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Abstract The goal of response theory, in each of its many statistical mechanical formulations, is to predict
the perturbed response of a system from the knowledge of the unperturbed state and of the applied
perturbation. A new recent angle on the problem focuses on providing a method to perform predictions
of the change in one observable of the system using the change in a second observable as a surrogate
for the actual forcing. Such a viewpoint tries to address the very relevant problem of causal links within
complex system when only incomplete information is available. We present here a method for quantifying
and ranking the predictive ability of observables and use it to investigate the response of a paradigmatic
spatially extended system, the Lorenz ’96 model. We perturb locally the system and we then study to
what extent a given local observable can predict the behaviour of a separate local observable. We show
that this approach can reveal insights on the way a signal propagates inside the system. We also show
that the procedure becomes more efficient if one considers multiple acting forcings and, correspondingly,
multiple observables as predictors of the observable of interest.

1 Introduction

Elements of response theory

Response theory is an area of statistical physics that
provides general methods for predicting the changes in
the statistical properties of an observable of interest
Ψ from the knowledge of the applied perturbation and
of the statistical properties of the unperturbed system.
The expectation value of Ψ in the perturbed system
is expressed as a perturbative series, where the zeroth-
order term is the expectation value of Ψ in the unper-
turbed system. The higher order terms are expressed
in terms of response functions that contain information
about the higher order statistics of the unperturbed
system and the applied forcing

A cornerstone in the development of response the-
ory came with the work by Kubo [1,2], who considered
the case of weakly perturbed systems near thermody-
namic equilibrium. When a system is in this kind of
steady state, it obeys detailed balance and features no
net currents. In Kubo’s theory, from the knowledge of
the statistics of the unperturbed system, and in par-
ticular of the correlations describing its spontaneous
fluctuations, it is possible to compute, in linear approx-
imation, the response of the system to any (weak) per-
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turbation. This is the key idea behind the fluctuation–
dissipation theorem (FDT) [2], which establishes a link
between the forced and free fluctuations in the per-
turbative regime [3]. A generalised version of the FDT
valid for higher moments has been proposed by [4] in
the spirit of Zubarev’s generalization of Kubo’s results
[5]. We will discuss from now on the special and very
relevant case of linear response theory (LRT) and of its
applications.

The analysis of the response to perturbations of sys-
tems that are far from thermodynamics equilibrium
requires a more general approach than what provided
by Kubo’s theory. Indeed, nonequilibrium systems are
ubiquitous and their investigations has both great the-
oretical relevance and allows one to study many impor-
tant real-life examples in material science, physics, ecol-
ogy, fluid dynamics, climate science, biology, among
others. Often, one says that after transients have died
out, in absence of time-dependent forcings, a nonequi-
librium system is in the so-called nonequilibrium steady
state, where detailed balance is not obeyed, and, in
many cases, dissipative processes are associated with
a contraction of the phase space and with the pro-
duction of entropy [6]. Studying the response of NESS
systems to perturbations is of great relevance both
for theory and applications. At this regard, a rigorous
and crucial development in the context of determinis-
tic dynamics was provided by Ruelle [7–10], who rigor-
ously derived a LRT for smooth observable of Axiom
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A dynamical systems. Ruelle’s results have been been
recast and extended by methods of functional analy-
sis [11,12]. Roughly speaking, Axiom A systems pro-
vide an extremely useful example of chaos character-
ized by the presence of a clear separation between the
expanding and contracting directions in the tangent
space, formalized by the concept of uniform hyper-
bolicity. Crucially, Axiom A systems possess a special
ergodic invariant measure—the so-called Sinai–Ruelle–
Bowen measure [7]—that makes them excellent candi-
dates for describing non-equilibrium physical systems.
While Axiom A systems are mathematically quite spe-
cial, their practical relevance is clarified by the chaotic
hypothesis proposed by Gallavotti and Cohen [13,14],
which can be see an extension of the ergodic hypothesis
to the non-equilibrium case.

The chaotic hypothesis is supportive of the fact that
LRT should de facto work in a large class of chaotic
dynamical systems. As opposed to the equilibrium
case, general non-equilibrium dynamical systems obey-
ing Axiom A dynamics possess an invariant measure
that is singular with respect to Lebesgue and is sup-
ported on a strange attractor. Ruelle proved that the
response operator is given by the sum of two contribu-
tions. One is related to the dynamics on the unstable
and central manifolds and can be framed as a FDT
result, while the second one is related to the dynamics
occurring on the stable manifold, and cannot be framed
as a FDT result because of the non-smoothness of the
measure [10]. In other words, the natural fluctuations
are not equivalent to the forced perturbations along
the stable directions [15–17]. The direct computation of
these two contributions is far from trivial [18–20], but
the use of adjoint and shadowing methods has recently
led to promising results in this direction [21–23].

LRT can also be rigorously established for stochas-
tic dynamical systems [20,24–26]. Under rather gen-
eral hypotheses, adding noise makes the invariant mea-
sure absolutely continuous with respect to Lebesgue,
so that the FDT fully holds [27]. In this setting, the
obtained formula is called the Kubo–Agarwal formula,
which reduces to the Kubo formula for equilibrium sys-
tems. The addition of a noise term has to be justified
by the nature of the considered problem. This stochas-
tic perspective becomes relevant in many complex sys-
tems, where the focus is on coarse-grained dynamics,
which is effectively stochastic as a result of the pres-
ence of microscopic degrees of freedom. Note that the
coarse-grained dynamics is in general non-Markovian,
with memory effect becoming negligible in the limit of
infinite time-scale separation between the fast and slow
variables [28–32].

The relationship between response theory in deter-
ministic and stochastic systems has been thoroughly
discussed in [33], where the authors also propose a very
well-developed justification, not based on the chaotic
hypothesis, for the broad pragmatic applicability of
LRT in a vast class of deterministic chaotic systems.

Nowadays, LRT has an important role in the inves-
tigations of a vast range of systems, see, e.g., [20,34–
40]. As an example, in the case of climate science, LRT

makes it possible to perform climate change projections
using climate models of different levels of complexity.
This amounts to computing the time-dependent mea-
sure supported on pullback attractor of the climate
[41] by constructing response operators for a suitably
defined reference climatic state [39]. This viewpoint
allows one to investigate ways to control the future
pathways of climate change [42] and to make an assess-
ment of potential and pitfalls of geoengineering strate-
gies [43].

Recently, LRT has been extended in such a way that
explicit formulas are given for describing how adding
a forcing to a system changes its n−point correlations
[44]. Another recent application of LRT has focused on
detecting and characterising phase transitions in a net-
work of coupled identical agents undergoing a stochastic
evolution [45]. A recently published special issue show-
cases several emerging areas of applications for LRT
[46].

Majda and Qi have recently shown the existence of
a coherent thread connecting LRT, sensitivity analysis,
model reduction techniques, uncertainty quantification,
and control of high-dimensional chaotic and stochastic
systems [47,48]. The theme of studying the response
using incomplete information on the system is the main
topic of the present contribution .

Predictors and predictands

A different angle on the problem of defining the
response of a system to perturbations proposes a fairly
general method that allows one to relate the response
of different observables of a system undergoing a per-
turbation. This method could be useful in situations,
where we need to interpret experimental data and we
do not have necessarily perfect knowledge of the prop-
erties of the system—e.g., we do not know the specific
features of the applied forcing, have access to only a
limited number of degrees of freedom of the system, or
ignore altogether the evolution equation of the system
itself—but can measure instead multiple observables at
the same time [49]. This is closely related to finding
solutions to nonlinear rational least squares problems
[50,51].

The goal is to understand to what extent we can use
perturbed observables as surrogates of the perturbation
to reconstruct the time behaviour of other observables.
It turns out that, if we know the time behaviour of
one observable Ψ1, we can always reconstruct diagnos-
tically, within linear approximation, the time behaviour
of another observable Ψ2 through a surrogate response
function.

Instead, if the goal is to actually predict the future
state of the observable Ψ2, by means of a prognos-
tic relation, it turns out that not all choices of pre-
dictor are equally successful to perform the prognosis
of a given predictand, because the surrogate response
function might be, as opposed to the standard response
(Green) function, not causal, i.e., its support is not lim-
ited to non-negative times.
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The analysis performed on the Lorenz ’96 model [52–
54] in [49] explicitly showed that the response of an
observable Ψ1 to a given perturbations could be pre-
dicted by the response of a certain observable Ψ2 but
could not be predicted by the response of a third one
Ψ3, because, in the latter case, the surrogate response
function has a non-causal component.

This paper

Following the seminal contribution by Granger [55],
more and more attention has been recently paid to find-
ing rigorous ways for defining and detecting causal links
within complex systems [56], and climate science has
been a very successful fertile of application of such ideas
[57–60].

In this paper, we address this class of problems using
a different viewpoint. We want here to make a step
forward compared to [49] with the goal to better quan-
tify the skill of different observables in predicting the
response of a given observable. Here, we propose a
way to evaluate how much their corresponding surro-
gate response functions are not causal. This problem
can emerge in a variety of situations, where we have
more non-predictive surrogate response functions and
we want to choose between them the one which pro-
vides the best prediction. For example, we could have
a set of observables {Ψ1, . . . ,Ψm} and we could aim at
finding out which one(s) can be used to predict most
accurately the response of another observable Ψa. Any
observable whose surrogate response function is predic-
tive is equally good at this regard. If only one among the
m observables features a predictive surrogate response
function, the choice is obvious. The choice becomes less
straightforward when all the observables {Ψ1, . . . ,Ψm}
are not predictive. We would like to have a quantita-
tive method that allows us to choose the most predictive
one among them. Another setting where such a method
could be helpful is when we want to understand whether
an observable Ψa predicts better Ψb or viceversa, as a
better predictive power can be linked to a causal link
or a flow of information with a definite verse from an
observable to the other.

Specifically, we investigate causal links in the con-
text of a spatially extended system undergoing chaotic
dynamics, namely, the paradigmatic Lorenz 96 (L96)
model [52–54]. We investigate the response of the sys-
tem to localised forcings, and we observe the system by
looking at its local properties in different regions. We
assess whether the response of local observables can be
used to predict the response of other local observables
of interest. One of the goals of this analysis is to see
whether we can detect a clear indication of the way
signals propagate inside the system. The recent con-
tributions [61,62] pursue closely related scientific goals.
We also explore the possibility suggested in [49] that the
predictive skill of the surrogate approach proposed here
could dramatically improve if one perturbs the system
with multiple forcings and uses multiple observables as
surrogate predictors.

The rest of the paper is structured as follows. In
Sect. 2, after briefly reviewing the surrogate LRT [49],
we present the predictability index (PI), which aims
at quantifying how much a surrogate response function
is non-predictive. We will remark that the presence of
such an index provides the opportunity to build an hier-
archy of observables in terms of their predictive power
of other observables. In Sect. 3 we apply the surrogate
LRT on the L96 model, considering local perturbations
and local observables. We will also explore the impact
of adding information gathered from global observables
to predict the local forced response. In Sect. 4 we sum-
marise the main findings of this study and present per-
spectives for future research. A set of Appendices pro-
vides supplementary material of possible interest for
the reader. In Appendix A we provide an illustrative
example to better explain the meaning of the PI. In
Appendix B we provide evidence of the fact that in our
experiments and data analysis we are in a linear regime
of response. In Appendix C we clarify some asymp-
totic properties of the response of the Lorenz ’96 model,
while in Appendix D some specific properties of the sur-
rogate response functions are discussed.

2 Surrogate response theory

Following Ruelle [8–10], we recapitulate very informally
some basic elements of LRT by studying the effect of
perturbing an Axiom A system of the form ẋ = F (x),
where x ∈ M, a smooth compact manifold of dimen-
sion D. We introduce the following complex pattern of
forcing, consisting of N independent perturbations:

F (x) → F (x) +
N∑

l=1

el(t)Gl(x), (1)

where G1(x), . . . , GN (x) are D−dimensional smooth
vector fields, while e1(t), . . . eN (t) are time patterns. In
linear approximation, which is relevant in the case the
applied forcings are small, it is possible to write the
change in the expectation value of any smooth observ-
able Ψ as follows:

δ〈Ψ〉(t) =
N∑

j=1

∫ ∞

−∞
dτej(τ)ΓΨ,Gj

(t − τ), (2)

where we have introduced the linear (Green) response
functions ΓΨ,Gj

, which mediate the effect of the time
pattern of the perturbation ej at time τ < t on the
observable Ψ at time t. The response function can be
seen as the expectation value in the unperturbed system
of a highly nontrivial observable that depends on the
applied forcing and on Ψ:

ΓΨ,Gj
(t) = Θ(t)

∫
ρ0(dy)Gj(y)∇y(Ψ(y(t))), (3)
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where Θ is the Heaviside distribution, which deter-
mines the causality of the response functions, ρ0 is
the invariant measure of the unperturbed system and
Ψ(y(t)) = StΨ(y) = exp(L0t)Ψ(y) is the value of the
observable Ψ at time t following the evolution in time
according to the dynamics of the unperturbed system,
with initial condition y. We have that St is the (unper-
turbed) Koopman operator and L0 = F ·∇ is its gener-
ator. By applying the Fourier transform to Eq. (2), we
obtain the following identitys:

δ〈Ψ〉(ω) =
N∑

j=1

ej(ω)χΨ,Gj
(ω), (4)

where χΨ,Gj
(ω), j = 1, . . . , N are the so-called suscep-

tibilities. Since the response functions ΓΨ,Gj
(t), j =

1, . . . , N are causal, under standard conditions of inte-
grability the corresponding susceptibilities are analytic
in the upper complex ω-plane [63,64].

2.1 Surrogate response functions

A different angle of the problem in LRT has been intro-
duced in [49], where response relations between per-
turbed observables are built. These relations can be
useful in a large variety of contexts, where the knowl-
edge of the forcing is just partial, and we want to use
perturbed observables to diagnose the state of other
perturbed observables. We consider N + 1 independent
observables Ψ1(x), . . . ,ΨN (x). In [49] it is shown that
it is possible to express the linear change of the expec-
tation value of an observable ΨN+1 as a function of the
ones of the other N observables:

δ〈ΨN+1〉(ω) =
N∑

l=1

JN+1,l(ω)δ〈Ψl〉(ω), (5)

where we take the surrogate of the N forcings using the
other N observables through the surrogate susceptibili-
ties JN+1,l, l = 1, . . . , N . In [49] explicit expressions for
the surrogate susceptibilities JN+1,l(ω) are derived:

⎛

⎜⎝
JN+1,1(ω)

...
JN+1,N (ω)

⎞

⎟⎠ =

⎛

⎜⎝
χΨ1,G1(ω) . . . χΨN ,G1(ω)

...
. . .

...
χΨ1,GN

(ω) . . . χΨN ,GN
(ω)

⎞

⎟⎠

−1

×

⎛

⎜⎝
χΨN+1,G1(ω)

...
χΨN+1,GN

(ω)

⎞

⎟⎠ . (6)

Once we have obtained the surrogate response func-
tions, we plug them into Eq. (5), obtaining the following
expression:

δ〈ΨN+1〉(t) =
N∑

l=1

∫ +∞

−∞
dτHN+1,l(t− τ)δ〈Ψl〉(τ). (7)

where HN+1,l(t) is the inverse Fourier transform of
JN+1,l(ω), l = 1, . . . , N .

Note that the previous relation does not involve the
time patterns of the acting forcings. This has impor-
tant practical consequences. If we are able to derive the
functions HN+1,l(t) or JN+1,l(ω), l = 1, . . . , N from a
probe experiment performed with a (broadband) time
pattern of forcing, we can use Eq. (7) to reconstruct the
time evolution of δ〈ΨN+1〉(t) for any time pattern of the
forcing using as input the time evolution of δ〈Ψj〉(t),
l = 1, . . . , N . This will investigated in the next Sect. 3.2.
This inverse problem can also be approached by con-
sidering monochromatic forcings and scanning across
frequencies, in the spirit of the algorithms proposed in
[50,51].

Equation (7) can be employed to diagnose, at the
linear level in the perturbation, the time behaviour of
ΨN+1 by means of other N observables. On the other
hand, it is not always possible to perform the progno-
sis of ΨN+1 using the same observables, which can be
useful in prediction problems. This requires that the
response functions HN+1,l ∀ l = 1, . . . , N are causal,
i.e., their support is in the non-negative domain.

Let us expand more on the case N = 1, to better
clarify some issues associated with the surrogate LRT.
Equations (6) and (7) become

J2,1(ω) ≡ χΨ1,G(ω)
χΨ2,G(ω)

,

δ〈Ψ2〉(t) =
∫ ∞

−∞
H2,1(t − τ)δ〈Ψ1〉(τ). (8)

The surrogate response function H2,1 is predictive—
i.e., it has support only on the non-negative domain—
if and only if its Fourier transform J2,1 has no poles
in the upper complex ω−plane. Since the numerator
χΨ1,G(ω) is analytic in the upper complex ω plane, loss
of predictability is realised only if the response function
χΨ2,G(ω) at the denominator has complex zeros in the
upper complex ω plane, see discussion in [49].

Indeed, we expect that for a given forcing not all
choices of predictors and predictands are equally suc-
cessful in terms of predictive power. For instance, if
there is a causal relation in a feedback or a flow of
information linking observable Ψ1 and Ψ2, one expects
the presence of an asymmetry in the mutual predictive
power.

Lastly, we remark that the surrogate response func-
tion could have a singular component in 0, as it is noted
in [49]. There is a close link between the short-time
behaviour of ΓΨ1,G and the high-frequency behaviour
of its Fourier transform:

ΓΨ1,G(t) ≈ αΨ1,GΘ(t)tα ⇔ χΨ1,G(ω)

≈ (αΨ1,G α! iα+1)
1

ωα+1
(9)

As a consequence, it is possible to obtain the asymptotic
behaviour of the Fourier transform of the surrogate
response function J2,1 using the asymptotic behaviour
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of the response functions. In particular, if for large val-
ues of ω we have that χΨ1,G ≈ 1/ωα1+1 and χΨ2,G ≈
1/ωα2+1, we derive

J2,1(ω) ∝
ω→∞

1/ωα1+1

1/ωα2+1

∝
ω→∞ ωα2−α1 . (10)

If α1 < α2 J2,1(ω) diverges for large values of ω, while
it converges to a non-vanishing constant for α1 = α2.
Hence, in these cases the surrogate response function
H2,1(t) will have a singular component S2,1(t) in t = 0,
because the Fourier transform of (−iω)j is δj(t), i.e.,
the jth derivative of the delta function δ(t). We can
then write

H2,1(t) = S2,1(t) + K2,1(t), (11)

where K2,1(t) (S2,1(t)) is the non-singular (singular)
component. On the contrary, if α1 > α2 the surrogate
response function H2,1(t) has no singular component
S2,1.

Note that the exponent α describing the short time
behaviour of the response function controls how long
it takes for the observable to feel the effect of the forc-
ing. The higher the exponent, the slower is the build-up
of the effect of the forcing on the observable. Hence, it
makes sense to use Ψ1 to predict Ψ2 only if α1 ≤ α2, i.e.,
if Ψ1 feels the applied perturbation before or approxi-
mately at the same time as Ψ2. From now on we then
exclude the case α1 > α2.

The part of the surrogate response function H2,1

that is practically usable for predictions has support
restricted to the non-negative domain, and can then be
expressed as follows:

Hc
2,1(t) = Θ(t)K2,1(t) + S2,1(t). (12)

In practice, since the outputs of numerical simula-
tions have finite precision, Hc

2,1(t) can be reconstructed
from data as follows:

Hc
2,1(t) ≡ lim

ε→0+
(Θ(t + ε)H2,1(t)) , (13)

where the ε− regularization has been introduced to
include in the definition of Hc

2,1 possible singular com-
ponents of H2,1(t) at t = 0.

2.2 Quantifying the ability to predict

The presence of the non-causal component in the surro-
gate response function H2,1 hinders the prediction of Ψ2

at time t using just the time behaviour of Ψ1 up to time
t. An interesting problem is to actually quantify the
non-causal component of the surrogate response func-
tion. This quantification would allow to build an hier-
archy of observables in terms of their predictive power
of other observables.

From the discussion above, we then have that the
surrogate response functions are of the form:

H2,1(t) = S2,1(t) + K2,1(t)
= s2,1δ(t) + K2,1(t),

(14)

where the constant s2,1 ∈ R can also be zero. We pro-
pose to quantify the ability of the observable 1 to pre-
dict the observable 2 with the predictability index (PI),
which is defined as follows:

R(H2,1) ≡ ‖Knc
2,1(t)‖1

‖Kc
2,1(t)‖1 + ‖S2,1‖1

, (15)

where

Kc
2,1(t) = Θ(t)K2,1(t), Knc

2,1(t) = Θ(−t)K2,1(t),
(16)

hence Kc
2,1 is the causal part of the non-singular com-

ponent of the surrogate response function, while Knc
2,1

is its non-causal part. In addition, ‖•‖1 is the standard
L1 norm. The PI depends on the system under inves-
tigation, the space pattern of the forcing G(x) and on
the observables Ψ1 and Ψ2.

The PI is non-negative and vanishes if and only if
the surrogate response function is predictive, because
its support includes only the non-negative domain. A
large value for the PI indicates that the response of
the observable 1 is a poor predictor of the response of
the observable 2. Moreover, since this method revolves
around the surrogate response function, it does not
depend on the chosen time pattern. We will actually see
the effectiveness of this indicator in the L96 model in
Sect. 3. A few pedagogical examples can also be found
in Appendix A.

We can generalize the indicator given in Eq. (15)
to the case when we use Ψl, l = 1, . . . , N observ-
ables as predictors of the observable ΨN+1, as in Eq.
5. For each surrogate response function HN+1,l(t), with
l ∈ {1, . . . , N}, we define its singular part SN+1,l(t) and
its non-singular part KN+1,l(t), which, in turn, can be
split into the non-causal component Knc

N+1,l and the
causal component Kc

N+1,l. We assume that all these
surrogate response functions are of the type Eq. (14).
We then define

R({HN+1,l}l=1,...,N )≡
∑N

l=1‖Knc
N+1,l(t)‖1

∑N
l=1

(
‖Kc

N+1,l(t)‖1+‖SN+1,l(t)‖1

) .

(17)

3 The Lorenz ’96 model

3.1 Model formulation

The L96 model [52–54] is a paradigmatic model that
provides a metaphor of some essential properties of the
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Fig. 1 Plots of the
response functions Γi,k for
i={k−2, k−1, k, k+1, k+2}
and ε = 1. We also portray
ΓΨ1,k, the response
function for the mean
momentum Ψ1 (Eq. 26).
see also Fig. 14

Fig. 2 Propagation of the perturbation for small times in
the L96 model perturbed locally in xk starting from a time
t. The vertical lines are the dynamical variable xk taken
at different time instants, while the horizontal line below
is the time axis. We have discretized the time in unit time
steps for clarity purposes. At a given time, we have coloured
the dynamical variables which feel directly the perturbation
from the perturbed variables of the instant before with red.
The colour loses its intensity as time goes by. We can notice
that there are more red-coloured variables above the site
xk than below. This is consistent with the fact that the
information propagates from the dynamical variables xk+j

with j < 0 to the dynamical variables xk+j with j > 0,
with a velocity given by the group velocity vg, shown with
a green arrow in the figure

dynamics of the atmosphere. It is defined on a lattice
of N grid points and the evolution of the variables xi,
i = 1, . . . , N is given by the following system of ordinary
differential equations:

ẋi = xi−1(xi+1 − xi−2) − γxi + F, (18)

where F is a constant controlling the external forcing, γ
(usually set to a unitary value, as done also here) mod-
ulates the strength of the dissipation, and the quadratic
term on the right hand side describes a non-standard
advection process. The system obeys periodic bound-
ary conditions, so that xi−N = xi = xi+N for all values
of i. The qualitative properties of the dynamics of the
L96 model changes dramatically accordingly to the val-
ues of F and N . In particular, it can be shown that,
when γ = 1, the dynamics of the model is chaotic for
F ≥ 5 and the system becomes to a good approximation
extensive as N ≥ 20 [65]. One can show that travelling
waves appear on top of the turbulent background in the
chaotic regime, with phase velocity directed towards
decreasing values of i [52]. Instead, the group veloc-
ity, which marks the direction of the propagation of
information within the system, is directed in the oppo-
site direction, towards increasing values i [66]. Detailed
analyses of the properties of the L96 model can be found
in [65,67,68], where the reader can find also an exten-
sive bibliography. Recently, two extensions of the L96
model have been proposed, one able to accommodate
for a complex interplay between dynamics and thermo-
dynamics [66], and one featuring multiple competing
attractors [69].
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Fig. 3 Surrogate response functions Hi,k for i ∈ {k−2, k−
1, k, k + 1, k + 2}

3.2 Numerical simulations

3.2.1 Linear response functions

We will now apply the formalism of the surrogate LRT
to the L96 dynamical system Eq. (18). We will set our-
selves in the chaotic regime by choosing N = 36 and
F = 8. In [49], the focus was on global perturbations,
which impact directly all the variables xi, i = 1, . . . N ,
and on global observables. We want now to take a dif-
ferent route, focusing on local perturbations and local
observables, which had initially been proposed in [17].
In particular, we choose the following spatial pattern of
applied forcing:

Gi(x) = εδik, i = 1, . . . N (19)

where δik is the Kronecker delta, which has unitary
value if the two indices are identical and vanishes other-
wise, and ε is a real number which measures the magni-
tude of the perturbation. Equation (19) implies that we
apply an extra forcing only at kth grid point. We will
consider as observables of interest the dynamical vari-
ables xj . With these choices of the perturbation and the
observables, the problem we are addressing amounts to
asking to what extent a perturbed variable at location i
can predict the future state of another perturbed vari-
able at location j after the system has been perturbed
locally at location k. Given the discrete symmetry of
the system, we expect that these properties will depend
only on the relative position of i, j, and k, but, since the
propagation of the information in this system is direc-
tional, we expect that they will not depend only on the
distance between these locations.

Let Γi,k be the response function of the perturbed
variable xi to the perturbation with spatial pattern Eq.
(19), located in xk. Along the lines of [49], we esti-
mate Γi,k by considering a probe with time pattern a
Dirac’s delta: e(t) = δ(t). We then run a long simu-
lation with a random initial condition using adaptive

Runge–Kutta method of order 4 implemented through
the Python function solve_ivp. We discard an initial
transient of length Ttr and then we create an ensemble
of M initial conditions {x̄(k)}, chosen each Tgap time
units of the simulations. There is considerable flexibil-
ity in choice of Ttr and Tgap. Ttr depends on the chosen
initial condition and should be much larger than the
time it takes for the orbit to be come in close proxim-
ity of the attractor, while Tgap should be much longer
than the inverse of the first Lyapunov exponent of the
system to guarantee—at all practical levels—that the
initial conditions are virtually independent. Our first
estimate of the response function Γ+

i,k is obtained by
averaging over such an ensemble of M initial conditions
the quantities δx

(k)
i (t) :

Γ+
i,k(t) =

1
εM

M∑

k=1

δx
(k)
i (t), (20)

where δx
(k)
i (t) is the difference between the value of the

variable xi at time t in the perturbed and unperturbed
run, both having the same initial condition x̄(k). We
then repeat the same procedure by switching the sign
of the forcing: ε → −ε, obtaining Γ−

i,k(t). Our estimate
of the response function is then given by

Γi,k(t) =
Γ+

i,k(t) + Γ−
i,k(t)

2
, (21)

The last step allows to remove the second-order correc-
tion to the linear response and considerably increases
the precision of the estimate [70]. The linearity of the
responses has been tested to hold very well up to ε = 1,
see Appendix B. We choose ε = 1 for our numer-
ical studies in order to have a good signal-to-noise
ratio while being within the regime of linear response.
We remark that the procedure above ensures that the
response function is causal.

The response functions Γi,k for i = {k−2, k−1, k, k+
1, k+2} obtained for M = 2·106 and ε = 1 are shown in
Fig. 1. We focus on the dynamical variables nearby the
perturbation site, because the intensity of the response
decreases dramatically as we move further away, as dis-
cussed below.

3.2.2 Hierarchy in predictive power

Propagation of the perturbation signal

We now look at the leading order term of short-time
behaviour of Γi,k for positive times (Γi,k vanishes for
negative times):

Γi,k(t) ≈
t→0+

⎧
⎪⎨

⎪⎩

1 + O(t), i = k

〈C(1)
i 〉0 + O(t2). i ∈ {k − 1, k + 2}

〈C(q)
i 〉0tq + O(tq+1), i ∈ {k − q, k + 2q − 3, k + 2q}, q ≥ 2,
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Fig. 4 a Non-singular
part of the surrogate
response function
Kk+2,k−1. b Surrogate
response functions
Hk−2,k−1 and Hk+1,k−1

(a)

(b)

(22)

where the coefficient 〈C(q)
i 〉0 is the expectation value of

the function C
(q)
i taken over the stationary measure ρ0,

see Appendix C. In particular, we notice that at t = 0
the response function Γi,k is equal to 1 if i = k and it is
vanishing for i �= k. This is intuitive: at t = 0 the per-
turbation is felt in all its intensity just at the grid point
that has been directly perturbed. As t increases, the
perturbation propagates also to the other grid points
xi, with a time scale determined by the leading order
term given in Eq. (22). Note that the perturbation prop-
agates more efficiently towards the right (i > k) than
towards left (i < k), since for each dynamical variable
xk−q at the left of xk with leading term tq there are
two dynamical variables xk+2q−3 and xk+2q (for q > 1)
at its right with the same leading term. We can have
a clearer intuition of the actual propagation of the sig-
nal in space and in time by looking at the cartoon in
Fig. 2. It is remarkable that the site k + 3 or k + 5
are affected by the forcing later than the sites k + 4 or
k + 6, respectively, in agreement with the well-known
fact that advection in the L96 system is non-standard.
This further indicates that the advection taking place
in the L96 system is a non-standard one.

The high-frequency asymptotic behaviour of the sus-
ceptibilities corresponding to the response functions
given in Eq. (22) can be derived using Eq. (9).

Hierarchy of the dynamical variables

We want now to build a hierarchy of the dynami-
cal variables in terms of their predictive power of the
other dynamical variables. In particular, this hierarchy
is closely related to how the perturbation signal prop-
agates in the system: the sooner a dynamical variables
feels the perturbation and the more predictive it will be.
We construct the surrogate response function using Eq.
(8) and by then applying the cutoff introduced in Eq.
(12). We define as Hi,j the surrogate response function
that allows one to reconstruct the variable i using the
variable j as surrogate forcing. We indicate with Ki,j

(Si,j) its non-singular (singular) component, and with
Hc

i,j its causal component,
The variable with the highest predictive power is

obviously xk, since it responds immediately to the per-
turbation applied at the site k. Indeed, the non-causal
component of the surrogate response functions shown
in Fig. 3 is entirely negligible. The second most pre-
dictive variables are xk−1 and xk+2. A few surrogate
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Fig. 5 a Non-singular
part of the surrogate
response function
Kk−1,k+2. b Surrogate
response functions
Hk−2,k+2 and Hk+1,k+2

(a)

(b)

response functions employing them as predictors are
shown in Figs. 4 and 5. We can observe that these surro-
gate response functions show a rather small non-causal
component. Notice that just the non-singular compo-
nents Eq. (11) are shown in the figures, for clarity pur-
poses. The third most predictive variables between the
ones we have considered are xk−2 and xk+1. In Fig.
6, we show the non-singular parts of the related sur-
rogate response functions Kk−2,k+1 and Kk+1,k−2. We
can notice that their non-causal components are more
relevant than the ones considered before, because the
information retained by the predictors is degraded.

We can better quantify the importance of the non
causal component of the surrogate response functions
through the PI introduced in Eq. (15). The results are
presented in Table 1 for the surrogate response func-
tions between the dynamical variables xk−2, xk−1, xk+1

and xk+2. Looking at the values provided by the PI, we
observe that the weight of the non causal part is big-
ger when the predictors are xk−2 and xk+1. This is in
agreement with the hierarchy described above.

Another aspect we wish to analyse is whether one can
define a preferential direction for performing the pre-
diction. If we take two variables xi and xj , we can ask
ourselves whether it is better to use xi to predict xj or
the other way around. Of course, this issue makes sense

Table 1 PI for the surrogate response functions between
the dynamical variables xk−2, xk−1, xk+1 and xk+2

xk−2 xk−1 xk+1 xk+2

xk−2 · · 0.083 ·
xk−1 0.013 · 0.019 0.0022
xk+1 0.58 · · ·
xk+2 0.0068 0.0033 0.014 ·
In the first column there are the predictors, while in the first
row there are the predictands

in the case the two variables xi and xj have the same
rank (otherwise we would just use the higher ranked
variable as a predictor). This is the case of xk−1 and
xk+2 and of xk−2 and xk+1. Making use of Table 1,
we see that in both cases the variable with lower index
(more to the left) is the better predictor. This is con-
sistent with the fact that the group velocity vg of the
travelling waves in L96, which controls the flow of infor-
mation, is positive (from left to right): the variables
that are situated upstream predict better than those
situated downstream.

Now we test the actual predictive ability of the sur-
rogate response function computed above. We perturb
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Fig. 6 a Non-singular
part of the surrogate
response function
Kk+1,k−2. b Non-singular
part of the surrogate
response function Kk−2,k+1

(a)

(b)

the L96 system with the vector field having spatial pat-
tern G(x) = εδi,k as above and having the following
time pattern:

e(t) = Θ(t) − Θ(t − τ), (23)

with τ = 5. This time pattern seems relevant because
corresponds to the act of switching abruptly on and off
the perturbation, and keeping it active for a time scale
that is longer than the inverse of the first Lyapunov
exponent of the system (about 0.6 time units). There-
fore, it allows to appreciate both transient and longer
term features of the response of the system. We then
test the skill of the variable xk in predicting xj , with
j ∈ {k − 2, k − 1, k + 1, k + 2}:

δ〈xi〉(t) =
∫ ∞

−∞
dτ Hc

ij(t − τ)δ〈xj〉(τ), (24)

where we use only the causal component of the sur-
rogate response function. The predictions are shown in
Fig. 7, where we can notice that the agreement between
the actual response and the prediction made through
the surrogate response functions, where xk is the pre-
dictor is very good in all cases.

We now consider the second most predictive dynami-
cal variables xk−1 and xk+2. The predictions are shown
in Fig. 8. We can notice that these predictors work
quite well: despite not being directly perturbed by
the forcing, they retain a lot of information. We also
remark that some discrepancy between prediction and
the actual response emerges in terms of mismatch of
the oscillations taking place during the plateau of the
forcing.

Finally, we take into account the predictions made
using the variables xk−2 and xk+1. As we can see in
Fig. 9, the predictions are clearly less successful than
in previous cases, even though they show a qualitative
agreement with the actual responses. This is explained
by the greater relevance of the non-causal components
of the related surrogate response functions Hk−2,k+1

and Hk+1,k−2, as it can be seen in Fig. 6; see also Table
1. Remarkably, be comparing the two panels of Fig. 9,
we can clearly see the asymmetry between the mutual
predictive power of xk−2 (better predictor) and xk+1

(worse predictor) discussed above.

3.3 Making predictions with more observables

We have shown above that some local variables cannot
well predict other local variables, as a result of how
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Fig. 7 Comparison between the response of the perturbed
L96 system to perturbation with spatial pattern Eq. (19)
and time pattern Eq. (23) with τ = 5 and the predictions
made using the surrogate response functions Hi,k for i ∈
{k − 2, k − 1, k + 1, k + 2}

the perturbation signal propagates across the system.
Following the discussion in Sect. 2, we test whether this
can be improved by applying two independent forcings

and, correspondingly, using two predictors. The idea is
that by adding a forcing and a predictor we are able to
learn more about the properties of the system and of
its response. We then add, on top of the perturbation
described by Eq. (19) with time pattern given by Eq.
(23), a second forcing that impacts the viscosity of the
system acting at the kth grid point:

G
(2)
i (x) = −xi δikε2. (25)

The forcing is applied using the temporal pattern

e(2)(t) = Θ(t) − Θ(t − τ2),

where τ2 = 3.
The corresponding response functions Γ(2)

i,k for i =
{k − 2, k − 1, k, k + 1, k + 2} obtained for M = 2 · 106

and ε = 0.1 are shown in Fig. 10. We have tested the
linearity of the response of the system for values of ε2
ranging from 0.01 up to 2 and found that nonlinear
corrections are negligible for ε2 ≤ 0.25; see Appendix
B. Note that here we need to consider smaller values
of ε2 compared to the case of the forcing G(1) because
of the presence of the factor xi (|xi| is typically larger
than one in the unperturbed runs). We then perform

Fig. 8 Same as Fig. 7,
but looking at predictions
performed using xk−1 in a
and with xk+2 in b

(a)

(b)
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Fig. 9 Same as Fig. 7,
but looking at predictions
performed using xk−2 in a
and with xk+1 in b

(a)

(b)

the data analysis for the case of the combined forcings
G(1) and G(2) using ε2 = 0.1.

As shown in Eq. (5) for N = 2, it is then necessary
to choose a second observable as predictor. We choose
the following global observable:

Ψ1(t) ≡ 1
N

N∑

i=1

xi. (26)

Note that Ψ1 is usually interpreted as the mean momen-
tum of the system [16]. The corresponding response
function ΓΨ1,k(t) (Γ(2)

Ψ1,k(t)) to the forcing defined in
Eq. (19) (Eq. 25) is portrayed in Fig. 1 (Fig. 10). By
symmetry, ΓΨ1,k(t) and Γ(2)

Ψ1,k(t) do not depend on k.
This choice is motivated by the fact that we wish to sim-
ulate the situation, where a local observer, e.g., xk+1,
uses information on its own local state and on global
properties of the system to predict the state of another
local observer, e.g., xk−2. We perform the prediction
using the following formula:

δ〈xk−2〉(t) = Hc
k−2,Ψ1

(t) ∗ δ〈Ψ1〉(t)
+Hc

k−2,k+1(t) ∗ δ〈xk+1〉(t). (27)

These surrogate response functions have in general dif-
ferent poles than the ones previously defined in the case

of just one forcing, see discussion in Appendix D. In
Fig. 11, the surrogate response function Hk−1,Ψ1 and
the non-singular component Kk−2,k+1 of the surrogate
response function Hk−2,k+1 are shown. By comparing
Figs. 6b and 11b, we note that the non-causal com-
ponent of the response function associated to xk−2 is
greatly reduced once a second forcing and a second
observable are used. In addition, we also note that the
amplitude of the surrogate response function associ-
ated to xk−2 is greatly reduced, implying that most of
the information on xk−2 is drawn from Ψ1 in the case
analysed here. The improvement in our ability to pre-
dict xk−2 is summarised in Table 2. By comparing the
dashed lines in Figs. 12 and 9, one notices that adding
the second forcing given in Eq. (25) has little effect on
the actual response of xk−2; indeed, the contribution to
the response is smaller by a factor O(10−2) (not shown)
with respect to what coming from the forcing given in
Eq. (19). But, instead, our ability to predict using sur-
rogate response functions increases substantially when
we add Ψ1 as predictor, even if such observable has little
information on the local properties of the system. This
is due to the fact that adding a second perturbation to
the system and a second observable as predictor regu-
larises our problem. Indeed, a greater predictive skill is
obtained even if we perform simulations with smaller
values of ε2 than what reported above (not shown).
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Fig. 10 Plots of the response functions Γ
(2)
i,k for i = {k −

2, k − 1, k, k + 1, k + 2} and ε = 0.1. We also portray Γ
(2)
Ψ1,k,

the response function for the mean momentum Ψ1 (Eq. 26).
See also Fig. 15

4 Conclusions

In this paper we have explored the possibility of using,
in the linear regime, an observable of a perturbed sys-
tem as predictor of the response of another observable
of the same system perturbed by a forcing. While spe-
cific conditions need to be met to be able to perform
an actual prediction, it is always possible to recon-
struct a posteriori the desired signal. The procedure
requires gathering first some information on the rela-
tionship between the response of the two observables
. Such a knowledge can be obtained by looking at the
linear response of the two observables to the forcing
undergoing a broadband temporal modulation (e.g., a
kick in the form of a Dirac’s delta). Then, the approach
allows to use the response of one observable to recon-
struct and, when possible, predict, the response of the
second observable for any temporal pattern of modula-
tion of the forcing. Hence, the first observable is used
as a surrogate for the external forcing. The theory clar-
ifies that the ability of two observable to predict each
other is not the same, and allows for the treatment of
N independent forcings to the system.

This approach can be very useful in the case we are
facing an inverse problem, where we have limited infor-
mation on the system and in particular on the acting

Fig. 11 a Surrogate
response function Hk−2,Ψ1 .
b Non-singular part of the
surrogate response function
Kk−2,k+1

(a)

(b)

123



Eur. Phys. J. Spec. Top.

Table 2 PI for the surrogate response function Hk−2,k+1

when one forcing G(1) is used (left) and PI for the surrogate
response functions Hk−2,Ψ1 and Hk−2,Ψ1 when two forcings

G(1) and G(2) are applied

G(1) G(1) and G(2)

0.58 0.0063

Fig. 12 Response of xk−2 to two acting forcings (dashed
line) and prediction obtained using xk+1 and Ψ1 as predic-
tors

external forcing, while we can observe multiple features
of the system at the same time and we want to be able
to use internal feedbacks as surrogate forcings. This
general viewpoint is closely linked to the vast class of
problems associated with finding causal links in com-
plex systems and it is of potential interest in many
research area dealing with complexity, such as neuro-
sciences and geosciences. Note that the very science of
paleoclimatic reconstruction and the definition of proxy
data implicitly uses some of the ideas presented here.
Another area of applications of surrogate response the-
ory is the analysis of the response of spatially extended
system to perturbations, which has been the focus on
this contribution.

We have focused on the interplay between applying
localised forcing and observing the system at specific
locations in the vicinity of where the forcing is applied
using the L96 model as benchmark system. We have
shown that, closely following the way signals propa-
gate in the L96 model, one can establish a hierarchy
of observables in terms of their ability to predict each
other, where higher ranking observables are charac-
terised by being impacted earlier by the applied per-
turbation. Such a hierarchy can be analytically moti-
vated by looking at the asymptotic properties of suit-
ably defined response functions. The prognostic abil-
ity of an observable with respect to a predictand can
be quantified by evaluating the relative weight of the
causal vs. of the non-causal components of the corre-
sponding surrogate response function. Indeed, one can
also verify that, one considers two observables that are

impacted by the applied forcing with the same time
delay, it is in general true that the ability to predict
each other is not symmetric.

The presence of such an asymmetry is associated with
the group velocity on travelling waves in the system:
variables with lower index predict better variables with
higher index than vice versa. Finally, we have shown
that implementing a more general form of surrogate
response theory, where two independent forcings are
applied and two observables are used as predictors,
improves the quality of the prediction at local level even
if the second observable used as predictor is a global
one, because we are able to regularise the inverse prob-
lem addressed in this work compared to the simpler set-
ting, where one forcing is applied and one observable is
used as predictor. Our results are suggestive of the pos-
sibility of using the partial information gathered from
the response of some observables in spatially extended
system to reconstruct and predict the response for other
observables when it is hard or impossible to know the
exact form of the forcings.
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Appendix A: Predictability Index: a simple
example

We now consider a simple example to show the main idea
behind the effectiveness of the PI introduced in Eq. (15). We
consider the following idealised surrogate response function:

H(t) = Θ(t)A e−at + Θ(−t)B ebt + Cδ(t), (A1)

where the coefficients a and b are positive, while the con-
stants A, B and C are real numbers. The non-causal and
casual components of the non-singular part are respectively
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Fig. 13 Causal (Kc) and non-causal (Knc) components of
the non-singular part and singular part S of the surrogate
response function given in Eq. (A1). The areas under the
curves correspond to the various contributions appearing in
Eq. (A2). The contribution coming from the singular term
is represented as a rectangle. We have used A = 4, B = 5,
C = −5, a = 1 and b = 2; in this case, R = 5/18

Knc(t) = Θ(−t)B ebt and Kc(t) = Θ(t)A e−at, while the
singular part is S(t) = Cδ(t). Note that the time scale
related to the causal component is 1/a, while the time scale
related to the non-causal component is 1/b. The smaller is
the coefficient b, the larger is the time scale and the impor-
tance of the related component in the response function. The
PI for the surrogate response function given in Eq. (A1) is

R(H) =
‖Knc(t)‖1

‖Kc(t)‖1 + ‖S(t)‖1

(A2)

where ‖Knc(t)‖1 = |B|/b, ‖Kc(t)‖1 = |A|/a, and ‖S(t)‖1 =
|C|. Clearly, its value depends on the interplay of the time
scales of the causal (1/a) and non-causal (1/b) components
and of the magnitude of the three components A, B, and
C; see Fig. 13 for a graphical representation of the contri-
butions of the various terms.

Appendix B: Test of the linearity of the
response in the Lorenz ’96 model

When performing an analysis based on LRT, it is clearly
essential to make sure that we are indeed studying the sys-
tem in a regime where higher order terms in the perturbative
expansion accounting for the full response are negligible.

Figure 14 portrays the estimates for various response
functions Γi,j(t) obtained using a range of values for the
intensity ε of the perturbation applied according to Eq. (19).
In all cases we have followed the procedure described in Sect.
3.2. The ε = 1 curves are also reported in Fig. 1. Figure
15 provides the corresponding information on the range of
linearity of the response of the system to the perturbation
applied according to Eq. (25).

Appendix C: Asymptotic properties of the
response in the Lorenz ’96 model

Following [17], it is possible to obtain the behaviour of the
response functions Γi,k for t → 0+ in the L96 system as fol-
lows. Let us consider the response function Γi,k in our case,
with space pattern G(x) = εδik and perturbed observable
xi:

Γi,k =Θ(t)

∫
ρ0(dx)

∑
l

G δkl∂l(xi(t))

=Θ(t)

∫
ρ0(dx) ∂k(xi(t)),

(C1)

where ∂k stands for the derivation with respect to xk(0) and
ρ0 is the steady-state distribution over the initial condition
x(0) from which the trajectory x(t) starts. We now perform
a Taylor expansion of xi(t) at t = 0+ and we exploit the
evolution equation Eq. (18):

∂k(xi(t)) ≈ δi,k + t(C
(1)
k−1δi,k−1 + C

(1)
k+1δi,k+1

+C
(1)
k+2δi,k+2 − δik) + O(t), (C2)

where C
(a)
p is the coefficient related to the dynamical vari-

able p of the term of order a in the expansion above (we

have that C
(0)
k = δik).

The coefficients for the linear terms (k = 1) give

C
(1)
k−1 =xk−2(0)

C
(1)
k+1 =(xk+2(0) − xk−1(0))

C
(1)
k+2 = − xk+1(0).

(C3)

Considering that
∫

ρ0(dx) xi =
∫

ρ0(dx) xj ∀i, j = 1, . . . , N
because of the discrete symmetry of the system in the unper-
turbed state, we have the linear term in the expansion of
Γk+1,k vanishes.

We can repeat the same derivation for all the grid points
of the system, taking into account that the leading term of
Γk+2q−1,k is tq+1 instead of tq. We obtain

Γi,k(t) ≈
t→0+

×

⎧
⎪⎨

⎪⎩

1 + O(t), i = k

〈C(1)
i 〉0t + O(t2). i ∈ {k − 1, k + 2}

〈C(q)
i 〉0tq + O(tq+1), i ∈ {k − q, k+2q − 3, k + 2q}, q ≥2,

(C4)

where the averages are over the stationary measure ρ0.

Appendix D: Singular components of the
surrogate response

1. Case of one forcing
We consider the perturbation with spatial pattern given by
Eq. (19) and time pattern Eq. (23). The ω → ∞ asymptotic
behaviour of Jk−1,k+2(ω) is given by

lim
ω→∞

Jk−1,k+2(ω) =
lim

ω→∞
χk−1,k(ω)

lim
ω→∞

χk+2,k(ω)
=

〈C(1)
k−1〉0

〈C(1)
k+2〉0

= −1

(D1)
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(a)    (b)    

(c)
 

(d)    

(e)    

Fig. 14 Testing the linearity of the response of the system to the perturbation given in Eq. (19). Different estimates for
the response functions have been obtained using different values of ε
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(a) (b)

(c) (d)

(e)

Fig. 15 Same as Fig. 14, but for the perturbation given in Eq. (25)
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Table 3 Limit behaviour for ω → ∞ of the Fourier trans-
forms of the response functions for the observable Ψ1, xk−2

and xk+1, when two forcings G(1) and G(2) are applied

ω → ∞
χΨ1,G(1) (iG1/(Nω))

χk+1,G(1) −2iG1〈C(2)
k+1〉0/ω3

χk−2,G(1) −2iG1〈C(2)
k−2〉0/ω3

χΨ1,G(2) −(iG2/(Nω)) · 〈x〉0
χk+1,G(2) 2iG2〈D(2)

k+1〉0/ω3

χk−2,G(2) 2iG2〈D(2)
k−2〉0/ω3

where we have used Eqs. (C3) and (C4). As a consequence,
the non-singular component of the surrogate response func-
tion Kk−1,k+2 is obtained by performing the inverse Fourier
transform of the function Jk−1,k+2(ω) + 1.

We then consider the surrogate response functions Hk−2,k+1

and Hk+1,k−2. We proceed as above. We look at the asymp-
totic behaviour of the corresponding Fourier transforms:

lim
ω→∞

Jk−2,k+1(ω) =
lim

ω→∞
χk−2,k(ω)

lim
ω→∞

χk+1,k(ω)
=

〈C(2)
k−2〉0

〈C(2)
k+1〉0

, (D2)

where 〈C(2)
k−2〉0 and 〈C(2)

k+1〉0 can be computed directly from
short-time behaviour of the response functions Γk−2,k and
Γk+1,k:

〈C(2)
k−2〉0 =〈xk−3xk−2〉0

〈C(2)
k+1〉0 = − 〈xk−3xk−2〉0 − 〈xk−2xk〉0.

(D3)

We derive the non-singular components Kk−2,k+1 by per-
forming the inverse Fourier transform of Jk−2,k+1(ω) −
〈C(2)

k−2〉0/〈C(2)
k+1〉0. Using the statistics of the unperturbed

L96 model, we obtain 〈C(2)
k−2〉0/〈C(2)

k+1〉0 ≈ −0.90.
2. Case of two forcings
We now want to investigate the possible presence of singu-
lar components in the surrogate response functions Hk−2,Ψ1

and Hk−2,k+1, in the setting with the L96 system Eq. (18)
perturbed with the two forcings introduced in Sect. 3.3. The
explicit expression of their Fourier transform is given by Eq.
(6) and it is the following:

Jk−2,Ψ1(ω)

=
χk+1,G(2)(ω)χk−2,G(1)(ω) − χk+1,G(1)(ω)χk−2,G(2)(ω)

χk+1,G(2)(ω)χΨ1,G(1)(ω) − χΨ1,G(2)(ω)χk+1,G(1)(ω)

Jk−2,k+1(ω)

=
−χΨ1,G(2)(ω)χk−2,G(1)(ω) + χΨ1,G(1)(ω)χk−2,G(2)(ω)

χk+1,G(2)(ω)χΨ1,G(1)(ω) − χΨ1,G(2)(ω)χk+1,G(1)(ω)

(D4)

To do that, we take the limit for ω → ∞ of the relations
Eq. (D4) and we plug the limits obtained for the response
functions which appear in these relations, listed in Table 3.
As a consequence, the limit behaviour of Eq. (D4) is the
following:

lim
ω→∞

Jk−2,Ψ1(ω) =0

lim
ω→∞

Jk−2,k+1(ω) =sk−2,k+1,
(D5)

where

sk−2,k+1 =
−〈x〉0〈C(2)

k−2〉0 + 〈D(2)
k−2〉0

〈D(2)
k+1〉0 − 〈x〉0〈C(2)

k+1〉0
, (D6)

where 〈C(2)
k−2〉0 and 〈C(2)

k+1〉0 are given by Eq. (D3). Instead,

〈D(2)
k−2〉0 and 〈D(2)

k+1〉0 can be derived by looking at the t →
0+ behaviour of Γk+1,G(2) and Γk−2,G(2) , or, equivalently, at
the ω → ∞ behaviour of their Fourier transforms:

〈D(2)
k−2〉0 =〈xk−3xk−2xk〉0

〈D(2)
k+1〉0 = − 3〈xk−2xk〉0 + 3〈xk−1xk〉0 + 2〈xkxk+1xk+3〉0

− 2〈x2
kxk−1〉0 − 2〈x2

kxk−2〉0.
(D7)

Looking at Eq. (D5), we deduce that Hk+1,Ψ1 has no sin-
gular component. Instead, Kk−2,k+1 can be obtained by
performing the inverse Fourier transform of Jk−2,k+1(ω) −
sk−2,k+1. Using the statistics of the unperturbed L96 model,
we obtain sk−2,k+1 ≈ 0.071.
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