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On the intraday return curves of Bitcoin: predictability and trading 

opportunities 

 

 

Abstract 

Motivated by the potential inferences from intraday price data in the controversial Bitcoin 

market, we apply functional data analysis techniques to study cumulative intraday return 

(CIDR) curves.  First, we indicate that Bitcoin CIDR curves are stationary, non-normal, 

uncorrelated, but exhibit conditional heteroscedastic, although we find that the projection 

scores of CIDR curves could be serially correlated during some certain periods. Second, we 

show the possibility of predicting the CIDR curves of Bitcoins based on the projection scores 

and then assess the forecasting performance. Finally, we utilize the functional forecasting 

methods to explore the intraday trading opportunities of Bitcoins and the results provide 

evidence of profitable trading opportunities based on intraday trading strategies, which 

confronts the efficient market hypothesis. 

Keywords: Bitcoin; cumulative intraday return (CIDR) curves; predictability; efficiency; 

trading opportunities 
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1. Introduction 

Being the first decentralized cryptocurrency and the most popular vehicle in the emerging era 

of digital financial investments, Bitcoin continues to evolve and attract much interest and 

debate in digital media technology, financial press, academia, regulatory bodies, and the 

investment community (Atsalakis et al., 2019). Many studies cover issues related to its 

blockchain technology, regulatory and legal aspects (Mansfield-Devine, 2017), function and 

relevance in the financial system (Fajri and Yamin, 2019), and relationship with conventional 

assets (Ji et al., 2018; Bouri et al., 2018; Shahzad et al., 2019)1. One particular area of research 

concerns price characteristics and predictability of Bitcoin, which confronts the efficient 

market hypothesis (EMH) documented in Malkiel and Fama (1970) and poses significant 

challenges for investors and regulators. However, the existing literature is split. Some academic 

studies show evidence of inefficiency and predictability (Urquhart, 2016; Nadarajah and Chu, 

2017; Tiwari et al., 2018; Atsalakis et al., 2019), whereas others indicate that the Bitcoin market 

has become more informationally efficient (Al-Yahyaee et al., 2018; Vidal-Tomás and Ibañez, 

2018; Sensoy, 2019). The related academic debate intensifies as sophisticated statistical 

methods and techniques are being applied, which include econophysics methods (e.g., fractality 

(Alvarez-Ramirez et al., 2018), multifractality (Al-Yahyaee et al., 2018; Takaishi and Adachi, 

2019; Kristjanpoller and Bouri, 2019)) and computational and machine learning techniques 

(e.g., artificial neural networks (Nakano et al., 2018), neuro-fuzzy (Atsalakis et al., 2019), and 

support vector machines (Mallqui and Fernandes, 2019)).   

With the availability of intraday data on Bitcoin emerges the need to use suitable methods 

to characterize the properties and dynamics of intraday price data and make inferences 

regarding market efficiency and trading schemes. This is important as intraday price data have 

properties that are different than those of daily closing prices (Tsay, 2005; Kokoszka et al., 

2015). Urquhart and Zhang (2019) show that Bitcoin can be used as an intraday hedge against 

the risk of sovereign currencies. Wang and Ngene (2020) apply Granger causality models and 

bivariate GARCH-based models to intraday data on Bitcoin and six other leading 

cryptocurrencies (Ripple, Ethereum, EOS, Litecoin, Ethereum Classic, and Zcash). They 

indicate the importance of the dynamics of the Bitcoin market for predicting the performance 

of other cryptocurrencies. Petukhina et al. (2020) use intraday data to examine trading patterns 

related to returns, volumes, volatility periodicity, and provide evidence supporting the presence 

                                                     
1 More details about the role of Bitcoin as an asset are given in Corbet et al. (2019a).  
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of intraday momentum of trading patterns in the cryptocurrency market. Notably, studying the 

predictability of Bitcoin intraday returns provides important implications regarding intraday 

trading opportunities, which matters to the efficiency market hypothesis. Considering market 

efficiency, Naeem et al. (2020) use hourly price data on Bitcoin and three other 

cryptocurrencies (Ethereum, Litecoin, and Ripple) within a multifractality model and indicate 

evidence of time variation in market efficiency as reflected by the effect of the COVID-19 on 

market efficiency of leading cryptocurrencies. In fact, studying the efficiency of the Bitcoin 

market has been an appealing research topic although some of the results drawn so far are 

mixed (Urquhart, 2016; Nadarajah and Chu, 2017; Tiwari et al., 2018; Atsalakis et al., 2019; 

Al-Yahyaee et al., 2018; Vidal-Tomás and Ibañez, 2018; Sensoy, 2019). Evidence suggests 

that Bitcoin price changes are not random and thus abnormal returns can be earned from 

exploiting the dynamics of some trading patterns and the information flow from other markets. 

However, the efficiency of Bitcoin has been on the rise given indication that the Bitcoin market 

is maturing and gaining more liquidity and participants covering institutional investors.  

While several methodological techniques have been applied to study the price dynamics of 

Bitcoin, functional time series, which represents a subfield of functional data analysis, is a 

promising and suitable technique and has not been applied so far to the Bitcoin market. 

Especially, cumulative intraday return (CIDR) curves (Gabrys et al., 2010) are an informative 

way of transforming daily price curves into a stationary functional time series2. CIDR curves 

reveal how the return evolves during a trading day and give more relevant information than 

daily closing prices. It is therefore relevant and necessary to use CIDR while trying to predict 

intraday prices in the Bitcoin market and propose trading schemes for the sake of investors and 

traders.  

Given the rise in high-frequency trading, it becomes more important to capture the price 

movement of Bitcoin over the course of a trading day. Accordingly, Bitcoin traders are very 

interested in a modelling framework involving an intraday trading strategy capable of 

generating abnormal returns.  Only using the intraday price data, traders can implement the 

trading strategies and capitalize on short-term price fluctuations, while daily data only contains 

the opening/closing price, which ignores the price movement information during the trading 

day. Day traders intend to make profit and take advantage of small price fluctuations within a 

                                                     
2 Kokoszka et al. (2015) argue that most of financial data take the form of curves (e.g., intraday price curves) 

observed repeatedly over time. 
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single day’s trading and this trading strategy is increasingly popular for at-home traders due to 

advent of electronic trading of Bitcoin.  

In fact, the high volatility of Bitcoin of intraday prices attracts speculative interest and 

investors because it provides traders with great profit-earning opportunities. The decentralized 

Bitcoin market is available 24 hours a day, 7 days a week, and it allows trading activities taking 

place between day traders in different locations across the world. Various trading schemes has 

been advocated, and they can be categorized as fundamental, technical, and quantitative trading 

strategies. Many researchers have focused on technical trading strategies in cryptocurrency 

markets.  Examples of this stream of research include Turtle Soup pattern strategy 

(TradingstrategyGuides, 2019a); Nem (XEM) strategy (TradingstrategyGuides, 2019b); 

Amazing Gann Box strategy (TradingstrategyGuides, 2019c); Busted Double Top Pattern 

strategy (TradingstrategyGuides, 2019d), and Bottom Rotation Trading strategy 

(TradingstrategyGuides, 2019e), but these so called strategies lack of econometrics 

foundations.  More complex trading strategies include the use of machine learning models 

involving high frequency data (see for examples, Nakano et al. 2018; Sun et al.2019; Zhengy 

et al. 2019). Another stream of study uses econometrics model, to estimate and predict the 

movement of Bitcoin daily price, including copula quantile causality approach (Bouri et al., 

2019), dynamic equicorrelation model (Bouri et al., 2020), GARCH-MIDAS model (Conrad 

et al. 2018), GARCH-type family models (Katsiampa 2019; Corbet et al. 2018). However, 

these approaches maintain some econometrics theory, but provide no evidence on the utility of 

applying those methods to generate abnormal profits.   

Therefore, we follow the new line of studies dealing with functional time series (Kokoszka 

et al., 2017; Kearney and Shang, 2019; Horvath et al., 2020), which have sound econometrics 

foundation and examine the properties of Bitcoin CIDR curves by applying the recent 

developed hypothesis testing methods in the functional data setting to assess the properties of 

stationarity (Horvath et al. 2014), serial correlation (Kokoszka et al. 2017), conditional 

heteroscedasticity (Rice et al. 2020), and normality (Gorecki et al. 2018). Notably, we propose 

profitable trading opportunities with intraday trading strategies based on the functional 

forecasting methods. Based on the functional data analyses, we develop our major research 

question consists of examining whether we can utilize the functional forecasting methods to 

assess the intraday trading opportunities of Bitcoins by relying on our proposed intraday trading 

strategies. To the best of our knowledge, we are the first to analyse these issues in the 

controversial Bitcoin market.  
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We introduce significant contributions to the related literature dealing with price prediction 

and market efficiency. Firstly, we move the debate regarding Bitcoin price dynamics to the 

intraday level, extending studies such as Eross et al. (2019) that assess intraday returns, volume, 

volatility and liquidity, and Hu et al. (2019) that focus on price clustering3. Secondly, we 

examine for the first time interesting properties of Bitcoin (CIDR) curves related to a 

stationarity (Horvath et al. 2014), serial correlation (Kokoszka et al. 2017), conditional 

heteroscedasticity (Rice et al. 2020), and normality (Gorecki et al. 2018), extending the 

academic debate beyond conventional assets (e.g., Kearney and Shang, 2019). Thirdly, we 

propose profitable trading opportunities with intraday trading strategies based on the functional 

forecasting methods, and then evaluate their performance. The results show the positive 

performance of such strategies, which is somewhat comparable to recent evidence on the 

profitability of technical trading rules in the Bitcoin market (e.g., Nakano et al., 2018; Corbet 

et al., 2019b; Gerritsen, et al., 2019). Fourthly, we provide overall results that point to the 

inefficiency of Bitcoin by showing how it is possible to develop a profitable trading strategy 

based on historical intraday prices.  

This remainder of this paper is given in five sections. Section 2 describes the data and 

considers the functional time series on the property of Bitcoin cumulative intraday return. 

Section 3 explains the methods we use in forecasting CIDR curves. Section 4 presents the 

results obtained from forecasting the one-day-ahead Bitcoin CIDR curve. Section 5 offers a 

practical application from our forecasting methods through the design and test of an intraday 

trading strategy for Bitcoin CIDR. Section 6 summarizes the findings and provide new paths 

for future research.  

2. Data 

We download the intraday price data (in the currency of US dollars) of Bitcoin at 5-minute 

frequency from https://www.kaggle.com/mczielinski/bitcoin-historical-data, which collects 

the high frequency data from the Bitstamp exchange. The intraday price data at 5-minute 

frequency is used due to the consideration of the trade-off between incorporating informative 

signals and effect of market microstructure errors (Barndorff-Nielsen and Shephard, 2002). 

The sample ranges from 01-November-2014 to 10-August-2019, covering 𝑇 = 1367 days. 

The period between 05-January and 10-January-2015 is eliminated from our sample because 

                                                     
3 Shi and Shi (2019) show that South Korea’s Bitcoin futures ban has an impact on the intraday spot price 

dynamics of Bitcoin. 

https://www.kaggle.com/mczielinski/bitcoin-historical-data
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of the hacked exchange event. Since Bitcoin is traded over the clock, there are 290 observations 

across the intraday grids. Denote the intraday price curves 𝑃𝑡(𝑢), for the daily time index 1 ≤

𝑡 ≤ 𝑇 and intraday index 𝑢 ∈ [0,1]. Following Gabrys et al. (2010), the CIDR curve at day 𝑡 

is defined as, 

 𝑦𝑡(𝑢) = 100 × (log 𝑃𝑡(𝑢) − log 𝑃𝑡(0)), 1 ≤ 𝑡 ≤ 𝑇, 𝑢 ∈ [0,1], (1) 

where 𝑃𝑡(0) is the opening price at day t. The CIDR curves are of interest not only because 

they depict the entire intraday return movements but also because the natural logarithm 

smoothes the return data, making the Bitcoin return curves more suitable for a functional time 

series analysis. Figure 1 shows an example plot of five days intraday price and CIDR curves 

from 06-August to 10-August-2019. 

 

Figure 1. Plots of Bitcoin intraday prices and CIDR curves in August 2019 

 

So far, the properties of Bitcoin CIDR curves are still not investigated in the academic 

literature. Treating Bitcoin CIDR curves as functional time series sequence, we need to test 

their dependence structures via functional data-type hypothesis testing.4  We therefore apply 

the recent developed hypothesis testing methods in the functional data setting to assess the 

                                                     
4 The conventional stationarity, normality and heteroskedasticity tests are only applicable to the scalar time 

series, but not applicable on the functional time series (i.e. CIDR curves in this paper). 
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properties of stationarity ( 𝐻0: 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 , Horvath et al. 2014), serial correlation 

( 𝐻0: 𝑛𝑜 𝑠𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 , Kokoszka et al. 2017), conditional heteroscedasticity 

(𝐻0: 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒, Rice et al. 2020), and normality (𝐻0: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦, Gorecki et al. 2018).   

Before presenting the summary statistics, we firstly review some key development in the 

Bitcoin market during our sample period. In fact, the tendency of the number of financial 

institutions including cryptocurrencies in their portfolios have eventually accelerated over the 

past years. Various events have occurred during 2014 - 2019, which were closely associated 

with Bitcoin price fluctuations. In 2013, the payment processor “BitInstant” and the largest 

exchange platform MtGox were suffered from delays of a half an hour on sales orders.  During 

2014 - 2015, the price of Bitcoin crashed more than 70%, leading to a bear market. During 

2015-2016, Bitcoin exchanges suffered from stronger regulatory scrutiny and major hacks.  In 

2016, the Bitcoin skyrocket into the thousands driven by the depreciation in the Chinese 

Renminbi.  In 2017, the Bitcoin price run close to $20,000, but then dropped to below $4,000 

at the end of 2018.  Still, the Bitcoin market experienced solid growth during that year along 

with more coins and tokens in the crypto markets, and Bitcoin cash solved the scaling issue by 

increasing the block size. In 2018, Bitcoin price dropped from $20,000 down to below $8,000, 

and some positive developments emerged in the year 2019 attributed to the hope of 

institutionalization of the Bitcoin market. For example, the BTC-settled Bitcoin futures 

contract was launched by Bakkt and the commodity-backed VanEck/SolidX BTC ETF 

proposal was initiated. To convey more concrete information to the readers, we evaluate the 

performance of our proposed trading scheme year by year to reflect account for the occurrence 

of various market events. Our empirical results show that the performance of our proposed 

trade scheme is satisfactory in different years.  

Table 1 documents the basic statistic summary and the results of these tests. Considering 

that the Bitcoin market goes through the above key developments during the period studied, 

we separate the entire sample into 6 yearly sub-samples. Year 2015 to Year 2018 sub-samples 

start from the 1st of January and end at 31st of December, while Year 2014 and Year 2019 sub-

samples contain fewer observations given the sample start and termination dates were included 

in these two years. Panel A describes the statistical summary of the scalar intraday return 

observations. We observe that Bitcoin returns experience smaller intraday variation in the year 

2016 and become more volatile after 2017. Panel B exhibits the p-values of the hypothesis 

testing on the CIDR curves. The serial correlation and conditional heteroscedasticity tests are 

performed at lag lengths (1, 5, 10, 20) to check the robustness of dependence structure. 
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According to the results, we find that similar to the properties of intraday returns from the 

equity market (Rice et al. 2019). Specifically, the Bitcoin CIDR curves are stationary, non-

normal, uncorrelated but conditional heteroscedastic. This finding is robust over yearly sub-

samples. Additionally, Figure 2 displays the functional autocorrelation functions of Bitcoin 

CIDR and its squared curves. Consistent with the results discussed in Table 1. We observe that 

the CIDR curves are uncorrelated but show some dependence at the second moment. Thus, it 

is unlikely to forecast the CIDR curves via functional autoregressive-type models. Instead, we 

focus on the predictability in the CIDR curves via the forecasted projection scores, which will 

be elaborated in Section 3. 

 

Table 1. Statistical summary and P values of hypothesis testing 

 Panel A: Statistic summary of scalar intraday return observations 

 Mean Min Max Median Standard deviation 

Entire 

sample 
0.0841 -36.2775 30.4314 0.0408 2.8076 

2014 -0.0196 -10.6377 16.0243 0.0476 2.3181 

2015 0.0504 -36.2775 30.4314 0.0164 2.6321 

2016 0.1136 -22.4513 17.8361 0.0000 1.8007 

2017 0.3502 -32.5082 22.2349 0.2920 3.5198 

2018 -0.2744 -28.8199 15.6812 -0.0672 3.0869 

2019 0.2295 -22.4213 19.1223 0.0968 2.7248 

 Panel B: Hypothesis testing on CIDR curves 

 Station. Serial correlation Heteroscedasticity Normality 

Lag  1 5 10 20 1 5 10 20  

Entire 

sample 
0.62 0.35 0.47 0.28 0.21 0.00 0.00 0.00 0.00 0.00 

2014 0.08 0.42 0.60 0.62 0.42 0.00 0.00 0.00 0.00 0.00 

2015 0.12 0.57 0.33 0.42 0.37 0.00 0.00 0.00 0.00 0.00 

2016 0.39 0.46 0.23 0.32 0.36 0.00 0.00 0.01 0.27 0.00 

2017 0.69 0.29 0.86 0.60 0.72 0.00 0.00 0.00 0.00 0.00 

2018 0.42 0.39 0.57 0.68 0.78 0.00 0.00 0.00 0.00 0.00 

2019 0.38 0.48 0.84 0.75 0.78 0.00 0.00 0.00 0.07 0.00 

Notes: “Station.” denotes the of functional stationarity test (𝐻0: 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 , Horvath et al. 2014), “Serial 

correlation” means the functional serial correlation test (𝐻0: 𝑛𝑜 𝑠𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, Kokoszka et al. 2017), 

“Heteroscedasticity” stands for the functional conditional heteroscedasticity test (𝐻0: 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒, Rice et al. 

2019), and “Normality” is the functional normality test (𝐻0: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦, Gorecki et al. 2018). 
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Figure 2. Functional autocorrelation function of Bitcoin CIDR curves 

3. Methodology 

In this section, we describe the main methods used to forecast CIDR curves. Usually, the next 

day CIDR curve can be predicted by using functional autoregressive-typed models if the curves 

are serially correlated (see, Bosq, 2000; Kokoszka and Reimherr, 2013; Horvath et al., 2020). 

However, from Table 1 we have known that CIDR curves are uncorrelated, thus it is 

inappropriate to fit these curves with functional autoregressive-typed models.  As an alternative 

solution, we first project the CIDR curves into a finite number of data-drive bases, and then 

obtain the predicted curves by forecasting the scalar projecting scores. This method works 

because the uncorrelated functional curves do not imply that the projection score processes are 

also uncorrelated during the whole sample. A similar approach has been implemented by 

Kearney and Shang (2019), who obtain the forecasts of the crude oil forward curves by fitting 

and predicting the projection scores with an exponential smoothing model. 

We define the CIDR curve 𝑦𝑡(𝑢) as a stochastic process with sample path on the interval 

[0,1] , and 𝑦𝑡(𝑢)  are square integrable with the condition 𝐸‖𝑦
𝑡
(𝑢)‖

2
= ∫ 𝑦

𝑡
2(𝑢)𝑑𝑢

1

0
< ∞ . 

Taking the sample mean of these curves, we obtain the functional mean 𝜇(𝑢), so that the 

sample nonnegative-definite covariance operator can be written as, 
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 �̂�(𝑢, 𝑣) = 𝐶𝑜𝑣(𝑦𝑡(𝑢), 𝑦𝑡(𝑣)) = 𝑇−1 ∑[(𝑦𝑡(𝑢) − 𝜇(𝑢))(𝑦𝑡(𝑣) − 𝜇(𝑣))]

𝑇

𝑡=1

. (2) 

According to Mercer’s theorem (Horvath and Kokoszka, 2012), we are able to project the 

CIDR curves into 𝐾 basis functions with a Karhunen-Loeve expression,  

 𝑦𝑡(𝑢) = 𝜇(𝑢) + ∑ 𝜃𝑗,𝑡𝜑𝑗(𝑢)

∞

𝑗=1

≈ 𝜇(𝑢) + ∑ 𝜃𝑗,𝑡𝜑𝑗(𝑢)

𝐾

𝑗=1

, (3) 

where 𝜃𝑗,𝑡, 1 ≤ 𝑗 ≤ 𝐾, is the projection scores on the 𝑗th given basis 𝜑𝑗(𝑢). Then, it is not hard 

to deduce that the forecasts of 𝑦𝑡+1(𝑢) can be predicted if we can forecast the one-step ahead 

scores, 

 �̂�𝑡+1(𝑢) = 𝜇(𝑢) + ∑ 𝜃𝑗,𝑡+1

𝐾

𝑗=1

𝜑𝑗(𝑢), (4) 

where 𝜃𝑗,𝑡+1 is the prediction of 𝜃𝑗,𝑡 at day 𝑡 + 1. It is necessary to mention that the selection 

of the given function 𝜑𝑗(𝑢) can be critical, because it determines the value of score processes. 

Technically, it is possible to choose 𝜑𝑗(𝑢) from any linearly independent functions, such as, 

exponential polynomials, B-spline, and Fourier bases. Here, in order to find bases that can 

maximally explain the total variation from the CIDR curves, we use empirical functional 

principal components derived by the functional principal component analysis - FPCA. Suppose 

there exists a set of orthonormal functions {�̂�1(𝑢), �̂�2(𝑢), ⋯ }  with corresponding to 

eigenvalues that �̂�1 > �̂�2 > ⋯, such that the sample covariance operator can be decomposed 

by the FPCA method as, 

 �̂�(𝑢, 𝑣) ≈ ∑ �̂�𝑗

𝐾

𝑗=1

�̂�𝑗(𝑢)�̂�𝑗(𝑣), (5) 

where empirical principal components �̂�𝑗(𝑣)  are computed by solving an optimization 

problem that �̂�1(𝑢) explains the largest proportion of the total variations in 𝑦𝑡(𝑢), and �̂�2(𝑢) 

explains the second largest proportion, so on and so forth (see Ramsay and Silverman (2007) 

for more technique details). There are several options to select the dimension 𝐾, for examples, 

using the information criteria, the cross-validation, the bootstrapping, and the total variation 

explanation (Kearney and Shang, 2019). Here, we apply the total variation explanation and 

choose the number of 𝐾 that is enough to explain 90% of the total variation from the CIDR 

curves. 
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Let us now focus on the procedure to forecast the projection scores. According to Equation 

(4), we obtain the of projection scores, 𝜃𝑗,𝑡, by projecting the CIDR curves onto 𝐾 number of 

orthonormal basis functions. Then, we deploy two different (scalar) time series models to 

forecast the projection scores. In the first method, we consider the method applied in Kearney 

and Shang (2019) and forecast the scores by using the exponential smoothing model. In order 

to find a better exponential smoothing model to fit the scores, we apply the “ets” function in 

the R package “forecast” (Hyndman et al., 2019) that automatically choose the optimal model 

from available ones, including, simple exponential smoothing, Holt’s method, exponential 

trend, damped trend, and damped exponential trend method. We denote this method as FPES 

which is based on exponential smoothing to forecast one-day-ahead scores. 

In the second method, the underlying principle is that the projection scores can be 

predictable if they are serial correlated during specific period. Thus, we first test the null 

hypothesis of independence on these scores by using the classic Box and Ljung test (Ljung and 

Box, 1978) given a sample period. The scores would be fitted and predicted by (scalar) time 

series models if the null hypothesis was rejected at 95% significance level. Otherwise, we retain 

the best prediction of scores as zero, resulting the best prediction of intraday return as the 

functional mean 𝜇(𝑢). Specifically, we stick on AR(1) model to forecast the scores if there 

exists a serial correlation. This AR(1) model is preferred because it is parsimonious and can 

reasonably well-performed in our dataset. Eventually, the next day CIDR curve �̂�𝑡+1(𝑢) can 

be obtained by substituting the predicted scores into Equation (3). We use the acronym FPAR 

to represent this method which is based on AR(1) to forecast one-day-ahead scores. 

As a benchmark, we choose to use the sample mean curve 𝜇(𝑢) as the forecast, and this 

benchmark method is denoted as Fmean. In terms of evaluating the accuracy of the predictions, 

we use integral-typed measurements to assess the forecasting errors, because in our context the 

predictors and observations are functional curves. Following Didericksen et al. (2012) and 

Kokoszka et al. (2014), we calculate mean squares distance (MSD) and relative predictive 

efficiency (RPE) for �̂�𝑡+1(𝑢) as, 

 𝑀𝑆𝐷 = ∫ (�̂�𝑡+1(𝑢) − 𝑦𝑡+1(𝑢))2𝑑𝑢
1

0

, (6) 

 𝑅𝑃𝐸 = 100 (
𝑀𝑆𝐷1

𝑀𝑆𝐷2
− 1), (7) 

where, 𝑀𝑆𝐷1 is the MSD of the benchmark method Fmean, and 𝑀𝑆𝐷2 is the MSD of either 

FPES or FPAR.  
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4. Forecasting Results  

We now apply the proposed methods to forecast the one-day-ahead Bitcoin CIDR curves. 

Given a sample with size 𝑇, we follow a three-step forecasting procedure with a rolling window 

approach: first, setting a training sample with 𝑆  observations, which delivers 𝑇 − 𝑆 

observations in out-of-sample; second, applying the FPCA method the training sample in order 

to extract data-driven bases that explain a minimum 90% of the total variation, and obtaining 

the corresponding scores 𝜃𝑗,𝑡; third, using the ES model to forecast one-day-ahead scores, or 

assessing the dependence of the score sequences and then apply AR(1) model to forecast, and 

then moving to the next window. Figure 3 displays the data-driven basis functions and the 

functional mean computed from the entire sample. From the left sub-figure, we can see that the 

first two bases are enough to explain 90.23% of the total variation, and the right sub-figure 

illustrates that the functional mean is an upward trend during the entire sample from 2014 to 

2019. The first principal component explains the variation of the functional mean, and the 

second principal component describes a mean-reversion mechanism of return curves. The third 

and the fourth account for very small proportions of the total variation and difficult to interpret, 

so that we treat them as noises. Note that these analyses are conducted in each training sample, 

and we skip these results for saving space. Besides, since the Bitcoin market develops in a rapid 

and unpredicted pace, we also consider yearly sub-samples as we did in Section 2. For the same 

reason, we employ mid-ranged training sample and avoid using long-term historical 

information. In specific, we set window length 𝑆 = 182, and 365 for the entire sample. 

 

 

Figure 3. The first four functional principal components (bases) and the functional 

mean derived from the entire sample 
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Table 2 documents the forecasting errors of each model in yearly sub-samples from 2016 to 

2019. Table 3 reports the errors from the entire sample and two selected periods: (1) the sample 

period where either the first or second scores are serially correlated, (2) the sample period 

where both the first and second scores are serially correlated. Both Table 2 and 3 indicate that, 

in general, the FPES and FPAR model underperform the benchmark Fmean model. However, 

FPES and FPAR show superior forecasting performance if we only evaluate the out-of-sample 

period when the first and second scores are serially correlated. This is a sensible result as the 

FPES and FPAR improve the predictability of Bitcoin CIDR curves by capturing the 

dependence structure of the scores. Note that the magnitude of our forecasting errors is larger 

than the commonly used mean absolute error or root mean square error for univariate variable 

forecasting. These results are not too surprising considering that the forecasting error 

measurements are taking integral over the entire intraday interval. 

 

Table 2. Forecasting errors of the models from the out-of-samples - yearly sub-

samples  

 2016 

  S=182 S=365 

  MSD RPE MSD RPE 

Fmean 1.1566 0.0000 1.1491 0.0000 

FPES 1.1898 -2.7935 1.1714 -1.9064 

FPAR 1.1582 -0.1409 1.1520 -0.2515 

  2017 

Fmean 2.7056 0.0000 2.7034 0.0000 

FPES 2.7470 -1.5057 2.7163 -0.4728 

FPAR 2.7060 -0.0133 2.7035 -0.0005 

  2018 

Fmean 2.3573 0.0000 2.3467 0.0000 

FPES 2.4204 -2.6063 2.3806 -1.4215 

FPAR 2.3607 -0.1430 2.3480 -0.0556 

  2019 

Fmean 1.9417 0.0000 1.9451 0.0000 

FPES 1.9711 -1.4952 1.9731 -1.4190 

FPAR 1.9451 -0.1789 1.9434 0.0897 

Notes:  Fmean stands for functional mean; FPES represents the method based on exponential smoothing to 

forecast one-day-ahead scores; and FPAR is the method based on AR(1) to forecast one-day-ahead scores. The 

parameter S is length of rolling window.  
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Table 3. Forecasting errors of the models from the out-of-samples – entire and 

selected sub-samples  

 Entire sample 

  S=182 S=365 

  MSD RPE MSD RPE 

Fmean 1.9568 0.0000 2.0409 0.0000 

FPES 1.9991 -2.1141 2.0644 -1.1380 

FPAR 1.9615 -0.2372 2.0419 -0.0468 

  The sample period where the first or second scores are serial correlated 

Fmean 1.8738 0.0000 2.0067 0.0000 

FPES 1.9002 -1.3911 2.0212 -0.7133 

FPAR 1.8904 -0.8778 2.0085 -0.0861 

  The sample period where the first and second scores are serial correlated 

Fmean 1.7454 0.0000 2.2456 0.0000 

FPES 1.7300 0.8890 2.2322 0.5971 

FPAR 1.7116 1.9766 2.2342 0.5049 

Notes:  Fmean stands for functional mean; FPES represents the method based on exponential smoothing to 

forecast one-day-ahead scores; and FPAR is the method based on AR(1) to forecast one-day-ahead scores. The 

parameter S is length of rolling window.  

 

Recently, there is a raising interesting in the CRptocurrency IndeX (CRIX), which is a 

market index for the cryptocurrency market. The details on the methodology of CRIX is 

provided by Trimborn and Hardle (2015). We implement the same forecasting methods to the 

CIDR curves of CRIX, which are derived from CRIX 5-minute frequency returns.5 The sample 

period of CIDR is ranged from 01-July-2016 to 16-August-2020, with first 𝑆 dates as in-sample 

and the remaining 𝑇 − 𝑆  dates as out-of-sample. Table A1 in the appendix reports the 

forecasting errors on the CIRX. The results show that it is more challenging to find the 

predictability of CRIX, which potentially implies a weak serially correlated structure of the 

CRIX diluted by including many different cryptocurrencies. This is expected as a market index 

is generally more efficient than individual financial assets.   

5. Intraday Trading of Bitcoin 

One natural application of our forecasting methods is to design intraday trading strategy for 

Bitcoin CIDR. An intraday trading strategy is a short-term investment that typically holds a 

long or short position in a trading day, while it does not hold any position after the closure of 

the exchange (i.e. no overnight return). There are two specific issues related to the intraday 

                                                     
5 We thank Simon Trimborn for kindly providing us the intraday data of CRIX. We used a shape-preserving 

piecewise cubic interpolation to fill the missing data.  
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trading of Bitcoin. Firstly, there is no easy way to short-sell Bitcoins in the major Bitcoin 

exchanges6. Therefore, we mainly consider long position in our trading strategy. Secondly, 

almost all Bitcoin exchanges are continuously trading in 24 hours and 7 days. Therefore, we 

will restrict our strategy not holding the position across different trading days as the convention 

of intraday trading. To be specific, once we open a position in a trading day, the position must 

be cleared before the midnight. 

Based on the forecasting methods (Fmean, FPES, or FPAR), the procedure of our trading 

strategy in day 𝑡 + 1 is elaborated as follows 7: 

Step 1. Estimate the model parameters from the data in day 𝑡 − 𝑤 + 1 and 𝑡. 

Step 2. Use the estimated parameters to make one-day-ahead forecasting 

CIDR, �̂�𝑡+1(𝑢). 

Step 3. Find the timing of minimum in the forecasted curve �̂�𝑡+1(𝑢), and denote it as 

𝑢𝑚𝑖𝑛. This will be regarded as the timing of generating a long position. 

Step 4. Due to the short-sell constraint, we truncate the forecasted curve �̂�𝑡+1(𝑢) before 

the timing 𝑢𝑚𝑖𝑛, and then find the timing of maximum in the forecasted curve 

�̂�𝑡+1(𝑢), which is denoted as 𝑢𝑚𝑎𝑥. This will be the timing that we clear our 

position.  

Step 5. On the day 𝑡 + 1, we buy Bitcoin at time 𝑢𝑚𝑖𝑛 and sell it at time 𝑢𝑚𝑎𝑥. 

 

The return of the trading strategy on day 𝑡 + 1 can be calculated8 as 

 𝑅𝑡+1 = 𝑦𝑡+1(𝑢𝑚𝑎𝑥) − 𝑦𝑡+1(𝑢𝑚𝑖𝑛) (7) 

where 𝑦𝑡+1(⋅)  is the actual CIDR on day 𝑡 + 1  and {𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥}  are determined by the 

forecasted curve �̂�𝑡+1(𝑢). 

We demonstrate our trading strategy in Figure 4. Before the trading day, we obtain the 

forecasted CIDR from the FPAR method, shown in the upper panel of Figure 4. Based on the 

forecasted CIDR, we can determine the time points 𝑢𝑚𝑖𝑛  (5:45:00) and  𝑢𝑚𝑎𝑥  (23:45:00), 

when the minimum and the maximum are predicted to occur. In this particular case, we make 

                                                     
6  Investor can short-sell bitcoin via the act of borrowing bitcoins, but this is not commonly available. 

Otherwise, investor can short-sell bitcoin futures or bitcoin ETF.  
7 Such procedure of trading strategy can be implemented in practice. This is due to the computational time of 

our forecasting methods is typically within several seconds for a one-day-ahead forecasting.   
8 Our calculation on the return of the trading strategy is without transaction cost.  
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the trading plan for 23-May-2016 as “buy Bitcoin at 5:45:00 and sell it at 23:45:00”. We will 

execute the trading plan on that day, and the lower panel of Figure 4 shows the actual CIDR 

on for 23-May-2016 and the timing when we buy and sell. Our return of such trading plan is 

0.82% − 0.34% = 0.48%. It is worth noting that 𝑢𝑚𝑎𝑥 is after 𝑢𝑚𝑖𝑛 in this demonstration and 

thus there is no impact from the short-selling constraint on this trading day.  

 

Figure 4. The demonstration of our intraday trading strategy. Upper panel: forecasted 

CIDR for 23-May-2016 from the FPAR method. Lower Panel: Actual CIDR on 23-May-

2016. We make the planning of buy and sell based on the 𝒖𝒎𝒊𝒏 and 𝒖𝒎𝒂𝒙 before the 

trading day, and we execute the trading plan in the trading day. 

 

The trading of Bitcoin is subject to the short-selling constraint. We may encounter the 

situation where the maximum can happen before the minimum in our forecasted CIDR. To 

better illustrate, the forecasted CIDR by the method of FPAR for 06-August-2018 is displayed 

in upper panel of Figure 5. We can observe that the global maximum (00:50:00) is occurred 

before 𝑢𝑚𝑖𝑛 (10:45:00). We cannot practically short-sell at the timing of global maximum, and 

it is only feasible to sell after we have open the long position. This is the reason that we need 

to truncate the forecasted curve �̂�𝑡+1(𝑢) before the timing 𝑢𝑚𝑖𝑛  in Step 4 of our trading 
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procedure, and the practical selling time can only be after 𝑢𝑚𝑖𝑛. In this particular case, 𝑢𝑚𝑎𝑥 

happens at 14:15:00. Therefore, our trading plan for 06-August-2018  is “buy at 10:45:00 and 

sell at 14:15:00”, and the return of this trading plan is  (−1.19%) − (−0.61%) = −0.57%.   

 

Figure 5. The demonstration of impact for no short-selling constraint. Upper panel: 

forecasted CIDR for 06-August-2018 from the FPAR method. Lower Panel: Actual 

CIDR on 06-August-2018. We make the planning of buy and sell based on the 𝒖𝒎𝒊𝒏 and 

𝒖𝒎𝒂𝒙 before the trading day, and we execute the trading plan in the trading day. 

 

We collect the daily return of the trading strategies based on the three functional forecasting 

methods. Their daily trading returns are used to calculate four common trading performance 

evaluation measures, including annualised return, annualised volatility, Sharpe ratio, and 

maximum drawdown, which are reported in the upper panel of Table 4. Firstly, the trading 

strategy based on FPAR with 𝑆 = 182  is superior to the other two because of its higher 

annualised return, lower annualised volatility, and higher Sharpe ratio, though its maximum 

drawdown9 is higher. The superiority of FPAR is consistent if 𝑆 = 365. Secondly, FPES can 

outperform the Fmean in terms of a higher Sharpe ratio if 𝑆 = 182, while this is not consistent 

if 𝑆 = 365. Overall, the developed three trading strategies can exploit the trading opportunities 

                                                     
9 Note that the maximum drawdown can below -100% because our calculation is based on the log returns.  
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in the intraday market as measured by more than 1 of Sharpe ratio, while the risk level is also 

high indicated by their maximum drawdown.  

To reveal more insights, we restrict the trading only in the sample that the first or second 

scores are serially correlated. In other words, we only trade if we find there is evidence of 

dependence in the times series of FPC scores. This setting is motivated by the EMH (i.e., 

“prices reflect all information”), and the existence of dependence in the historical data indicates 

the market inefficiency. Four performance measures for such a setting are reported in the 

middle panel of Table 4. The trading strategy based on FPAR is superior to the other two in 

terms of all measures, and it is consistent with both of 𝑆 = 182 and 365. Another important 

observation is that the risk level measured by the maximum drawdown is dramatically reduced. 

We are also interested in the sub-sample where the first and second scores both serially 

correlated. The trading performance of three trading strategies is reported in the lower panel of 

Table 4. The result is sensitive to the parameter 𝑆. We have a positive Sharpe ratio if 𝑆 = 182, 

while a negative Sharpe ratio if 𝑆 = 365. This is not a surprising result because there is a small 

number of days that first and second scores are both serially correlated. Thus, the result in this 

setting is subject to small sample issue.       

Although there is no easy way to short-sell Bitcoins, investors and readers may also be 

interested in the performance of our trading strategies if we assume no short-selling 

constraint.10 The results of performance in the same three settings are reported in Table A2 of 

the Appendix. The FPAR is still superior to the other measures, indicating the robustness of 

such a strategy.  

Transaction costs could have an impact on the revealed trading opportunities. The Bitstamp 

exchange has a complicated tier structure for trading fee which depends on the total trading 

volume over the past 30 days up to the trading time.11 To provide an estimated cost, we have 

assumed that the fee rate is 0.03% and revaluated the trading performance of the developed 

three trading strategies (without short-selling), which is presented in Table A3 of the Appendix. 

While the evaluation measures of all three trading strategies have been modestly deteriorated 

after the consideration of trading fees, the FRAR remains the superior strategy with a Sharpe 

ratio of 0.74 if trading is done in the entire sample period with 𝑆 = 182. It is also noteworthy 

that the impact from the trading fee is much smaller if the trading is restricted to only the sample 

                                                     
10 The first-ever Bitcoin ETF was launched by the purpose investment in Canada on February 18, 2021. This 

allows investors a channel to sell short bitcoins.  
11 https://www.bitstamp.net/fee-schedule/, accessed on March 14, 2021. 

https://www.bitstamp.net/fee-schedule/
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in which the first and second scores are serially correlated. This can be intuitively explained by 

the fact that the trading frequency is much lower in such setting.  

 

Table 4. Performance evaluation of trading strategies based on three functional 

forecasting method  

  S=182 S=365 

  Fmean FPES FPAR Fmean FPES FPAR 

Trading in the entire sample period (trading everyday) 

Annualised Return 60.86 63.60 64.70 48.84 39.68 53.03 

Annualised Volatility 59.04 58.76 58.15 65.51 66.14 63.58 

Sharpe Ratio 1.03 1.08 1.11 0.75 0.60 0.83 

Maximum Drawdown -82.48 -94.62 -99.25 -134.51 -163.24 -127.95 

Trading only in the sample that the first or second scores are serially correlated 

Annualised Return 16.35 20.64 20.19 37.90 39.73 42.10 

Annualised Volatility 29.71 32.58 27.92 43.03 46.33 40.03 

Sharpe Ratio 0.55 0.63 0.72 0.88 0.86 1.05 

Maximum Drawdown -42.85 -53.32 -37.27 -66.36 -67.45 -53.95 

Trading only in the sample that the first and second scores are serially correlated 

Annualised Return 0.21 0.26 0.66 -8.49 -8.40 -7.52 

Annualised Volatility 1.31 1.31 0.78 14.23 14.26 13.36 

Sharpe Ratio 0.16 0.20 0.85 -0.60 -0.59 -0.56 

Maximum Drawdown -2.45 -2.45 -0.44 -51.84 -52.87 -50.44 
Notes:  Fmean stands for functional mean; FPES represents the method based on exponential smoothing to 

forecast one-day-ahead scores; and FPAR is the method based on AR(1) to forecast one-day-ahead scores. The 

parameter S is length of rolling window. The bold number is the one with the best performance among the three 

methods.  

 

To show the evolvement of strategy, Figure 6 present the cumulative return of the strategy 

based on FPAR if we trade every day (without short-selling and no trading fee), along with the 

drawdown and the indicators of dates when the first/second scores are serially correlated. There 

is a clear patten that this strategy can be consistently profitable before February 2017, as 

indicated by the up-trending cumulative return curve. However, the strategy became less 

effective afterwards and reached its maximum drawdown in December 2018. After this turning 

point, the cumulative return starts to increase. Another interesting observation is that we have 

the dates when the second scores are serially correlated, mainly in the early 2017 and 2019, 

while the dates when the first scores are serially correlated are distributed in early 2015, 2016, 

and around December 2018.  

Lastly, it is worthwhile to discuss the impact from the latency on the practical 

implementation of the developed strategies. Before March 2019, it is challenging to trade at a 
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decent speed in the Bitstamp exchange.12 Due to the design of our forecasting methods, the 

latency can be effectively mitigated. This is because the forecasted CIDR on the day 𝑡 + 1 can 

be obtained once all intraday data on day 𝑡 becomes available,13 and then the actions of buy 

and sell based on the forecasted CIDR can be planned at the beginning of day 𝑡 + 1. In order 

to offset the latency, one can place buy/sell orders slightly earlier than the planned timing.14    

 

Figure 6. Cumulative return curve of the trading strategy based on FPAR with 𝑺 =

𝟏𝟖𝟐. 

 

 

                                                     
12 On March 14,2019, the Bitstamp exchange introduced a new WebSocket solution which reduces latency 

by 250-270 milliseconds and significantly increases the speed of pushing order book messages. See details: 

https://www.bitstamp.net/article/new-websocket/ (assessed on March 15, 2021). 
13 Although there could be some computational time, the computation cost based on Equation (4) is very 

small. 
14 The exact amount of ahead time depends on the magnitude of the latency. For example, one can place 

orders 300 milliseconds in advance.   

https://www.bitstamp.net/article/new-websocket/
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6. Conclusion  

The remarkable evolution of the Bitcoin market has induced heated debate about its finance 

and economics, especially in regard to price formation and predictability. Recent evidence has 

been derived from sophisticated methods such as neuro-fuzzy techniques (Atsalakis et al., 

2019). However, evidence of Bitcoin price prediction is very limited when intraday price data 

are used. 

In this paper, we use recent developed tools in the field of functional data analysis and 

uncover evidence of predictivity in the intraday cumulative return of Bitcoin. We also employ 

the functional times series forecasting methods and explore evidence of intraday trading 

opportunities of Bitcoin. Our reported evidence showing that Bitcoin CIDR curves are 

stationary, non-normal, uncorrelated, but exhibit conditional heteroscedastic, represents an 

important contribution with respect to previous studies dealing not only with conventional 

assets (e.g., Kearney and Shang, 2019), but also with alternative investment vehicles such as 

Bitcoin. Such evidence is crucial as it points to the suitability of applying statistical models to 

Bitcoin price curves that form, among other things, stationary functional time series. This will 

open the door for future research dealing with Bitcoin price curves within models that involves 

stationarity of series. Our findings extend previous studies dealing with intraday price 

dynamics in the Bitcoin market (Eross et al., 2019; Hu et al., 2019; Urquhart and Zhang, 2019; 

Wang and Ngene, 2020; Petukhina et al., 2020) and also add to the literature dealing with the 

price prediction and efficiency of Bitcoin (e.g., Urquhart, 2016; Nadarajah and Chu, 2017; 

Tiwari et al., 2018; Vidal-Tomás and Ibañez, 2018; Al-Yahyaee et al., 2018; Atsalakis et al., 

2019; Sensoy, 2019; Naeem et al., 2020). Especially, unlike Sensoy (2019) who use intraday 

data within a permutation entropy and a rolling window approach, we show the possibility to 

predict intraday price data and construct a profitable trading strategy within functional data 

analyses, which contradicts with the efficient market hypothesis in its weak form. In fact, 

Bitcoin traders can rely on our approach and results to construct an intraday trading strategy 

based on cumulative intraday return within functional forecasting methods and make abnormal 

returns, which challenges the efficient market hypothesis. Such findings on the possibility to 

generate profitable trades using intraday data within high-frequency trading schemes through 

exploiting intraday points and indications are of crucial importance to day traders in the Bitcoin 

market. Given evidence of a weak form of market efficiency in other major cryptocurrencies 

(e.g., Naeem et al., 2020), our findings can matter to traders in those cryptocurrencies who can 

builds on our models to assess its utility in major cryptocurrencies such as Ethereum, Ripple 
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and Litecoin.  Our findings are also important to policymakers and regulators such as central 

bank officials who are concerned with market efficiency. Notably, they have been putting the 

fast-growing cryptocurrency – Bitcoin - under surveillance and scrutiny to evaluate its 

suitability to be incorporated into the global financial system, which ultimately requires a strict 

regulatory framework.  

While our data span is limited to the pre-COVID period to avoid any potential impact from 

the continuing COVID-19 pandemic on the Bitcoin market, future studies can consider the 

impact of the pandemic on CIDR curves of Bitcoin. Additional analysis might be needed to 

optimize the accuracy of the price prediction and increase the risk-adjusted performance of the 

trading strategy. Therefore, future studies can consider including information on technical 

indicators such as trading range breakout (Gerritsen, et al., 2019), and machine learning 

techniques (Nakano et al., 2018) in order to potentially increase the risk-adjusted return of the 

trading strategy.   
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APPENDIX 

Table A1. Forecasting errors of the models from the out-of-samples – entire and 

selected sub-samples of CRIX. 

 Entire sample 

  S=182 S=365 

  MSD RPE MSD RPE 

Fmean 1.8441 0.0000 1.6598 0.0000 

FPES 1.8832 -2.0755 1.6802 -1.2188 

FPAR 1.8496 -0.2965 1.6630 -0.1929 
  The sample period where the first or second scores are serial correlated 

Fmean 1.6412 0.0000 1.4081 0.0000 

FPES 1.6784 -2.2173 1.4168 -0.6135 

FPAR 1.6466 -0.3331 1.4112 -0.2273 

  The sample period where the first and second scores are serial correlated 

Fmean 0.3151 0.0000 0.3235 0.0000 

FPES 0.3372 -6.5680 0.3247 -0.3423 

FPAR 0.3194 -1.3655 0.3256 -0.6431 
Notes:  Fmean stands for functional mean; FPES represents the method based on exponential smoothing to 

forecast one-day-ahead scores; and FPAR is the method based on AR(1) to forecast one-day-ahead scores. The 

parameter S is length of rolling window. The bold number is the one with the best performance among the three 

methods. The transaction fee is assumed to be 0.03% in the calculation. No short selling is allowed. 
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Table A2. Performance evaluation of trading strategies based on three functional 

forecasting method if short selling is assumed to be allowed 

  S=182 S=365 

  Fmean FPES FPAR Fmean FPES FPAR 

Trading in the entire sample period 

Annualised Return 61.51 57.93 64.68 40.87 38.52 56.05 

Annualised Volatility 63.78 64.66 63.19 67.82 70.47 65.53 

Sharpe Ratio 0.96 0.90 1.02 0.60 0.55 0.86 

Maximum Drawdown -71.64 -94.89 -97.98 -164.16 -144.99 -102.08 

Trading in the sample that the first or second scores are serially correlated 

Annualised Return 0.21 5.95 3.38 29.97 42.00 45.15 

Annualised Volatility 33.33 35.63 32.20 46.46 49.53 43.07 

Sharpe Ratio 0.01 0.17 0.10 0.65 0.85 1.05 

Maximum Drawdown -75.73 -64.66 -72.32 -110.63 -59.49 -35.74 

Trading in the sample that the first and second scores are serially correlated 

Annualised Return 0.58 0.63 0.66 4.24 9.36 9.35 

Annualised Volatility 1.40 1.41 1.07 14.08 13.51 14.23 

Sharpe Ratio 0.42 0.45 0.61 0.30 0.69 0.66 

Maximum Drawdown -2.17 -2.17 -1.00 -24.24 -17.70 -19.29 
Notes:  Fmean stands for functional mean; FPES represents the method based on exponential smoothing to 

forecast one-day-ahead scores; and FPAR is the method based on AR(1) to forecast one-day-ahead scores. The 

parameter S is length of rolling window. The bold number is the one with the best performance among the three 

methods. No transaction cost is considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

Table A3. Performance evaluation of trading strategies based on three functional 

forecasting method with transaction fee of 0.03% 

  S=182 S=365 

  Fmean FPES FPAR Fmean FPES FPAR 

Trading in the entire sample period 

Annualised Return 38.94 41.68 42.78 26.92 17.77 31.12 

Annualised Volatility 59.02 58.74 58.13 65.49 66.12 63.56 

Sharpe Ratio 0.66 0.71 0.74 0.41 0.27 0.49 

Maximum Drawdown -112.25 -116.43 -121.76 -170.41 -195.21 -149.88 

Trading in the sample that the first or second scores are serially correlated 

Annualised Return 10.20 14.49 14.04 25.79 27.63 29.99 

Annualised Volatility 29.69 32.54 27.88 43.00 46.30 40.00 

Sharpe Ratio 0.34 0.45 0.50 0.60 0.60 0.75 

Maximum Drawdown -44.10 -55.47 -40.74 -89.02 -86.25 -62.70 

Trading in the sample that the first and second scores are serially correlated 

Annualised Return 0.08 0.13 0.54 -9.50 -9.41 -8.53 

Annualised Volatility 1.30 1.31 0.73 14.27 14.29 13.39 

Sharpe Ratio 0.06 0.10 0.74 -0.67 -0.66 -0.64 

Maximum Drawdown -2.63 -2.63 -0.62 -53.73 -55.08 -52.64 
Notes:  Fmean stands for functional mean; FPES represents the method based on exponential smoothing to 

forecast one-day-ahead scores; and FPAR is the method based on AR(1) to forecast one-day-ahead scores. The 

parameter S is length of rolling window. The bold number is the one with the best performance among the three 

methods. The transaction fee is assumed to be 0.03% in the calculation. No short selling is allowed. 

 

 

 


