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Abstract
In numerical weather prediction (NWP), observations and models are quantita-
tively compared for the purposes of data assimilation and forecast verification.
The spatial and temporal scales represented by the observation and model may
differ and this results in a scale mismatch error which may be biased and corre-
lated. The aim of this paper is to investigate the structure of representation error
in convection-permitting NWP models for four meteorological variables: tem-
perature, specific humidity, zonal and meridional wind. We use high-resolution
data from the experimental Met Office London Model (approximately 300 m
grid-length) to simulate perfect observations and lower-resolution model data.
The scale mismatch error and its bias, variance and correlation are calculated
from the perfect observation and low-resolution model equivalents. Our new
results show that the scale mismatch bias is significant in the boundary layer
for temperature and specific humidity, whereas the variance is significant in
the boundary layer for all analysed variables. Contrary to previous studies using
low-resolution (km-scale) data, horizontal correlations are shown to be insignif-
icant. However, all variables exhibit considerable vertical representation error
correlation throughout the boundary layer. Our results suggest that signifi-
cant biases and vertical correlations exist that should be accounted for to give
maximum observation impact in data assimilation and for fairness in model
verification and validation.

K E Y W O R D S

convection-permitting data assimilation, observation uncertainty, representation error

1 INTRODUCTION

For numerical weather prediction (NWP), a wide variety
of instruments are used to observe the Earth’s atmosphere,
each capturing different variables at different spatial

scales. When the observations are compared with model
data for the purposes of data assimilation or fore-
cast verification, there is, inevitably, a difference in the
spatio-temporal scales represented by the model and the
observations. The difference in spatio-temporal scales
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results in a scale mismatch error, also known as the error
due to unresolved scales (Daley, 1993; Hodyss and Satter-
field, 2017; Janjić et al., 2018). These errors may be biased
and correlated; hence, to obtain the best result from the
data assimilation or verification process, the uncertainty
of the error due to unresolved scales must be accounted
for (Stewart et al., 2008; 2013; Schutgens et al., 2016; Ben
Bouallegue et al., 2020).

In data assimilation, the treatment of the error due
to unresolved scales depends on how the scale mismatch
arises. For cases when the observation footprint is larger
than the model resolution, for example, geostationary
satellite data with an instantaneous field of view several
kilometres wide assimilated into a convection-permitting
(km-scale) NWP model (Janjić et al., 2018), the error can
be mitigated by appropriately filtering the model fields.
For cases when the observation footprint is smaller than
the model resolution, for example when high-resolution
weather radar data are assimilated (Simonin et al., 2019),
the assimilation system must account for the uncer-
tainty in the scales unresolved by the model. This uncer-
tainty in the unresolved scales can be accounted for by
using adapted data assimilation methods such as the
Schmidt–Kalman filter (Schmidt, 1966; Janjić and Cohn,
2006), but the most common approach is to use stan-
dard data assimilation methods, accounting for the uncer-
tainty due to unresolved scales by including it in the
observation-error covariance matrix (Lorenc, 1981). Here
the error due to unresolved scales contributes, along with
pre-processing and observation operator error, to the error
of representation (Janjić et al., 2018).

Many recent studies have estimated the entire
observation-error covariance matrix and then hypothe-
sised about the contribution of the error due to unresolved
scales (e.g., Stewart et al., 2014; Waller et al., 2016b; 2016a;
2019; Bormann et al., 2016; Wang et al., 2018). However,
it is possible to estimate uncertainty in the unresolved
scales in isolation from the instrument error and other
sources of observation error (Fielding and Stiller, 2019).
Previous studies have used high-resolution observations
(e.g., Oke and Sakov, 2008) or high-resolution model data
(e.g., Daley, 1993; Waller et al., 2014; Liu and Rabier,
2002; Satterfield et al., 2017) to approximate the error
due to unresolved scales. However, these methods rely
on unrealistic assumptions about periodicity, or require
an ensemble of forecasts or very-high-resolution observa-
tional data. Schutgens et al. (2016) proposed an alternative
method that uses high-resolution model data to simulate
perfect observations and perfect model data from which a
scale mismatch error can be calculated.

Recently, in NWP there has been limited research
into estimating the scale mismatch error that arises for
specific observations or atmospheric variables. The work

of Waller et al. (2014) showed for mesoscale NWP (12 km
grid-length) that the scale mismatch errors for temper-
ature and specific humidity are spatially correlated and
state-dependent; furthermore, the errors are larger (in a
relative sense) for humidity than for temperature. The
fields of oceanography and atmospheric chemistry have
also investigated the significance of representation error
(e.g., Oke and Sakov, 2008; Boersma et al., 2016; Karspeck,
2016; Schutgens et al., 2017) and as with NWP it is shown
that the errors are state-dependent.

Scale mismatch is not only a problem for data assimila-
tion, but also for model validation where models are eval-
uated against observational datasets, or products derived
from them. In the verification context, the representation
error is often referred to as spatial sampling error. It is
particularly problematic for global climate models where
relatively low-resolution models are often compared with
historical point observations. In this context, for a vari-
ety of geophysical variables, it has been found that spatial
sampling error is often significant and larger then mea-
surement error and should be not be ignored in the veri-
fication process (Schutgens et al., 2016). Furthermore, the
work of Bock and Parracho (2019) showed that, for inte-
grated water vapour data from GPS, representation errors
can be strongly enhanced by specific topographic and cli-
matological features (e.g., steep topography).

The aim of this paper is to carry out a novel inves-
tigation of the structure of representation error in a
convection-permitting NWP model. We will follow the
method of Schutgens et al. (2016) from which the error
due to unresolved scales can be calculated and hence the
scale mismatch bias and uncertainty estimated. A detailed
description of this methodology is given in Section 2.
We will apply this methodology to data from the Met
Office’s ∼ 300 m grid-length London Model, described in
Section 3, to provide an estimate of scale mismatch uncer-
tainty present in a model with a grid-length of approxi-
mately 1.5 km (equivalent to the Met Office’s operational
convection-permitting UK variable resolution model). We
consider the scale mismatch error for four variables; tem-
perature, specific humidity, zonal and meridional wind.
We note that, despite its high resolution, the London
Model is still not able to resolve all scales and processes and
hence our estimates should be treated as a lower bound
to representation error for high-resolution observations.
Our results are presented in Section 4. We show that the
representation error bias and variance for all variables is
most significant in the lowest model levels. We also show
that the error variance for all variables is uncorrelated in
the horizontal; however, significant correlation (defined as
absolute value of correlation greater than 0.2) exists in rep-
resentation error at different model levels. We conclude in
Section 5 that, for convection-permitting data assimilation,
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the scale mismatch error will be an important contributor
to the observation error in the boundary layer.

2 ERRORS OF REPRESENTATION

In this section we define representation errors and the
methodology we will use in this manuscript to estimate
them.

2.1 Definition

In data assimilation, a scale mismatch error arises when
the observations contain information on different spatial
scales compared to the model they are assimilated into.
The difference between the observation, y ∈ R

Np , and its
model equivalent, ym = H

(
xb), where xb ∈ RNm is the

background state and H ∶ RNm → R
Np is the linear obser-

vation operator, is known as the innovation,

do
b = y − H

(
xb)

. (1)

We note that in this study we only use a linear observa-
tion operator, and hence use this in the definition of repre-
sentation error; however a full derivation of representation
error using a nonlinear operator can be found in Janjić
et al. (2018). The innovation may also be expressed in terms
of the error-free observation, ytruth, the true state at the
model resolution, xtruth and the errors in the background
and observation,

do
b = ytruth + 𝜖

i − H(xtruth + 𝜖
b), (2)

≃ 𝜖
i + 𝜖

r − H𝜖
b
, (3)

where 𝜖
b ∈ RNm is the background error and 𝜖

i ∈ R
Np is

the instrument, or measurement, error associated with the
observation.

The difference between the error-free observation and
the true state at the model resolution mapped in to obser-
vation space results in the error of representation,

𝜖
r = ytruth − H(xtruth). (4)

As defined mathematically in Janjić et al. (2018), this
representation error consists of three different errors: the
quality control or pre-processing error which arises when
there are imperfections in the selection or processing of
observations; the observation operator error which arises
when an approximate mapping between model and obser-
vation space is used; and the error due to unresolved scales
and processes which arises when the observations and

model contain information at different scales. The repre-
sentation error is most commonly accounted for in the
data assimilation process by including the representation
error covariance, F ∈ R

Np×Np , along with the instrument
error covariance, E ∈ R

Np×Np , in the total observation error
covariance matrix R=E+F.

In this manuscript, we investigate the error due to
unresolved scales and processes and calculate the asso-
ciated representation error covariance, F. Therefore, to
ensure that the representation error in Equation (4) con-
sists only of the error due to unresolved scales, we ensure
that we have no quality control or processing uncer-
tainty and no approximation except for interpolation in the
observation operator.

2.2 Estimation

We use the methodology proposed in Schutgens et al.
(2016) to calculate the difference between high-resolution
observations and low-resolution model observation equiv-
alents. We refer the reader to Schutgens et al. (2016) for a
full description of the method; we present a brief overview
in this section.

A high-resolution gridded model field is used to
generate both the high-resolution observations and
low-resolution model observation equivalents. The 3D
high-resolution model grid-points are given coordinates
(i, j, k) such that (i, j) are the horizontal coordinates
i= 1, … , ni and j= 1, … , nj with vertical coordinates
k= 1, … , nk. The (true) value of the model field, x, at time
t and location (i, j, k) is denoted xtruth

ijkt . Thus we define a
perfect error-free direct observation at point (i, j, k) as

ytruth
ijkt = xtruth

ijkt . (5)

The low-resolution model field at the same location,
xm

ij𝓀t, is defined by taking a weighted average over a (2Δi +
1) × (2Δj + 1) × (2Δk + 1) region of the high-resolution
field,

xm
ij𝓀t =

Δi∑
a=−Δi

Δj∑
b=−Δj

Δk∑
c=−Δk

wijkxtruth
i+a,j+b,k+c,t , (6)

where Δi, Δj and Δk are the longitudinal, latitudinal and
vertical half-sizes of a low-resolution grid box in the coor-
dinate indices and wijk is a normalized weighting function.
We note that in many models the vertical level height,
htruth

ijk , has some dependence on the underlying terrain,
with this dependence decreasing with increasing model
level number. Because the low-resolution model fields are
obtained by averaging across model levels, it is reasonable
to assume that the value of the low-resolution model field
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variable is valid at the averaged model level height,

hm
ij𝓀 =

Δi∑
a=−Δi

Δj∑
b=−Δj

Δk∑
c=−Δk

wijkhtruth
i+a,j+b,k+c,t . (7)

Since the height of the high- and low-resolution fields
may differ, we use k to denote high-resolution model levels
and 𝓀 for the low-resolution model levels.

To calculate the representation error, it is necessary
to calculate the observation model equivalent ym

ijkt. The
model equivalent of the observation is calculated by lin-
early interpolating the low-resolution model data from the
two nearest model levels to the observation height,

ym
ijkt = xm

ij𝓀′t + Δh(xm
ij𝓀′′t − xm

ij𝓀′t). (8)

Here xm
ij𝓀′t is the nearest model level below the observa-

tion, xm
ij𝓀′′t is the nearest model level above the observation

and

Δh =
htruth

ijk − hm
ij𝓀′

hm
ij𝓀′′ − hm

ij𝓀′

.

As the observation and model equivalent are defined to
represent the same variable at the same location, the rep-
resentation error consists only of a scale mismatch error
and may be calculated by

𝜖
r
ijkt = ytruth

ijkt − ym
ijkt. (9)

Using samples of these representation errors calculated
at different times, we are able to calculate, and exam-
ine the spatial variability of, the representation error bias,
variance and correlation.

3 MODEL DATA

In this section we describe the Met Office London Model
used to generate data for this study. We then describe the
specific data and methodology used in our experiments.

3.1 The Met Office London Model

The London Model is the Met Office very-high-resolution
limited-area research model for which the domain cov-
ers London, UK, and the surrounding areas (Boutle et al.,
2016 gives a comprehensive description of the model, on
a previous smaller domain). The model is run with a hori-
zontal grid-length of approximately 300 m with 70 vertical
levels between the surface and model top at 40 km. Initial
conditions are provided by the Met Office UKV (1.5 km

F I G U R E 1 High-resolution orography for the London model
domain used for this study. Axes show the grid point number where
grid points have a grid spacing of approximately 300 m

variable resolution model) as are the lateral boundary
conditions which are updated every 15 min. The model
is run routinely and used to produce T+36 hr forecasts
at 0600 and 2100 UTC. One of the major differences
between the London Model and UKV is the improved
resolution of orography and land use data (including the
vegetation fractions, urban morphology, land/sea mask
and aerosol emissions). The increased resolution of the
underlying orography, shown in Figure 1, allows the hills
and valleys in the domain to be much better resolved
than in lower-resolution models. According to Lean et al.
(2019), who carried out experiments with a suite of
high-resolution research models over London in compari-
son with high-resolution observations, model grid-lengths
of order 100 m may be sufficient for predicting many bulk
and statistical properties of convective boundary layers.

3.2 Case-study data and methodology

To estimate representation error for the UKV model we use
data from all 600 T+6 hr forecasts (i.e., forecasts valid at
0300 and 1200 UTC) from the London Model between 6
March 2018 and 31 December 2018. The weather for this
period is described by Kendon et al. (2019).

In this work we consider the scale mismatch uncer-
tainty for four variables: air temperature, specific humid-
ity, meridional and zonal wind. Using the method given in
Section 2.2 we estimate the representation error for obser-
vations on the order of a 1.5 km grid. We assume that we
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are able to directly observe variables at the position of the
model grid. Hence, the observations are taken to be every
fifth grid point from the high-resolution grid. We note that
it is possible to generate indirect observations and their
model equivalents, but this has potential to introduce addi-
tional sources of error. In this study we consider only direct
observations as we focus solely on estimating the scale
mismatch error.

We derive our low-resolution model fields using
Equation (6) with Δi = Δj = 2 and Δk = 0, with equal
weight given to each point, that is wijk = 1/25. (We note
that, in the calculation of the low-resolution model fields,
we do not average across vertical levels because, at present,
the London model and the UKV use the same vertical
levels.) This horizontal reduction in resolution results in
a Ni ×Nj = 80× 72 low-resolution lat–lon grid that has
a spacing approximately equal to the UKV model. Data
within 3 km of the high-resolution model lateral bound-
aries are neglected from the calculation to ensure that our
estimates are not affected by boundary condition spin-up.
To ensure our observation and model equivalent are at con-
sistent heights, we calculate the observation model equiv-
alent by interpolating the model data from the two nearest
model levels to the observation height using Equation (8).
We note that in the lowest levels it is not always possible to
interpolate between levels as the observation height may
be lower than the lowest model level. In operational data
assimilation, it is common that the observation value is
adjusted to be representative of the model surface height.
However, here we will neglect the data from the lowest two
levels to endure that all our model equivalents have been
calculated in a consistent manner.

Using the high-resolution observation and
low-resolution model data, we are able to calculate the

representation error (using Equation (9)) for all available
data in our case-study period. We also use Equation (9) to
provide an ‘orography representation error’, 𝜖o

ij, that is, the
difference between the high-resolution and low-resolution
orography fields, for each grid point. We note that we
calculate the representation error at each observation loca-
tion, and therefore have a 3D estimate of representation
error, 𝜖r

ijkt, for each of the Nt = 600 T+6 hr forecasts pro-
duced by the London model during the case-study period.
Averaging the estimated scale mismatch errors over the
period of the case-study provides climatological statistics
appropriate for a 1.5 km model. We estimate the repre-
sentation error bias and standard deviation for all of the
observation locations on our 3D grid. These results will
be used to evaluate the spatial distribution of representa-
tion error. In particular we will consider the horizontal
distribution of estimated bias and variance fields for three
representative model levels. The levels selected are as
follows: level 5 (approximately 133 m, in the boundary
layer), level 20 (approximately 1,605 m, around the region
of the boundary-layer top), and level 40 (approximately
5,872 m, in the mid-troposphere). To further assess the
results, we also consider the mean and absolute maximum
representation error bias and standard deviation for each
model level. The equations for the metrics we calculate
are given in Table 1. We also consider how representation
error is correlated in the zonal, meridional and vertical
directions.

It is known that the representation error uncer-
tainty is state- and time-dependent, with the error being
larger during convective events and for variables that
have smaller-scale features, for example, humidity (Waller
et al., 2014). Hence, we note that, by calculating the
scale-mismatch error statistics over the case-study period,

T A B L E 1 Equations for
representation error (RE) bias and
standard deviation, mean and
absolute maximum representation
error bias and standard deviation and
Pearson correlation coefficient

Metric at model level k Equation

RE bias 𝜇
r
ijk = 1

Nt

∑Nt
t=1 𝜖

r
ijkt

RE standard deviation 𝜎
r
ijk =

√
1

Nt−1

∑Nt
t=1

(
𝜖

r
ijkt − 𝜇

r
ijk

)2

Mean RE bias 𝜇
r
k = 1

NiNj

∑Ni
i=1

∑Nj

j=1 𝜇
r
ijk

Mean RE standard deviation 𝜎
r
k = 1

NiNj

∑Ni
i=1

∑Nj

j=1 𝜎
r
ijk

Absolute maximum RE bias 𝜇
r
kmax

= maxij|𝜇r
ijk|

Maximum RE standard deviation 𝜎
r
kmax

= maxij𝜎
r
ijk

Pearson correlation coefficient rk =
∑Ni

i=1
∑Nj

j=1

(
𝜇

r
ijk−𝜇

r
k

) (
𝜖

o
ij−

1
Ni Nj

∑Ni
i=1

∑Nj
i=1 𝜖

o
ij

)
√∑Ni

i=1
∑Nj

j=1

(
𝜇

r
ijk−𝜇

r
k

)2
√∑Ni

i=1
∑Nj

j=1

(
𝜖

o
ij−

1
Ni Nj

∑Ni
i=1

∑Nj
j=1 𝜖

o
ij

) 2

Note: The Pearson coefficient equation describes the correlation between estimated representation error mean
and orography representation error; the correlation coefficient between estimated representation error standard
deviation and absolute value of orography representation error is calculated using the same equation with 𝜇

r
ijk

and its associated mean replaced with |𝜎r
ijk| and its associated mean.



6 WALLER et al.

T A B L E 2 WMO OSCAR goal
observation uncertainty requirements for
high-resolution NWP

Observed variable Goal uncertainty

Temperature 0.5 K

Specific humidity 2% of variable value

Wind speed 1 m⋅s−1

T A B L E 3 WMO OSCAR goal observation
uncertainty for specific humidity calculated for the
dataset used in this study

Average specific
humidity

Desired
uncertaintyModel

level (kg⋅kg−1) (kg⋅kg−1)

5 0.006824 0.00013648

20 0.004736 0.00009742

40 0.0009 0.000018

we may overestimate or underestimate the uncertainty for
specific weather events. However, our results provide an
initial climatological estimate of representation error, for
the four chosen variables, which could be included in a
data assimilation scheme, or used to guide the interpreta-
tion of verification results.

To assess the relative importance of the represen-
tation error variances that we find, we compare our
results against the WMO OSCAR observation uncer-
tainty requirements for high-resolution NWP (WMO., ).
The WMO provides three different levels of uncertainty
requirement: threshold (minimum requirement for data
to be useful), breakthrough (data will provide significant
but not optimal benefit) and goal (ideal requirement above
which further improvements are not necessary). Here we
use the goal uncertainty. For the four variables considered
in this study, the WMO OSCAR goal observation uncer-
tainty requirements are detailed in Table 2. For specific
humidity, the desired error is given as a percentage of the
variable value. We therefore calculate the average specific
humidity at each of our model levels of interest (levels 5, 20
and 40) and calculate the desired uncertainty. This infor-
mation is included in Table 3. We remind the reader that
the representation error forms part of the total observation
error and therefore values of representation error lower
than those given in Table 2 do not necessarily imply that
the representation error is negligible.

4 RESULTS

In this section we present our estimated representation
error statistics for air temperature, specific humidity, zonal
and meridional wind. In Section 4.1 we present the spatial

distribution of the scale-mismatch error bias and variance.
We present the vertical and horizontal correlations in
Sections 4.2 and 4.3 respectively.

4.1 Spatial distribution
of representation error bias and variance

We begin this section by giving a basic description of all
the figures presented in this section. In subsequent para-
graphs we give a more detailed discussion of the results,
where we find it instructive to discuss the figures in
tandem. We first consider the horizontal estimated bias
and variance fields for the three model levels discussed
in Section 3. Other model levels within the appropriate
atmospheric layers exhibit qualitatively similar behaviour
to the results shown. The results for temperature, spe-
cific humidity, zonal and meridional wind are plotted in
Figures 2–5 respectively. We note that, for each variable
and each model level, the colour scale of the plots varies;
this is to allow the spatial distributions to be evaluated.
Due to the model staggered grid, the winds are plotted at
slightly different heights from the temperature and specific
humidity. Results from a stratospheric model level will also
be discussed, but results are not plotted. We also consider
if there is a relationship between the estimated repre-
sentation error bias or standard deviation and the ‘orog-
raphy representation error’ (the difference between the
high-resolution orography and its low-resolution equiva-
lent). For temperature, the Pearson correlation coefficient
between the representation error mean (standard devi-
ation) and the orography representation error (absolute
value) for each model level are plotted in Figure 6. The
absolute maximum and mean values for bias and stan-
dard deviation at all model levels for temperature, spe-
cific humidity, zonal and meridional winds are plotted in
Figure 7.

Figures 2a, 3a, 4a and 5a show that the bias in the
boundary layer is considerable in some locations with
the magnitude of the bias 0.14 K, 0.00004 kg⋅kg−1 and
0.14 m⋅s−1 for temperature, specific humidity and wind
respectively. (This is comparable to approximately 28, 29
and 14% of the WMO goal uncertainty requirements.) It
is also notable that the underlying orography structure
(shown in Figure 1) is visible in the representation error
bias for all variables, particularly temperature and specific
humidity. The bias has a larger magnitude over areas with
higher surface elevation. Figure 6 quantifies the correla-
tion between the representation error bias and difference
between the high- and low-resolution orography for tem-
perature. Despite the visible structure of the orography
in the representation error bias (Figure 2), there is no
substantial correlation between the orography difference
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F I G U R E 2 Spatial distribution of (a, b, c) representation error bias and (d, e, f) standard deviation for temperature (K) at model levels
(a, d) 5 (≈133 m), (b, e) 20 (≈1, 605 m) and (c, f) 40 (≈5, 872 m)

and temperature bias; this is also the case for the other
variables (not shown).

We now consider the behaviour of representation
error bias with height. By comparing panels (a, b, c) of
Figures 2–5, we see that for all variables the bias decreases
with height; for example, the magnitude of bias for temper-
ature reduces from 0.14 K (28% of the WMO uncertainty
requirements) in the boundary layer (Figure 2a) to 0.025 K
(5%) in the troposphere (Figure 2c). Whilst the magni-
tude of the bias decreases with height, the structure of the
orography is visible and persists throughout the boundary
layer and troposphere; only in the stratosphere is the bias
for all variables independent of the orography. The visi-
ble structure of the orography in the representation error
bias fields is expected due to the large influence of the
high-resolution orography and land use data in the Lon-
don model. We note that the influence of the orography is
less strong and decreases more rapidly for the wind vari-
ables than for temperature and specific humidity. Figure 7
confirms that the absolute maximum bias decreases with
height for all variables.

We see that the absolute maximum bias for tempera-
ture is non-zero up to 15 km. For both temperature and
specific humidity, the bias is largest in the lowest 5 km
whereas for the wind variables the absolute maximum bias
is only large in the lowest model levels. Figure 7 also shows
that model level average representation error is unbiased.

The difference between the absolute maximum and mean
biases highlights the spatial variability of the representa-
tion error bias seen in Figures 2–5. This suggests that it
will be necessary to account for the spatial dependence of
representation error bias in the data assimilation system.

By comparing panels (d, e, f) of Figures 2–5 we see that,
as with the bias, for all variables the standard deviation
decreases with height. For example, the estimated stan-
dard deviations for wind are 0.56 m⋅s−1 and account for
56% of the WMO uncertainty requirement in the bound-
ary layer, where as in the troposphere this reduces to
0.18 m⋅s−1 (18%). This is expected since the natural vari-
ability of the analyzed fields decreases with height and
therefore the difference between high-resolution observa-
tion and low-resolution model is expected to decrease and
become less variable. The Pearson correlation coefficient
for temperature representation error standard deviation
and orography representation error plotted in Figure 6
(blue lines) shows that for temperature the standard devi-
ation is related to the orography throughout the boundary
layer and troposphere. In contrast, for specific humid-
ity and winds the representation error standard deviation
is only related to the orography in the lowest levels. At
level 20 for all variables (and level 5 for specific humidity)
there is a decrease in the standard deviation in a region
just southeast of the centre of the domain corresponding
to the city of London. It is possible that this is related to
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F I G U R E 3 Spatial distribution of (a, b, c) representation error bias and (d, e, f) standard deviation for specific humidity (kg⋅kg−1) at
model levels (a, d) 5 (≈133 m), (b, e) 20 (≈1, 605 m) and (c, f) 40 (≈5, 872 m)

F I G U R E 4 Spatial distribution of (a, b, c) representation error bias and (d, e, f) standard deviation for zonal wind (m⋅s−1) at model
levels (a, d) 5 (≈133 m), (b, e) 20 (≈1, 605 m) and (c, f) 40 (≈5, 872 m)
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F I G U R E 5 Spatial distribution of (a, b, c) representation error bias and (d, e, f) standard deviation for meridional wind (m⋅s−1) at
model levels (a, d) 5 (≈133 m), (b, e) 20 (≈1, 605 m) and (c, f) 40 (≈5, 872 m)

the change in roughness parameter associated with the city
compared to its surrounding areas. For the model levels in
the stratosphere (not shown) the error standard deviations
for all variables are very small and there is no obvious spa-
tial variation. From Figure 7a,c,d we see that the absolute
maximum and average representation error standard devi-
ations for temperature and wind are non-zero at all model
levels. For specific humidity above 10 km, both the abso-
lute maximum and average representation errors are very
small, and it is likely that for these regions the represen-
tation error could be neglected without detriment to the
analysis.

Figure 7 allows us to compare the magnitude of the
bias compared to the standard deviation. For the specific
humidity and wind variables, the absolute maximum and
mean bias are always smaller than the absolute maximum
and mean standard deviation. However, for temperature
the absolute maximum bias is of similar magnitude to
the mean standard deviation throughout the troposphere.
Idealized studies have shown that it is more important
to account for the bias caused by representation error
rather than the representation uncertainty (Bell et al.,
2020). Therefore, our results suggest that the treatment
of representation error bias may be more important for
temperature, whereas correctly accounting for the error
variances may be more important for specific humidity
and wind.

4.2 Representation error vertical
correlation

We next consider how the representation errors are cor-
related in the vertical. Figure 8 shows the correlations
between the representation errors at different model levels
for temperature, specific humidity and zonal and merid-
ional wind.

The representation error for temperature has signifi-
cant correlation (defined as absolute value of correlation
greater than 0.2) in the boundary layer. The representation
error is positively correlated within the boundary layer;
however, the levels within the boundary layer are weakly
anti-correlated to those levels near the boundary-layer
top. We hypothesize that this negative correlation is due
to the variation in the boundary-layer top since the cal-
culations average representation error differences over
the year, and day and night. Between the boundary-layer
top and the tropopause, the representation error still
exhibits some weak positive correlation. The estimated
representation error correlations resemble the tempera-
ture background-error correlations that exist when mixing
occurs between the air in the boundary layer and the free
atmosphere above (Fowler et al., 2010).

The representation error correlations for spe-
cific humidity exhibit similar behaviour to those for
temperature, with the strongest correlation between
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F I G U R E 6 Pearson correlation coefficient for temperature
(K) as a function of model level calculated as described in Table 1
between estimated representation error mean and orography
representation error (grey), and between estimated representation
error standard deviation and absolute value of orography
representation error (black)

model levels in the boundary layer. However, unlike tem-
perature, there are no negative correlations in the region
of the boundary-layer top.

The representation error correlations for zonal and
meridional wind are qualitatively similar. Representation
error is positively correlated in the first ten levels; nega-
tive correlation is seen between the surface levels and the
boundary-layer top. Above 2 km there is no significant rep-
resentation error correlation between model levels. The
change in sign of the correlations in the boundary layer is a
consequence of the typical dynamics of wind in the bound-
ary layer, and is also seen in background-error covariance
models for divergent wind (Brousseau et al. 2011).

We note that, for the vertical error correlations cal-
culated here, we have assumed that observations in a
single column are directly above each other. In opera-
tional data assimilation it is unlikely that profiles of direct
observations will share exactly the same latitudinal and
longitudinal position, and in this case the representation
error correlation should ideally account for both a horizon-
tal and vertical component.

4.3 Representation error horizontal
correlation

We finally consider horizontal correlation for representa-
tion error. For each model level we calculate correlations
in the meridional and zonal directions. Our results (not
shown) suggest that, for all levels and for all variables in
both the meridional and zonal directions, there is no sig-
nificant representation error correlation. This result differs
from previous findings which show that representation
error (calculated on a different scale, and using a differ-
ent method, to the results presented here) can exhibit
significant horizontal correlations (Waller et al., 2014).
Given that representation error has been shown to be
state-dependent (Janjić and Cohn, 2006), it is possible that
our results show no significant correlation as any structure
has been averaged out as we have used representation error
samples across a nine-month period.

5 CONCLUSIONS

Scale mismatch errors arise in data assimilation when
observations contain information on different spatial and
temporal scales compared to the model they are assim-
ilated into. When the observations contain information
on a smaller scale than the assimilating model, the
representation errors can be biased and correlated. Fur-
thermore, these errors are known to be dependent on
the particular weather regime. It has been usual in NWP
to account for the scale mismatch error by inflating the
observation-error variance. Recent work has attempted
to estimate covariance matrices for a variety of obser-
vations, but these estimated matrices are approximate,
and combine all sources of observation uncertainty, and
hence it is not simple to assess the contribution of the
scale mismatch error. In this manuscript we investigate
the importance of scale mismatch error for four variables
in regional data assimilation. We estimate representa-
tion errors for temperature, specific humidity, zonal and
meridional wind by taking the difference between perfect
observations and low-resolution model data all simulated
using high-resolution model data. Our high-resolution
data are provided by T+6 hr forecasts from the Met
Office’s experimental London Model, and we simulate
low-resolution model data with a resolution equivalent
to the Met Office UKV convection-permitting model.
We note that, despite its high resolution, the London
Model is still not able to resolve all scales and pro-
cesses and hence our estimates should be treated as a
lower bound to representation error for high-resolution
observations.
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(a) (b)

(c) (d)

F I G U R E 7 Profiles of model layer mean (solid line) and maximum (dashed line) representation error bias (grey line) and standard
deviation (black line) for (a) temperature, (b) specific humidity, (c) zonal wind speed, and (d) meridional wind speed

Our results show that representation error bias and
variance, for all the variables analysed, are more consid-
erable in lower model levels. Previous work (e.g., Boutle
et al., 2016) has shown that the increased resolution
orography has significant impact on increasing variabil-
ity in the London Model fields, so it is intuitive that the
largest differences between our simulated perfect obser-
vation and simulated low-resolution model will occur in
lower levels where the resolution of the orography impacts
the model fields most. In addition to the orography, the

land use data, including the vegetation, urban morphology
and aerosol emissions may also contribute to the repre-
sentation error at lower model levels, though we have not
been able to quantify their contribution in this investiga-
tion. For temperature it is shown that the representation
bias has similar magnitude to the variance. Bell et al. (2020)
showed that it is more important to account for bias caused
by representation error than the representation error vari-
ance; therefore, this may be particularly important for
temperature and specific humidity.
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F I G U R E 8 Representation error vertical correlation.

We show that estimated correlations in the horizontal
are insignificant. This is not supported by previous work
with lower-resolution data over a 1.5 hr window (Waller
et al., 2014) which has shown that representation errors
can exhibit spatial correlations. It is known that horizontal
representation errors are state- and time-dependent. The
absence of horizontal correlations in our results may be
due to averaging the data over a large case-study period.
Furthermore, the previous work used a different method
to calculate the scale-mismatch errors which required a
periodicity assumption which we do not make here.

In contrast to the horizontal correlations, significant
correlations exist between vertical levels for all of the
variables analysed. For temperature and specific humid-
ity, large positive representation error correlations persist
throughout model levels in the boundary layer; weaker
correlations are also present between the levels in the tro-
posphere. For wind, the representation error is positively
correlated in the boundary layer, but negatively correlated
at the boundary-layer top. Our finding that the correla-
tion of scale mismatch error is much greater in the vertical
than in the horizontal is also supportive of a similar result
shown in Fielding and Stiller (2019).

The experiments described in this manuscript have
allowed us to examine, in isolation, the scale mismatch
component of the representation error. Our results sug-
gest that, for convective-scale data assimilation, the scale
mismatch error will be an important contributor to the
observation error in the boundary layer. Furthermore, sig-
nificant biases and vertical correlations exist which should
be accounted for if observations are to be accurately assim-
ilated and maximum information extracted.
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