all the units contain the same number of
records and the records are distributed randomly over the units, the
probability that a particular unit will contain a particular record is 1 /TU; and
therefore the probability that it does not contain that record is 1 — 1 /TU.
Therefore the probability that the unit contains none of the i records in which
the keyword occurs is

(i - 1/ruy

since they are distributed independently; and the probability that it contains
at least one of these records is

Thus the number of search units containing a keyword which occurs in
i records, g(i), is:

Eqn. 2 can be used to estimate the number of these search units holding
occurrences of a given keyword as the number of records containing that
keyword varies.

It is estimated that the national tracing database will occupy 1 411 765 blocks
of 6032 bytes on FDS 300 discs. Table 2 shows how varying numbers of
records map onto numbers of search units with this database size, for search
unit sizes of 6 , 3, 2 and 1 blocks. It also shows each number as a percentage of
the total number of search units for that search unit size.

Let:

p(i) = — 7 for i = 1 , 2 , 3, . . . , f

1 - (1 - 1 /TU)1 0)

(2)

428 ICL Technical Journal November 1985

ICL Technical Journal N
ovem

ber 1985
429

Table 2 Proportions of search units corresponding to proportions of records

Number of
records in
which stem
occurs

Percentage
of total
records

Search unit size, blocks
6 3 2 1

search
units

percentage
of 235 294

search
units

percentage
of 470 588

search
units

percentage
of 705 883

search
units

percentage
of 1411765

1000 0002 998 0-42 999 0-21 999 0 14 1000 0-07
10000 0021 9790 4-16 9895 2-10 9930 1-41 9965 0-71

100000 0-208 81466 34-62 90089 19-14 93 240 13-21 96 541 6-84
200000 0-417 134726 57-26 162932 34-62 174163 24-67 186479 13-21
300000 0-625 169 546 72-06 221 830 47-14 244 398 34-62 270268 19-14
400000 0-833 182310 81-73 269452 57-26 305 355 43-26 348 327 24-67
500000 1-042 207192 88-06 307957 65-44 358 261 50-75 421 048 29-82
600000 1-250 216922 92-19 339091 72-06 404178 57-26 488796 34-62
700000 1-458 223 283 94-90 364265 77-41 444030 62-90 551 911 39-09
800000 1-667 227442 96-66 384620 81-73 478618 67-80 610710 43-26
900000 1-875 230 160 97-82 401 077 85-23 508 637 72-06 665 489 47-14

1000000 2-083 231938 98-57 414384 88-06 534691 75-75 716521 50-75
2000000 4-167 235246 99-98 463 875 98-57 664 365 94-12 1 069 382 75-75
3000000 6-250 235 293 100-00 469 786 99-83 695 814 98-57 1 243 154 88-06
4000000 8-333 235 294 100-00 470492 99-98 703441 99-65 I 328 730 94-12
5000000 10-417 235 294 100-00 470577 100-00 705 291 99-92 1 370873 97-10

10000000 20-833 235 294 100-00 470588 100-00 705 883 100-00 1 410581 99-92

As is to be expected (and is shown elsewhere in this issue of the ICL Technical
Journal), Table 2 shows the greater discriminatory power of a smaller search
unit size. With a size of one track, a keyword need only occur in 2% of all
records before it becomes relatively unusable for refining a search. If the
search unit size is one third of a track, it may occur in 6 % of all records before
it becomes relatively useless.

Note that Table 1 shows that the most common word in the Centre I Index
(GLASGOW) occurs in 18% of all addresses in that (admittedly atypical) file,
and hence would be expected to occur in all search units whichever of the
search unit sizes was used.

Eqn. 2 assumes that the distribution of records across search units is
completely random. In practice, of course, there is only room for a limited
number of records in each search unit. Thus the actual number of search units
containing a particular keyword will be slightly higher than the value given
by the formula, but the difference is not significant.

Table 1 shows that, for the Centre 1 Index and using a four-character stem,
50% of all distinct keywords occur in three or less records. However, because
of their rarity, these keywords will not be given in as many tracing requests as
the more common words, which occur in more records. It is much more
useful to determine the average number of search units containing those
words which actually occur in tracing enquiries.

In other words, given a random keyword in a record chosen at random from
the tracing database, what is the average number of records that contain that
keyword?

The total number of keyword stem instances (TS) is

TS = l.n(l) + 2.n(2) + 3.n(3)+ . . . + r.n(t)

= z '•"(') (3)i = l

This figure can also be deduced by multiplying the total number of records
(48 million in the case of the national tracing database) by the average
number of keywords per record (5-85). It is expected to be about 281 million
for the tracing database.

Call a keyword a class i keyword if it occurs in exactly i records. Then, given a
random keyword instance,

. , . , , number of class i instances
Prob (keyword is class i) = ------ --------;------ —------------

total number of instances

i.n(i)
TS

430 ICL Technical Journal November 1985

Consequently, the mean number of records containing a random keyword
instance is

t
= £ i.Prob (keyword is class i)

i = 1

= 4 Z *‘2-«(0 (4)
/ 0 , = 1

The values of n(i) approximate to an inverse exponential distribution.
However, the tail is too long to be able to use the characteristics of such a
distribution. The tail in fact consists of isolated values of 1 (corresponding to
the numbers of occurrences of the few most common words) interspersed with
many zeroes. The values for these common words (large values of i) have a
much more significant effect on the mean value than the terms for the less
common words. These common words, and their distributions in the Centre 1
Index, are known. Assuming that the distribution will be the same in the
national tracing database, then summing these last terms of eqn. 4 in reverse
with the values of i extrapolated to the number of occurrences expected in the
whole country indicates that the mean across the whole country should be
less than 1 626 0 0 0 .

Put another way, this implies that if a random word is taken from a random
tracing request, on average fewer than 1 626 0 0 0 other addresses in the tracing
database may be expected to hold that word.

3.2.1 Effect of surnames: Whereas Table 1 shows that the average four-
character address stem occurs in three addresses or fewer, surnames have a
smaller distribution and the average four-character surname stem occurs in
72 records, out of a sample size of 2T6 million records. However, as with
address stems, the likelihood that a surname will be given in a trace is
proportional to the number of instances of that surname, and hence the
average number of surnames identical to a surname given in an average
tracing request is higher than this figure.

Summing eqn. 4 in reverse for the most common surname words shows that
the mean number of occurrences of a surname chosen from a random record
is expected to be less than 252 000 across the whole country. As the tracing
database is ordered on surname, these records will occupy a range of
contiguous blocks, and with the block size, record size and packing density
used this will occupy 1238 FDS 300 tracks, taking around 20 s to scan.

This is thus the average number of tracks which would have to be searched if
the first four characters of the surname are used to delimit the search area
across a national tracing database ordered on surname, using the same
tracing techniques as in the Centre 1 system. The use of a secondary index
based on address words will enable this figure to be reduced to a more
manageable number of tracks.

ICL Technical Journal November 1985 431

3.2.2 Structure of a secondary index: The sizing calculations described in
this paper formed the basis for the justification to implement a software
product called, tentatively, the Advanced CAFS Option, or ACO. This
provides a secondary indexing capability along the lines described above, and
will be used by the Inland Revenue tracing application in place of the
standard Indexed Sequential record access facilities.

As well as providing these facilities, ACO is designed to be used with very
large databases, and it allows these to be split into a number of content files,
ideally with each file held on a separate disc. The content files must have
contiguous but nonoverlapping key sequences. This means that for tracing
purposes the database can be considered as a single monolithic file, but for
housekeeping operations it can be treated as a number of distinct files. For
the Inland Revenue tracing database, a figure of one content file for every 600
Mbytes or so of data gives a total of 16 files, which allows a reasonable cyclic
pattern of housekeeping operations.

The combination of all the content files, any secondary indexes which are
used with it and the files which define the relationship between the content
files and the structure of the secondary indexes, is called a file complex.

A secondary index as implemented by ACO comprises two parts:

- a keyword file, which contains fixed-length records, each indicating that a
particular stem occurs in the database

- a reference file, indicating those search units in the database which hold
records containing a particular keyword stem.

Keyword file: The key to the keyword file is the keyword stem. Thus the
existence of a keyword record shows that there is at least one instance of the
stem within the database.

The keyword record indicates the number of search units which contain the
keyword, which allows processing of a search program to concentrate on the
most effective keywords first. In some cases it can also indicate that these
search units are all held in a single content file, and if the set of search units is
contiguous within that file it can indicate the precise range. This is most
useful if the secondary index mirrors the Indexed Sequential file primary key.

For the Inland Revenue tracing system, the address index keyword file
contains around 200000 records, each of 12 bytes, giving a total size of 2-4
Mbytes.

Reference file: Other search unit sets are represented by records in the
reference file. There is one such record for each keyword stem for each
content file in which the stem occurs. The records are keyed by a combination
of the stem and the content file number. The remainder of the record indicates
the set of search units within the content file which hold one or more records

432 ICL Technical Journal November 1985

containing instances of the keyword stem. There are a number of ways in
which this set may be represented, of which two are most relevant.

Format 1: In this format each reference file record contains a list of search
units, each indicated by its position relative to the start of the content file.
Three bytes are used to identify each search unit, and there is an overhead of 9
bytes per record. Thus if a search unit set identifies u search units, and these
are spread over / content files, then this format requires:

9 x / + 3 x u

bytes per keyword.

Format 2: In this format the search unit set is indicated by a bitmap with one
bit for each search unit in the content file. If a search unit contains an instance
of the keyword stem, then the corresponding bit is set to 1. As well as the
bitmap, there are 15 additional bytes per record. If the entire database is split
into TU search units, again spread over / content files, then the total size of
the data representing one keyword in this format is approximately:

15 x / + TU / 8 bytes

Obviously Format 1 is most useful where the keyword occurs in only a few
search units, and Format 2 where the keyword is more common. The two
formats occupy the same space when

9 x / + 3 x u = 15 x f + TU/S

i.e. when

u = TI//24 + 2 x /

or approximately 5% of TU.

However it is more efficient to merge search unit sets in Format 2 than in
Format 1, and thus ACO tends to use Format 2 for smaller search unit sets
than is required solely on space grounds. The default is to use Format 2 where
a keyword occurs in more than 1 % of search units.

3.3 Size of the address reference file

The keyword file for the address secondary index occupies around 2-4
Mbytes. Compared with a database size of 8-5 Gbytes this is insignificant.
However, the reference file will be much larger, and if its size is not considered
carefully it may cause significant problems when the database is updated.

The mean number of records holding occurrences of any given keyword, mr,
can be calculated as:

ICL Technical Journal November 1985 433

m, (5)
_ TS

r ~ T K
1

TK £ »•«(/)

The corresponding formula for the mean number of search units per
keyword, mu, is

1 <
m « = t+tt Z ?(0-n(0 (6)i A. j = l

where g(i) is given by eqn. 2 .

mu is difficult to calculate precisely using eqn. 6 , but will always be less than mr
(because g(i) is never larger than i).

The shape of the graph of g(i) is shown in Fig. 3.

A reasonable approximation to g(i) for sizing purposes is

g(i) = if i > TU then TU else i fi

and this is shown in Fig. 4. With this approximation,

1 tu i t
= '•«(') + ^ 7 7 Z TU.n{i) (7)

If the address reference file is represented entirely by Format 1, then its size
will be

TK x (9 x / + 3 x mu) bytes

although there will be a wide variation in record sizes, and a low packing
density (say around 60%) will be required.

If Format 2 is used throughout, then the occupancy is

(T U \TK x 15 x / + J bytes

A high packing density could be used with the file organised in this way, as
the Format 2 records have a fixed length.

The optimum file size occurs if a combination of Formats 1 and 2 is used. It is
proposed that any stem occurring in more than 1 % of all search units is to be
represented by Format 2, and the remaining keywords by Format 1. Again,
this organisation would lead to a wide variation in record sizes, and a
packing density of 60% has been assumed.

434 ICL Technical Journal November 1985

Fig. 4 Graph of if i> TU then TU else i fi

Table 3 shows the estimated size of the reference file with these three
organisations. It shows the effect of using the optimised approach, but even
with this the reference file will occupy a substantial amount of disc space, and
furthermore sizing studies show that the number of accesses to it per second
require it to be spread over a number of discs.

The complete search unit set for a keyword can occupy (in the case of the
Inland Revenue tracing database) 16 records, and up to 8 8 kbytes of disc
space. If all of this data must be accessed by the tracing system, for each
keyword specified by the tax officer, then there is a danger that the accesses to

ICL Technical Journal November 1985 435

the secondary index may outweigh any saving resulting from the use of the
index. However, if a surname index is used to identify the single content file
containing the specified surname, then only the reference file records relating
to that content file need be retrieved. This will reduce the secondary index
accesses to two reads per keyword.

Table 3 Size of address reference file for various organisations and
search unit sizes

Search unit
size, blocks

Reference file size, Mbytes, using:

Format 1 Format 2 Formats 1 and 2

6 894 5930 344
3 1054 11813 404
2 1140 17 695 464
1 1279 35 342 592

3.4 Sizing studies

The effect of using secondary indexes as described above has been studied
using a random set of records taken from the Centre 1 Index. These have been
treated as if they were specified in tracing requests. The four-character
keyword stems in these records have been isolated, and the number of
occurrences of the surname and each address stem in the Centre 1 Index has
been ascertained from the data that was used to construct Table 1. These
numbers of occurrences have then been extrapolated to the number expected
in the full national tracing database.

A modelling program reads these lists of numbers of occurrences, along with
various other parameters, and estimates the average numbers of search units
per search and the numbers of accesses to the other files involved.

Each surname will map onto a contiguous set of search units large enough to
contain the necessary number of records. The model examines the efficacy of
the address keywords at reducing this number of search units to a reasonable
value.

It is assumed that the tax officer specifies an average of three address words in
addition to the surname, and that in general he will choose the ‘best’ words.
Thus the model identifies and uses the three keywords from each address that
occur the least number of times in the Centre 1 Index. It then estimates the
final number of search units to be scanned.

Suppose

us is the number of search units holding the given surname stem
u, is the number of search units holding the ith address stem (given by

eqn. 2)

436 ICL Technical Journal November 1985

Pi is this number as a proportion of the total number of search units
(= u t/TU)

then U, the number of search units scanned, is given by

U = TU x ps x c.Pi x c.p2 x c.p3

where c is a constant used to allow for any correlation between keywords, and
for the tax officer not knowing as well as the modelling program which are
the best keywords. It is arbitrarily set to 1.3.

The random set of tracing enquiries has been tested against various search
unit sizes. The resulting data are shown in Table 4, which indicates the
average number of search units scanned in each trace after applying the
secondary index optimisations, and the number of blocks to which this figure
corresponds. It also breaks these down to show the percentages of the
enquiries which scan more than 1 0 0 , more than 1 0 , more than 1 and just one
search unit. The model can also indicate the number of accesses to the
secondary index files.

Table 4 Average enquiry sizes for different search unit sizes

Number of traces Search unit size, blocks
which scan: ------------------------------

60 30 6 3 2 1

> 100 search units 4 8 7 6 4 1
11—100 search units 29 23 18 17 13 9
2- 10 search units 38 33 22 16 15 14

1 search unit 29 36 53 61 68 76

Average blocks scanned 949 686 168 73 41 11
Average units scanned 16 23 28 24 20 11

The search unit sizes used are based upon the disc geometry: whole cylinder,
half cylinder, whole track and fractions of a track.

For comparison, the average size of a search with this data if no secondary
index is used is 2605 blocks, or 434 tracks. 64% of these traces are estimated
to scan more than 1 0 0 tracks, and 1 0 % more than 1 0 0 0 tracks.

It is apparent from these results that the use of the secondary index is
essential, and furthermore that the shortest response times correspond to the
smallest search unit size. However, there are other considerations - princi
pally the size of the address reference file (as derived above), the OCP and disc
access costs of reading and manipulating the secondary indexes, the costs of
fragmenting the CAFS scan into lots of smaller scans, and the overheads of
updating both the content files and the secondary indexes.

ICL Technical Journal November 1985 437

Table 4 shows that a search unit size of two blocks will give the required
saving in CAFS searching time. A size of one block is better, but the
overheads of processing the secondary index records start to overpower the
additional savings, and thus a size of two blocks is proposed.

The data generated by this modelling program has been used as input to a
more sophisticated model which estimates the costs in the TPMS service of
supporting the required number of tracing enquiries. It shows that a
multinode Level 80 configuration will be required to handle the complete
workload. But at least this is a feasible proposition, whereas without the use
of secondary indexes it would not be possible to provide the CAFS power
required to scan the database in the time available to meet the Inland
Revenue’s response-time requirements.

4 Updating the tracing database

While it is moderately easy to set up and use a secondary index for a large file
complex, the viability of the resulting system could be seriously jeopardised if
the importance of keeping that index up to date is neglected.

There are expected to be around 192000 updates per day to the tracing
database, of which half require new records to be added to the database and
half require amendments to existing records.

ACO provides a number of facilities to allow updating of a file complex and
the associated secondary indexes. These are used in batch mode overnight;
the overheads of maintaining the indexes in step with the tracing database if
the latter are subject to online updating are too large to contemplate in a
system of this size.

The strategy behind the updating facilities is that if a record exists with a
specific value in a field which is the subject of a secondary index, then it is
mandatory that a secondary index entry links the keyword value with the
search unit containing that record. But if, as a result of an update, that value
is no longer contained in the record (for example because the value has been
changed or the record has been deleted), then it is not essential to remove the
link between the keyword and the search unit. Indeed, there may be other
instances of the keyword in other records within the search unit. There is no
easy way to tell. Furthermore, the effect of keeping the secondary index entry
once the keyword value has been removed is that some traces will scan
unnecessary search units. This may cause a small performance loss, whereas if
the secondary index entry is missing, the record may well not be returned in a
trace which ought to return it. Thus the updating process ensures that any
keyword which appears in a new record or in a record which did not
previously contain it will cause the relevant search unit to be added to the
keyword’s secondary index entry (unless it was already there). Periodically
(for example when it is necessary to reorganise a content file to eliminate its
overflow records) the secondary index will be rebuilt from scratch to remove
any redundant entries.

438 ICL Technical Journal November 1985

ACO allows the content files which comprise the database to be updated
either sequentially or in parallel. Because of the size of the tracing database it
is necessary to use the latter approach, and thus the updates are first split into
a number of intermediate update files, one per content file. These inter
mediate update files are then sorted and applied to the content files,
performing a number of jobs in parallel to save time.

Once all the updating has been carried out, the secondary indexes can be
updated using data collected during the content file updates.

Using this optimised approach, it is estimated that the daily update process
will still take over four hours.

5 Conclusions

This paper has shown that CAFS, although it offers an enormous searching
capability over reasonably large files, is not sufficient by itself for accessing
very large databases in systems supporting a high access rate. The philosophy
applied to the use of CAFS on VME systems to date has been that if you scan
all the data available you will find the record you want. The Inland Revenue’s
requirements show that there are cases in which there is not sufficient time (or
sufficient CAFS units) to scan all the data.

Instead it is necessary to use some intelligence to decide beforehand which
parts of the database are likely to contain the required records, and direct the
power of CAFS specifically to those areas. The power of CAFS to find a
‘noodle in a hatrack’ remains, but with so many hatracks to search it is
necessary first of all to decide which fields to look in.

There are costs incurred in generating this intelligence, and indeed a
multinode Level 80 configuration is likely to be required to support the
application described above. However, it is estimated that considerably more
nodes would be required if all the searching were done by the OCP rather
than by CAFS.

The contents of the paper are derived from a proposal which ICL has made
to the Inland Revenue, and much of what it contains is of necessity at present
rather theoretical. Many assumptions have had to be made about the ways in
which address words and surnames are distributed across the country, and a
great deal of contingency will need to be built into the design of the tracing
system as it evolves.

But the viability of the use of secondary indexes for this purpose is confirmed.
The implementation of the ACO is complete, and by the time this paper
appears it will be undergoing validation trials with the Inland Revenue.

ICL Technical Journal November 1985 439

Acknowledgments

The initial idea of using secondary indexing techniques to facilitate the Inland
Revenue tracing system came from Alan Ward, previously of this project and
now with the Software Engineering Technology Centre at Kidsgrove. The
detailed design and implementation of the Advanced CAFS Option has been
the responsibility of Mark Bestwick, also of this project.

Finally thanks are due to the Inland Revenue for permission to publish this
paper. Without its active encouragement the pioneering techniques described
above would not have got off the ground.

440 ICL Technical Journal November 1985

Creating an end-user CAFS service

C.E.H. Corbin
Southern Water Authority, Brighton, Sussex

Abstract

The paper describes the creation and introduction of a Querymaster/
CAFS service into an information-processing system that already pro
vided numerous services under VME, and considers the impact upon the
end users and the Computer-Services Department.

The paper also proposes areas where further developments are required
in order to provide an improved information system that exploits’CAFS.

1 Introduction

The introduction of CAFS into an established VME system can be viewed at
its simplest as adding another tool to the VME armoury, albeit a potentially
powerful one, to the many already available to the providers of an
organisation’s information system.

The success of introducing a new facility such as CAFS into an existing
information system can be measured by the impact the new facility has upon
the individual user’s function within the organisation. The initial impact is
related to many factors, the important factors in the context of CAFS being:

- speed and breadth of introduction
- ease of use
- amount of training required
- effect upon other services and the users of those services.

These factors and many more that relate to the implementors are considered
in this paper.

The success of the introduction of the CAFS service, through a Querymaster
interface, into Southern Water Authority’s information-processing system is
described in this paper. The paper describes not only the impact upon the
users of the information system, but also the resultant behaviour patterns of
users and the consequential list of new demands for facilities.

The success story is due not only to the providers of the hardware and
software, i.e. ICL, but also to the approach adopted by the members of the
Southern Water Authority Computer Services Department when introducing

ICL Technical Journal November 1985 441

CAFS. The paper demonstrates that what may appear to many at first sight
to be a risky approach, proved not to be so and has only brought benefit to
the organisation as a whole in the area of information processing.

2 Overview of Southern Water

Southern Water is one of ten regional water authorities established under the
Water Act 1973, with responsibility for the whole water cycle within their
own self-contained regions. The Water Authorities' areas are based on the
concept of river-basin management. The Authorities’ chairmen and the
boards are appointed by the Secretary of State for the Environment.

The Southern Water Authority’s geographic area of 10 552 km2 covers the
south east of England across the counties of Hampshire, Isle of Wight, Kent
and Sussex. The resident population of the region is 3-9 million of whom 2
million are directly provided with water, and 3-7 million are connected to the
main sewerage network1. The remaining population are either provided
with water via one of the private water companies within the region or are
not connected to the public sewerage network.

The number of properties connected to the water network is 08 million and
the total length of the water mains is 11 238 km. The number of properties
connected to the main sewer network is 1 - 6 million and the total length of the
sewers is 20085 km. The sewerage is treated in 430 works throughout the
region. The main river network managed is 2731 km long.

The Authority managed in 1984/85 all of the above assets, worth £3393
million gross, with an annual capital expenditure of £65 million, and a
revenue income of £159 million, with a staff of 3336 people, of whom 1354 are
manual workers and 1982 are office workers. The Authority directly bills 1-8
million customers.

The Authority’s information-processing systems provide applications that
deal with the financial and technical aspects of its business. The size of the
organisation as described results in a large amount of information that is held
in computer-readable form. It is this aspect that attracted the Authority to
CAFS and the exploitation thereof.

3 Starting line

In July 1983 the information system was a 32 Mbyte dual 2966 running under
VME/B (Base 7 05) with
- 9-6 Gbytes of online filestore held on 640 Mbyte fixed discs, containing

data
- 2-6 Gbytes of exchangeable file store on 200 Mbyte discs, containing the

operating system and the offline databank
- 0-64 Gbytes of file store held in reserve for resilience against fixed-disc

failures.

442 ICL Technical Journal November 1985

The services provided for users to access the data were

- TP enquiry service (one message pair per 0-9 s)
- TP update service (one message pair per 5 s)
- multiaccess (33 streams available)
- remote job entry (8 streams available)
- batch (3 streams available)

via 160 VDUs and over 20 remote-job-entry (RJE)/microsystems.

The data are held in index sequential files (95%) and IDMS database (5%),
the distribution of index sequential file sizes being as in Table 1.

Table 1 Distribution of file sizes

File size, Mbyte Percentage of files, %

0 - 01 17
0 1 - 10 31
10- 100 32

100- 50 0 13
500-1000 3

1000-2000 2
200 0-400-0 2

The data dictionary had been in use for 3 years in the computer processes
and data quadrants, the version of DDS in use in July 1983 being version
650.

Querymaster had been in use since the Autumn of 1982, and available to
users on a limited basis, the version of Querymaster in use at July 1983 being
version 202.

The information system had been provided under VME/B since 1978.

In summary, the information-processing system was well established with
many of the products that are required to exploit CAFS at that time both in
place and in use, as well as the requirement to improve the search time for data
held in files over 10 Mbytes. The result of this was that CAFS could be
implemented and exploited quickly.

4 CAFS service - preparation phase

The approach to CAFS was initially cautious with the acquisition of one
CAFS-ISP module. The first CAFS queries were successfully processed on
7th July 1983. The CAFS query impressed the computer staff involved not
only because the query time had reduced from hours to minutes, but also with
the ease that this had been accomplished; i.e. no changes to the data or

ICL Technical Journal November 1985 443

queryview. During the period from July to November numerous tests were
carried out, the results of which have been well documented elsewhere2. As a
result three further CAFS-ISP modules were ordered.

On 27th November 1983 VME release 800 (SV200), both base and super
structure, went ‘live’ and the first CAFS queries were run during the prime
shift on files that were also accessed by TP. The CAFS search fragment size
had been set to one, in order that there was no noticeable effect upon the TP
service. Demonstrations were then made to a selected number of users, who
immediately requested the facility be made generally available. During the
period December 1983 to March 1984, CAFS accesses were allowed but
under the control of the Computer Services Department. The control was
exercised for the following reasons:

- dynamic switching of discs to the CAFS stream
need to monitor the effect of the CAFS searches

- privacy.

The dual 2966, for resilience purposes, had disc drives with the dual-access
feature fitted and active. With only one CAFS-ISP module, each time it
became active if the disc required was not connected to it VME would
dynamically switch the required disc to the CAFS stream. The effect of this
dynamic switching is that the system becomes progressively unbalanced, thus
affecting the other services.

The users who were initially permitted to use CAFS were those who owned
the data being searched. They stipulated that access to other staff within the
Authority was strictly forbidden until the Computer Services Department
could guarantee secure access and the appropriate levels of privacy, together
with an audit trail of when and by whom data was viewed or extracted.

To ensure that the CAFS investment was exploited as rapidly as possible the
management of the Computer Services Department issued the following
directives to the staff:

- ‘that where ever Querymaster is in use, CAFS must be used “privacy
permitting”, allowing Querymaster to make the choice’.

- ‘that all new application systems and new subsystems to existing applic
ation system shall be provided with appropriate views of the data available
at the time of implementation’.

The directives have become part of the installation standards. The reason for
the directives is to remove the decision making from implementors, who may
well ponder on whether CAFS was suitable for IDMS implementations and
small-index sequential files and whether or not query views should be made
available. A further effect of these directives was that where technical
problems arose these were resolved rather than bypassed.

444 ICL Technical Journal November 1985

On 14th March 1984, the three CAFS-ISP modules were accepted and
brought into use, making four in total, without controls, apart from the limit
on MAC VMs, provided that the user had full ownership and responsibility
for the data.

5 Data categorisation

The Computer Services Department’s management clearly indicated that
Querymaster/CAFS was an end-user tool and that the Department, as
providers of the ‘window’ or ‘view’ onto the data would need to be capable of
providing new or amended views rapidly. Although this was technically
possible, provided that the appropriate information was contained in the
data dictionary, it was difficult to achieve due to the lengthy and time-
consuming procedures required for obtaining authorisation for the end user
to view the data.

In order to reduce the delay incurred, the Authority’s Regional Management
agreed upon categorisation of data, which eased the task of seeking
authorisation. The categories agreed were

- statutory restricted
- authority, sensitive
- personal, sensitive
- personal, nonsensitive
- other applications.

All owners of data then indicated which records and fields within records
mapped onto each of the these categories. The information derived could
then be used in conjunction with the Authority’s privacy subsystem.

6 Privacy system

The Computer Services Department in the spring of 1982 had designed a
privacy subsystem for use within the TP applications. This has since been
redeveloped to control nearly all the services available on the information
system and replaces both the VME and Querymaster password systems; thus
VME and Querymaster passwords are not used.

The privacy subsystem provides

- each person who uses the information processing system with a coherent
single method of access, ‘their name and their password’, irrespective of the
service used

- a common sign-on screen
- online maintenance
- a fine degree of control
- password security
- enforced password changing

ICL Technical Journal November 1985 445

- audit trail
- hidden checking
- common system for all applications
- ease of maintenance.

The privacy subsystem has been exploited fully since August 1984 in the
Querymaster/CAFS service, to provide the levels of security and protection of
data required by the Authority.

The presence of the privacy subsystem combined with data categorisation has
enabled the Authority to open up the data to all who have a legitimate use for
it in executing their function within the Authority, which subsequently
enabled the potential of CAFS to be unleashed.

7 Querymaster/CAFS environment

In order to fully meet the requirement for security, and provide a user-friendly
interface for the users of the Querymaster/CAFS facilities, an environment
was required. The objectives to be met by the environment were

(a) To provide
- an efficient VM for running Querymaster
- a queryview news screen, by incorporating the standard SWA news

facilities
- facilities for

- creating and editing files of Querymaster commands
- preparing a batch job for the appropriate application batch profile,

using specified input and output files
- routing of reports to alternative destinations

- a uniform but simple interface.

The user is taken through a hierarchy of menus where he or she selects
the options required, such as the queryviews, name of data files
required where there is a choice;

e.g. S for Sussex
O for old year
N for new year etc.

the environment then assigns the files required by the requested
queryviews and enters Querymaster, which is then used as normally.

(,b) To protect the data from access other than by Querymaster.
A set of VME user names and profiles that only allowed Querymaster to
be used were established. Read access is then given to the datafiles
required by the queryviews available from each VME ‘xxQM' username.

(c) To prevent the use of queryviews to which access has not been granted.

446 ICL Technical Journal November 1985

On the queryview choice template, the users are shown only those
queryviews that they have been granted permission to use. This is
accomplished by the SWA privacy system taking the information gained
when the person logs on and then checking the personal privacy rights of
that person and displaying only those queryviews that they have
permission to use or from which they can then choose, should there be
more than one.

(d) To enable session output files to be copied into the user’s own filestore.

The environment not only provides a secure user-friendly interface for the
users to Querymaster/CAFS, but also the advantages of standardisation and
control for those responsible for providing the service. The packaging of the
products to provide such a service is recommended as a prerequisite for a
successful implementation. There remain a few untidy areas such as the
double entry of queryview names, the users being required to identify
themselves again when entering Querymaster, all of which will be cleared in a
future release of Querymaster when it is expected that a packaged environ
ment will also be provided.

8 User training and documentation

The Computer Services Department strongly held the view that Querymaster
had been designed for end users, and as such the environment provided by
SWA together with the Querymaster product had to support itself. As the
information-processing system already provided comprehensive TP coverage
for accessing data by key there was the added problem that most users would
probably be using the service infrequently. If this was the case users might
have difficulty in remembering how to exploit the facility provided to its full
potential, again indicating that the service had to be self supporting. The
problem areas foreseen were

- the problem of understanding the data
- knowing what data was available
- remembering how to structure queries to exploit CAFS
- the ability of potential users to structure and refine queries
- the perceived requirement for an accurate answer from every query.

All of these areas of potential concern could be tackled by training, but this
would be a heavy ongoing commitment and would introduce delays when
introducing new or amended queryviews. The question also needed to be
asked for each point of concern, whether it was a general concern about use of
the information-processing system or was particular to the new service about
to be introduced. Again alternative methods for resolving these problem
areas were considered and proposals for further developments put in hand.
The training program then derived took all of the above points into
consideration, and took the following form

ICL Technical Journal November 1985 447

- initially, all users requesting the service would be given an hour of training
in the use of the service, by systems analysts and user support

- when new application systems or new subsystems to existing application
systems were introduced the analysts concerned would also include the
training required for the queryviews provided

- a series of halfday seminars would be presented to describe and demon
strate the potential of the facility to management, and to dispel the idea
that builds up each time a new service or facility is about to be introduced
that it is the magic cure for all perceived problems in the world of
information processing

- CAFS specific training would be provided by regular training seminars
once the number of users had stabilised

- when a user requested a new queryview from user support, training would
be given upon request if the user was not familiar with the data

- a survey of users using the service would be made at periodic intervals to
establish which areas required attention, and for a training program to be
developed where applicable.

It can be seen from the above that an extensive training program was not
entered into; the results of this decision have been noted elsewhere in this
paper.

The documentation provided to users normally takes one or more of the
following forms:

Querymaster users reference card
When a person is registered as a queryview user for the first time the
Querymaster reference card is issued free of charge to the user concerned
as part of the confirmation handshake that registration has been
completed.

- Querymaster user manual
Local co-ordinators of user departments purchase and hold a copy of the
manual for use as a reference document. Some users purchase the manual
for their own use. The ratio of users to manuals is approximately 9:1.

- Application queryview charts
All the 35 queryviews available at July 1985 have queryview charts; these
appear in the applications user manual, and are also distributed individu
ally. A new user of a queryview would be issued automatically with a
queryview chart as part of the confirmation process. Thereafter the user
has to request a reissue, when invited to do so by the online news facility.

- Application reference cards
Only one queryview has been supported with a reference card to date. It
has been found that in some cases the amount of information is
voluminous and a reference card is not practical.

- Application information sheets
Four queryviews have information sheets informing the user about the use
of the queryview and the data.

448 ICL Technical Journal November 1985

Again the amount of documentation issued is not large, the main document
ation being that produced by ICL and the queryview charts provided by the
Authority. Queryview charts in themselves, in some cases, tend to be large
and in the case of IDMS-based queryviews complex. There is the added
problem of producing and distributing queryview charts in a responsive
manner. Automatic techniques are being considered to overcome this
problem. Equivalent information to that held on the queryview chart is
available by the use of the Display command within Querymaster.

In order to maintain a responsive service without incurring heavy document
ation overheads each time a queryview changes, documentation has been

• kept to a minimum.

9 Categorisation of CAFS service users

The number of users using the Querymaster/CAFS service grew rapidly in the
summer of 1984 to 240 employees and since then has remained constant. By
July 1985 there were 242 active registered users of the Querymaster/CAFS
service, which represents 12-2% of the office staff. Categorisation by function is
shown in Table 2.

Table 2 User categories

Function People registered

Divisions Headquarters

Administration 31 0
Engineering 47 0
Operations 17 11
Scientific 8 0
Legal 0 2
Customer accounts 0 7
Audit 9 1
Finance 0 16
Personnel 10 6
Computer services 0 77

Column totals
Grand total

122
242

120

The distribution of users to the number of queryviews that they have access
to is shown in Table 3, which provides an indication as to the breadth of
coverage provided by the Querymaster/CAFS service.

The use made of the environment under MAC by the users over the past 12
months is shown in Table 4. The usage under the batch application profiles is
not included.

ICL Technical Journal November 1985 449

Table 3 Queryviews (o registered user

Number of queryviews Number of users

l 60
2 74
3 18
4 17
5 9
6 5
7 13
9 8

10 5
II 4
I2 1
13 2
15 15
16 1
21 1
25 1
35 8

Total 242

Table 4 Total use made of the environment per month

Month Cost, £ Number of
sessions

Av. length
of session,
hours

Total
ocp,
hours

Total
filestore
transfers, 106

Aug. 85 20413 377 09 49 2-8
July 85 10623 342 0-6 25 H
June 85 15044 355 0-7 33 H
May 85 9351 381 0-5 22 1-2
April 85 9421 398 0-5 18 1-4
March 85 5861 344 0-5 14 0-8
Feb. 85 12649 440 0-7 30 1-2
Jan. 85 8399 396 0-7 22 H
Dec. 84 8130 342 0-6 20 10
Nov. 84 9275 390 0-6 24 1-8
Oct. 84 6314 424 1-0 14 1-8
Sept. 84 2531 181 0-5 6 0-6

Mean 9834 364 0-7 23 1-3

Table 5 expresses Table 4 as a percentage of the total for all work processed
per month, and provides an indication of the likely increase in load due to the
introduction of a Querymaster/CAFS service.

From Tables 4 and 5 it can be seen that the extra load on the mainframe is
small, as would be expected if CAFS is being exploited for nearly all queries.

450 ICL Technical Journal November 1985

Table 5 Usage expressed as a percentage of all work

Month Cost, % Total ocp, % Total filestore
transfers, %

Aug. 85 3-7 3-5 1-6
July 85 2-3 5-0 0-7
June 85 3-3 6-4 0-8
May 85 2-2 5-0 1-0
April 85 2-2 4-4 1-0
March 85 1-5 3-6 0-5
Feb. 85 31 7-7 0-8
Jan. 85 2-3 6-7 10
Dec. 84 2-8 6-1 10
Nov. 84 2-4 6-1 1-4
Oct. 84 10 3-2 1-4
Sept. 84 1-0 2-2 0-6

Mean 2-3 5-0 10

10 User behaviour patterns

10.1 Confidence building

The two main methods by which users establish their confidence have been
observed to be

- experimentation and exploration of the power of both the query language
and the data. Many users have been unpleasantly surprised at the lack of
integrity or consistency revealed in the data, which they previously
believed was good

- gaining confidence in the results. In order to establish confidence some
users have been observed to validate the results of the query using other
facilities available to them such as TP, Filetab etc. This behaviour pattern
has had a secondary advantage in that it has brought to light errors in the
system.

The result of both categories is an initial high period of usage, not just on the
new environment but also on the existing environments, which appears to
last up to three months.

10.2 Prime users

A prime user is defined as the user of data who also has the responsibility for
maintaining that data.

In order to carry out special surveys upon data subjects, nonvital fields as
viewed by the prime user have had the function of the field changed. One
consequence of this is that the secondary-users’ queries can be misleading if
based upon the field.

ICL Technical Journal November 1985 451

10.3 Secondary users

A secondary user is defined as a user who has only read access to the data.

Querymaster/CAFS has opened up the Authority’s data bank to departments
that previously did not have read access to this information, except for paper
reports via a request mechanism to the prime user or the owner. This has
shown that errors can be made in the classification, for example when the
prime user is financially oriented and there is insufficient local knowledge or
expertise concerning operational matters. If the secondary user has the
necessary knowledge or expertise such errors can be spotted and corrected.

10.4 Repeated queries

A large number of users have produced their own Querymaster macros,
which are then called at regular intervals to support their activities. This
tends to reduce the number of ad hoc queries.

11 User demands

The new demands that have arisen following the introduction of the service
fall into two categories:

(i) demands connected with the service provided

- that the time to enter the service should be improved as the log-in
phase and the navigation of the hierarchy of menus which establishes
the secure environment for the user to work within can take longer
than the query itself. When considering the mean session time in
Table 3, this is seen to be not strictly true. The demand, however, does
warrant attention
that the number of MAC streams be increased

- that queryview reference cards be produced in all cases
- that historical and other offline data be brought online

that regular queries that the user has developed should be provided as
standard within the application concerned, under TP but still exploit
ing CAFS
that a report writer be made available.

(ii) demands connected with data

- that an information system be provided that enables a potential user to
establish:
- what data is available
- where the data is held
- the details connected with an item of data; i.e. processing cycle field

use etc.

452 ICL Technical Journal November 1985

12 Future directions

12.1 Information service about data

In order to resolve some of the problems that have surfaced from the use of
Querymaster/CAFS, work has begun on exploiting the information held
within the data dictionary. The objective is to provide an interface for data
users to the information held within the top quadrants of the data dictionary.
Various methods of providing this interface have been considered but the one
in favour currently is for the information to be extracted from the data
dictionary, and structured to enable a user-friendly interface to be developed,
incorporating a knowledge-based system exploiting CAFS where applicable.
It is not expected that this development will be in place within the Authority
for at least 12 months, as a number of activities need to proceed in parallel for
this objective to be met.

12.2 Improved availability

An upgrade of the dual 2966 to a superdual 2988 with an increase of 25% in
online file-store capacity will have been completed by October 1985. This will
permit an increase in the number of concurrent users of the Query
master/CAFS environment.

13 Summary

CAFS has now been in use by users of the information-processing system for
the past 21 months, and has had the major benefit of awakening the users to
the state and potential of the data held. This benefit should not be
underestimated, as it is doubtful whether an intensive training programme on
‘the importance of data to the organisation’ for users within the Authority
would have been as successful.

A further benefit has been the unifying effect with regards data and its use,
where the Querymaster/CAFS facility has been a catalyst in bringing
together people dispersed throughout the Authority’s region.

Born out of the user experience, demands are now appearing for an improved
integrated information system, but it is evident that these cannot be met as
easily, and for the same cost, as the acquisition of CAFS.

The paper has concentrated primarily on the use of CAFS via Querymaster,
mainly as that was the interface that became available first, and further the
benefit arising would be seen by the users of the system for themselves. The
Authority is now beginning to exploit CAFS via the other interfaces available
at SV211; the pace of exploitation, however, is dependent upon the pace of
development of CAFS and the products that exploit it by ICL. The latter fact
should not be lost as overall success depends on numerous organisations all
working towards a common goal, at a continuous but even pace.

ICL Technical Journal November 1985 453

The paper has also only touched on a few of the many aspects of
implementing Querymaster/CAFS, and has made little reference to how
other developments on the information processing system can enhance the
use and success of CAFS, e.g. unattended operation.

14 Conclusion

The environment provided has combined a number of facilities and products,
all of which have enabled CAFS to be exploited successfully. The success of
the implementation is also due to the large number of staff within the
Authority’s Computer Services Department working together towards the
common objective as laid down by the management. The success has also
been noted in the public domain with the Authority being awarded an office
automation award for the ‘Best information storage and retrieval system’ at
Olympia, London, in March 1985.

Acknowledgements

The Querymaster/CAFS environment described in this paper is the result of
the combined efforts and ideas of the members of the Southern Water
Authority Computer Services Department and has been produced as a
tribute to them.

The paper has been published with the permission of the Director of
Administration of the Southern Water Authority.

References

1 Annual report and accounts. Southern Water 1984/85.
2 ‘Exploiting CAFS-ISP.’ Working party report, July 1984, ICLCUA CAFS Special Interest

Group.
3 ‘Querymaster (200 level) user’s reference card.’ ICL TP R03785.
4 ‘Using Querymaster (200 level).’ ICL TP R00260/00.

454 ICL Technical Journal November 1985

Textmaster - a document-retrieval
system using CAFS-ISP

M.H. Kay
ICL Office Business Centre, Reading, Berkshire

Abstract

The paper discusses the use of CAFS-ISP to support a system for filing
and retrieval of word-processed office documents. The document
structure is based on ODA, the proposed international standard for
document interchange.

1 Introduction

This paper describes a project within ICL’s Office Business Centre that is
designing a new document-retrieval system. The system is known internally
as Textmaster, and it is designed to exploit the power of the CAFS-ISP search
hardware1.

The aim of the project is to provide a system that offers full-text retrieval and
is suitable for ordinary office use. Existing products such as STATUS2 and
STAIRS have achieved considerable success among research workers (includ
ing scientific, legal, and commercial applications), but they are not widely
used among managers and other office workers in handling everyday
paperwork.

There are a number of reasons for this. We felt that the most important were:

- the existing systems are not easy enough to use. The style of their user
interfaces seems to have advanced little since the days of teletypes and
punched cards. The users of modern personal computers and word
processors expect better than this

- most office documents are prepared on word processors, but existing text-
retrieval systems generally offer word-processing interfaces only as an
afterthought

- the technique used to support free-text retrieval in existing systems file
inversion - is expensive in processing time. In an attempt to reduce the
costs, new documents are usually collected together in batches and added
to the database at intervals, perhaps weekly. Removing documents is often
even more expensive than adding them. This makes such systems much
more suitable for permanent high-value information than for rapidly
changing office files

ICL Technical Journal November 1985 455

- the user interface of most systems cannot easily be tailored to the
particular requirements of the subject matter and the type of user. Our
experience with the ICL Committee Minutes System3 (a free-text retrieval
system designed for local authorities) suggests that by focusing on the
specific requirements of a particular application it is possible to create a
user interface that is far superior to that of any generalised system

- office documents are less formal than academic papers, and as a result
retrieval based on content alone will not always be very successful. Often
the attributes of the document - date, author, document type - will be as
important as the textual content in narrowing the search. This will be
especially true if the person filing the document (and wishing to retrieve it
later) controls these attributes but does not control the document content

- most text-retrieval systems are free-standing: they do not allow the user to
switch readily from text searching to other tasks, and they do not allow
information to be extracted easily from the text-retrieval system into other
systems. This is acceptable for software installed in an academic library,
but not for a system offered to an office worker.

To solve these problems the Textmaster software has three main differences
from existing text retrieval systems. These are:

- the CAFS-ISP search engine is used to search for documents. This enables
the costs of inversion to be avoided or deferred, which means that it
becomes economic to maintain a much more volatile document collection

- the software is designed from the start to deal with word-processed
documents. All the information in the document is retained, including
typographical details and pagination, and the document can be extracted
from the text database and sent back to a word processor for further
editing. Document attributes are taken from the word-processed docu
ment when available, and may be altered or supplemented at the time the
document is filed.

- the software is constructed in two parts: a server containing the document-
retrieval functionality and a user-interface component. The user-interface
component is designed to be locally tailorable. Tailoring may adapt the
interface to the type of user, or to the capabilities of the terminal being
used; or it may be designed to restrict or enhance the functionality offered
to the user, or to integrate it with functions available from other packages.

This paper concentrates on two aspects: the use of CAFS-ISP and the link
with word processing. Although the user-interface issues have been para
mount in the design process, they will not be discussed further in this paper.

2 Document structure and ODA

Documents have structure: they have headings, footnotes, titles, named
sections, numbered paragraphs and so on. The more the retrieval software
knows about the structure, the more helpful it can be in allowing enquirers to
specify exactly what they want to see. If the document is divided into separate

456 ICL Technical Journal November 1985

fields, the enquirers can say which fields they are interested in, and different
matching rules can be used for special fields such as dates and numbers.

The Office Document Architecture (ODA) developed by the European
Computer Manufacturers’ Association4 is designed as an interchange format
for word-processed documents. It allows two types of structure to be imposed
on the text: a logical structure and a layout structure. The logical structure
defines the partitioning of the document into sections and fields (ODA calls
them composite logical objects and basic logical objects); whereas the layout
structure defines the pagination of the document, with provision for features
such as multiple columns. The two structures are inter-related; for example, a
particular logical field may always appear in the same place on the front sheet
of the document.

The structural model used by Textmaster is closely based on that of ODA.
Current ICL word processors support an interchange format known , as
normalised document format, or NDF, which is an early implementation of a
draft of the ODA standard: N D F is expected to migrate towards full ODA in
due course. In the rest of this paper the term ODA is used except where the
differences between ODA and NDF are significant.

Although ODA gives the potential to define a great deal of structure, it does
not make it mandatory; a document may still appear as a chunk of
amorphous text. No doubt documents from certain sources, such as optical
character readers, will indeed take this form. In consequence of this
Textmaster allows three levels of document structuring (which may be
combined in various ways):

- the structure of the document is internally defined using the features of
ODA. This allows Textmaster to recognise the logical components
(sections and fields) of the document automatically

- the structure of the document is not defined by the ODA representation,
but is implied by markers edited into the document content. This allows
structured documents to be prepared on equipment that offers no support
for ODA structure

- the document is regarded as being unstructured text. Logical components
of the document are not distinguished. However, for filing and retrieval
purposes, a number of document attributes can be defined such as author,
title, keywords, and reference number; these do not form part of the
document content, but are held as an auxiliary document or file card. The
values of the attributes on the file card default to the values recorded in the
ODA document profile if available.

The first two cases are more suitable for highly organised documentation
systems: most large organisations have procedures for internal publication of
formal documents, and for these the structure is fairly permanent and can be
documented. For example, ICL has a ‘product description’ for each hardware
and software product it produces: the structure and layout of these docu
ments is centrally controlled to ensure consistency.

ICL Technical Journal November 1985 457

The third case is more suitable for casual documents: memos, informal
minutes and electronic mail. In this case the structure will tend to vary from
one document to another and the organisation imposes very little control
over the way they are written and typed. Traditionally the person filing the
documents is responsible for creating order out of this chaos, but has no
authority to alter the document text: the use of the file card reflects this.

The ODA standard allows each component of a document (both logical
components and layout components) to be of a defined class. For example,
several sections, or several pages, may have similar attributes, and these need
only be specified once. In addition the document itself belongs to a document
class, characterised by its structure: an example of a document class might be
the ‘product description’ referred to above.

This concept of document class is extremely important when considering
retrieval from large collections of documents. In ODA each document is self-
contained: the class definitions are included in each individual document. For
retrieval, however, we need to know what structural rules apply across all
documents in the same class, and for this reason we allow document classes to
be centrally defined in the ICL Data Dictionary System. This also allows
additional properties of each component class to be defined: for example the
list of stop-words (nonsearchable terms) for a field, the names and synonyms
of the fields to be used in enquiries etc.

The DDS data dictionary is used because it is a public place, where the
definitions are available to any other software product that cares to use them.
We chose this route because it will make it easier to exchange information
between Textmaster and other Management Support products such as
Querymaster and Illustrator.

The basic definition of a document class may be set up in the data dictionary
by a Textmaster program which takes a specimen ODA document and
analyses its structure. The current NDF implementation contains a lot of
information about the layout structure, but no details of the logical structure,
and so these must be added by hand.

The elements that may be defined in the data dictionary are document
classes, sections (composite logical object definitions in ODA), fields (basic
logical object definitions in ODA) and blocks. The block element may be
used to define any of the ODA layout objects: page sets, pages, frames and
blocks. Sections and blocks are recursive: a section may contain subordinate
sections, and a block subordinate blocks, to any depth. An additional
element, the form description, is introduced to allow a document class to have
several permitted layout structures.

The structure may be very liberal, or it may impose constraints on the
existence, position, and contents of each field. When documents are added to
the database they will be validated against these constraints and rejected if
necessary.

458 ICL Technical Journal November 1985

The structure is illustrated by the entity model shown in Fig. 1.

Fig. 1 Logical and layout structure of a document class

A field is a set of terms. For a text field the terms are words; fields may also be
defined to contain numbers, dates, times, or arbitrary strings. The definition
of a field class in the data dictionary includes rules for recognising fields of
this class in the document (if this is not implicit from the ODA structure), for
splitting it up into individual terms and for ‘indexing’ the terms. There may
also be validation rules for a field class, for example a range of valid values for
a date field.

3 Document layout

Textmaster retains the full ODA document in the text database, so that it can
later be extracted and word-processed without any loss of information. There
is no need to retain a separate copy at the word processor.

Retaining the full ODA document also means that documents can be
displayed during an enquiry with the pagination and typography defined by
the ODA layout structure (limited only by the capabilities of the enquiry
terminal). They can also be printed in this form in response to an enquiry. The
character repertoire used is ISO-69375, which caters for the needs of all
Latin-based alphabets.

4 Retrieval capability

The retrieval capability of Textmaster corresponds broadly to that offered by
established products such as STATUS and STAIRS. It includes the ability to
search for any word, with stem searching, range searching and fuzzy
matching, and the ability to combine search terms using the Boolean
operators and, or, and not. The search term may be sought in any named field
class; if no field is specified it may appear in any text field of the document.

A limited collocation facility is provided by the operators with and without.
A with B means that A and B must both be present, and in the same field;
A without B means that A must appear in a field in which B does not appear.

ICL Technical Journal November 1985 459

The main strength of the Textmaster search capability relative to other
systems is in fuzzy matching. Three omnibus (or wild-card) characters are
provided:

* matches one unknown character appearing at that position
? matches an unknown character, or a null string, at that position
! matches any string of characters (including the null string) at that

position.

These characters can be used anywhere in a search term and in any
combination. Thus, for example, STE*?EN! will match STEVEN,
STEPHEN, STEPHENS, and STEVENSON.

In contrast, some of the more sophisticated features of other systems, such as
proximity searching and thesaurus handling, are excluded from Textmaster,
at least for the time being. We feel that these facilities will not be needed by
the casual office worker.

In general all term matching ignores case and accents: thus ‘COUPE’ will
match ‘Coupe’. Similarly date and numeric fields are matched by their values
rather than their representations: 1-0 will match 1-00, and 1/5/83 will match
01-05-1983. The principle is that the normalised value of a search term is
compared with the normalised value of the term as it appears in the
document. The normalisation rules depend on the properties of the field class,
defined in the data dictionary.

Standard normalisation procedures are supplied for text fields, dates, times,
and numeric fields; but the installation may use locally written procedures to
normalise fields such as personal names or county names. This could be used,
for example, to ensure that a search for ‘Shropshire’ finds a document
referring to ‘Salop’.

5 A ccess control

Not all users are entitled to see all documents. To regulate who may see what,
some kind of access control mechanism is needed. The effect of the
mechanism should be that a user who is not entitled to see a document
remains unaware of its existence: there will be no evidence of it in the results
of a search.

In selecting an access control model, our aims were to reflect normal office
practice, to keep it simple (for the users and for the implementation) and to
make it efficient at runtime.

The model we chose is borrowed from the VME operating system. It is a two-
dimensional model, with a horizontal partitioning by seniority, and a vertical
partitioning by department.

460 ICL Technical Journal November 1985

Each user has a seniority level between 0 and 15, and each document has a
‘required seniority’. A user may only see a document if his seniority is greater
than or equal to the required seniority. In addition each document belongs to
a department (departments are numbered 0 to 255), and users may see only
those documents belonging to departments they have access to. All users
have access to department 0, but they may also have access to other
departments.

A user is only allowed to see a document if both the department rule and the
seniority rule are satisfied. To illustrate this, consider a user who is given
seniority 10 and access to departments 0, 3 and 4. The documents he may see
are indicated by the shaded areas in Fig. 2.

Fig. 2 Document available to a user with seniority 10 and access to departments 0, 3 and 4

Users are registered centrally by an administrator; at present we do not allow
him to delegate this authority.

There are no access constraints affecting parts of a document. If a user may
see a document, he may see all of it. This reflects normal office practice with
paper documents. Given that documents are displayed in their original
layout, suppressing part of a document would only be possible by blanking it
out, which would give the game away.

6 Implementation using CAFS-ISP

The previous sections have discussed the functionality offered by Textmaster.
This section discusses how these functions are implemented using CAFS.

ICL Technical Journal November 1985 461

We have attempted at all stages of the design to match the functionality to the
perceived user requirements, rather than trying to exploit CAFS for its own
sake. At times this means we have had to implement functions in software
rather than using a CAFS hardware feature.

There are three main issues affecting the CAFS implementation. First, the
way the documents are stored in a CAFS-searchable form. Secondly, the way
in which large databases are handled when they cannot be searched using
CAFS alone in a reasonable time. Thirdly, the design of the search software
and the functions needed to supplement the capabilities of CAFS. These
issues will be considered in turn.

6.1 Scan and Display Files

Our first major decision was to keep two separate copies of the text.

The full text of the documents is kept in a Display File unchanged from the
original ODA input except for some additional red tape to speed up display.
This file is used when documents are displayed or printed, and when users ask
to extract a copy of the document to their own word processors.

The text in the Display File is not searched directly, for a number of reasons.
First, the text is not in the ‘self-identifying format’ (with each word preceded
by a length byte) required by the CAFS hardware. Secondly, it would not be
possible to support the function of matching normalised values, needed to
support accent-blindness as well as date matching. Thirdly, the ODA form is
likely to be bulky because of the amount of information retained about
document layout and structure (this is even more true of the current NDF
implementation). This extra information is not relevant to searching but
would slow down the CAFS scan.

So a copy of the text, optimised for searching, is made in a separate file which
we call the Scan File. This contains the normalised terms, in CAFS self-
identifying format. All information about layout, punctuation, and present
ation is omitted. Also, stop-words (common words such as of and the) are
eliminated. We considered whether to eliminate repeated occurrences of the
same word in the same field, but'decided not to because the slight reduction
in search time (perhaps 20%) did not appear to justify the introduction of a
sort into the update process.

6.2 Large documents

The next important decision was how we should handle large documents.
CAFS can only apply an and operator if the two operands appear within
some specified distance of each other; the maximum distance is limited by the
maximum block size on the disc, which on the newest (FDS 2500) discs is
some 23 kbytes. This represents around ten A4 pages of text. Clearly we do
not want to exclude documents larger than this.

462 ICL Technical Journal November 1985

We decided to impose no limit on document size. For the time being this
means that the and operator has to be implemented in software. A potential
optimisation is to distinguish large documents from small documents on the
scan file, and use CAFS to apply the and for documents that will fit on one
record, while implementing it in software for larger documents. A more
satisfactory solution would be to use the proposed file correlation unit6 to
perform the and. But this is not currently available.

Each record on the scan file has a fixed prefix containing the following items:

integer unique document number
integer 0 .. 255 document class code
integer 0 .. 15 seniority required
integer 0 .. 255 owning department
24 bits department tag (see below)
integer 0 .. 65 535 field number within document

This is followed by a variable-length part in CAFS self-identifying format,
which consists of a type item, a length item and a contents item. The type item
holds a numeric code identifying the Textmaster field class. (These numbers
are allocated arbitrarily, so it is not possible to use the CAFS feature of
masking the type code to search for several fields at once.) The length item
holds the length of the value item, while the contents item is a sequence of
normalised term values, each preceded by a byte containing its length. For
example, the start of this paragraph would be encoded as shown in Fig. 3.
Note that stop-words are omitted, and that the text is normalised to upper
case.

8 FOLLOWED 8 VARIABLE 6 LENGTH 4 PART

Fig. 3 Example of text in self-identifying format

A new record is always started for each new field. In addition a single field
may be spread over as many records as required.

The seniority code recorded on the scan file is used to reject those documents
the user may not see because he has insufficient seniority. This uses one of the
CAFS key channels, with a ‘less than or equal’ test.

The department matching is more complex. Because the user may see
documents belonging to any one of a number of departments, it is not
possible to filter out the documents in a straightforward way without
requiring an indefinite number of key channels. So the approach is to store a
tag, which is a 24-bit value in which a single bit (department code mod 24) is
set.

The CAFS scan matches the stored tag against a mask, which is another 24-
bit value in which bits are set for each department code the user has access to.

ICL Technical Journal November 1985 463

If the department tag, when and’ed with the mask, equals zero, the user does
not have access to the document and it can be skipped. Otherwise the
document is retrieved and further examination is carried out by software. For
example, if the user has access to Department 5, the CAFS scan may also
return documents belonging to Department 29: these will be rejected by
software.

Given that users will usually have access to a relatively small number of
departments, this test will filter out most of the documents they cannot see,
but uses only a single key channel.

Each record contains codes identifying both the field class and the field
instance within which the terms appear. This is because there may be
repeated instances of the same class of field in a document. For example a
document class ‘Meeting minutes’ may have a field class ‘Motion’ which
occurs a large number of times within a single document. A search may
request, for example, minutes of meetings in which the words ‘secondary’ and
‘education’ appear in the same motion.

6.3 Large databases

What happens when the number of documents gets so large that a CAFS
search from end to end is no longer feasible?

The standard solution to this problem is coarse (or low-resolution) indexing7.
A coarse index may be set up for any field or for all fields, and indicates for
each term value in that field the range of the scan file that must be searched to
find instances of that value. The advantage of a coarse index over a
conventional index (which points to every instance of the value) is that it can
be substantially smaller. In addition, if the presence or absence of the term in
successive partitions of the scan file is indicated by a bitmap, the bitmaps for
several search terms can be combined using and, or and not to indicate the
partitions that need to be searched for a complex Boolean expression.

The alternative approach evaluated was full inversion. Here a conventional
index is constructed, pointing to individual documents and possibly fields.
Such an index means that the scan file version of the document can be
discarded entirely, because the index contains sufficient information to
identify the documents meeting the user’s query.

One of the main problems with coarse indexing is in deciding a partition size.
As the database grows, the number of partitions in which each term is present
will also grow, and this will tend to increase the length of CAFS searches. The
natural reaction to this is to reduce the partition size. Apart from the fact that
this requires an expensive reorganisation of the files, it means that when the
database size reaches the gigabyte range the optimum partition size becomes
a single document, which means that the coarse index has degenerated into a
conventional full index.

464 ICL Technical Journal November 1985

An additional drawback of coarse indexing was that it appeared to offer
relatively very little performance gain on updating the database when
compared with full inversion. Deleting documents (unless one is prepared
simply to leave spurious references in the index, which would gradually
degrade enquiry performance in a volatile database) could take considerably
longer.

As a result of this analysis we decided that when databases became too big for
pure end-to-end CAFS scanning we would remove documents from the scan
file and fully invert them. From this point on, the scan file would be used only
for recently added or transient documents, as a kind of holding area to allow
the costly inversion process to be deferred until a convenient time, for
example overnight. Enquiries would search the scan file using CAFS, and the
inverted files by software, merging the results before presenting them to the
user.

In practice it is likely that pure CAFS scanning, without any indexes, will
meet the needs of very many office users. Searches of 10 000 A4 pages of text
will be completed within 30 seconds or so, which will be adequate for most
casual users; we know that many users of existing text-retrieval products have
databases smaller than this. With a flexible facility for partitioning document
collections into multiple databases, so that the user need only search those
documents that are likely to be of interest, it is possible that the average
database size would be even smaller. But for the really large databases that
cannot be partitioned, CAFS still offers two advantages over a system relying
on inversion alone: indexing can be carried out as a background process
without affecting the ability to make new documents available quickly; and
the index itself can be searched using CAFS: an important feature when fuzzy
search terms are used.

Our analysis does not invalidate coarse indexing as a general solution; in
particular it depends strongly on our previous decision to hold separate
copies of the text for scanning and display.

6.4 Search techniques

This section considers several features of the Textmaster searching software
that may be of interest outside the pure Textmaster context.

Textmaster first analyses a search request to determine how much of the
search can be delegated to CAFS. CAFS will always handle the filtering out
of the correct document class, the required seniority and the first stage of
department matching, as discussed above. In addition it will search for term
values requested by the user. If there are more search terms than available key
channels, Textmaster performs several CAFS scans and combines the results
by software.

The seaich expression passed to CAFS includes only or operators. All
matches against the individual terms are returned to Textmaster, which

ICL Technical Journal November 1985 465

combines the reference lists for each term using the operators actually
requested in the user’s search expression. On completion the final result of the
search is obtained by combining the reference lists from the CAFS scan and
the indexes, and removing any documents recorded in a separate list as being
withdrawn.

The search terms as written by the user have to be converted into their
normalised forms before passing them to CAFS. This uses the normalisation
procedures for the field in question. When the user seeks a value appearing in
one of several fields, the search passed to CAFS includes each field separately,
because the normalisation rules could be different. When there is a large
number of fields, this may lead to excessive use of key channels, so we may
find it necessary to detect the common case where all text fields are
normalised in the same way, and treat it specially.

Search terms including omnibus characters are matched by CAFS as far as
possible. Use of the ‘zero-or-one’ omnibus generates two alternative strings
for CAFS to search for; if it is used several times there may be more than two
strings. For example if the user is searching for PHIL?IP?S, a CAFS search
for PHILIPS OR PHILLIPS OR PHILIP*S OR PHIL*IP*S is generated. If
the ‘zero, one, or many’ omnibus is used in a search term, any characters after
the first occurrence of this omnibus are ignored as far as the CAFS search is
concerned; the values returned are then filtered by software. For example, if
the search is for ‘BR1SKY’, CAFS will return all values starting with ‘BR\ and
Textmaster software will check which of these end in ‘SKY’. In the extreme
case this results in a pure software scan, except of course that CAFS is still
filtering on document class, field class, seniority and department.

7 Conclusions

Textmaster represents an attempt to apply text retrieval technology in the
office. To achieve this we needed to provide good support for word-processed
documents; to make the software much easier to use than its predecessors; to
allow flexible updating of the document collection; and to allow the software
to be adapted to local needs and to be integrated with other services available
at the same terminal.

The role of CAFS has mainly been in permitting updating without incurring
the cost of full inversion, except for very large document collections and then
at the user’s own convenience. The way in which CAFS is used is influenced
by the need to retain the full document for further word processing if
required.

Acknowledgments

The Textmaster design team consists of Peter Ambrose, David Gregory,
Michael Kay, John Palmer and Ed Wilson. The project manager is Adnan

466 ICL Technical Journal November 1985

Jazrawi. Jeremy Goulstone was responsible for the analysis leading to the
strategy for exploiting CAFS. All contributed to the work described in this
paper.

References

1 HAWORTH, G.McC.: ‘The CAFS system today and tomorrow’, I C L T e c h . J . , 1985, 4 (4),
365-392.

2 AERE Harwell: ‘S T A T U S u ser m a n u a l', Computer Science & Systems Division, 1982,
ST-UM80, 3-1.

3 ICL: ‘C o m m i tte e M in u te s S y s te m a d m in is tr a to r s m a n u a l ', 1985, Publication R50051/02.
4 European Computer Manufacturers’ Association: ‘Office document architecture’, Sept.

1985, ECMA-101.
5 International Standards Organization: ‘Coded character sets for text communication’,

1982, ISO-6937.
6 BABB, E.: ‘Implementing a relational database by means of specialised hardware’, A C M

T r a n s . D a ta b a s e S y s t . , 1979, 4, 1-29.
7 MALLER, V.A.J.: ‘The content addressable file store - CAFS’, I C L T e c h . J., 1979,1 (3),

265-279.

ICL Technical Journal November 1985 467

CAFS and text: the view from academia

L. Burnard
Oxford University Computing Service

Abstract

Text processing is not confined to the electronic office. Machine-
readable text is also of growing importance for researchers in the
humanities. The paper describes some experiments with, and user
reaction to, CAFS as a text-processing tool. In one major project, a
corpus of Shakespearian drama totalling 15 Mbytes has been made
CAFS-searchable; the other project described concerns the Bodleian
Library’s free-text catalogue of over 1 million entries. Some difficulties
inherent in the current CAFS hardware are described and software
solutions proposed.

1 Intoduction

The scholarly application of computing to literary and linguistic research is
by no means as eccentric a procedure as it once appeared. The micro has
moved from the world of the electronics enthusiast to that of the colour
supplement, and the word processor has ousted the typewriter from the
study; it is not surprising to find that the scholar’s characteristic mode of
interaction with a text has become increasingly mechanised. Even in the
comparative calm of Oxford University, the last decade has seen a major
expansion of interest in such facilities as OCR-based data entry, high-quality
computer typesetting and all the software and other resources needed to
support large free-text databases. During the same period, the support offered
by Oxford University Computing Service (OUCS) for work in this area has
expanded correspondingly. Specialist hardware has been acquired (the
Kurzweil data-entry machine and the Lasercomp phototypesetter on which a
national service is offered) and specialist sotware produced, notably the
Oxford Concordance Program which now has an international reputation.
Specialist services such as the Oxford Text Archive are also provided1. CAFS
is seen as complementing these facilities.

A CAFS-ISP engine was installed at OUCS in April 1984, as part of an
upgrade of the service’s 2988 system. The role of CAFS was initially seen as
primarily to improve the performance of Querymaster when accessing large
IDMS (Integrated Data Management System) and PDS (Personal Database
System) databases2. However, with the availability of DCI in early 1985, it
became possible to develop software more appropriate to our users’ needs,
particularly in the fields of text processing and information retrieval.

468 ICL Technical Journal November 1985

This paper describes two experimental applications of CAFS as a text
searching engine.

The first is typical of many research projects in which a large textual database
is to be searched for words, patterns of words or punctuation. Without CAFS
many such requirements are prohibitively expensive: the Oxford Concor
dance Program, for all its other merits as an indexing aid, can take as much as
ten OCP minutes to produce a modest concordance to a few hundred lines of
text. It is thus far too expensive to be run as a retrieval tool for any nontrivial
size of datafile.

The second is typical of the many free-text retrieval applications in which a
definite structure can be assigned to the data: in this case, that of a library
catalogue. Here, the alternative to CAFS would be a standard information
retrieval package such as Status. At OUCS, however, the only true database
management system available is IDMS. Constraining textual data to fit this,
although feasible, is not an appealing prospect.

The software used for both these applications is described in Section 4 below;
user reactions, problems encountered and future developments being sum
marised in Section 5.

2 Beyond the concordance

As long ago as 19693 the pioneers of literary and linguistic computing were
publishing articles pronouncing the imminent demise of the concordance as a
respectable scholarly activity. When all the great works had been captured in
machine-readable form, it was confidently asserted, the scholar would be at
liberty to search among them, untrammelled by the dictates of any particular
indexing scheme. Many great projects were undertaken (the Tresor de la
Langue frangaise, the Toronto Dictionary of Old English project, the
Thesaurus Linguae Graecae4) whose full potential is only now beginning to
be realised as the hardware and software tools to exploit these vast corpora of
painstakingly assembled machine readable texts become available. Our
experience seems to indicate the importance of CAFS as a means of
exploiting these resources.

Our largest textual database consists of the text of several early printed
editions of the works of Shakespeare. These texts were originally prepared by
Trevor Howard-Hill, for use in a series of one-volume concordances to
Shakespeare’s plays prepared on Oxford University’s KDF-9 machine and
published by OUP between 1969 and 1972s. The original KDF-9 format
tapes were converted to a rather more portable format at the National
Physical Laboratory between 1978 and 1980, and the texts deposited in the
Oxford Text Archive for use by other scholars. An article in the ALLC
Bulletin6 describes how they were subsequently re-edited and reformatted by
staff working on the preparation of a new edition of Shakespeare under the
general direction of Stanley Wells, to form a new Shakespearian corpus.

ICL Technical Journal November 1985 469

In 1984, a CAFS-searcha]?le form of the texts was prepared, initially simply to
evaluate the CAFS system; however, it has since proved an invaluable tool for
scholars working with the texts.

The corpus currently comprises the complete First Folio (1623) and all
substantive quarto texts, a total of about 50 plays, occupying over 15 Mbytes.
Each play is regarded as a distinct text, and is divided into contexts
corresponding with the printed lines of the original. Each context is tagged
with codes indicating its status according to a number of criteria. These
criteria include the author to whom the context has been attributed (some of
the quarto plays are of multiple authorship), the text status (i.e. whether or
not it is regarded as an authoritative reading of the base text), the type of copy
and the compositor believed to be responsible for it as well as the play title,
line number and normalised form of speaker’s name.

In the case of the First Folio, CAFS was seen as a valuable way of
substantiating compositorial hypotheses. At least 12 different compositors
are believed to have worked on the First Folio. Whichever of these is
responsible for a particular section of the folio can be of crucial importance
for establishing the type of copy used, and hence its authenticity. Composi
torial identity is determined largely by the occurrence of various spellings,
typographical mannerisms etc. For example, passages set by compositor I
contain over twice as many semicolons as passages set by any other
compositor.

An important requirement of the database was thus the analysis of typo
graphical features of the original, notably the use of punctuation and different
typefaces. The markers indicating these features in the original text were
processed during the conversion of the text to SIF (self-identifying format)
records as follows. A 1 byte SIF identifier was used for each token and
punctuation sequence defined in the text. The least significant four bits of
each byte indicate the status of the associated token according to the
following table:

Bit Set Clear

0 punctuation word
l italic roman
2 stage direction speech
3 speech prefix speech

Bit 4 is always set, and the remaining bits are always clear. Thus, a word in
italics will have an identifier with a bit value of 0001 0010 (hexadecimal 12),
and an italic word in a speech prefix one of 0001 1010 (hexadecimal 1A). By
applying a suitable mask to such identifiers, CAFS searches may be
performed only for words which are in italics, or stage directions, or stage
directions in italics, and so forth.

470 ICL Technical Journal November 1985

Because of the need to search punctuation, the text was converted to ‘single’
SIF format, using the MoveToCAFS procedure. The current version of the
file is an ordinary sequential file, thus enabling addition and deletion of
records using standard software.

3 The Bodleian pre-1920 catalogue

The Bodleian Library at Oxford, founded in 1602, is one of the six copyright
or deposit libraries in Great Britain. Its long-time users have perhaps grown
accustomed to the form of what remains the only reliable means of access to
its riches. Three sides of the noble quadrangle taken over by the library in
1619 and still in use are taken up with the Lower Reading Room, within
which are kept about 2000 stout leather-bound volumes, each measuring 42
x 30 cm and weighing more than 5 kg. These (known as the ‘Guard Books’)

constitute the only generally accessible complete catalogue of the library’s
holdings. Into these volumes, generations of librarians have pasted, corrected
and recorrected an estimated five million paper slips, some specially printed,
some typed on antique typewriters, others handwritten in a variety of styles,
ranging from Victorian copper plate to Edwardian illegible. A steady flow of
new acquisitions (about 80000 each year) still keeps them busy producing
new slips and incorporating them into this magnificent testimony to the
durability of manual cataloguing methods.

The catalogue is arranged by alphabetical order of author or other heading,
in some cases book or periodical titles, or the names of institutions, being
used as the primary key. (All government papers, for example, are to be found
under the heading ‘Great Britain’.) Within this key, there is a well defined, if
not intuitively obvious, sequence: thus for a single author, volumes of
collected works are given first, followed by individual volumes in order of first
publication, sometimes followed by biographical or critical works. In the case
of authors such as Shakespeare or Dickens, who may have a Guard Book or
two to themselves, a different method of sequencing is used which is simpler
(but incompatible). Bodley’s cataloguing rules are well defined, but (like the
rules of many other venerable Oxford institutions) very much sui generis7.

An estimated 20% of the slips in the catalogue are cross-references, some of
which simply point from one form of a name to another, while others refer
from the subject of a book (where this is a person or institution) to its author
or editor. There is no other form of subject indexing, since the function of this
catalogue is simply to enable users of the library to discover the shelf mark of
a given book. This is a code enabling library staff to locate the book on the
approximately 77 miles of shelving currently in use throughout the library.
Only 20% of the books are stored on immediately accessible shelves, the
remainder being held on 11 floors of book stacks beneath the library. A
further mile or so of shelving is used up each year.

Ever since the Shackleton Report first proposed it in 1968, the library has
recognised the need to convert its catalogues into machine-readable form. At

ICL Technical Journal November 1985 471

present, the Guard Books are divided into two major sections, one,
containing about million slips, describing books published before 1920
(about 2000 of which are still acquired annually), and the other for books
published after that date. The post-1920 section exists at present in the Guard
Books only and plans for its conversion or even replacement are still very
much under discussion. This paper is concerned therefore exclusively with the
pre-1920 section of the catalogue.

The process of typing and correcting the whole of the pre-1920 catalogue
began in 1969 on the University’s KDF-9, but moved in 1971 to the library’s
own mini, a Digital PDP-11/208. It was decided very early on that any
editorial work on the catalogue slips (for example, to make them conform to
any particular proforma or structured record such as the British Library’s
MARC format) would prolong the task beyond what was practicable, a
decision which had important repercussions when CAFS came into the
picture. Only a minimal amount of consistency was imposed on the structure
of each record, and it was encoded using conventional punctuation. Sophisti
cated parsing programs were written to check the internal consistency of the
records generated, largely by the late John Jolliffe, at that time Keeper of
Catalogues and subsequently Bodley’s Librarian, without whose skill and
enthusiasm the conversion process would never have achieved critical mass.

Typing and correction of the bulk of entries in the pre-1920 catalogue was
completed in 1984. The complete catalogue will be made by merging this
main file with a supplementary file of about 70000 slips generated during
revision of the main file and four other smaller files in various stages of
completion, together totalling a further 150 000 slips. It should be emphasised
that what is thereby created will remain what information scientists (perhaps
rather disapprovingly) call ‘unstructured text’, because its structure is implicit
in punctuation and layout rather than in tagged fields or a hierarchically
organised database. The original purpose of embarking on the conversion
process had been the production of a new printed or microform catalogue,
not a database. Indeed, as a first st~o, production of an interim printed
catalogue was begun in 1976, using a Diablo printer driven by the PDP-11;
73 volumes of this catalogue, covering the letters DOWN to MACZ, had
been produced by 1983, when the project was suspended pending a fresh
supply of Diablo printers.

After more than a decade of data capture, the Library is now starting to
consider ways of making available the information held in this catalogue. The
economics of producing a new printed catalogue are the subject of consid
erable debate, while the use of microform publishing would not be regarded
as an acceptable alternative by a sizable proportion of library users. A third
possibility, that of providing online access to the catalogue, now seems rather
less futuristic than it might have at the start of the conversion process, for a
number of reasons. One is the beginning of a long-term project to create an
online union catalogue for all the other libraries within the University. The
first stage of this project will involve the implementation of a common

472 ICL Technical Journal November 1985

automated cataloguing and maintenance system at three of the Faculty
libraries, and its inception has already had a remarkably galvanising effect on
the librarian community9. Another is the rapid proliferation of terminals and
word processors throughout the University, which is in this respect no
different from any other British University. But perhaps the most significant
recent development in this context has been the arrival of CAFS at OUCS,
which has enabled the Library to assess for itself the facilities that could be
offered using a CAFS-searchable form of their existing datafile, at a minimal
conversion cost.

As early as 1983, the Bodleian Library had been investigating the use of
specialised hardware for library purposes. A Memex engine, a device in some
respects quite similar to CAFS10, was temporarily installed for one year, but
for technical reasons was unable to demonstrate its full potential before being
withdrawn in 1984. Following the cancellation of government funding, and in
the absence of any other substantial R & D funding, the Library’s investi
gations remain largely dependent on the willingness of manufacturers to use
its unique database as a testbed for such hardware. This situation was
somewhat improved when the OUCS CAFS unit became available for
experimental purposes, but funding for the provision of any long-term or
fullscale facility has still to be obtained, and will involve the resolution of
many political issues (to say nothing of the difficulties of rewiring the current
library premises).

A small sample (900 slips) of the pre-1920 catalogue file was converted to SIF
in March 1985, using a simple Algol 68 program. Coincidentally, a different
project began at about the same time to revise and -update a specialist
catalogue of early printed books held in Oxford libraries other than the
Bodleian. Since this file was in the same format as the pre-1920 catalogue, it
was also converted and librarians evaluating the use of CAFS given access to
both catalogues. In practice, most testing and demonstrating was carried out
on the latter catalogue which was rather larger (some 33 000 slips, total size
6-5 Mbytes).

Some sample Bodleian format records are shown in the Appendix. The
‘minimal mark up’ policy referred to above is evident. Each record begins
with a unique six-character slip number, optionally followed by a numeric
code defining the format of the record, and consists of a variable number of
variable-length lines, separated by vertical bars. These indicate where the
record may be divided for presentation purposes. The whole record is
terminated by a single § character. Within each record four main structural
elements may be identified: the heading under which it is catalogued, the title,
the imprint (i.e. where the book was published and when) and the shelf mark
(i.e. where it is currently stored). The exact sequence in which these
components appear and the number of times they are repeated are both
defined by the record’s numeric code. Punctuation is also used to distinguish
further subdivisions within these main components: thus within headings,
parentheses are used to separate forenames from surnames, while the imprint

ICL Technical Journal November 1985 473

component can be subdivided into place of publication, publisher’s name,
date of publication and published size quite simply using only the existing
punctuation and a small degree of knowledge about the valid possibilities for
these fields. All cross-referencing citations were simply discarded from this
initial file, but it seems probable that they would be equally easy to
decompose, thus enabling extensive cross-checking of the whole file to be
performed.

In the absence of CAFS, our next step, having identified the structure of the
catalogue records, would presumably have been to attempt to normalise this
structure and then to devise a suitable stored record format to support as
many as possible of the fairly unpredictable demands that might be made of
it. No doubt we would still, six months later, be arguing about the relative
merits of author, title or publication date as primary access keys, about which
words should feature in which indexes, and so forth. After much reinvention
of wheels and reformatting of data, we would have a system optimised for
certain types of access at the expense of others, probably also endowed with
an albatross-like burden of indexing maintenance.

Instead, we took the line of least resistance and simply built up a single SIF
record for each slip, using the slip number as its key so as to preserve the
original alphabetic sequence of the file. Within the record, different SIF
identifiers are used to distinguish the categories of information mentioned
above, but their order of appearance is unchanged, so that on conversion
from SIF to legible format, the record looks identical to what was originally
typed in.

The SIF identifiers used are chosen to enable searches to be made over
groups of categories as well as within individual ones, using the DCI masking
facilities. For example, identifier X12 marks a word as being part of a
surname, while X14 marks it as a forename. Our software can thus support
searches for (say) ‘Lesley’ as surname, forename or either with equal
efficiency. The full SIF structure is as follows:

Identifier function
X12 surname
X14 forenames
X16 qualifier on name (e.g. ‘Saint’, ‘Bishop’ etc.)
XI8 institutional name
XIA periodical name (as author)
X1C rubric (i.e. subdivision within main heading)

X10 (mask XFO) any part of heading

X20 title
X24 parenthetic matter in title (e.g. editorial comment)

X32 place of publication
X34 date of publication

474 ICL Technical Journal November 1985

X36 size
X30 (mask XFO) any part of title

X40 shelf mark

The slip number (an arbitrary 6-byte code assigned during the cataloguing
process) is used as the key for the file, to maintain the correct sequence of
records within the file, although user access by this key is fairly unlikely.
Multiple-format SIF is used to save space, although we were disappointed to
find that the conversion routines supplied as a part of the DCI-100 product
are more wasteful in this respect than they need be.

4 Retrieval software

A simple interactive enquiry program, written in Algol 68, is used to search all
the CAFS text files described above. This program supports all but a few of
the facilities available through the DCI, including quorum conditions,
counts, fuzzy matching and retrieval functions. It is currently command
driven, using a language similar to that of DCI itself1 l. It is recognised that
any eventual enquiry software must have a simpler user interface; at this stage
however our objective was primarily to provide access to as much as possible
of the DCI in a relatively straightforward and extensible way. A more
user-friendly interface could be set up quite rapidly using Application Master,
we are assured.

The field definition used by DCI to determine the structure of the records to
be searched is held as a job space string, which is initialised to an appropriate
value by the VME procedure used to invoke the search program. The user
has the option to redefine this string (to suppress or rename some of the fields,
or to change the interpretation of particular SIF identifiers), but this option
has not as yet been exercised.

Searches are expressed using DCI’s simple relational syntax and full Boolean
logic, as mentioned above. Search expressions may be predefined and stored
for subsequent reuse. The first time that any particular named search
expression is actually evaluated, the count of hit records found (obtained
automatically by the DCI count function) is also stored away, whether or not
any hit records are actually returned. These counts, and the associated text
defining the search, are available for display to the user on request at any time
while the program is running.

Hit records are either displayed on the screen or output to a file for post
processing. A number of different output formats are available, again under
user control. In the case of the Bodleian file, for example, it will be possible to
return hit records in a tagged format suitable for editing on a word processor,
or in a standard MARC format for export to other catalogue-processing
software.

ICL Technical Journal November 1985 475

The partial limit function is used to restrict the number of hit records actually
returned to a user-defined maximum. We have not found any use for the
other CAFS retrieval functions, nor have we as yet found any application for
CAFS trailers. The former offer only numerical functions of little interest in
this application, while the usability of the latter is severely restricted. The
‘search units’ they delimit can neither be nested within each other nor cross
block boundaries.

5 Initial results

5.1 Performance

In common with other CAFS users we have experienced hardware problems
when a retrieval limit function is run in conjunction with a very high hit rate,
and we have also had two minor hardware faults on the supporting disc
drives. In all other respects however the performance of the CAFS unit has
lived up to expectations. The determining factors in the response to any query
were found to be the number of records actually output and the degree of
concurrent activity on the machine (the OUCS 2988 supports a heavily used
MAC service as well as a large batch load; no TP service is currently run). The
resources absorbed by CAFS-aided searching were comparatively trivial,
averaging less than 1 OCP second for each 10 Mbytes scanned through,
irrespective of the complexity of the query. An unaided CAFS search through
our biggest file, the Shakespearean corpus, takes about a minute of elapsed
time during normal machine loading.

5.2 User reaction

The performance benefits of CAFS for text searching are well known and
need no further elaboration here, except perhaps to underline the importance
of its browsing capablities. In an academic environment, where research is
speculative and result-driven, the speed of CAFS is of importance because of
the changes it makes possible in the characteristic mode of enquiry. The
attitude to computing of the researcher for whom every search for a
particular combination of words requires an overnight batch job is quite
different from that of the researcher who performs such searches at an
interactive terminal. Hypotheses can be tested as they are formed; searches
can be determined by the results of previous searches. Our experience so far
suggests that for users unaccustomed to interactive working CAFS has a
qualitative effect as well as a quantitative one.

By contrast, users with experience of conventional fully indexed text retrieval
systems, such as Status or Stairs, are accustomed to what might be called the
‘stepwise refinement’ method of text searching. For such users the fact that
CAFS could not return a count of records satisfying some criterion without
actually performing a search was a source of constant concern; it also
appeared to have a qualitative effect on the way in which enquiries were
framed.

476 ICL Technical Journal November 1985

For more naive users, the inability of CAFS to perform context-sensitive
collocation searches (distinguishing the ‘blind Venetian’ from the ‘Venetian
blind’, to use a time-honoured example) was very hard to understand, as was
the absence of any efficient means of searching with left hand (as opposed to
right hand) truncation of the search term. The first of these requirements is of
such importance that the search program is now being modified to support it
by software. Requests for records containing term a followed by term b
(which may be another occurrence of term a) separated by a user-specifiable
number of other terms will be converted into a CAFS search criterion
returning a superset of the required records for further discrimination by the
software. One early requirement of the Shakespearean database was a list of
occurrences of ‘that that’ as opposed to ‘that which’, which would have been
quite difficult to produce without this enhancement.

The two other areas of user-dissatisfaction most frequently reported were the
inability of the CAFS hardware to support indexing functions, (i.e. to provide
a list of all the different terms appearing in a particular field) and its poor
support for non-Roman alphabets.

Almost the first requirement of the larger of the two Bodleian files converted
was a list of all the different library codes used in the shelf mark field. The
inability of CAFS to produce this is, of course, an architectural limitation of
the current engine, which it is to be hoped will disappear like a bad dream
with the availability of the file correlation unit. For users accustomed to
conventional indexed retrieval systems, in which such a facility is obviously
and inevitably provided, this restriction was both bothersome and bewilder
ing. The software solution to the problem is simple enough, if not susceptible
of improvement by CAFS.

The other major perceived weakness of the system was also particularly
significant in the Bodleian catalogues, which contain large amounts of
material in Greek and Hebrew, as well as all the European languages, to say
nothing of various special symbols such as astrological signs, Latin abbrevi
ations etc. Because these features have all been encoded with a view to
reproducing them accurately rather than to searching for them, such simple
requirements as accent-blind retrieval are almost impossible to specify. In the
Bodleian files, angle brackets are used to distinguish words in non-Roman
alphabets « G and) enclose Greek words; <H and > Hebrew ones) and
accents or diacritics are represented by an escape sequence comprising an
underline character followed by a digit indicating the accent to be applied to
the preceding character. Thus the Greek word Xdyoa (word) might appear
with an accent as <Glo_lgos> or without as (G logos). An accent-blind
search thus needs to know the potential position of any accents in order to
replace each one with two ‘phantom’ characters. While workable, this is
clearly an impractical solution to the general problem, particularly where
words may have many accents. Again, this problem is partly caused by the
nature of the current CAFS engine, which cannot be instructed to ignore
arbitrary sequences within terms or to process escape sequences correctly.

ICL Technical Journal November 1985 477

Two software solutions exist, both of which depend on the flexibility offered
by the SIF record structure. The simpler of the two involves storing an
accent-free version of each accented word (either in the same file with a
different SIF identifier or in a separate search file) as well as the accented, or
display format, version of the word. The more complex solution is to recode
the text completely, in such a way that suitable masks can be constructed to
make searches accent-sensitive or blind as required.

The first solution is the more general, in that it could be extended to cater for
texts using a variety of complex mark-up codes; the separation o f ‘searchable
format’ from ‘display format’ also has many ancillary benefits beyond the
scope of this discussion. The second solution implies simpler preprocessing of
the text during conversion to SIF, but is less extensible. It would require that
different SIF identifers be used for words in different alphabets (which might
cause problems for texts containing chemical or mathematical formulae) and
that no alphabet contain more than 190 distinct characters. It would also
obviously complicate conversion of recovered records for display purposes,
which is already the most expensive part of the software.

6 Future plans

Our plans for the next year are first to continue development of our own text-
retrieval software, in the current absence of any alternative, probably
simplifying its user interface drastically by the provision of a screen-driven
front end. A major new project about to begin involves the conversion of a
large sample of ancient Greek texts (obtained from the Thesaurus Linguae
Graecae archive in California) into SIF format. It is probable that we will use
this database as a test bed for the accent-blind searching solution described
above.

Among the many developments currently under way in the field of library
automation at Oxford will be the provision of routines for converting
between the current SIF format and the portable MARC format required for
integration with other library catalogues. This opens the door to a number of
interesting possibilities such as the extraction of specialist bibliographies,
drawing on the resources of many university libraries for the primary data
and local CAFS power for subsequent analysis.

As regards the Bodleian pre-1920 catalogue, we now have sufficient con
fidence in the capabilities of CAFS to convert a much larger sample which
will be used as a test bed for the use of secondary indexing. Our current guess
at the size for the entire catalogue is somewhere between 200 and 250 Mbytes.
A straightforward CAFS-assisted free text search of files of this size might
take as much as 20 OCP seconds which, however impressive by comparison
with non-CAFS based systems, would probably still be too slow for an online
system. We are therefore planning to produce a CAFS-searchable secondary
index, keyed by author name and date, as a means of focusing such searches

478 ICL Technical Journal November 1985

to a smaller section of the file. One of the attractive features of CAFS-assisted
indexing techniques is that the resolution of the index can be quite coarse,
thus greatly reducing its maintenance overheads as well as its size12. The first
two characters of each slip number should delimit a search to a maximum of
9000 records - less than 10 Mbytes. Since these two characters are also the
most significant part of the primary key in the main file, defining the
restricted search should be simple, using the DCI ‘ANDTHEN’ facility.

7 Conclusions

There can be no doubt that CAFS provides an alternative to conventional
index-based text retrieval systems which is at once cheaper to implement and
more efficient in performance. It also offers facilities which would be
impossible to provide by other means in our environment. It is not however a
panacea: some essential text-processing functions cannot easily be performed
using CAFS. Nevertheless our users initial reactions have been on the whole
sufficiently impressed to justify further work on overcoming these problems.

References

1. HOCKEY, S.: ‘Computing in the arts at Oxford University’, in ‘T h e c o m p u te r in l i te r a r y
c r it ic ism : p r o c e e d in g s o f a c o n fe re n c e h e ld a t th e U n iv e r s ity o f V ic to r ia B .C ., J a n u a r y 1 9 8 4 ’,
University of Victoria, 1985, (in press).

2. BURNARD, L.: ‘Database or knowledgebase?’, in ‘T o w a rd s a c o m p u te r e th n o lo g y ’, Senri
Ethnological Studies, Osaka, 1985, (in press).

3. RABEN, J.: ‘The death of the handmade concordance’, S c h o la r ly P u b l., 1969,1,61-69. See
also HOWARD-HILL, T.H.: ‘L i t e r a r y C o n c o r d a n c e s ', 1979, Pergamon, New York, and
INGRAM, W.: ‘Concordances in the seventies’, in ‘C o m p u te r s a n d th e h u m a n itie s ’, 1974,8,
273-277.

4 Information on the TLF is available from the Institut National de la Langue Franijaise, CO
3310, 54014 Nancy Cedex, France. On the Old English Corpus, see FRANK, R. and
CAMERON, A. (eds.): ‘A p la n f o r th e d ic t io n a r y o f O ld E n g l is h ’, 1973, Toronto. The TLG
publishes an occasional N e w s le t te r , available from T. Brunner, State University of
California at Irvine, Irvine, CA 92714, USA.

5 HOWARD-HILL, T.H.: T he Oxford old spelling concordances’, S tu d ie s in B ib lio g ra p h y ,
1969, 22, 143-164.

6 Shakespeare and the Computer. A L L C Bull., 1980, 8, 72.
7 The Bodleian’s ‘C a ta lo g u in g ru le s ' were first defined by Nicholson in 1883, and sub

sequently revised by George Wheeler (1933, 1939).
8 JOLLIFFE, J.W.: ‘Retrospective conversion: the long haul’. C a ta lo g u e & I n d e x , 1985, (in

press).
9 The Libraries Board Automation project was announced in the U n iv e r s ity G a z e t te , in

Hilary Term, 1985.
10 HEATH, F.G. and WOYKA, J.G.: ‘Memex - an information engine’. I U C C B u ll., 1982,4,

116-119. See also NEATE, G.: ‘In te r im r e p o r t to th e B r i t is h L ib r a r y R & D D e p a r tm e n t o n
P r o je c t S I /G /6 2 7 , 1985, Bodleian Library, Oxford.

11 ‘D ir e c t C A F S in te r fa ce : p r o g ra m m in g g u id e ', 1985, ICL, Technical Publication R00421.
12 CARMICHAEL, J.W.S.: ‘Application of ICL’s CAFS to text storage and retrieval’, in

‘P r o te x t I: p r o c e e d in g s o f th e f i r s t in te r n a tio n a l c o n fe re n c e o n t e x t p r o c e s s in g s y s te m s ’,
- MILLER, J.J.H. (ed.), 1984, Boole Press, Dublin.

ICL Technical Journal November 1985 479

Appendix

Some sample Bodleian records

EN46: Catcott (Alexander Stopford). |
The court of love, a vision from Chaucer. |
Oxf., 1717, 8*0.1
SBliss B 153(2).#

AA11: 6 ABANO (Petrus de).|
See |
PETRUS de Abano.#

EO1011: Cawthorn (James). |
The poetical works of James Cawthorn. To which is

prefixed, the life of the author. (Complete ed. of the
poets of Gt. Brit., vol. 10). |

Edinb., 1974, cm.23.|
$2804 d. 37.#

EP696: 4Censor.|
The Censor [ed. by J.H. Friswell], Vol. 1, no. 20—25. |
Lond., 1868, cm.30.|
$Per. 3974 d. 476(5).#

EP804: 73Cento novelle.|
Le ciento nouelle antike [ed. by C. Gualteruzzi].|
Bologna, 1525, 4*o.|
SMason FF 462; |
-[Another ed., entitled] Libro di nouelle et di bel

parlar gentile., [3 copies]]
Fiorenza, 1572, 4*0]
SDouce MM 555; Mortara. 837; Toynbee 705]
-[Another ed.].,|
Firenze, 1724, 8 “ o]
SToynbee 727]
-[Another ed.]. con annotazioni di D.M.M. 2 tom.]
Firenze, 1778,82, 8*o.|
SToynbee 728]
-6a ed., |
Torino, 1802, cm.20.|
SToynbee 765]
-[Another ed.] con note dal dott. G. Ferrario., (Raccolta

di novelle dalF orig. della ling, ital., vol. 1)]
Milano, 1804, cm.20.|
$4 <GC> 233]
-[Another ed., entitled] Le cento novelle antiche., [3

copies]]

480 ICL Technical Journal November 1985

Milano, 1825, cm.21.|
SDouce G 221; Mortara 684; Toynbee 747.#

ER1056: 54Champion.|
The Champion, or, British Mercury [afterw.] The Champion,

or The Evening advertiser, by capt. Hercules Vinegar. |
-N o. 20-24, 26-38, 40-63.]
SHope fol. 106; |
-N o. 64-158.1
SHope fol. 10; |
-N o. 187.|
SSmith newsb. b. 2(5); |
-no. 196,409.1
SDon. c. 72;|
-N o. 509.|
SHope fol. 106; |
Lond., 1739542, fol. & 4'o.#

ER1071: Champion (Joseph) 1709—c.1765.|
An introduction to the counting house, or a collection of

the various forms of business, as used in the merchants,
or the tradesman’s counting-house, performed, in their
proper hands, by mess. Champion, Bland, & other emin.t
masters, engr. by J. Howard]

Lond., 1802, cm.l8<‘x’>27.|
SDon. d. 152.#

ET111: 2Chariton; of Aphrodisias]
Di Caritone Afrodisieo de’ racconti amorosi di Cherea e

di Callirroe libri otto, tr. [by M.A. Giacomelli]]
[Rome], 1752, 4"o]
SVet. F5 d. 31.#

ET1200: 22Charles I; king of Gt. Britain]
His majesties declaration; the reasons of his proceedings

... mentioned in severall letters, the proposals ... for
a settled peace. Dec.20. |

Lond., 1647, 4~o.|
SC 14.12(35) Line.#

EW37: Chavassius (Balthasar)]
Professio ver{ae} et orthodox{ae} fidei, additis

commentariis. |
Ingolstadii, 1613, 4'o.|
SC 3.8 Line.#

ICL Technical Journal November 1985 481

EX617: Chiari (Pietro). |
La filosofessa italiana, o sia Le avventure della

marchesa N.N. scritte da lei medesima. 3 tom. |
Ven„ 1753, 8*o.|
$Fic. 27424 f. 2-4.#

EY217: 3China; inspectorate gen. of customs. |
Special catalogue of the Chinese collection of exhibits

for the International fisheries exhibition, London,
1883.1

Shanghai, 1883, cm.27.|
$[Radcl.]./?

EZ1135: 3Christians.|
An inquiry into the miracle said to have been wrought in

the fifth century upon some orthodox Christians, in
confirmation of the doctrine of the Trinity, in a
letter. |

Lond., 1730, 8*o.|
$8*o U 170(5) Th.#

482 ICL Technical Journal November 1985

Secrets of the sky: the IRAS data at
Queen Mary College

D. Walker
School of Mathematical Sciences, Queen Mary College, University of London

Abstract

The Infra-red Astronomical Satellite (IRAS), launched from California in
January 1983, has made a very successful survey of the whole sky at four
infra-red wavelengths and added greatly to the world’s astronomical
knowledge. Processing the very large amount of data produced by the
mission was a major problem. The paper describes how the problem was
dealt with by astronomers at Queen Mary College, using the ICL
Querymaster software and the CAFS hardware search engine.

1 Introduction

The Infra-red Astronomical Satellite (IRAS) was launched on the 25th
January 1983 from Vandenberg Air Force Base in California. The main
objective of the IRAS project was to sensitively survey the whole sky at four
infra-red wavelengths, these being 12,25,60 and 100 pm. For the following 10
months IRAS functioned almost perfectly, and every day transmitted
approximately 10 million bits of data to the satellite ground station near
Chilton in Oxfordshire. This data was then relayed to the Jet Propulsion
Laboratory in California where it was processed to produce the final
products of the IRAS mission.

The IRAS mission is arguably the most successful astronomical project ever
undertaken, and over 95% of the sky was surveyed at a sensitivity almost 100
times that of previous ground-based measurements at the same wavelengths.
The primary product of the IRAS mission, the IRAS Point Source Catalogue,
contains approximately 250000 sources, over 70% of which have not
previously been catalogued. Before IRAS the total number of catalogued
astronomical sources was less than 500000, so IRAS has dramatically
increased this number, and once astronomers have analysed the IRAS data in
more detail our knowledge of the universe will be significantly increased.

Published originally in the Queen Mary College Computer Centre Newsletter; permission to
reproduce here is gratefully acknowledged. (Ed.)

ICL Technical Journal November 1985 483

Indeed, already several important discoveries have been made with IRAS
data. One example is the discovery of dust particles around the star Vega,
which may be the precursor of a planetary system. Closer to home, IRAS has
discovered bands of dust within the Solar System which are probably the
debris from collisions between asteroids. Far beyond the limits of our own
galaxy, IRAS has observed mysterious infra-red galaxies, the energy of which
may arise from bursts of star formation, or the accretion of matter onto a
black hole.

The success of the IRAS mission, however, has given rise to some problems -
primarily how can such a large volume of data be accessed most efficiently?
Two important IRAS mission products are the IRAS Point Source Catalogue
and the Zodiacal History File, which contain approximately 50 and
100 Mbytes of information, respectively. Typically, an astronomer is interes
ted in certain subsets of the data; for example, all the sources in the Point
Source Catalogue having certain properties, or lying in a certain region of the
sky. To search the Point Source Catalogue and extract a subset of sources
satisfying given selection criteria would take several thousands of seconds of
CPU time using a conventional Fortran program on a moderately powerful
computer. Most of this time is taken up doing I/O, and clearly this method of
access is not to be recommended. A conventional database-management
system would take several hundred seconds of CPU time to search the whole
of the IRAS Point Source Catalogue. This is somewhat more acceptable, but
is far from ideal since it precludes interactive work by all but the most patient
astronomers.

2 Data access

This searching problem is overcome by the CAFS facility at the Queen Mary
College Computer Centre (QMCCC), which allows very large files to be
interactively interrogated and searched at high speed. The CAFS unit may be
regarded as a filter, reading large amounts of data but only passing back to
the 2988 (and thence to the user) a subset of the data satisfying user-specified
criteria. The important distinction between a conventional database-
management system and one using CAFS is that the former selects data using
software, whereas CAFS selects data by means of hardware. It is this
difference which makes CAFS search times much less than those of
conventional database-management systems. Using CAFS, the entire IRAS
Point Source Catalogue can be searched in less than 20 s of CPU time, which
is substantially faster than software-driven database-management systems.
This corresponds to an elapsed time of between 1 and 2 min (assuming the
2988 system to be moderately heavily loaded), which is sufficiently short for
interactive work. It should be noted that the search time is just the time to
search through the file and extract the required data. Having extracted the
data we often then want to output it to another file for subsequent analysis.

484 ICL Technical Journal November 1985

Thus the total time to search a file, extract data, and output it equals the
search time, which depends mainly on the size of the file, and to a lesser extent
on the complexity of the selection criteria, plus the time to output the
extracted data, which is determined by the amount of data to be output. In
extracting and outputting subsets of the IRAS Point Source Catalogue it has
been found that the output time is greater than the search time if more than
about 0-25 Mbytes of data is output.

At present there are two methods of accessing IRAS data on the ICL 2988
computer at QMCCC using CAFS. The first of these is by using a query
language called Querymaster which allows the user to interrogate the IRAS
Point Source Catalogue interactively. The second method is by means of the
direct CAFS interface (DCI), which allows the user to drive the CAFS unit
directly from within any high-level language program. This makes it possible,
from within a Fortran program, to extract data from a file and then to
analyse that data within the same program.

Querymaster has been used by a number of astronomers at QMC, and other
parts of the University of London, to access the IRAS Point Source
Catalogue. In some cases an astronomer is interested in a particular region of
the sky. For example, Dr. Stella Harris-Law of the QMC Physics Depart
ment has been investigating a region of active star formation in our galaxy in
the constellation of Taurus. Querymaster has been used to extract from the
IRAS Point Source Catalogue all the sources in this region, and has then been
used further to divide these sources into subgroups having different physical
properties, thereby gaining insight into the range of processes occurring in
the star-forming region.

Querymaster has also been used to investigate the large-scale structure of the
universe. By carefully choosing the appropriate selection criteria, it has been
possible to extract from the IRAS Point Source Catalogue all those sources
which are galaxies. Analysis of the distribution of these galaxies in the sky
allows us to investigate the degree of homogeneity of the universe. Of
particular interest in this field has been the recent discovery by astronomers
at QMC and the Institute of Astronomy, Cambridge, of a dipole anisotropy
in the distribution of IRAS galaxies. The combined gravitational effect of
these galaxies is thought to give rise to the observed motion of our galaxy
relative to the microwave background radiation. This work would not have
been possible without CAFS.

When using Querymaster, the user must specify the criterion for a record to
be selected. In general, this consists of a number of subconditions linked by
ANDs and ORs. Each of these subconditions is a condition on a single field of
the data record, or on an arithmetical combination of them. For example, the
condition

FLUX-3 GE 200

would mean that only records for which the field named FLUX-3 is at least

ICL Technical Journal November 1985 485

200 would be extracted. In the context of the IRAS Point Source Catalogue
this condition extracts sources for which the flux density at 60 pm is greater
than or equal to 2 Janskys. The condition:

FLUX-3/100 GE 2

has exactly the same effect.

A somewhat different type of subcondition is

FLUX-4/FLUX-3 LT 1

This places a restriction on the value of the ratio of the two fields FLUX-4
and FLUX-3, and in the context of the IRAS Point Source Catalogue
requires the flux density at 100 pm to be less than that at 60 pm for the source
to be extracted.

Subsets of sources extracted using Querymaster may be listed to a VDU
screen, printed on a line printer or written to an output file on disc, and may
be sorted on any field. In some cases, however, we only want to know how
many sources satisfy a certain selection criterion and are not interested in the
details of each source. For example, we might want to know how many
galaxies lie in a certain region of the sky. Querymaster allows the user to
count the number of sources satisfying the selection criterion without listing
each one.

Querymaster is most suited to extracting moderately sized (about 1000
sources) subsets of the IRAS Point Source Database, since, as mentioned
earlier, the extraction and output of large subsets is limited by I/O time. The
direct CAFs interface, however, obviates the need to output subsets of
sources by allowing the user to extract the desired sources and process them
within the same user-written program. This allows specialised utility
programs to be written for processing subsets of the IRAS data.

3 Applications

One application of DCI has been to access the IRAS Zodiacal History File
(ZHF). This 100 Mbyte file gives the emission at each of the four IRAS
wavelengths averaged over j degree square pixels, and thus gives the
background emission due to extended structure on scales greater than about
1 degree of arc. The contents of the ZHF are currently being used at QMC to
look for isotropic background emission at 100 pm, which might possibly
have been caused by bursts of star formation in distant galaxies. A DCI
program has been written to draw contour plots of the ZHF background
emission for user-specified regions of the sky. This is useful in looking for
large-scale extended structures, such as shells of dust created by supernova
explosions.

486 ICL Technical Journal November 1985

G
A

LA
C

T
IC

LA

T
IT

U
D

E
Another application of DCI has been to produce plots of regions of the sky
showing the IRAS point sources in that region. The example sky plot of Fig. 1
shows the IRAS sources near the Galactic plane.

IRAS POINT
SOURCE CATALOGUE

FLUX LEGEND
■ < 0 . 3 JY

= 1 JY

* = 10 JY

* = 100 JY

> 1 000 JY

COLOUR LEGEND
B1 > B2

1110=X 11 1 1 =X
B1 < B2

1110=A 1 111=□
OTHER

0 1 1 0=X 0 1 1 1 = 0
1010=2 1011=2
0 0 1 0 = 3 0011=©
1100=-^ 1101 = A
0100=2 01 0 1 = +
1000=1 1 001 =C0
0000 = + 0 0 0 1 = 4

Fig. 1 Plot of IRAS sources near the galactic plane

ICL Technical Journal November 1985 487

The size of each symbol gives the maximum flux density over the four IRAS
wavelengths and the colour shows at which wavelength this maximum
occurs. Thus a source represented by a black (red, green, blue) symbol has a
maximum flux density at 12 pm (25,60, 100 pm). The type of symbol indicates
at which wavelengths the source was observed. Each symbol is related to a
four-digit code given by the legend on the left of the figure which should be
interpreted as follows. A T in they'th largest position from the left means that
the source was observed at the jth largest of the IRAS wavelengths. For
example, a source with code number 1100 was observed at 12 and 25 pm, but
not at 60 or 100 pm. Similarly, 0001 means that the source was only observed
at the longest IRAS wavelength of 100 pm.

Sky plots such as these are very useful for gaining a quick impression of the
number and type of IRAS point sources in a given region of sky, and are
much easier to look at and interpret than pages of line-printer output.

The data collected during the IRAS mission seems certain to have a major
effect on our knowledge of the universe around us. However, the full benefit of
the outstanding success of IRAS will only be reaped if the IRAS data can be
efficiently accessed and analysed. The use of CAFS at QMC has allowed
astronomers within the University of London to begin to unlock the secrets
contained within the IRAS data. Much of this work would have been
impossible without the use of CAFS, and it is expected that CAFS will
continue to play an important part in the analysis of the IRAS data.

488 ICL Technical Journal November 1985

CAFS file-correlation unit

E. Babb
ICL System Strategy Centre, Technical Directorate, Bracknell, Berkshire

Abstract

The paper describes special hardware designed for and built into the
original prototype Mk2 CAFS to assist the relational operations of join
and projection. This hardware, now called the file-correlation unit,
consisted of a cluster of bit maps which were addressed by data values
found in the records of a file. Assistance in relational operations was
provided because the bit maps were able to encode intermediate results,
such as part numbers, for communication between and within files.

The hardware was built by a team lead by the late R.W. Mitchell as part of
the CAFS project; subsequently a team lead by L.E. Crockford implemen
ted the complex software to drive the unit.

1 Introduction

When the original prototype of CAFS was designed and built in 1974, various
database applications were mounted on it with a view to determining its
performance and assessing its limitations. It was soon found that there were
two problems. First, it was difficult to communicate information from one
record to another, for example to obtain the parts made by suppliers X and Y
where X, Y were in separate records, maybe also in separate files. Secondly, it
was found that the CAFS count and total operations could give misleading
results: CAFS counted the number of suppliers in the database, but what the
user really wanted was the number of different suppliers.

Various solutions to these problems were proposed, including a very
complicated record structure; but the simplest solution appeared to be a bit
map store as described in this paper. By making it an integral part of CAFS it
could be driven directly by data coming off the disc heads. Such a store has
been given the name of file-correlation unit (FCU); it assists queries involving
many files by storing intermediate results, such as lists of part numbers, as a
bit pattern. Thus these part numbers can be transmitted from file A to file B,
and the order numbers transmitted from file B to file C. In another use it can
This paper is essentially an abridged version of a paper that appeared in the ACM Transactions
on Database Systems (TODS) in March 1979. Permission to use the original material is gratefully
acknowledged.

ICL Technical Journal November 1985 489

remove repetition in retrieved data by storing the first occurrence of. say. a
delivery date: subsequent occurrences are not retrieved because they arc now
detected in the FCU store.
A detailed account of the FCU, with information on performance and error
rates and a mathematical treatment of some of the processes involved, was
given by the present author in ACM Transactions on Database Systems.
March 1979 (later referred to as the TODS paper1). The remainder of the
present paper is essentially an abridgement of the TODS paper, with some
slight modifications. Details of how to perform join and projection oper
ations are given, followed by a description of the design and operation of the
single bit map FCU. Because this latter involves compiling a special index
into the file, to address the bit map directly, its use is limited to certain joins
and projections; therefore an enhancement, called the hashed bit map FCU,
addressed by data values in the file, was developed so as to assist arbitrary
joins and projections. This also is described here, but not the mathematical
details of the hashing process; for these and for the details of performance and
error rates the reader is referred to the TODS paper.

2 OAFS hardware

Other papers in this issue of the ICL Technical Journal deal with a variety of
aspects of the Content Addressable File Store, CAFS history, general
principles, performance, current hardware and applications. This paper is
concerned with particular features of the prototype. This used 60 Mbyte discs
with an instantaneous scanning rate of approximately 4 Mbytes/s, giving
typically about a 2 Mbytes/s rate visible to the user; and this search
performance was available to many tasks in parallel.
Fig. 1 is based on a diagram by Mitchell2 3 and gives the outline architecture
of the content addressable file store (CAFS). The selector (18) is used to set up
the key registers (3-5) with just the key value pairs taken from the selector
(18). The tuple (2) from a file on disc pack (1) enters each key register and sets
a latch if the value in a tuple is ‘greater than,’ ‘equal to’, or ‘less than’ the value
in the key register. For example, unit (5) has its ‘ > ’ latch set because 4p in the
tuple is greater than 3p in the key register. The outputs of the key registers
then go to latch comparators (6-8). These contain the selector condition
associated with the key registers on the left and originally derived from the
selector (18). As can be seen, only if the condition such as in (8) is obeyed will
the output line be set to 1. The outputs of the comparators (9-11) then go the
search evaluation unit (12) where they form part of a logical expression again
derived from the selector. If this expression is true then route (13) is set to 1
and the tuple (2) is considered to be a hit. The retrieval unit (14) then allows
the components (17) of a hit record to pass on the host computer. The search
evaluation unit (12) can handle nested Boolean expressions and threshold
functions. Moreover, the search hardware can support concurrent tasks on
the multiplexed output of up to 12 disc channels. This contrasts with the logic
per track designs of Parker4, RAP5, CASSM6 9 and RARES10, which
generally have only limited selection capability per scan but possibly greater
parallelism.

490 ICL Technical Journal November 1985

ICL Technical Journal N
ovem

ber 1985
491

(16) [get SUPPLIER, PRICE for (SUPPLIER =

0 7)

multiplexed from up to 12 tracks

Fig. 1 Basic CAFS architecture

TEX AS'OR PART = ' RESISTOR') 8, PRICE & 3p]
I

7
0 8)

c ompu ter

This paper considers two extended versions of the CAFS hardware. The first
uses single-bit directly addressed bit maps to hold intermediate results and
the second uses multiple bit maps and hashed addressing. The former method
of holding intermediate results in a single bit map bears a strong resemblance
to the CASSM system6 (3) and is similar to an earlier idea patented by the
author in 19741 *. A more detailed comparison with CASSM is given later in
the paper.

3 Relational operations using a single bit map

This section shows how a single bit map helps to perform relational joins and
projections; it may be addressed by using either the key itself or a compact
representation of the key.

3.1 Queries involving the join of relations

Performing a join is best explained by an example. Consider a query
involving the join of two relations SP and PC illustrated in Fig. 2, linked by
their shared ‘part’ field. Suppose a list of parts that could be supplied by
Mullard to ICL is required. One method of answering the query is to
physically join SP and PC via the part link to give the relation SPC
illustrated in Fig. 3, from which it is clear that only ‘transistor’ is supplied by
Mullard to ICL.

SP Supplier Part Price PC Part Customer

Texas transistor 9p - = = n________* transistor ICL
Mullard transistor 9p -» transistor GEC
Texas diode 4p diode Plessey
Ferranti diode 4p diode RRE
Erie resistor 3p resistor ICL

Fig. 2 Joining relations SP and PC’ on a common part

SPC Supplier Part Price Customer

l Texas transistor 9p ICL
2 Texas transistor 9p GEC
3 Mullard transistor 9p ICL
4 Mullard transistor 9p GEC
5 Texas diode 4p Plessey
6 Texas diode 4p RRE
7 Ferranti diode 4p Plessey
8 Ferranti diode 4p RRE
9 Erie resistor 3P ICL

Fig. 3 The join of relations SP and PC on a common part

492 ICL Technical Journal November 1985

To answer this query in the above manner on a large relation would be
possible and simple, but impractical because it involves a lengthy join of SP
and PC and then a selection: The usual technique is to perform this lengthy
join as late as possible, by performing selection on the two relations
separately and then joining the resulting subsets of PC and SP. To further
improve selection on a given file, references between relations (PART in this
case) are remembered from relation 1 and then used as part of the selector on
relation 2.

Lines (1)-(3) below are a procedure for performing a join followed by
selection using CAFS. This procedure corresponds to the earlier query: ‘Get
the list of parts that could be supplied by Mullard to ICL.’ Line (3) gives the
answer in list P.

(1) clear the bit map
(2) store in the bit map all the parts associated with the supplier Mullard in

the SP relation (the bit map now contains ‘transistor’).
(3) retrieve into a list P all the parts that have been stored in the bit map and

are supplied to customer ICL in the PC relation (list P now contains
‘transistor’).

Each line above is a CAFS command written in English. However, what is
not made clear is the physical form of the bit map, and it is necessary to
describe this before going into more detail about the procedure.

Consider the list of parts (transistor, diode, resistor). The object of the bit map
is to codify subsets of this list in a compact manner, which is done by
associating an index with each member of the list of parts. Thus transistor is
labelled 1, diode 2, etc., to give a list of part-index pairs [(transistor, 1) (diode,
2) (resistor, 3)]. Any subset of this original list can now be uniquely coded by a
three-element bit map with each bit position corresponding to a different part
as indicated by the part-index pairs; a bit set to 1 would indicate a part in the
subset. Thus the pattern (1, 0, 1) would codify indexes (1, 3) which label the
(transistor, resistor) sublist.

The bit map is addressed by indexes stored in the database as extra,
precompiled fields called ‘coupling indexes.’ Fig. 4 shows a new version of the
relations SP and PC in Fig. 2 with a coupling index IPART. Indexes are
assigned to different parts using the numbers 1, 2 and 3.

SP Supplier Part Price IpART PC ^ P A R T Part Customer

l Texas transistor 9p l I l transistor ICL
2 Mullard transistor 9p l 2 l transistor GEC
3 Texas diode 4p 2 3 2 diode Plessey
4 Ferranti diode 4p 2 4 2 diode RRE
5 Erie resistor 3p 3 5 3 resistor ICL

Fig. 4 Relations SP and PC with special coupling index lPART

ICL Technical Journal November 1985 493

CAFS contains one or more bit maps M l, M 2,... addressed by coupling
indexes. For each tuple in a relation the addressed element can cither be set to
1 or 0 or be tested for being 1 or 0. Thus for some tuple containing / = 3 the
following occurs:

- set M(/): = 1 (leaving M with (0, 0, 1) and adding a member to the coded
set)

- perform some action if M(/) = 1 (i.e. test membership in the coded set).

It is now appropriate to introduce the CAFS architecture with bit maps.

Fig. 5 can be used to describe essentially how this enhanced CAFS operates.
A query from the terminal (34) causes a task to be sent from the host
computer to all the various units shown. Unit (33) selects a disc drive (1) and
allocates channels. Tuples (2) are then sent to the key registers (3-8), bit
address filter (21), and retrieval unit (14). The bit address filter extracts the
index value / from a coupling index such as IPART. This address / is then
passed to the store where it can be used in either or both of the following two
ways:

- the contents of the address / can be read from the bit store (23) and sent
along route (25) for use by the search evaluation unit (12). Thus a test such
as M(/) = 1 can be included anywhere and any reasonable number of
times in the selector

- operation of the bit map (23) can be delayed until unit 12 has operated on
a complete tuple. If there is a hit in route (13) then a ‘1’ or ‘0’ is written into
address / in map (23).

Once a bit has been set in route (13) then the retrieval unit (14) allows
requested components of the tuple through to the host computer (32), and
then after suitable processing to the terminal (34). In general, there are a
number of bit maps (30) each independently addressed and each containing at
least 64 K bits of memory.

In contrast with CAFS, CASSM6 uses one physical bit map per track, so the
implementation of one virtual bit map, addressable by all tracks, requires the
address of a bit to be passed from one logic unit to another until it arrives at
the appropriate physical bit map. Each transfer requires a hardware
adder/subtractor to operate on this address. There are additional timing
problems which sometimes mean that more than one scan is needed to set or
test the virtual bit map. This probably means that the CASSM system could
not perform projection as described in Section 3.2. Although the process of
joining two files is not actually described in Reference 6, there seems no
reason to believe that CASSM would not, in fact, be able to perform this
function.

Returning to the original query, it is now possible to give an explicit
description of how the query: ‘Get the list of parts that could be supplied by

494 ICL Technical Journal November 1985

ICL Technical Journal N
ovem

ber 1985
4

9
5

data
- • ----------control

Fig. 5 CAFS architecture with single bit map

Milliard to ICL’ can be answered. As before, each line below is a distinct
CAFS command operating on the relations in Fig. 4.

(1) clear bit map M
(2) for each tuple (SUPPLIER, PART, PRICE, l PART) in relation SP, if

SUPPLIER = ‘MULLARD’ then set M(IPART): = 1
(3) for each tuple {IPARP, PART, CUSTOMER) in relation PC, if M(IPART)

= 1 and if CUSTOMER = ‘ICL’ then put PART into list P.

Line (1) clears M and hence causes it to represent an empty set of parts. Line
(2) stores the parts supplied by Mullard using IPART and sets the first bit of M
to 1. The final bit pattern in M is (1,0,0) and represents a ‘transistor.’ Line (3)
puts the actual part value into a list called P if element IPART of M is 1.
Clearly, from the PC relations Fig. 4, only tuples 1 and 2 make M(lPART) = 1.
But the customer must be only ICL and so only the value ‘transistor’ from
tuple 1 is actually retrieved.

The bit map enables the volume of data returned for final joining to be
minimised by storing coupling indexes from one relation to another in a
special code. The bit map can be used to follow coupling indexes through a
chain of relations just as one would with physical pointers. At a more
practical level only 64 K bits of storage are needed to store up to 64 K
possible parts or whatever the coupling indexes might be.

3.2 Queries involving the projection of a relation

As mentioned earlier, projection consists of removing some of the fields of a
relation and then removing any repetition in the remaining data. A projection
of Fig. 6 is shown in Fig. 7 where the supplier field of the SP relation of Fig. 6
has been removed to give P, the part-price relation.

Supplier Part Price

Texas transistor 9p
Mullard transistor 9p
Texas diode 4p
Ferranti diode 4p
Erie resistor 3p

Fig. 6 Relationship SP between suppliers and parts

Part Price

transistor 9p
diode 4p
resistor 3p

Fig. 7 Projection of SP to the PART and PRICE fields

496 ICL Technical Journal November 1985

The conventional method of projection can be slow and expensive and would
consist of fetching whole records into a host computer, picking out the
required fields, and then performing an interlist comparison or its conceptual
equivalent to remove repetitions.

The CAFS approach, using the bit map, consists of two steps: (The example
corresponds to the command: ‘Get parts and their prices.’)

(1) clear the bit map
(2) store each part and price in the bit map and in list P if and only if these

parts and prices have not already been stored in the bit map.

As before, each line is a CAFS command. The function of the bit map in line
(2) is to remember what has been placed in P already and not to retrieve it
again, by always checking the bit map.

The explicit CAFS store is a bit map. As one might expect, the part-price
pairs must be associated with a precompiled index I p a r t ,price illustrated in
Fig. 8. The two lines above become the following commands:

Supplier Part Price I P A R T ,P R I C E

Texas transistor 9p l
Mullard transistor 9p 1
Texas diode 4p 2
Ferranti diode 4p 2
Erie resistor 3p 3

Fig. 8 Relation SP with index to help projection

(1) clear bit map M
(2) for each tuple (SUPPLIER, PART, PRICE, I part,price) *n relation SP,

if M{lPArt, price) = 0 then:
(a) put (PART, PRICE) into list P
(b) set M(Ipart, price) = 1-

Observe tuple 1 in Fig. 8. Line (2) will put (transistor, 9p) into P and set M to
contain (1,0,0). Tuple 2 contains I PAr t ,price = 1* and since the test M(1) = 0
fails, the repetition of PART, PRICE is not put into P. Similar events occur
for all the other tuples to give a true set in P.

For simplicity, no selection operation has been included in this example. If a
selection operation had been used, then the relation would appear to contain
fewer tuples. Practical sized bit maps of 64 K bits allow one command to
correctly project to a new relation containing 64 K tuples.

ICL Technical Journal November 1985 497

In this section a method of addressing the bit maps using hashing techniques
is described. The advantages of this approach when compared with the
former methods are:

the key value can be outside the store limits and the compact represen-
taton is not needed
the key value can be formed from several arbitrary fields.

4.1 Architecture of the hashed bit map store

The hashed bit map store consists of one or more bit maps arranged as shown
in Fig. 9. No coupling indexes are required since the store is effectively
addressed by any concatenation of field values. Thus a tuple (2) containing
values (TEXAS, TRANSISTOR, 9p) is converted into the key K by the
address filter (21) to give, say, (TEXASTRANSISTOR) as a single bit string.
The key K is then hashed to addresses J 1, J2, J 3 by the hash coders (22). One
hashing function discussed by Knuth12 is division modulo h which generates
an address between 1 and h using (K mod b) + 1. Different hashings can be
obtained by sorting the bits b0, /?,,..., bn in K into a new order bh b b h to
give K \ and using division modulo b to give J r It is very important that each
hash coder (22) behaves quite differently so that J \ , J 2 and J 3 are statistically
independent. As with the single bit map, this store can be used in either or
both of the two ways listed below.

- the contents of addresses J 1, J 2, J 3 are each read using (23) and then
'Anded’ together by unit (24). If they all contain 1 then a 1 is passed along
route (25) to the search evaluation unit (12) for inclusion anywhere in a
selector. The effect of ‘Anding’ will be explained later in this description

- when a tuple has been evaluated by unit (12), a ‘1’ or ‘0’ is written into all
the stores at addresses JT, J 2, J 3 if route (13) contains a hit.

More formally, if h^K) is a hashing function then the store is read from or
written to as follows:

- to write K to the store:
Mlfh^K)): = 1, M2{h2(K)): = 1, M3(h3(K)): = 1

- to read K from the store:
M 1(//,(/0)= 1 & M2{h2(K)) = l & M3(h3(K)) = 1.

Consider just one map M l. Now hashing functions are many-to-one
mappings from K to h(K). This means that two keys K t and K t can share the
same address J 1 since J 1 = /i(K;) = h(Kj) for some i, /; such an occurrence is
known as a collision. Now this phenomenon can be used to explain how the
store can appear to contain spurious members. Suppose K t is stored in the
memory using M(fi(K,)): = 1. Now if M(h(Kj))= 1 is tested, and if /i(K;)
= h(Kj), then K, will appear to be in the memory. Thus if keys Sh = (K], K 2.

4 Relational operations using the hashed bit map store

498 ICL Technical Journal November 1985

ICL Technical Journal N
ovem

ber 1985
4

9
9

Fig. 9 CAFS architecture with hashed bit maps

K 3 ... K„) are written into a hashed bit map during one CAFS scan, then a
subsequent test scan over a wider set of keys Sr will find an output set Sk
= {Kt ... K h, K h+1 ... K k) where K h+1 etc. are the result of a collision with a
member of Sh. The crucial property of the hashed bit map is that Sk is a
superset o fS h.

The purpose of the ‘Anding’ unit (24) in Fig. 9 is to reduce the proportion of
spurious members. Suppose the set Sh is stored in two bit arrays M 1 and M2.
Now M l and M2, when tested with the set Sr(Sr ^ S h by definition), will
appear to contain the sets Skl and Sk2 of keys as shown in Fig. 10.

As mentioned earlier, hk(K) and h2(K) are statistically independent. Thus it is
very unlikely that spurious members in Skt and Sk2 will overlap. Thus a good
approximation to Sh will be Skir>Sk2, especially if 15,,1 <? |Sr|. This, therefore, is
the reason for ‘Anding’ in unit (24), since this checks that K is in both M 1 and
M2. More specifically,

M l(/i,(K))= 1 & M2(h2(K)) = 1

In general many stores may with advantage be ‘Anded’ together: details of the
resulting performance are considered in the TODS paper.1 Also there can be
many hashed bit map stores connected at (30) in Fig. 9.

Fig. 10 Intersection of sets of keys

500 ICL Technical Journal November 1985

4.2.1 Queries involving the join of relations: The method of using the hashed
bit arrays store to perform joins must allow for the possibility of spurious
keys appearing in the store. Consider the query to the join of SP and PC
given earlier where the following question was asked: ‘Which parts are
supplied by Mullard to ICL?’

The previous method had the following steps:

(1) clear store
(2) store the parts supplied by Mullard using relation SP
(3) fetch the parts that are in the store supplied only to ICL using relation

PC.

Line (2) stores the single part ‘transistor’. If there are no spurious keys in the
store then line (3) can exactly use this part and check that it is, in fact, supplied
to ICL. Suppose, however, the hashed bit map is used: this might contain
‘resistor’ as a spurious key, although only ‘transistor’ was stored, using line
(2). This spurious key is checked to see if it is supplied to ICL. Relation PC in
Fig. 2 shows that the spurious key ‘resistor’ is indeed supplied to ICL and so
line (3) will quite erroneously fetch ‘resistor’.

The solution to the problem of spurious keys is to use a modified procedure,
where sufficient information is retrieved during line (2) to prevent the errors
in the output of line (3). The new procedure is given below with an additional
line that removes spurious keys from the output by checking them against the
true set of parts given by line (2) below.

(1) clear store
(2) store in the hashed bit map and in list P' all the parts associated with

Mullard in the SP relation
(3) place all parts into a list P that have been stored in hashed bit form and

are supplied to customer ICL
(4) eliminate from list P those parts which are not in the list P'.

This example illustrates an important characteristic of the new joining
technique. To eliminate the uncertainties generated by the spurious members
in the hashed bit map, it is necessary, in line (2), to fetch back list P' from the
SP relation. Line (4) then uses list P' to remove spurious parts from the list P.

Consider the problem of what maximum percentage of spurious keys can be
allowed in the store. If keys are transmitted from one file to another then a
reasonable level might be 10%. However, if coupling indexes between a
succession of relations are stored sequentially, then the overall error should
be less than 10%. Suppose the error level in the store is 3%, then 100 keys
become 103 keys after they are recalled. If these 103 keys are stored again
then they become 103 x (1 + 3%) = 106.09 keys. This example shows that

4.2 Performing relational operations using the hashed bit map store

ICL Technical Journal November 1985 501

small errors are approximately additive. Thus, assuming the usual number of
relations to be joined is four (i.e. three links between them), then the store
should have an error of not more than 3% for an overall error rate of about
10%. In considering detailed performance in the TODS paper a maximum
error rate of 3% for the joining of relations was assumed for illustrative
purposes.

4.2.2 Queries involving the projection of a relation: The proposed method of
projection is the same as that used for the single bit map. It is, however, useful
to understand the difficulties encountered when trying to use the hashed bit
map for projection. A typical projection problem might be to remove the
repetition in the set of keys (u, a, b, b, c, c). The projection technique
remembers each value as it is retrieved and checks that the same value is not
retrieved again. The hashed bit map technique is the same but can lose
information as follows. Suppose the first element "a in the list has been
retrieved, and that although 'a' is placed in the hashed bit map, 'h' appears as
a spurious key. When subsequent members of (a, a, b, b, c, c) are checked the
system imagines that h is already in the hashed bit map, and so, in fact only (a,
c) is actually retrieved. The only way the technique can be made effective is to
make the chance of losing information in the hashed bit map extremely low.
In other words, the chance of spurious keys being present must be very low.

An undetected error every 30 years might be considered acceptable for disc
hardware. Bit maps can easily give a mean time between failures (i.e. lost keys)
as great as 1 000000 years. However, 3000 years is an acceptable figure and is
assumed in the TODS paper. The database user would then have his normal
mean time between failures decreased by approximately 1 %. However, if a
lower overall failure rate is needed, then a second check scan would be used. If
the user is still unhappy, then he must come to regard projection as only
approximate.

5 Discussion and conclusions

The aim of this paper was to show how relational operations could be
performed by a content-addressable file store (CAFS). CAFS has a special
store for intermediate results, which can either be addressed by coupling
indexes or by field values. The methods of using these stores to perform
relational operations have been considered, and various broad conclusions
about their applicability can be drawn.

The single bit map involves increasing the size of a file by adding special
coupling indexes. This slows down updates to a relation. However, queries
involving projection or join can be answered quickly.

The hashed bit map requires no special indexes and so there is no file size
increase. Update is therefore very straightforward. Sorting out ambiguities
leads to an overhead on queries involving a join, and so answering queries is
slower than when using the unhashed bit map. However, the hashed bit map
enables fast execution of special selectors using non-Boolean functions.

S02 ICL Technical Journal November 1985

The above characteristics suggest that the single bit map is most suitable for
frequent queries on joins or projections. The ability of the hashed bit map to
remember any key makes this ideal for the more unusual joins or projections,
where maximum speed is not essential.

R eferences

1 BABB, E.: ‘Implementing a relational database by means of specialised hardware’. A C M
T r a n s . D a ta b a s e S y s t . , 1979, 4 (1), 1-29.

2 COULOURIS. G.F., EVANS, J.M. and MITCHELL, R.W.: ‘Towards content addressing
in data bases’, C o m p u te r J „ 1972, 15 (2), 95-98.

3 MITCHELL, R.W.: ‘Content addressable file store’. Database Technology Conference,
Online Conferences Ltd., April 1976.

4 PARKER, J.L.: ‘A logic per track retrieval system’, In fo . P ro c . 71, North Holland, 1971,
146^150.

5 OZAKARAHAN, E.A., SCHUSTER, S.A. and SMITH, K.C.: ‘RAP - an associative
processor for data base management’, Proc. 1975 NCC, 44, AFIPS Press, Montvale, New
Jersey, USA, 379-387.

6 BUSH, J.A., LIPOVSKI, G.J., SU, S.Y.W., WATSON, J.K. and ACKERMAN, S.J.: Some
implementations of segment sequential functions’, Proc. 3rd Symp. Computer Architecture,
Clearwater, Florida, USA, Jan. 1976, 178-175, available from ACM, New York.

7 LIPOVSKI, G.J. and SU, S.Y.W.: ‘On non-numerical architecture’. C o m p u te r A r c h ite c tu r e
N e w s (A C M) , 1975, 4 (1), 14-29.

8 SU, S.Y.W., COPELAND, G.P. Jr. and LIPOVSKI, G.J.: ‘Retrieval operations and data
representations in a context-addressed disc system’, Proc. ACM SIGPLAN-SIG1R
Interface Meeting, S I G P L A N N o t ic e s (A C M) , 1975, 10(1), 144-153.

9 SU, S.Y.W. and LIPOVSKI, G.J.: ‘CASSM: a cellular system for very large data bases’,
Proc. Int. Conf. Very Large Databases, Framingham, Massachusetts, USA, Sept. 1975,
456-472.

10 LIN, C.S., SMITH, D.C.P. and SMITH, J.M.: ‘The design of a rotating associative memory
for relational database applications’, A C M T r a n s . D a ta b a s e S y s t . , 1976, 1 (1), 53-65.

11 BABB, E.: ‘Hashed bit arrays store’, UK Patent Application 27093/74, June 1974.
12 KNUTH, D.E.: ‘T h e art of computer p r o g ra m m in g , vo l. 3: s o r t in g a n d s e a rc h in g ', Addison-

Wesley, Reading, Massachusetts, 1973.

Bibliography

1 BAUM, R.I. and HSIAO, D.K.: ‘Database computers - a step towards data utilities’, IEEE
T r a n s ., 1976, C-25, 1254-1259.

2 CODD, E.F.: ‘A relational model of data for large shared data banks’. C o m m . A C M , 1970,
13 (6), 377-387.

3 DATE, C.J.: ‘An introduction to database systems’, 2nd edn., Addison-Wesley, Reading,
Massachusetts, USA, 1977.

4 LEICHLICH, H.O., KARLOWSKY, I. and ZEIDLER, H.C.: ‘Content addressing in
databases by special peripheral hardware (suchrechner)’, Workshop on Computer Archit
ecture, Erlangen, DDR, May 1975.

ICL Technical Journal November 1985 503

Patents relating to the
ICL content-addressable file store CAFS

The following information was provided by ICL Patents, Stevenage. As the
prefix GB indicates, all are British patents.

Channel multiplexing
M.W. Martin, R.W. Mitchell, D.R. Webb
Data read simultaneously from several tracks of a disc is
time multiplexed into a single data channel connected in
parallel to a number of time-shared comparison units.

GB 14 97 676

Multibit map
E. Babb
The amount of storage necessary to hold search results is
reduced by using two or more independently hash-
addressed bit maps.

GB 14 91 706

Key channel
R.W. Mitchell, D.R. Webb
Key channel has a ‘substitute search’ feature allowing two
fields in same record to be compared.

GB 14 97 677

Remembered hits
E. Babb
Data records are stored in a compressed form in which a
data item occurring in one record is omitted from
following records.

GB 14 92 260

Extended records
E. Babb
Any one of a number of different markers can be selected
to produce the ‘end of record' signal, so that the effective
boundaries of the records can be varied.

GB 14 97 678

Search evaluation unit
R.W. Mitchell, D.R. Webb
A small array processor analyses the results of the search
comparison units.

GB 14 97 679

Pilot format
M.W. Martin
Data records are arranged sequentially from track to

GB 14 97 680

504 ICL Technical Journal November 1985

track on a disc, rather than along each track, to reduce
the amount of buffer storage in the data channel.

Error feedback GB 15 64 563
E. Babb
An improvement on the ‘multibit map’ case, in which a
further store is used to reduce the number of spurious
record selections which arise from the compressed
storage of the search results.

ICL Technical Journal November 1985 505

Notes on the authors

E. Babb CAFS file-correlation unit

Ed Babb obtained qualifications in Electrical Engineering and Computer
Science from Imperial College. He then researched adaptive pattern-
recognition systems at Cambridge University on secondment from Hawker
Siddeley Dynamics. From about 1971, working in ICL, he researched speech
recognition and information retrieval. His work on CAFS covered storage
structures, architectures and query languages. He is now studying the
application of mathematical logic to business systems and is currently
the manager of the logic language project in the Systems Strategy Centre,
Technical Directorate, Bracknell.

L. Burnard CAFS and text: the view from academia

Lou Burnard graduated from Balliol College, Oxford, in 1968 with first class
honours in English and took an M.Phil. in 19th Century English studies three
years later. He lectured in English at the University of Malawi for two years.
He first encountered a computer when he joined Oxford University Comput
ing Service in 1973, initially as an operator. Since 1976 he has worked in the
area of database design and support, specialising in humanities applications,
on which he has published several articles. He has been an active member of
the BCS Database Administration Working Group (DBAWG) and of various
ICL user groups, the most recent being the CAFS Working Party. Current
projects include new CAFS-based text-searching software and implement
ation of a large museums database system.

J.W.S. Carmichael History of the ICL content-addressable file store
(CAFS)

Hamish Carmichael has worked for ‘ICL’ since 1958, when he joined Powers-
Samas after reading classics at Oxford. After experience of software and
applications programming on a wide variety of early machines he helped in
the formation of what is now Group Information Systems. For many years he
was concerned with the design of ICL’s in-house databases and with the
applying of the company’s hardware and software products to meet its own
information requirements, and acquired a long-term interest in the principles

506 ICL Technical Journal November 1985

and practice of data management. Since 1980 he has concentrated on the
development, exploitation and marketing of CAFS.

C.E.H. Corbin Creating an end-user CAFS service

Christopher Corbin BA(OU) has, after a four-year period as a Marine Radio
Officer with Marconi Marine, a broad experience in the computer industry in
both hardware and software, having worked on production, commissioning
and support. Since 1975 he has worked for the Southern Water Authority
where he has been the Technical Support Manager since 1977.

G.McC. Haworth The CAFS system today and tomorrow

Guy Haworth took a BA (Hons.) degree in Mathematics at Oxford and the
Diploma in Computer Science at Cambridge. He then carried out research in
the Cambridge Control Engineering Laboratory on the logical correctness
and operational performance of computer systems. In 1972 he joined
Ferranti’s computer division, conducting research and development on
computer architectures and real-time systems. He joined ICL in 1974 and,
with a 1981-82 intermission at Cullinane (UK) has worked for the most part
on application development tools in a consultant and marketing capacity. He
is now Marketing Manager in ICL’s Management Support Business Centre
with special responsibilities for CAFS exploitation.

A.T.F. Hutt History of the CAFS relational software

After taking his first degree at University College, Durham, Dr. Hutt joined
ICL in 1966 when he was seconded to Edinburgh University to work on the
Edinburgh Multi-Access System (EMAS). In 1970 he started work on data-
management software for the 2900 series and helped in the design of the
VME/B catalogue, file store and record-access facilities. In 1973 he was
seconded to Southampton University to w'ork on the Relational Database
Management System (RDMS) for which he was awarded a doctorate. Later,
in ICL, he led a team which exploited Querymaster, the Personal Data
System, CAFS-ISP and the Relational CAFS interface. Dr. Hutt is currently
managing ICL’s strategy for Man-Machine Interface.

M.H. Kay Textmaster — a document-retrieval system using CAFS-ISP

Michael Kay gained a Ph.D. from Cambridge for research on database
management systems. After time with Sperry Univac he joined ICL in 1977 to
work on IDMS, the Codasyl database system for the 2900 series. He led the
IDMS design team in Bracknell between 1980 and 1982 and then moved to
Reading to work on text retrieval and CAFS.

ICL Technical Journal November 1985 507

N. Macphail Development of the CAFS-ISP controller product for
Series 29 and 39 systems

Neil Macphail is a Chartered Engineer and is a corporate member of both the
Institute of Electronic & Radio Engineers and the British Institute of
Management. He began working for ICL in 1964 and has since contributed
to the development of K.DF8, System 4, 7502 Terminal Systems, ME29 and
2900 and 3900 series, mainly in input/output development. Since 1980 he has
managed the hardware development of CAFS with its associated microcode.

R.M. Tagg CAFS-ISP: issues for the application designer

Roger Tagg is an independent consultant working in the areas of database
applications and end-user interfaces to data. After graduating from Cam
bridge in Mathematics he worked for the National Coal Board on oper
ational research and subsequently in the Board’s headquarters computer
services (now Compower). He was for 12 years a consultant with Scicon,
specialising in simulation, commercial data processing, databases and
lecturing/training. He has been independent since 1980 and has worked for a
variety of industrial and government clients, including ICL users. He was
formerly a representative on the Codasyl Data Description Language
Committee and also on its UK (British Computer Society) associate group,
the Database Administration Working Group (DBAWG). He was the
founder and is the chairman of the BCS End-user Systems Group (formerly
the Query Language Group).

D. Walker Secrets of the sky: the IRAS data at Queen Mary College

David Walker studied mathematics as an undergraduate at Jesus College,
Cambridge. After graduating in 1976 he was awarded an M.Sc. in Astro
physics at Queen Mary College, University of London, where he later went
on to gain a Ph.D. in physics. In 1982 he began working on the Infra-Red
Astronomical Satellite (IRAS) project and has spent several months at
NASA's Jet Propulsion Laboratory in California, designing data reduction
and analysis systems and assessing the performance of the satellite. He is now
a postdoctoral research assistant in the Theoretical Astronomical Unit at
QMC, where he is engaged in the scientific interpretation of the IRAS data.

P.R. Wiles Using secondary indexes for large CAFS databases

Peter Wiles has a B.Sc. and M.Sc. in Computer Science from Manchester
University. He joined ICL in 1971 and worked at Kidsgrove on the
development of VME, eventually joining Ostech as a strategist. He moved to
Marketing in 1977 and joined the EEC Project in Luxembourg, where he was

508 ICL Technical Journal November 1985

responsible for the production of software tools to assist the conversion of the
Commission’s workload from IBM 370 to ICL 2900 systems. He moved to
the Inland Revenue project in 1981. He is now the Product Exploitation
Manager for this project, and among his responsibilities is encouragement of
the use of CAFS by the Inland Revenue.

ICL Technical Journal November 1985 509

iCLTecHmcfli
JOURnflL

P a g e s c o n ta in e d in e a c h is s u e

(1) 1 -1 1 6 (3)2 2 1 -3 4 8
(2) 1 1 7 -2 2 0 (4)3 4 9 -5 2 0

Subject index
Volume 4

A Architecture
VME n o d a l a r c h i te c tu r e : a m o d e l fo r th e
r e a l is a t io n of a d is t r ib u te d s y s te m c o n c e p t

W a rb o y s , B .C. 1985 (3) 2 3 6 -2 4 7
Array processing/processor
s e e DAP
Astronomy
S e c r e ts of th e sky : th e IRAS d a t a a t Q u e e n M ary
C o lle g e

W alk e r, D. 1985 (4) 4 8 3 -4 8 8
Atlas 10
T h e A tla s 10 c o m p u te r

F a u lk n e r , T.L. a n d P a v e lin , C .J . 1984 (1) 1 3 -3 2

c CAFS
C A FS a n d tex t: th e v ie w fro m a c a d e m ia

B u rn a rd , L. 1985 (4) 4 6 8 -4 8 2
C A FS-ISP: i s s u e s fo r th e a p p l ic a tio n d e s ig n e r

T a g g , R.M . 1985 (4) 4 0 2 -4 1 8
C re a t in g a n e n d - u s e r C A FS s e rv ic e

C o rb in , C .E .H . 1985 (4) 4 4 1 -4 5 4
D e v e lo p m e n t of th e C A F S-IS P c o n tro l le r p ro d u c t
fo r S e r ie s 29 a n d 39 s y s te m s

M a c p h a il, N. 1985 (4) 393-401

ICL Technical Journal November 1985 511

1985 (4) 3 5 8 -3 6 4
H is to ry of th e C A FS re la t io n a l s o f tw a re

H utt, A .T.F.
H is to ry of th e ICL c o n te n t - a d d r e s s a b l e file s to r e
(CA FS)

C a rm ic h a e l , J .W .S .
S e c r e t s of th e sky : th e IRAS d a t a a t Q u e e n M ary
C o lle g e

W a lk e r, D.
T e x tm a s te r - a d o c u m e n t- r e t r ie v a l s y s te m u s in g
C A F S-IS P

K ay, M.H.
C A FS f i le -c o r re la t io n u n it

B a b b , E.
T h e C A FS s y s te m to d a y a n d to m o rro w

H aw o rth , G .M cC .
U sing s e c o n d a r y in d e x e s fo r la rg e C A FS
d a t a b a s e s

W iles , P .R .
Chip design
D e v e lo p m e n t of 8 0 0 0 -g a te C M O S g a te a r r a y s fo r
th e ICL L ev e l 30 s y s te m

S u e h iro , Y., M a ts u m u ra , N., S u g iu ra , Y.,
Y a m a m o to , M. a n d H o sh ik a w a , R.

T ra c k in g of LSI c h ip s a n d p r in te d c irc u it b o a r d s
u s in g th e ICL D is tr ib u te d A rra y P r o c e s s o r

H unt, D .J.
CMOS
D e v e lo p m e n t of 8 0 0 0 -g a te C M O S g a te a r r a y s fo r
th e L eve l 30 s y s te m

S u e h iro , Y., M a ts u m u ra , N., S u g iu ra , Y.,
Y a m a m o to , M. a n d H o sh ik a w a , R.

Communications
M o d e llin g a m u l t ip r o c e s s o r d e s ig n e d fo r
te le c o m m u n ic a t io n s y s t e m s c o n tro l

T h o m p so n , R.H.
Cryptography
U s e r fu n c tio n s fo r th e g e n e r a t io n a n d
d is tr ib u t io n of e n c ip h e rm e n t k e y s

J o n e s , R.W.

D DAP
S o lu tio n of th e g lo b a l e l e m e n t e q u a t io n s o n th e
ICL DAP

M cK erre ll, A. a n d D e lv e s , L.M.
S o rtin g o n DAP

F la n d e rs , P.M . a n d R e d d a w a y , S .F .
T ra c k in g of LSI c h ip s a n d p r in te d c irc u it b o a r d s
u s in g th e ICL D is tr ib u te d A rra y P r o c e s s o r

1985 (4) 3 5 2 -3 5 7

1985 (4) 4 8 3 -4 8 8

1985 (4) 4 5 5 -4 6 7

1985 (4) 4 8 9 -5 0 3

1985 (4) 3 6 5 -3 9 2

1985 (4) 4 1 9 -4 4 0

1985 (3) 2 8 9 -3 0 0

1984 (2) 1 3 1 -1 3 8

1985 (3) 2 8 9 -3 0 0

1984 (2) 1 19 -130

1984 (2) 146 -1 5 8

1984 (1) 5 0 -5 8

1984 (2) 139 -1 4 5

512 ICL Technical Journal November 1985

1984 (2) 13 1 -1 3 8H unt, D .J.
Database
H isto ry of th e C A FS re la t io n a l s o f tw a re

H utt, A .T.F.
U sing s e c o n d a r y in d e x e s fo r la rg e C A FS
d a t a b a s e s

W iles , P.R .
Data Dictionary
T o w a rd s a fo rm a l s p e c if ic a tio n of th e ICL D a ta
D ic tio n a ry

S u frin , B.
Design automation
D e s ig n a u to m a t io n to o ls u s e d in th e
d e v e lo p m e n t of th e ICL S e r ie s 39 L eve l 30
s y s te m

H e w so n , M. a n d Hu, H.C.

Encipherment
U s e r fu n c tio n s fo r th e g e n e r a t io n a n d
d is tr ib u t io n of e n c ip h e r m e n t k e y s

J o n e s , R.W.

Failure (software)
A n a ly s is of s o f tw a re f a i lu re d a t a (1): a d a p ta t io n
of th e L ittlew o o d s to c h a s t ic re lia b ili ty g ro w th
m o d e l fo r c o a r s e d a ta

M ello r, P.
Finite elem ent
S o lu tio n of th e g lo b a l e l e m e n t e q u a t io n s o n th e
ICL DAP

M cK e rre ll, A. a n d D e lv e s , L.M.

G Gate arrays
D e v e lo p m e n t of 8 0 0 0 -g a te C M O S g a t e a r r a y s fo r
th e ICL L ev e l 30 s y s te m

S u e h iro , Y., M a ts u m u ra , N., S u g iu ra , Y.,
Y a m a m o to , M. a n d H o sh ik a w a , R.

Global elem ent
s e e F in ite e l e m e n t

H History
H isto ry of th e C A FS re la t io n a l s o f tw a re

1985 (4) 3 5 8 -3 6 4

1985 (4) 4 1 9 -4 4 0

1984 (2) 1 95 -217

1985 (3) 3 0 7 -3 1 8

1984 (2) 1 4 6 -1 5 8

1984 (2) 1 5 9 -1 9 4

1984 (1) 5 0 -5 8

1985 (3) 2 8 9 -3 0 0

ICL Technical Journal November 1985 513

1985 (4) 3 5 8 -3 6 4Hutt, A .T.F.
H isto ry of th e ICL c o n te n t - a d d r e s s a b l e file s to r e
(CAFS)

C a rm ic h a e l , J .W .S .
M u se u m a n d a r c h iv e fo r th e h is to ry of th e
c o m p u te r

ICL
T h e ICL U n iv e rs ity R e s e a r c h C ounc il

H all, P.D.
T o w a rd s a fo rm a l sp e c if ic a tio n of th e ICL D a ta
D ic tio n a ry

S u frin , B.
s e e a l s o CA FS
s e e a l s o S e r ie s 39
Indexing
In p u t/o u tp u t c o n tro l le r a n d lo c a l a r e a n e tw o rk s
of th e ICL S e r ie s 39 L ev e l 30 s y s te m

B ro u g h to n , P.
U sing s e c o n d a r y in d e x e s fo r la rg e C A FS
d a t a b a s e s

W iles , P .R .

Languages
T h e ICL U n iv e rs ity R e s e a r c h C o u n c il

H all, P.D .

Manufacture
D e s ig n a n d m a n u fa c tu re of th e c a b in e t fo r th e
ICL S e r i e s 39 L e v e 1 30 s y s te m

M artin , S .H .
M a n u fa c tu r in g th e L ev e l 30 s y s te m I M ercu ry :
a n a d v a n c e d p ro d u c tio n lin e

S h o re , R.K.
M a n u fa c tu r in g th e L ev e l 30 s y s te m II M erlin : a n
a d v a n c e d p r in te d c irc u it b o a rd m a n u fa c tu r in g
s y s te m

S h u b ro o k , M.
M a n u fa c tu r in g th e L ev e l 30 s y s te m III T h e t e s t
s y s te m

R o llin s , B. a n d C u lle n , J .G .
Modelling
A n a ly s is of s o f tw a re f a i lu re d a t a (1): a d a p ta t io n

1985 (4) 3 5 2 -3 5 7

1984 (2) 220

1984 (1) 4 -1 2

1984 (2) 195 -2 1 7

1985 (3) 2 6 0 -2 6 9

1985 (4) 419—440

1985 (1) 4 -1 2

1985 (3) 3 1 9 -3 2 4

1985 (3) 3 2 5 -3 2 9

1985 (3) 3 3 0 -3 3 8

1985 (3) 3 3 9 -3 4 2

ICL Technical Journal November 1985

of th e L ittlew o o d s to c h a s t ic re lia b ili ty g ro w th
m o d e l fo r c o a r s e d a ta

M ello r, P.
M o d e llin g a m u l t ip r o c e s s o r d e s ig n e d fo r
te le c o m m u n ic a t io n s y s t e m s c o n tro l

T h o m p s o n , R.H.
Q u a lity m o d e l o f s y s te m d e s ig n a n d in te g ra tio n

F a u lk n e r , T.L. a n d S m a ll , M.
S o f tw a re c o s t m o d e ls

K itc h e n h a m , B.A. a n d T ay lo r, N.R.

r Patents
P a te n t a p p l ic a t io n s a r is in g o u t o f th e L ev e l 30
p ro je c t
P a te n ts r e la t in g to th e ICL c o n te n t - a d d r e s s a b l e
file s to r e C A FS
Peripheral system s
T h e h ig h - s p e e d p e r ip h e ra l c o n t ro l le r fo r th e
S e r i e s 39 s y s te m

M a d d iso n , J.A .

Q Quality
Q u ality m o d e l o f s y s te m d e s ig n a n d in te g ra tio n

F a u lk n e r , T.L. a n d S m a ll , M.

R Relational database
H isto ry of th e C A FS r e la t io n a l s o f tw a re

Hutt, A .T.F.

Security
U s e r fu n c tio n s fo r th e g e n e r a t io n a n d
d is tr ib u t io n of e n c ip h e rm e n t k e y s

J o n e s , R.W.
Series 39
D e s ig n a n d m a n u fa c tu re of th e c a b in e t fo r th e
ICL S e r ie s 39 L ev e l 30 s y s te m

M artin , S.H .
D e s ig n a u to m a t io n to o ls u s e d in th e
d e v e lo p m e n t of th e ICL S e r i e s 39 L ev e l 30
s y s te m

H e w so n , M. a n d Hu, H.C.
D e v e lo p m e n t of 8 0 0 0 -g a te C M O S g a te a r r a y s fo r
th e ICL L eve l 30 s y s te m

S u e h iro , Y., M a ts u m u ra , N., S u g iu ra , Y.,

1984 (2) 1 5 9 -1 9 4

1984 (2) 1 1 9 -1 3 0

1984 (1) 5 9 -7 2

1984 (1) 7 3 -1 0 2

1985 (3) 3 4 3 -3 4 4

1985 (4) 5 0 4 -5 0 5

1985 (3) 2 7 9 -2 8 8

1 9 8 4 (1) 5 9 -7 2

1985 (4) 3 5 8 -3 6 4

1984 (2) 1 4 6 -1 5 8

1985 (3) 3 1 9 -3 2 4

1985 (3) 3 0 7 -3 1 8

ICL Technical Journal November 1985 515

Y a m a m o to , M. a n d H o sh ik a w a , R.
D e v e lo p m e n t ro u te fo r th e C8K 8 0 0 0 -g a te C M O S
a r r a y

M e tca lfe , R .J . a n d T h o m a s , R.E.
F o re w o rd

D a c e , D .J.
In p u t/o u tp u t c o n t ro l le r a n d lo c a l a r e a n e tw o rk s
of th e ICL S e r i e s 39 L ev e l 30 s y s te m

B ro u g h to n , P.
M a n u fa c tu r in g th e L ev e l 30 s y s te m I M erc u ry :
a n a d v a n c e d p ro d u c tio n lin e

S h o re , R.K.
M a n u fa c tu r in g th e L ev e l 30 s y s te m II M erlin : a n
a d v a n c e d p r in te d c irc u it b o a rd m a n u fa c tu r in g
s y s te m

S h u b ro o k , M.
M a n u fa c tu r in g th e L ev e l 30 s y s te m III T h e t e s t
s y s te m

R o llin s , B. a n d C u llen , J .G .
O v e rv ie w of th e ICL S e r ie s 39 L ev e l 30 s y s te m

S k e lto n , C .J .
P ro c e s s in g n o d e of th e ICL S e r ie s 39 L ev e l 30
s y s te m

A sh cro ft, D.W.
T h e h ig h - s p e e d p e r ip h e ra l c o n tro l le r fo r th e
S e r ie s 39 s y s te m

M a d d iso n , J.A .
T h e s to r e of th e ICL S e r ie s 39 L eve l 30 s y s te m

B ro u g h to n , P.
VME n o d a l a r c h i te c tu r e : a m o d e l fo r th e
r e a l is a t io n of a d is t r ib u te d s y s te m c o n c e p t

W a rb o y s , B.C.
Sizing
C A FS-ISP: i s s u e s fo r th e a p p l ic a t io n d e s ig n e r

T a g g , R.M.
Software
A n a ly s is of s o f tw a re f a i lu re d a t a (1): a d a p ta t io n
of th e L ittlew o o d s to c h a s t ic re lia b ili ty g ro w th
m o d e l fo r c o a r s e d a ta

M ello r, P.
P ro g ra m h is to ry r e c o rd s : a s y s te m of s o f tw a re
d a ta c o l le c tio n a n d a n a ly s i s

K itc h e n h a m , B.A.
S o f tw a re c o s t m o d e ls

K itc h e n h a m , B.A. a n d T ay lo r, N .R.
Sorting
S o rtin g o n DAP

F la n d e rs , P.M . a n d R e d d a w a y , S .F .

1985 (3) 3 0 1 -3 0 6

1985 (3) 223

1985 (3) 2 6 0 -2 6 9

1985 (3) 3 2 5 -3 2 9

1985 (3) 3 3 0 -3 3 8

1985 (3) 3 3 9 -3 4 2

1985 (3) 2 2 5 -2 3 5

1985 (3) 2 4 8 -2 5 9

1985 (3) 2 7 9 -2 8 8

1985 (3) 2 7 0 -2 7 8

1985 (3) 2 3 6 -2 4 7

1985 (4) 4 0 2 -4 1 8

1985 (3) 2 8 9 -3 0 0

1984 (2) 1 5 9 -1 9 4

1984 (1) 1 0 3 -1 1 4

1984 (1) 7 3 -1 0 2

1984 (2) 1 3 9 -1 4 5

516 ICL Technical Journal November 1985

Specification
T o w a rd s a fo rm a l s p e c if ic a tio n of th e ICL D a ta
D ic tio n a ry

S u frin , B.
T o w a rd s b e t te r s p e c if ic a t io n s

T u rn e r , K.J.
Store system s
T h e s to r e of th e ICL S e r ie s 39 L eve l 30 s y s te m

B ro u g h to n , P.

Telecommunications
M o d e llin g a m u l t ip r o c e s s o r d e s ig n e d fo r
te le c o m m u n ic a t io n s y s te m s c o n tro l

T h o m p s o n , R.H.
Text processing
C A FS a n d tex t: th e v iew fro m a c a d e m ia

B u rn a rd , L.
T e x tm a s te r - a d o c u m e n t- r e tr ie v a l s y s te m u s in g
C A F S-IS P

K ay, M.H.

1984 (2) 195 -2 1 7

1984 (1) 3 3 -4 9

1985 (3) 2 7 0 -2 7 8

1984 (2) 119 -1 3 0

1985 (4) 4 6 8 -4 8 2

1985 (4) 4 5 5 -4 6 7

ICL Technical Journal November 1985 517

Author index
Volume 4

A A SH C R O FT, D.W.: P ro c e s s in g n o d e of th e ICL
S e r i e s 39 L ev e l 30 s y s te m

B BA BB, E.: C A FS f i le -c o r re la t io n un it
BRO UG H TON , P .: In p u t/o u tp u t c o n t ro l le r a n d

lo c a l a r e a n e tw o rk s of th e ICL S e r ie s 39
L ev e l 30 s y s te m

BRO U G H TO N , P .: T h e s to r e of th e ICL
S e r i e s 39 L ev e l 30 s y s te m

BURNARD, L.: C A FS a n d tex t: th e v ie w fro m
a c a d e m ia

C CARM ICHAEL, J.W .S .: H is to ry of th e ICL
c o n te n t - a d d r e s s a b l e file s to r e (CA FS)

CO RBIN, C .E .H .: C re a t in g a n e n d - u s e r C A FS
s e rv ic e

CULLEN, J .G .: s e e ROLLINS a n d CULLEN (1985)

D DACE, D .J.: F o re w o rd
DELVES, L.M .: s e e M cK ER RELL a n d DELVES

(1984)

F FAULKNER, T.L. a n d PAVELIN, C .J .: T h e A tla s
10 c o m p u te r

FAULKNER, T.L. a n d SM ALL, M.: Q u a lity m o d e l
of s y s te m d e s ig n a n d in te g ra tio n

FLA N D ERS, P .M . a n d REDDAWAY, S .F .: S o rtin g
o n DAP

H HALL, P .D .: T h e ICL U n iv e rs ity R e s e a r c h
C o u n c il

1985 (3) 2 4 8 -2 5 9

1985 (4) 4 8 9 -5 0 3

1985 (3) 2 6 0 -2 6 9

1985 (3) 2 7 0 -2 7 8

1985 (4) 4 6 8 -4 8 2

1985 (4) 3 5 2 -3 5 7

1985 (4) 4 4 1 -4 5 4

1985 (3) 223

1984 (1) 1 3 -3 2

1984 (1) 5 9 -7 2

1984 (2) 139 -1 4 5

1984 (1) 4 -1 2

518 ICL Technical Journal November 1985

HAW ORTH, G .M cC .: T h e C A FS s y s te m to d a y
a n d to m o rro w

HEW SON , M. a n d HU, H .C.: D e s ig n a u to m a t io n
to o ls u s e d in th e d e v e lo p m e n t of th e ICL
S e r ie s 39 L eve l 30 s y s te m

HOSHIKAW A, R.: s e e SU EH IR O etal. (1985)
HU, H .C.: s e e HEW SON a n d HU (1985)
HUNT, D .J.: T ra c k in g of LSI c h ip s a n d p r in te d

c irc u it b o a r d s u s in g th e ICL D is tr ib u te d
A rra y P r o c e s s o r

HUTT, A .T .F.: H is to ry of th e C A FS r e la tio n a l
s o f tw a re

J JO N E S , R.W .: U s e r fu n c tio n s fo r th e g e n e r a t io n
a n d d is tr ib u t io n of e n c ip h e rm e n t k ey s

K KAY, M.H.: T e x tm a s te r - a d o c u m e n t- r e tr ie v a l
s y s te m u s in g C A FS-ISP

KITCHENHAM, B.A.: P ro g ra m h is to ry r e c o rd s :
a s y s te m of s o f tw a re d a ta c o l le c tio n a n d
a n a ly s i s

KITCHENHAM , B.A. a n d TAYLOR, N.R.:
S o f tw a re c o s t m o d e ls

M M ACPHAIL, N.: D e v e lo p m e n t of th e C A F S-IS P
c o n t ro l le r p r o d u c t fo r S e r i e s 29 a n d 39
s y s te m s

M ADDISON, J .A .: T h e h ig h - s p e e d p e r ip h e ra l
c o n t ro l le r fo r th e S e r i e s 39 s y s te m

MARTIN, S .H .: D e s ig n a n d m a n u fa c tu re of th e
c a b in e t fo r th e ICL S e r i e s 39 L ev e l 30 s y s te m

M ATSUM URA, N.: s e e SU EH IR O etal. (1985)
M cK ER RELL, A. a n d DELVES, L.M .: S o lu tio n of

th e g lo b a l e l e m e n t e q u a t io n s o n th e ICL DAP
M ELLOR, P .: A n a ly s is of s o f tw a r e f a i lu re d a t a

(1) a d a p ta t io n of th e L ittlew o o d s to c h a s t ic
re lia b ili ty g ro w th m o d e l fo r c o a r s e d a ta

M ETCALFE, R .J . a n d TH O M A S, R .E .:
D e v e lo p m e n t ro u te fo r th e C8K 8 0 0 0 -g a te
C M O S a r r a y

P PAVELIN, C .J .: s e e FAULKNER a n d PAVELIN
(1984)

1985 (4) 3 6 5 -3 9 2

1985 (3) 3 0 7 -3 1 8

1984 (2) 1 3 1 -1 3 8

1985 (4) 3 5 8 -3 6 4

1984 (2) 1 4 6 -1 5 8

1985 (4) 4 5 5 -4 6 7

1984 (1) 1 0 3 -1 1 4

1984 (1) 7 3 -1 0 2

1985 (4) 393 -401

1985 (3) 2 7 9 -2 8 8

1985 (3) 3 1 9 -3 2 4

1985 (1) 5 0 -5 8

1984 (2) 1 5 9 -1 9 4

1985 (3) 3 0 1 -3 0 6

ICL Technical Journal November 1985 519

R REDDAWAY, S .F .: s e e FLA N D ERS a n d
REDDAWAY (1984)

ROLLINS, B. a n d CULLEN, J .G .: M a n u fa c tu r in g
th e L eve l 30 s y s te m III T h e t e s t s y s te m 1985 (3) 3 3 9 -3 4 2

s SH O R E , R.K.: M a n u fa c tu r in g th e L eve l 30
s y s te m I M ercu ry : a n a d v a n c e d p ro d u c tio n
line

SH U B R O O K , M.: M a n u fa c tu r in g th e L eve l 30
s y s te m II M erlin : a n a d v a n c e d p r in te d c irc u it
b o a rd m a n u fa c tu r in g s y s te m

SKEl^TON, C .J .: O v e rv ie w of th e ICL S e r ie s 39
L eve l 30 s y s te m

SM ALL, M.: s e e FAULKNER a n d SM ALL (1984)
SU EH IRO , Y., M ATSUM URA, N., SUGIURA, Y.,

YAM AM OTO, M. a n d HOSHIKAW A, R.:
D e v e lo p m e n t of 8 0 0 0 -g a te C M O S g a te a r r a y s
fo r th e ICL L eve l 30 s y s te m

SUFRIN , B.: T o w a rd s a fo rm a l s p e c if ic a tio n of
th e ICL D a ta D ic tio n a ry

SUGIURA, Y.: s e e SU EH IRO etal. (1985)

1985 (3) 3 2 5 -3 2 9

1985 (3) 3 3 0 -3 3 8

1985 (3) 2 2 5 -2 3 5

1985 (3) 2 8 9 -3 0 0

1984 (1) 195 -2 1 7

T TAGG, R.M .: C A FS-ISP : i s s u e s fo r th e
a p p l ic a tio n d e s ig n e r 1985 (4) 4 0 2 -4 1 8

TAYLOR, N.R.: s e e KITCHENHAM a n d TAYLOR
(1984)

TH OM AS, R .E .: s e e M ETCALFE a n d TH OM AS
(1985)

T H O M PSO N , R.H .: M o d e llin g a m u lt ip r o c e s s o r
d e s ig n e d fo r te le c o m m u n ic a t io n s y s te m s
c o n tro l 1 9 8 4 (2)1 1 9 - 1 3 0

TU RN ER, K .J.: T o w a rd s b e t te r s p e c if ic a t io n s 1984 (1) 3 3 -4 9

y N W ALKER, D.: S e c r e t s of th e sky : th e IRAS d a ta
a t Q u e e n M ary C o l le g e 1985 (4) 4 8 3 -4 8 8

W A RBO Y S, B .C .: VME n o d a l a r c h i te c tu r e : a
m o d e l fo r th e r e a l is a t io n of a d is t r ib u te d
s y s te m c o n c e p t 1985 (3) 2 3 6 -2 4 7

W ILES, P .R .: U sin g s e c o n d a r y in d e x e s fo r la rg e
C A FS d a t a b a s e s 1985 (4) 4 1 9 -4 4 0

Y YAM AM OTO, M.: s e e SU EH IR O etal. (1985)

520 ICL Technical Journal November 1985

