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Abstract
The climate is a complex, chaotic system with many degrees of freedom. Attaining a
deeper level of understanding of climate dynamics is an urgent scientific challenge,
given the evolving climate crisis. In statistical physics, many-particle systems are stud-
ied using Large Deviation Theory (LDT). A great potential exists for applying LDT
to problems in geophysical fluid dynamics and climate science. In particular, LDT
allows for understanding the properties of persistent deviations of climatic fields from
long-term averages and for associating them to low-frequency, large-scale patterns.
Additionally, LDT can be used in conjunction with rare event algorithms to explore
rarely visited regions of the phase space. These applications are of key importance
to improve our understanding of high-impact weather and climate events. Further-
more, LDT provides tools for evaluating the probability of noise-induced transitions
between metastable climate states. This is, in turn, essential for understanding the
global stability properties of the system. The goal of this review is manifold. First, we
provide an introduction to LDT. We then present the existing literature. Finally, we
propose possible lines of future investigations. We hope that this paper will prepare
the ground for studies applying LDT to solve problems encountered in climate science
and geophysical fluid dynamics.
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1 Introduction andmotivation

1.1 The climate crisis: extreme events in a changing climate

The climate is a forced and dissipative nonlinear heterogeneous system composed by
several subdomains, namely the atmosphere, the hydrosphere, the cryosphere, the soil,
and the biosphere. The climate evolves under the action of a primary forcing given by
the incoming solar radiation and modulating factors such as the atmospheric composi-
tion, the optical properties of the surface of the planet, gravity, and the rotation of the
Earth around its vertical axis. Each of these subsystems features complex nonlinear
physical and chemical processes, and the various subsystems interact among them-
selves through exchanges of energy, momentum, and chemical species. As a result of
the interplay between forcing, dissipation, and internal nonlinear dynamics, the climate
system features variability of a vast range of spatial and temporal scales. The climate
can be seen as a prominent example of non-equilibrium system where an approximate
steady state is reached as the inhomogeneous absorption of solar radiation occurring
throughout its domain is compensated by a variety of physical mechanisms, including
thermal emission in the infrared and complex patterns of transport of sensible and
latent heat. Lorenz [172] provided a first comprehensive theory of the dynamics and
thermodynamics of climate able to bring together the main mechanisms of forcing,
energy conversion, and dissipation. The large-scale flows of the ocean and of the
atmosphere ultimately result from the conversion of available potential into kinetic
energy performed by the climatic engine. The conversion takes place through various
mechanisms of instability fuelled by the presence of spatial temperature gradients.
Such instabilities allow for energy conversion between the background state and the
fluctuations of the climatic field and lead to chaotic conditions that are associated with
heterogeneous turbulence in the geophysical fluids. Additionally, these instabilities
establish negative feedbacks, because they tend to reduce, via transport and mixing,
the temperature gradients that support them. See [174,204] for an extensive discussion
of these mechanism.We remark that an exact steady state is never achieved because of
the fluctuations in the incoming solar radiation and in the processes, both natural and
anthropogenic, that alter the atmospheric composition and the surface of the planet
[104,250].

Improving our understanding of the dynamical and statistical properties of the cli-
mate system, of the links between its response to anthropogenic and natural forcings
and of its natural variability is key to provide scientific tools for anticipating, pre-
dicting, and possibly addressing the ongoing climate crisis. The current popularity
of the expression climate crisis as opposed to—the more usual one—climate change
is motivated by the desire to focus on the understanding of how changing climate
conditions will unfold as variations in the higher moments of the distribution of the
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climatic variables, able to better capture the properties of extreme events and tipping
points [104].

Indeed, the study of extreme events is essential for addressing the natural hazards
associated with climate variability and climate change and affecting in a potentially
catastrophic way human and environmental welfare. As the resilience of any system
and the incurreddamages due to anunusual, high-impact event changedrasticallywhen
certain thresholds in the intensity and/or in the duration of the hazard are reached, it
is clear that understanding the fate of extreme events in the context of the changing
climate is essential for accurately factoring in future losses and damages and pre-
pare for them [133]. High-impact events affecting human and environmental welfare
are sometimes associated with the presence of long temporal persistence of a large
anomaly in the field of interest, as resilience—the ability of any system to resist—
against anomalous environmental conditions does not last indefinitely [76,146,214].
Meteo-climatic extremes characterised by persistence are usually referred to as slow
onset events, as opposed to the fast onset ones, which, instead, are associated with
fast processes. Prominent examples of slow onset events are droughts, heatwaves, and
cold spells, while flash floods and intense snowfalls lead to hazards in the category
of fast onset events [133]. We remark that it might be worth considering a revision of
such a classical terminology, because of the multiscale nature of some of the so-called
slow onset events: the onset of an atmospheric blocking responsible for a heatwave
takes usually up to a couple of days, while its duration can be much much longer, and
ranging up to several weeks. Also the exit from long lasting events can be quite rapid
and, anyhow, considerably shorter than their active phase [254,255].

An important remark is also needed regarding the problem of defining persistent
extreme events; we refer here, for the sake of clarity, to the specific case of heatwaves.
While the general understanding is that a heatwave is a period of extreme and unusual
warmth, there is no rigorous nor commonly accepted definition for it in terms of
intensity and persistence of the anomalousweather conditions, despite several attempts
in this direction; see, e.g. [223]. As noted in [206], …it seems that almost, if not every
climatological study that looks at heatwaves uses a different metric... see also [183,243]
for a discussion on the lack of consensus for a shared definition of heatwaves. The
confusion around the definition of heatwave has serious implications as it hinders
attempts at mitigating their impacts [38,195,216].

Changing climate conditions can lead todramatic changes in the statistics of extreme
events. As mentioned above, this is one of the main manifestations of the climate cri-
sis. In the future climate, changes in the statistics of heatwaves are worrying, as more
persistent and larger temperature fluctuations are possible as a result of changes in
the properties of the low frequency variability of the atmosphere and of the properties
of the soil. This effect compounds with the trend in the average temperature, leading
to a greatly increased risk of such catastrophic events [50,210,238]. Climate change
additionally leads to a reduced winter weather variability, as a result of the reduction in
the temperature difference between low and high latitudes [250]. Therefore, the prob-
ability of occurrence of cold spells is likely to greatly decrease [242], even if structural
changes in the dynamics of the atmosphere can rarely create special conditions that
facilitate their occurrence [46,150]. Looking instead at flash floods, consensus exists
that they will become more likely and more intense in the future because the higher
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retention of water vapour in the atmosphere—made possible by warmer conditions as
a result of the Clausius-Clapeyron relation—compounds with strengthened convective
motions, possibly leading to disproportionately enhanced extreme precipitation events
in specific locales [88,279]. However, we remark that, due to the complexity of the
(microscopic and macroscopic) dynamical and thermodynamical processes involved,
the precipitation is not distributed in space and time in direct proportion to the available
precipitable water [278].

A somewhat separate research agenda tries, instead, to relate in a direct way climate
change and individual extreme events, thus blurring the distinction between climate
and weather, statistics and analysis of specific case studies. Following the landmark
paper [5], considerable efforts have been directed at developing tools for assessing to
what extent climate change has impacted and is impacting either the frequency, or the
likelihood, or the intensity of individual extreme events, with the goal of providing the
basis for science-based liability for the impacts of such extremes. The scientific debate
around extreme events attribution has relevant implications in terms of climate adap-
tation, risk assessment, public policy, infrastructural design, insurance instruments
design, international relations, and even migration policies [135,199,239,251].

1.2 Quest for universality of extreme events

Empirical frequentist approaches aimed at the study of extremes applied to actual
climate records or to the output of climate models are essential for keeping track of
the observed events, but face the unavoidable problem of being unable to say any-
thing about the probability of occurrence of out-of-sample events. In order to achieve
predictive power in a statistical sense—i.e. being able to estimate the probability of
occurrence of events that are more extreme than the observed ones—one needs to
interpret data through mathematical approaches that provide some form of universal-
ity.

Extreme Value Theory (EVT) provides a powerful framework for studying extreme
events in amultitudeof applications. It is basedon limit theoremsmimicking the central
limit theorem that allow one, under rather general hypotheses and taking suitable
limits, to define universal laws describing the probability of occurrence of events
generated according to a given stochastic process above a sufficiently high threshold.
Alternatively, one can develop the theory in order to describe the distribution of the
maximum of a set of independent and identically distributed stochastic variables in
the limit of large sets [47]. The theory can be adapted for dealing with correlations
between the variables [161] and for treating the outputs of chaotic dynamical systems
[178], in such a way that deep connections emerge between the statistical properties
of suitably defined extremes and the geometry of the attractor of the system [18,95,
174,213]. EVT has received a great deal of attention in geosciences [83,91,106,265,
270,273,280] and is extremely influential especially in hydrology [138,139,158]. In
the context of climate dynamics, the analysis of extremes has proved very fruitful for
providing a new viewpoint for understanding atmospheric predictability by looking
at the recurrence of weather patterns [82,184]. Persistence, as mentioned above, is
a key factor in determining the impact of large climatic fluctuations. EVT can deal
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with time correlations in time series through the introduction of the extremal index,
which allows one to quantify the average size of clusters of consecutive extreme events
[87,187]. The extremal index encodes important information on the dynamics of the
system [36].

A more direct line to attack the problem of studying persistent extreme events can
be taken through the use of Large Deviation Theory (LDT) [263]. In a nutshell, in
one of its most basic formulations, LDT aims at providing limit laws for the average
of n (typically identically distributed) stochastic variables, where n is large. Similarly
to the case of EVT, a unified approach for LDT can be used on stochastic processes
and chaotic dynamical systems [141,283]. It is hard to overestimate the importance
of LDT in contemporary physics and mathematics [62,63,257,267]. Establishing a
large deviation principle for an observable—see below—leads to gaining predictive
power of the process. While in EVT such a power is aimed at being able to predict the
probability of occurrence of events larger than those already observed, in the case of
LDT the predictive power is twofold, as it is directed towards predicting the property
of occurrence of events that are larger and/or more persistent than the observed ones.
Drawing an example from climate science, EVT is better suited for studying the
probability of occurrence of extremely hot days, whereas LDT is better suited for
studying the probability of occurrence of heatwaves.

A fascinating aspect of looking at the properties of long time-averages of climatic
fields is the following. The theory of low-frequency variability of the atmosphere
indicates that long temporal persistence and large spatial extent of the anomalous
patterns go hand in hand [104,105]; see Fig. 1. In the mid-latitudes, it is custom-
ary and indeed scientifically meaningful to distinguish between synoptic variability,
due to mid-latitude eastward-moving weather systems and associated with temporal
scales of 3–7 days and spatial scales of the order of 1000 Km, and low-frequency
variability, whose temporal and spatial scales are typically larger, amounting to
1–3 months and several thousands of Km, respectively. [105,246]. The main man-
ifestations of low-frequency variability in the mid-latitudes are the so-called blocking
events, which are persistent, large-scale departures from the approximately zonally
symmetric flow associated with the presence of large-amplitude, almost-stationary
pressure anomalies [79,105,105,169,180,246,254,255]. The difference between syn-
optic and low-frequency variability is clarified when performing a spectral analysis
of the atmospheric fields: the former is associated with eastward propagating waves,
while the latter is characterised by stationary or weakly propagating planetary waves
[58]. Persistence is key to creating conditions conducive to long-lasting extreme events,
and, indeed, it is well-known that the anomalies of the flow due to occurrence of block-
ings can lead to long-duration warm [67] as well as cold extreme events [34]. Given
their long time duration and large spatial extent, blockings can lead, in a cascade pro-
cess, to the onset of extreme events also at considerable geographic distance from the
core of the blocking, as in the case of the summer 2010 floods in Pakistan resulting
from the large scale flow associated with the blocking—and ensuing heatwave—in
Russia [159]. Advancing our understanding of the low-frequency variability of the
atmosphere would be very beneficial because, despite continuous improvements, our
ability to perform accurate extended-range (beyond 7–10 days) weather forecast in the
mid-latitudes is still limited [105], and because attaining a convincing representation
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Fig. 1 Idealised power spectra for the atmosphere indicating the relationship between the spatial and tem-
poral scales of atmospheric flows. The source of this material is the COMET©Website at http://meted.ucar.
edu/ of the University Corporation for Atmospheric Research (UCAR), sponsored in part through coopera-
tive agreement(s) with the National Oceanic andAtmospheric Administration (NOAA), U.S. Department of
Commerce (DOC). ©1997–2017 University Corporation for Atmospheric Research. All Rights Reserved

of the statistical and dynamical properties of blocking events is still challenging for
both numerical weather forecast models [85] and climate models [54].

The hope is that, by focusing on suitably defined large deviations of the atmospheric
fields, one could distil information on the low-frequency variability of the atmosphere.
Roughly speaking, as discussed below, it can be proven rigorously that any large
deviation is realised in the least unlikely of all the unlikely ways [63]. Let’s clarify
this important concept using again an example drawn from climate science. Let’s
assume that we have established a large deviation law describing the probability of
occurrence of heatwaves in a given location. In principle, the corresponding rare events
can take place as a result of a variety of large scale atmospheric configurations; see a
recent analysis of heatwaves in France [7]. Nonetheless, LDT imposes that, in fact, if
we look at true extremes, with overwhelming probability the heatwaves we observe
will take place, apart from small-scale spatio-temporal fluctuations, as a result of a
well-defined large-scale atmospheric configuration, which is very rare in the standard
statistics, but is typical if we consider the multitude of possible heatwaves with same
intensity. By typical here we mean that the probability of the occurrence of a large
scale atmospheric pattern that is very close to such a configuration, conditional on
the occurrence of heatwave at the reference location, is very high, and gets closer to
one as we consider more stringent criteria - in terms of intensity and duration - for

123

http://meted.ucar.edu/
http://meted.ucar.edu/


Large deviation theory in GFD and climate science

the occurrence of (rarer) heatwaves. In dynamical terms, one has that selecting events
associated with large deviations amounts to considering a very small portion of the
phase space. The property above implies that the (rarely occurring) approach to this
very special region overwhelmingly occurs through a well-defined set of paths, that
are singled out by LDT, even if much unlikelier paths are still possible.

Indeed, looking at the specific case of the catastrophic 2010 Russian heatwave, one
does find that the observed extreme event is in some sense typical [67,94]. This does
not exclude the possibility of more exotic atmospheric configurations on the scale of
Eurasia, but their occurrence is muchmore unlikely than those, already extremely rare,
described by LDT. These exotic events might be interpreted as dragon kings [245].

Of course the possibility of practically using LDT in a complex and multiscale
system like the climate is far from being an obvious task for all possible climatic
observables. The mathematical foundations for using LDT in the context of climate
layon taking into account, on the onehand, its chaoticity, and, on the other hand, the fact
that stochastic effects emerge as a result of considering its coarse-grained evolution.
Indeed, most of the results we present below are a natural extension of the scientific
programme aimed at developing and analysing stochastic climate models pioneered
by Hasselmann [125]; see later developments in [131,132,181,205,233]. Additionally,
one needs to take into account that while most LDT results require stationarity of
the time series, the climate system is only approximately stationary, because of the
periodicity in the solar forcing and the natural and anthropogenic forcings to the
atmospheric composition (e.g. change in greenhouse gases and in aerosols) and to the
properties of the land surface (e.g. forest fires; agriculture; deforestation). Therefore,
one might need to pre-process the data (e.g. removing the seasonal cycle; removing
trends) before being able to apply LDT.Clearly, since the climate is a nonlinear system,
the previous pre-processing aimed at removing part of the time-dependence is in
principle partly arbitrary and definitely non uniquely defined. Nonetheless, one needs
to resort to reasonable pragmatism in treating observational or model-generated data
that do not conform exactly to the demands of the mathematical theory, and possibly
derive nonetheless useful information, as often in fact done in physical sciences.

Another aspect to be kept in consideration is the presence of serial correlations in
the time series of the observables. If one considers, for example, the serial correlation
of the anomalies of the surface temperature (obtained after removing seasonal cycle
and long-term trends) somewhere in the middle of a continent, like Central Europe,
and the serial correlation of the same observable over an oceanic region, like the North
Atlantic (not far away from the first location), one would notice that the strength of the
serial correlation ismuchweaker and the auto-correlation functiondecays substantially
faster over the continent as compared to the oceanic region. In the latest case, the decay
of correlations will be slower than exponential (at least on a vast range of scales), as
a result of the presence of long-term memory in the system. Large differences in the
heat capacity of land surface vs water, and the dynamical link between surface waters
and deeper levels of the ocean explain such a discrepancy between the two cases.
The fact that the same climatic field - anomalies of the surface temperature - features
such fundamentally different properties, in terms of stochasticity, depending on the
geographical location of interest provides a good example of the complexity of the
climate system.Note that, as wewill discuss below, while in the former case one is able
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to establish large deviation laws to describe accurately long and persistent temperature
fluctuations behind heatwaves and cold spells, LDT will not apply in the latter case.

1.3 Paths and transitions

LDT can be used for different scopes than looking at persistent deviation of fields.
Indeed, it provides tools for studying how such special configurations of the climate are
dynamically realised.One can use amore general definition of events that encompasses
trajectories in the phase space, and adapt LDT to study rare trajectories leading to target
extreme events. In this settings the dynamical equations contain a small parameter,
describing either a weak noise strength or an inverse time scale separation. Under such
conditions the path probabilities collapse onto one single path as the small parameter
goes to zero, either the deterministic zero-noise path for weak noise systems or the
averaged equation for system with a time scale separation. Also here the principle
holds that the unlikely event is reached in the least unlikely way. Such paths, called
instantons, can be seen as minimisers of an action describing the cost of going against
the natural tendency of the system [93]. Take, for example, a particle in a double well
potential with weak noise. The particle can transition from one well to another, but
in the weak noise limit such transitions will be rare. LDT then gives us not only an
approximation of the transition probability, but also of the mean exit time and the
transition trajectory.

Such a knowledge can furthermore be used to tackle challenges in numerically
sampling unlikely paths to rare events. In rare event simulation methods, a model is
dynamically driven in such a way that otherwise very rarely visited paths are over-
populated [29,228]. This can be done either by manipulating the dynamical equations
of the system, or by implementing genetic algorithms on top of the system, which
selectively kill and clone parallel realisations of the model. Hence, such trajectories
become statistically tractable without resorting to ultra-long numerical integrations.
Enriching the statistics, while retaining the correct dynamics, makes it possible to
explore the dynamical processes behind the extreme event of interest.

The previously mentioned fact that LDT allows one to select typical extreme events
is key for interpreting some recent results on so-called rogue waves in the ocean
[2,66,241]. Rogue waves are extremely dangerous hazards impacting the marine and
coastal environment, and manifest themselves as hard-to-predict surface waves that
can have surprisingly high destructive power and that, apparently, materialise out of
nothing [65,193]. A novel viewpoint has been recently proposed for finding a com-
prehensive theoretical framework on rogue waves, able to generalise earlier theories.
The idea has been to use LDT to study the properties of the solutions of the one-
dimensional nonlinear Schrödinger equation starting from suitably defined random
initial conditions constructed in accordance with observations taken from an oceano-
graphic campaign. Both numerical and experimental evidence strongly suggest that
rogueswaves can be seen as hydrodynamic instantons, whose precursors can be clearly
identified, and that can be computed by minimising a suitably defined action [60,61].

A related area of investigation is the study of—rarely occurring—noise-induced
transitions between metastable states associated with alternative configurations of
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geophysical flows or actual competing climatic states. In this case, along the lines of
the classical Freidlin–Wentzell theory [93], the target region in the phase space for the
endpoints of the desired paths is a special portion in the basin boundary separating the
competing basins of attraction, which corresponds to a saddle in the classical case of
motion in an energy landscape.

The multistability of the climate system manifests itself both locally and globally.
By local we mean that the difference between the competing metastable states is, in
fact, geographically confined and associatedwith one of the so-called tipping elements
[163], representing features of the climate system that can go through critical transi-
tions if forced beyond the point of no return. These include the dieback of the Amazon
forest [21], the shut-down of the thermohaline circulation of the Atlantic ocean [221],
themethane release resulting from themelting of the permafrost [269], and the collapse
of the atmospheric circulation regime associated to the Indian monsoon [166].

A hierarchically higher level of multistability is present in the Earth as our planet
is well known to have at least two possible steady climatic states in the current and
past astronomical configuration, the warm climate, and a frozen one, termed snowball,
which features global glaciation, extremely low temperatures and limited climatic vari-
ability. This is confirmedbygeological andpaleomagnetic evidence [128,211] andwell
understood in terms of relevant dynamical processes [33,102,179,237]. Despite the
presence of chaotic dynamics in the competing attractors and of a complex geometrical
structure in the basin boundary [175], suitable generalisations of the Freidlin–Wentzell
theory proposed in [115–117] allow one to establish large deviation laws able to
describe in the weak noise limit the transitions between the competing metastable
states. Indeed, one can define a generalised quasipotential, whose local minima cor-
respond to the competing attractors, while the transition paths cross preferentially
the basin boundaries in special locations, which are saddles also termed Melancho-
lia states [19,175–177]. There are good reasons to believe that, in fact, the climate
system allows for the presence of additional competing metastable states on top of
the warm and snowball climate [1,32,167]. This leads to a more complex pattern of
possible transition paths between them and requires a careful statistical examination
when noise is added into the system [182]. Finally, one can interpret the localised
tipping elements described above as being associated with smaller and localised min-
ima and saddles, which define the multiscale nature of the quasi-potential. Therefore,
an adequate use of LDT might be key for making a more careful assessment of the
risk coming from irreversible transitions for present-day tipping elements, and then
for more precisely evaluating the risk of going beyond the so-called global planetary
boundaries [248,249].

1.4 This review

The goals of this paper are to provide an informal mathematical introduction to LDT
and then to lead the reader to explore some relevant applications of the theory for
analysing properties of geophysical flows and of the climate system. The range of
topics covered by this paper is somewhat broader andmore targeted to real-life applica-
tions as compared to the excellent and more theoretically inclined earlier contribution
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by Bouchet and Vernaille on the statistical mechanics of two-dimensional and geo-
physical flows [30].

Depending on the observable and on the scales of interest, and specifically on the
strength of correlations, one can rely on different stochastic models to approximate
the behaviour of climatic observables: independent, identically distributed random
variables, Markov chains, dependent sequences. The theoretical overview of LDT
presented in Sect. 2 is organised according to this line of thoughts. Subsequently,
Sect. 3 introduces the concept of coarse-graining for the dynamics of geophysical
flows, presents the general framework of stochastic climate models, and discusses
the establishment of large deviation laws in stochastic and deterministic dynamical
systems. The analysis of large deviation laws for stochastic dynamical systems will
provide key tools for understanding the dynamical and statistical properties of tran-
sition paths between competing metastable states and for studying rare paths, rather
than just rare events. Instead, the results presented for deterministic dynamical sys-
tems will be useful for understanding the reason why Markov chain models are of
general interest for modelling the statistical properties of chaotic dynamical systems.
Section 4 will then present a range of applications of LDT in various areas of geophys-
ical fluid dynamics and climate science. We will showcase its use for understanding
persistent climatic fluctuations, for characterising the fluctuations of the predictability
of geophysical flows on different time scales, for providing a unified viewpoint for the
understanding of rogue waves in the ocean, as well as for explaining special dynam-
ical features associated with transitions between competing metastable states, thus
mirroring the theoretical framework presented in the previous sections. This section
contains also novel, previously unpublished results. Finally, Sect. 5 presents our con-
clusions together with a discussion regarding opportunities and challenges for future
applications of LDT in climate science

2 A summary of large deviation theory

In this section, we recapitulate the main elements of LDT for two stochastic models
applied often successfully to geophysical data: independent, identically distributed
(i.i.d.) random variables and Markov chains, or more generally dependent sequences.
This summary is far frombeing complete and does notmake use ofmuchmathematical
sophistication either. Hence readers experienced in mathematics are referred to [63],
whereas readers versed in physics are referred to [257]. These are at the same time the
main sources we follow.

2.1 Independent, identically distributed random variables

The first basic results of LDT is known as Cramér’s theorem [51] and describes the
large deviation behaviour of empirical sample averages 1

n

∑n
i=1 Xi = 1

n Sn .

Theorem 1 Let (Xi ) be i.i.d. R-valued random variables with a finite moment gen-
erating function in a region around the origin, i.e. 0 ∈ int(Dϕ) with Dϕ = {t ∈ R :
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ϕ(t) := E[et X1 ] < ∞} , where E[ f (X1)] is the expectation value of f (X1). Let
Sn = ∑n

i=1 Xi . Then, for all a > E[X1],

lim
n→∞

1

n
logP

(
1

n
Sn ≥ a

)

= −I (a) (1)

where

I (z) = sup
t∈R

[zt − logϕ(t)] (2)

According to (1), which can be written in the form P (Sn/n ≥ a) � exp (−nI (a)),1

the probability of empirical averages deviating from the mean decays exponentially
with the averaging length n, as n increases. If this is the case, we say that we have
found a large deviation principle. The speed of decay is described by the rate function
I . The rate function in Theorem 1 has some important and useful properties, such as
compact level sets, lower semi-continuity and convexity on R as well as continuity,
strict convexity and smoothness on the interior ofDI = {z ∈ R : I (z) < ∞}. I (z) ≥ 0
with equality if and only if z = μ, with μ = E[X1]. Thus, the minimum of the rate
function is located at the expectation value of the random variable suggesting that
the sample averages converge to the expected value, as stated by the the law of large
numbers. Furthermore, I ′′(μ) = 1/σ 2, the second derivative of the rate function at its
minimum is the inverse of the variance of the random variable X1, which goes back
to the central limit theorem.

As shown by (2), the rate function is the Legendre transform of the cumulant
generating function logϕ. We will discuss this relationship in more detail below.
Equations (1) and (2) describe two different methods to estimate the rate function in
case of applications: a direct method based on the probability density function (pdf) of
averages and an indirect one based on the cumulant generating function, as discussed
in detail in Sect. 3.3.

Considering that the rate function is lower semi-continuous and convex, and attains
its unique minimum at the expectation value μ, if a > μ, then I (z) ≥ I (a) for all
z ≥ a. Thus, Eq. (1) can be rewritten for a > μ as

lim
n→∞

1

n
logP

(
1

n
Sn ∈ A

)

= − inf
z∈A

I (z) with A = [a,∞). (3)

Similarly, if, instead, a < μ, one obtains:

lim
n→∞

1

n
logP

(
1

n
Sn ∈ A

)

= − inf
z∈A

I (z) with A = (−∞, a]. (4)

This indicates one of the basic principles of LDT that we have hinted in the intro-
duction. The occurrence of a large deviation { Sn

n ∈ A} is closely associated with the
specific event corresponding to the lowest value of the rate function I taken in A,

1 We have that aε � bε if limε→0
ln(aε)
ln(bε)

= 1; here 1/ε = n.
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as the probability of this event is exponentially larger than the probability of all the
other events compatible with the conditions { Sn

n ∈ A}. The rate function can then be
interpreted as a cost function, and we have that any large deviation is done in the least
unlikely of all the unlikely ways [63].

In the following, we discuss some generalisations of Theorem 1 by going from large
deviations of empirical averages to large deviations of empirical measures. From the
more general setting of Cramér’s theorem we go now to a finite state space, where the
i.i.d. random variables X1, X2, . . . take values in a finite set Xi ∈ Γ = {1, . . . , r} ⊂ N

and obey the marginal law ρ = (ρs)s∈Γ , ρs > 0. The empirical measure Ln =
1
n

∑n
i=1 δXi is a random probability measure on Γ . We denote the set of probability

measures on Γ by M(Γ ) = {ν = (ν1, . . . , νr ) ∈ [0, 1]r : ∑r
s=1 νs = 1}, where

the total variation distance between two measures μ and ν is defined as d(μ, ν) =
1
2

∑r
s=1 |μs − νs |. The following theorem, which goes back to Sanov [234], contains

a large deviation law of Ln with respect to ρ.

Theorem 2 Let (Xi ) be i.i.d. random variables satisfying the conditions above, and
Ln = 1

n

∑n
i1 δXi . Then, for all a > 0,

lim
n→∞

1

n
logP(Ln ∈ Bc

a(ρ)) = − inf
ν∈Bc

a(ρ)
Iρ(ν), (5)

where Ba(ρ) = {ν ∈ M(Γ ) : d(ν, ρ) ≤ a}, Bc
a(ρ) = M(Γ ) \ Ba(ρ), and

Iρ(ν) =
r∑

s=1

νs log

(
νs

ρs

)

:= H(ν|ρ) (6)

When comparing (3) with (5), it becomes clear that Theorem 2 is nothing more
than a higher dimensional version of Theorem 1. Instead of looking at deviations
of the empirical averages away from the mean, we consider now deviations of the
empirical measure Ln away from the true measure ρ. The rate functions depends in
this case on the different measures ν on Γ and on how similar they are to ρ. The
quantity H(ν|ρ) is the relative entropy of the measure ν with respect to the measure
ρ [152]. By applying Jensen’s inequality to Iρ(ν) = −∑

s νs (log(ρs/νs)), we have
that Iρ(ν) ≥ − log

∑
s νs(ρs/νs) = 0, with the equality being realised if and only if

ν = ρ.
In other terms, Sanov’s theorem states that the exponential rate of decay of the

probability of a large deviation of size ≥ a between the empirical measure and the
marginal distribution ρ is controlled by the element of all measures on Γ whose
distance from ρ is ≥ a that is closest to ρ in the sense of relative entropy.

The contents of Theorem 2 allow us to reinterpret and extend the results discussed
in (3)–(4). Let’s consider a function f with

∑r
s=1 fsρs = μ f ∈ R. We define Φ f ,a =

{φ ∈ M(Γ )|∑s fsφs ≥ a}. We also define Ψ f ,a = {φ ∈ M(Γ )|∑s fsφs = a}.
Clearly, one has Φ f ,a = ∪b≥aΨ f ,b.
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We have that P(Ln ∈ Φ f ,a) = P

(
1
n

∑n
j=1 f (X j ) ≥ a

)
, where a ≥ μ f and we

consider the empirical measure Ln = 1
n

∑n
i=1 δXi introduced before. One then derives

that:

lim
n→∞

1

n
logP(Ln ∈ Φ f ,a) = lim

n→∞
1

n
logP

⎛

⎝1

n

n∑

j=1

f (X j ) ≥ a

⎞

⎠

= − inf
ν∈Φ f ,a

Iρ(ν) = − inf
z≥a

inf
ν∈Ψ f ,z

Iρ(ν) (7)

Let’s now consider the case f (x) = x . The empirical average Sn/n is connected to the
empirical measure Ln through the formula Sn/n = ∑r

s=1 sLn(s). The rate function
in (3) can be obtained from (7) by

I (z) = inf
ν∈Ψ f ,z

Iρ(ν). (8)

Thus, the rate function of the empirical average z is equal to the infimum of the rate
function for the empiricalmeasure ν if the infimum is taken over all themeasures ν with
mean μ = ∑r

s=1 sνs = z. In other words, there is an equivalence between the large
deviations of the empirical average z and the large deviations of the least unlikely
empirical measure ν with mean equal to z. This is an example of the contraction
principle that we state now.

Theorem 3 Contraction Principle. Let An be a family of random variables such that

lim
n→∞

1

n
logP (An ∈ A) = − inf

z∈A
IA(z) (9)

and let’s consider another family of random variables Bn = T (An) where T is a
continuous function. It is possible to establish a large deviation principle for Bn as
follows:

lim
n→∞

1

n
logP (Bn ∈ B) = − inf

z∈B
IB(z), IB(z) = inf

y=T −1z
(IA(y)). (10)

Theorem 2 can be generalised further to large deviations of pair empirical measures
as well as of measures with higher dimensions. Higher level large deviation laws
imply the ones for lower levels, the downward link being provided by the contraction
principle. The interested reader can find a short summary of the generalisations to
higher dimension in Appendix A, for a detailed discussion of this topic we refer to
[63].

2.2 Dependent sequences

We continue with a generalisation of Cramér’s Theorem for random sequences that
have a form of moderate dependence, which goes back to [100] and [80]. A rigorous
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derivation of the Gärtner–Ellis (GE) theorem would go beyond the scope if this paper,
thus we concentrate on the main results. As above, we follow here the work of [257].

We consider the sequence (Zn) of random variables on the probability space
(Rd ,B(Rd),P), where B(Rd) is the Borel sigma-field on R

d with moment gener-
ating functions

ϕn(t) = E[e〈t,Zn〉], t ∈ R
d , n ∈ N (11)

with 〈·, ·〉 denoting the standard inner product. It can be useful to think of (Zn) as an
empirical average, but this doesn’t have to be the case. We assume that the limit

lim
n→∞

1

n
logϕn(nt) = Λ(t) ∈ [−∞,∞] (12)

exists and

0 ∈ int(DΛ),with DΛ = {t ∈ R
d : Λ(t) < ∞}. (13)

We also assume that Λ is convex and differentiable on int(DΛ). Furthermore, we
assume that Λ is lower semi-continuous on R, and either DΛ = R

d or Λ is steep at
∂ DΛ.

Let Pn(·) = P(Zn ∈ ·). Under the above conditions, the GE theorem states that
(Pn) satisfies a large deviations principle on R

d with rate n and with rate function

I (x) = sup
t∈Rd

[〈x, t〉 − Λ(t)], x ∈ R
d . (14)

Thus, the rate function I is the Legendre-transform of Λ, also called the scaled cumu-
lant generating function. The rate function I is convex. Note that (14) is a generalised
form of (2).

If Zn = 1
n

∑n
i=1 Xi with Xi a stationary random sequence, then conditions (12)

and (13) can be interpreted as a kind of moderate dependence assumption on (Xi ).
However, in case of strong dependence, the theorem would fail because the strict
convexity of Λ would be violated.

We have seen that by using the GE theorem one obtains a large deviations principle
under fairly mild regularity assumptions. As mentioned above, it is not necessary that
Zn represents sample averages. In fact, the large deviation principles presented in
Sects. 2.1 and 2.2 for sample averages, empirical measures, pair empirical measures
(see Appendix A), and so on, can all be obtained by following the route given by the
GE theorem as well. Below, we derive based on [63,257] the rate functions of sample
averages for i.i.d. random variables and for Markov chains, by using the GE theorem.

1) Let (Xi ) be i.i.d. R-valued random variables satisfying ϕ(t) = E[et X1 ] < ∞,
for all t ∈ R. Let us consider the empirical average Zn = 1

n

∑n
i=1 Xi . Then,

ϕn(nt) = E[ent Zn ] = E

[
et

∑n
i=1 Xi

]
= [ϕ(t)]n, (15)
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with ϕ the moment generating function of X1. Hence Λ(t) = logϕ(t) and the GE
theorem reduces to Crámer’s theorem (Theorem 1).

2) Let (Xi ) be a stationaryΓ -valuedMarkov chain. Let Zn = 1
n

∑n
i=1 f (xi ), where

f : Γ → R
d , d ≥ 1. Then,

ϕn(nt) = E[ent Zn ] = E

[
et

∑n
i=1 f (xi )

]

=
∑

x1,...,xn∈Γ

π(x1)e
t f (x1) P(x2|x1)et f (x2) · · · P(xn|xn−1)e

t f (xn),

where π(x1) denotes the probability of the initial state x1, and P(xi |xi−1) denotes the
conditional probability of state xi given xi−1, i = 1, . . . , n. By defining πt (x1) =
π(x1)et f (x1) and Pt (xi |xi−1) = P(xi |xi−1)et f (xi ), we have that

ϕn(nt) =
∑

j∈Γ

(Πn−1
t πt ) j ,

where πt is the vector of probabilities for which (πt )i = πt (x1 = i), and Πt denotes
the matrix with elements (Πt ) j i = Pt ( j |i). Based on Perron–Frobenius theory for
positive matrices we get that limn→∞ logϕn(nt) = log λ(t), with λ(t) denoting the
unique largest eigenvalue ofΠt . Hence Λ(t) = log λ(t), and the rate function is given
by the Legendre transform

I (z) = sup
t∈R

[zt − log λ(t)]. (16)

Please note that (16) can be used to obtain the rate function only if Π has a unique
stationary distribution π . If Π has several stationary distributions, Λ(t) exists, but
depends on the initial distribution π(x1). IfΠ has no stationary distribution, generally
no large deviation principle can be found and the law of large numbers does not even
hold [257].

3 Large deviations in dynamical systems

At this point, we leave the idealised world of i.i.d. random variables and discrete time
processes, and turn our attention to systems evolving continuously in time, as we want
to look into mathematical models that are more relevant for capturing the dynamical
properties of the climate system. Instead of empirical measures and sample averages,
we consider in the following probabilities of trajectories or paths of deterministic
dynamical systems and finite time averages along these trajectories. However, the
main ingredients leading to large deviation results stay the same. One needs basically
the attracting effect of an asymptotic limit leading to an exponential decay of proba-
bilities of finite time estimates. By taking into consideration the dynamics in time and
including the temporal dimension into the large deviation analysis, the methods pre-
sented below are directly relevant for geophysical applications. We will present some
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basic results pertaining to stochastic and to deterministic chaotic dynamical systems,
for the sake of completeness, and because the modelling of geophysical flows follows
both dynamical paradigms.

First, we motivate the use of stochastic dynamics for investigating the properties
of geophysical flows by introducing the concept of filtering and the development
of evolution equations based on dynamical balances and specialised for specific
scales of motion [104,142,247]. The introduction of stochastic parametrizations
[16,92,104,143,277] is motivated through the use of the Mori–Zwanzig formalism
[188,288]. When suitable limits are considered, the stochastic component, which pro-
vides a surrogate representation of the effects of the scales we are unable to describe
explicitly, can be written as multiplicative white noise [202]. This provides the basis
for a large class of stochastic climatemodels of very widespread use and great physical
relevance [125,131,132,181,205,233]. Such stochastic models are amenable to being
studied using the Freidlin–Wentzell theory [93], which allows to derive powerful large
deviation results. Additionally, one should keep in mind that the climate undergoes
actual stochastic forcing due to random fluctuations in the incoming solar radiation
and other astrophysical factors. More in general, the use of stochastic dynamics for
describing non-equilibrium statistical mechanical systems has reached a high level of
popularity and has shown a great potential for deriving results of great theoretical and
practical relevance [10,154,170,198].

In case of the Freidlin–Wentzell theory, the zero-noise limit of stochastic evolution
law is given by its purely deterministic component. Hence, one obtains the probability
of random paths deviating from the deterministic path in terms of large deviation laws.
The probabilities of deviation of finite time averages from their asymptotic values can
be obtained from the large deviation results for random paths using the contraction
principle. A more general and pragmatic approach, however, which can be followed
even in case of unknownmodel equations, is related to the fact that finite time averages
of weakly correlated observables are (nearly) independent. Thus, one can model finite
time averages of correlated observables as resulting from i.i.d. random variables or
Markov chains. Consequently, the theorems presented in Sect. 2 can be applied in a
similar way with the difference that the large deviations parameter n is now related
to time. In Sect. 3.3 we discuss a modified version of the GE theorem (14) acting on
time averaged observables.

Later on, we consider special chaotic dynamical systems, so-called Axiom A sys-
tems [31], and discuss the emerging large deviation laws for finite time averages of
given observables. The framework of AxiomA systems-which are essentially the clos-
est deterministic relatives of the truly stochastic systems - blurs the distinction between
statistical mechanics and dynamical systems theory, mainly as a result of the fact that
Axiom A systems possess a rather special ergodic invariant measure that has a clear
physical interpretation [78]. Another remarkable property of Axiom A systems is that
they admit a Markov partition, i.e. a partition of the attractor such that one can put in a
one-to-one correspondence the actual orbit of the system with an infinite sequence of
symbols describing the history of occupancy of the various elements of the partition.
Accordingly, the original map can be associated with a shift map, i.e. a finite-state
Markov chain describing the probability of transition between the various elements of
the partition [97,229]. The possibility of establishing the so-called symbolic dynamics
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guarantees that the results presented in Sect. 2.2 for finite-state Markov chain apply
also for Axiom A systems. Nonetheless, there is no free lunch: it is in general far from
trivial to actually construct the Markov partition. As discussed below, while Axiom
A systems are very special dynamical objects, the chaotic hypothesis [97,98] makes
them very relevant for providing a framework for studying large deviations laws in
high-dimensional geophysical systems.

3.1 Stochastic climatemodels

The state of the climate system can be described using the continuum approximation,
introducingfield variables that dependon three spatial dimensions and time.Thepartial
differential equations that describe the evolution of the field variables are based on the
budget of mass (including different chemical species), momentum and energy. Since
the climate system features variability on a vast range of spatial and temporal scales,
as mentioned above, a key procedure one needs to apply, both on theoretical grounds
and for reasons of defining efficient numerical models, is to specialise the evolution
equations to a desired range of spatial and temporal scales of interest by the use
of suitable approximations based on the validity of approximate dynamical balances
[104,142,247]. Additionally, when constructing an actual numerical model, the three-
dimensional fields are discretised on a lattice, either in the physical space, or in the
reciprocal space via spectral projection, or in a suitable combination of the two. Hence,
the impact of the physical processes occurring in the unresolved spatio-temporal scales
on those taking place in the resolved ones can be represented only through approximate
parametrizations [16,92]. The Mori–Zwanzig coarse-graining based on the projection
operator [188,288] clarifies that such parametrizations have in general a deterministic,
a stochastic, and a non-Markovian component [42,143,276,277].

Let us assume, for simplicity, that the true evolution equation for the climate system
can be written as a system of autonomous ordinary differential equations2 of the form

dz

dt
= G(z) (17)

where z ∈ R
N . The procedure of coarse-graining, associated with specialising the

equations for a specific range of time and spatial scales, implies that we rewrite the
state vector z as z = (x, y), where x ∈ R

n and y ∈ R
N−n and we aim at deriving

approximate equations of the variables of interest x . It is reasonable to assume that
n  N . Note that, alternatively, x can correspond to the variables describing the state
of a portion of the climate system (e.g. the atmosphere), and y can instead describe the
rest of the system. One does not need to assume a priori the presence of a very large
time-scale separation between the dynamics of the x and y components. One can then
rewrite (17) as:

2 We are here neglecting the—very important—presence of explicit time-dependence and stochastic forcing
in the dynamics; see [43,103,104] for a detailed discussion of this aspect.
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dx

dt
= f (x) + δ fx (x, y)

dy

dt
= 1

ε
g(y) + δ

ε
gy(x, y)

(18)

where f and g define the autonomous dynamics of the x and y components, respec-
tively, δ is a constant controlling the intensity of the coupling, and ε defines the time
scale separation between the two sets of variables. TheMori–Zwanzig theory indicates
that one can in general write the dynamics of the x variables in an implicit form as
follows:

dx

dt
= fε,δ(x) + σ̇ε,δ(x) +

∫

dsKε,δ(x, t − s)x(s), (19)

where the three terms of the right hand side correspond to the deterministic drift,
to a noise contribution, and to the memory term. In the weak-coupling limit (δ →
0), it is possible to derive via perturbative approach an explicit expression for these
three terms that is valid up to order δ2 [276,277]; see a practical implementation of
this theory for the development of parametrizations in geophysical fluid dynamical
models in [59,264,275]. Note that one can derive an expression for the Mori–Zwanzig
projected dynamics using data-driven approaches [42,143]. Very recently, it has been
shown [120] that the data-driven and the top-down approach presented in [276,277]
are fundamentally equivalent.

Instead, if the two sets of variables x and y have an infinite time scale separation
(ε → 0), the dynamics of the variable x converges to a deterministic averaged equation
(for more details, see Sect. 3.2 below). Via homogenisation theory [202] deviations
from this averaged equation can be modelled by a stochastic differential equation
without memory, and with multiplicative white noise, so that the evolution of the
x ∈ R

n variables is controlled by:

dxt = F(xt )dt + Σ(xt )dWt , (20)

where it possible to derive explicit formulas for the renormalised drift term F : Rn →
R

n , and the diffusion matrix Σ : Rn → R
n×m , while Wt is an m-dimensional Brow-

nian motion. Here and in what follows we assume the It ô convention for stochastic
differential equations. In a nutshell, the impact of the neglected scales of motions cor-
responding to the y variables is twofold: it leads to (a) a change in the deterministic
contribution to the evolution of the x variables; and to (b) the inclusion of a random
forcing. Stochasticity is essentially due to the lack of information on the state of the
y variables in the projected x space; see a detailed discussion of this in [42].

Equation (20) is at the basis of stochastic climate models, whose investigation was
initiated by Hasselmann [125]; see a comprehensive analysis of this viewpoint and
further developments in [131,132,181,205,233]. Traditionally, the deterministic com-
ponent of (20) features one ormore fixed points, and the noise allows for the the system
to explore regions of the phase space far from the deterministic solutions, and to per-
form transitions between competing metastable states. We will provide a broader view
point on this in Sect. 4.5, where we will consider more general competing asymptotic
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states. Stochastic climate models have been key for discovering fundamental phys-
ical processes like stochastic resonance [14,15,99,191,192], and have provided key
insights for studying the transitions between different weather regimes in the atmo-
sphere [13,40,134,144,186,231]; see discussion in Sect. 4.6. Equation (20) is probably
the most convenient starting point for discussing the use of LDT in geophysical flows
even if, as shown in Sect. 3.4, LDT can be introduced also in the context of determin-
istic chaos.

3.2 Dynamical systems perturbed by weak noise

We now focus on the stochastic climate models introduce in the previous subsection
and aim at deriving large deviation laws. The Freidlin–Wentzell theory [263,274],
allows one to study the convergence of probability measures on the path-space of a
stochastic differential equation X in Rn

dXε
t = b(Xε

t )dt + √
εσ (Xε

t )dWt Xε
0 = x, t ≥ 0. (21)

where, as in (20) b : R
n → R

n is a deterministic drift, σ : R
n → R

n×m is the
diffusion function, Wt is an m-dimensional Brownian motion, and we introduce here
the parameter ε > 0 that controls the intensity of the stochastic forcing.

For bounded and Lipschitz b and σ , it can be shown that as the noise intensity goes
to zero (ε → 0), the distribution of paths of Xε

t converges to the deterministic path
determined by dxt = b(xt )dt [274]. For all T > 0 and δ > 0

lim
ε→0

P

{

max
0≤t≤T

|Xε
t − xt | > δ

}

= 0.

Wemaywonder, of course, about the probability of observing agivenpath f (t) �= xt

when ε �= 0. It can be shown that a large deviation principle holds for Xε
t , with a rate

function or action functional

IT ( f ) = 1

2

∫ T

0

〈
ḟ (t) − b( f (t)), a−1( f (t))( ḟ (t) − b( f (t)))

〉
dt, (22)

where a(x) = σ(x)σ (x)T is the noise covariance. We have that

P

{

sup
t∈[0,T ]

|Xε
t − f (t)| < δ

}

� exp

(

−1

ε
Ix ( f )

)

. (23)

Similarly as integrals of the form
∫ b

a e− 1
ε

h(x)k(x)dx are dominated by the minimum
x0 of h(x) in Lagrange’s methods, as ε → 0, the probability in a set F ⊂ C[0, T ] of
trajectories concentrates on the trajectory f � with the smallest rate function Ix :

IT ( f �) = inf
f ∈F

IT ( f ). (24)
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Such path is called the minimum action path or instanton.
The exit problem In the limit ε → 0, the dynamics of (21) is determined by the drift
field b. When b has an attractor, the trajectory will never escape from it in the absence
of noise. The situation ismarkedly different when noise is added. The system canmake
excursions away from the attractor, can exit from its surrounding, and can possibly
perform transitions to another attractor.

LDT provides a way to describe the exit from regions containing an attractor, e.g.
if Ω is a bounded set containing a stable fixed point x̄ of dxt = b(xt )dt , then the exit
from the domain will happen close to the point minimising the action (22). For more
details see [93].
Instanton calculation The minimisation of the action functional for problems of inter-
est in geophysics can usually not be done analytically. In such cases the instanton
needs to be calculated numerically.

Arguably the most direct way of finding the instanton is by minimising the action
(22). In the minimum action method [75], the instanton f � on a finite time interval
[0, T ] is approximated by f �(ti ) on a discrete temporal grid, a discrete approximation
to the action is derived and a quasi-Newton method is then applied to minimise the
discretised action.

Another fairly simple method of numerically finding the instanton is solving the
Hamilton equation connected to this minimisation problem. A difficulty arises here
in that we are often looking for a minimisation with fixed start and end points for f �

at t = 0 and t = T . To solve the Hamilton equation we need to specify initial values
for the coordinates and their conjugate momenta, however. A shooting method can be
applied to find the initial values of the momenta, but this is in general difficult to apply
in high dimensions.

Both these methods can only be applied to finite time intervals, while in many
cases we will want to allow for infinite time lengths of transition. In the special case
where the drift term is a gradient, i.e. b = −∇U , and σ is the identity, these problems
can be circumvented by using the string method [74] which uses that the instanton
is always parallel to the drift. The method alternates relaxation along the drift with a
redistribution of the discretisation points along the instanton curve.

This principle has been further generalised to non-gradient systems in the geometric
minimum action method [261]. Here the action is reformulated in a geometric way
that does not involve the time parametrization of the instanton. In this way the problem
of infinite transition times can be circumvented.

An overview of numerical methods to calculate the instanton is given in [114].
Systems with a time scale separation As mentioned above, in some geophysical set-
tings, we may be interested in the evolution of a number of slowly evolving variables
x in interaction with other variables y that evolve on a much faster time scale. We then
consider a slightly modified version of (18):

dx = f (x, y)dt (25)

dy = 1

ε
g(x, y)dt + 1√

ε
σ (x, y)dW . (26)
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where we introduce a white noise forcing term for the fast (as we consider ε → 0)
variables y. Note that E

(
(W (t) − W (s))2

) = (t − s), hence the scaling with
√

ε.
Intuitively speaking, in the limit ε → 0, in any time interval of order 1, no matter how
short, the y variable will explore the invariant measure of the equation for y for fixed
x determined by

d ỹ = gx (ỹ)dt + σx (ỹ)dW , (27)

where gx (y) = g(x, y) and σx (y) = σ(x, y). As a result, we get a law-of-large-
numbers-like result for the slow variable x . As ε → 0, the path x(t) converges to
X(t), the solution of

dX = F(X)dt,

where F(X) = ∫
f (X , y)μ̃x (dy) with μ̃x (dy) the invariant measure of (27).

As with the law of large numbers for averages of i.i.d. random variables, we may
expect a large deviation result to hold here as well. To derive, at a heuristic level, the
rate function for the path probabilities of the slow variable x we consider a discrete
time approximation of (25)–(26). We approximate x(t) for t ∈ [0, T ] by discrete xi

at times iΔtx with i ∈ {0, . . . , Nx } with Nx = �T /Δtx�.
Since x(t + tx ) = x(t) + ∫ t+Δtx

t f (x(τ ), y(τ ))dτ we approximate the increment
of x between two subsequent discrete times by

xi+1 − xi =
∫ t+Δtx

t
f (xi , ỹ(ε)

xi
(τ ))dτ,

= ε

∫ Δtx /ε

0
f (xi , ỹxi (τ ))dτ,

which we can express in terms of a time average as

xi+1 − xi

Δtx
= ε

Δtx

∫ Δtx /ε

0
f (xi , ỹxi (τ ))dτ.

The probability of the slow process going from some given value ϕi at time iΔtx to
ϕi+1 at time (i + 1)Δtx can therefore be estimated via the large deviations of the time
average of f (xi , ỹxi (t)) as

P(xi+1 = ϕi+1|xi = ϕi ) = P

(
Δxi

Δtx
= Δϕi

Δtx

∣
∣
∣
∣ xi = ϕi

)

= P

(
ε

Δtx

∫ Δtx /ε

0
f (xi , ỹxi (τ ))dτ = Δϕi

Δtx

∣
∣
∣
∣ xi = ϕi

)

≈ e
− Δtx

ε
Λ∗

ϕi

(
Δϕi
Δtx

)
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where Λ∗
ϕ is the rate function for the time averages of f (ϕ, ỹϕ(t)), the Legendre–

Fenchel transform of the scaled cumulant generating function

λϕ(θ) = lim
T →∞

1

T
lnE

(

exp

(

θ

∫ T

0
f (ϕ, ỹϕ(τ ))dτ

))

.

Hence, assuming Markovianity for xi in the limit ε → 0 due to rapid decorrelation of
the y process, the path probability for x can be approximated as

P (x(t) = ϕ(t) for t ∈ [0, T ]) ≈ P(x0 = ϕ0, . . . , xNx = ϕNx )

= P(x0 = ϕ0)P(x1 = ϕ1|x0 = ϕ0) . . .P(xNx = ϕNx |xNx −1 = ϕNx −1)

≈ P(x0 = ϕ0)

Nx −1∏

i=0

exp

(

−Δtx
ε

Λ∗
ϕi

(
Δϕi

Δtx

))

→ P(x0 = ϕ0) exp

(

−1

ε

∫ T

0
Λ∗

ϕ(τ)(ϕ̇(τ ))dτ

)

.

From this very non-rigorous derivation we can expect that the rate function for the
slow process x as ε → 0 is

∫ T
0 Λ∗

ϕ(τ)(ϕ̇(τ ))dτ . The same result has been derived in a
more rigorous manner in [25].

3.3 Time averaged observables

In this section we consider large deviation results for time averages of observables of
dynamical systems. The large deviation parameter is in this case the time length T over
which the average is taken. To illustrate the main results, let us consider a Markov
process X(t) ∈ R

n , and an observable A : R
n → R. We have a large deviation

principle for the time average a = 1
T

∫ T
0 A(X(t)) dt if its probability distribution

scales for large T as

ρ(a) �
T →∞ e−T I (a) (28)

with rate function I (a). Similarly to what discussed in the previous sections, one can
define the scaled cumulant generating function

λ(k) = lim
T →+∞

1

T
logE

[
ek

∫ T
0 A(t) dt

]
, (29)

and the Gärtner–Ellis theorem relates rate function I (a) and scaled cumulant gen-
erating function λ(k) through Legendre transformation. In particular, when the rate
function I (a) is convex and differentiable, or equivalently when λ(k) is differentiable,
the Legendre transform can be inverted, and the rate function can be computed as
solution of the variational problem as I (a) = k(a)a − λ(k(a)), where k(a) is given
by a = λ′(k(a)).
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Large deviation results of this kind hold in general for mixing dynamics and for
observables for which the tails of the distribution decay sufficiently fast. Mathemat-
ically, sufficient conditions are given by [68–71]; see also the discussion in [257].
In most applications to geophysical fluid dynamics or climate sciences we either use
stochastic models for which either condition is satisfied, or we consider deterministic
chaotic systems of sufficient complexity that we expect the conditions to hold (see
discussion in the introduction of Sect. 3 and more in detail in Sect. 3.4). However, it
is important to keep in mind that the existence of a large deviation result is in general
not guaranteed, and must be proved or validated empirically.

Several physical systems have been reported featuring anomalous large deviation
scalings [190], i.e. scalings where the large deviation parameter is non-standard, and,
specifically T α with α �= 1 in the present case. Typically, these are systems featuring
non-Markovian dynamics or long-range correlations [48,64,72,111,124,149,173,190,
232,235,252,285]; see a detailed treatment of the problem in the case of deterministic
dynamical systems in [41,222]. However, it has been shown that even in the case of
a system as simple and well-behaved as the Ornstein–Uhlenbeck process, simply by
considering as observable the third or higher moment of the state of the system one
obtains anomalous large deviation scalings [41,190,222]. It is therefore important to
proceed carefully when testing large deviation scalings in complex systems like the
ones typically analysed in climate science.

If valid, a large deviation result for the time average of an observable gives an
extension of the central limit theorem that allows to take into considerations fluc-
tuations of order T rather than

√
T . For ergodic systems the time average of an

observable A converges in the limit of large T to the ergodic average μ = E[A].
Under mixing hypotheses, the central limit theorem gives that for large T , typical
fluctuations of the time average are of order

√
T and Gaussian distributed, that is

(a − μ)/
√

T ∼ N (0, σ 2τc), where σ 2 is the variance of A and τc its integral auto-
correlation time τc = σ−2

∫ +∞
−∞ C(τ, 0)dτ , with C(t, s) = E[(A(t) − μ)(A(s) − μ)]

the covariance of A. However, in certain applications it is of interest to consider fluc-
tuations that are more rare than those handled by the central limit theorem, and that
instead scale with T . A large deviation result allows to have a limit distribution for
these large fluctuations.

Being amore general result, the large deviation scaling allows to obtain information
about the Gaussian fluctuations directly from the knowledge of I (a). Let us first note
that in the large deviation limit of large T the distribution function concentrates around
the most probable value am for which I ′(am) = 0, and that in the limit of large T
this value corresponds also to the average, that is am = μ = E[A]. Expanding
the rate function in a around this value, one finds that in the large deviation limit

neglecting terms O((a − μ)3) the distribution is ρ(a)�e−T (a−μ)I
′′
(μ)/2, that is a

Gaussian distribution with variance given by the curvature of the rate function around
the most probable value 1/I

′′
(μ).

The specific form of the distribution can be obtained expanding the scaled cumulant
generating function for small values of k and using the Gärtner–Ellis theorem (see
Appendix B), which results in the following quadratic form for the rate function
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I (a) ≈ (a − μ)2

2σ 2τc
. (30)

We see that this corresponds to the Gaussian scaling predicted by the central limit
theorem for the time average of a correlated process. A necessary condition for the
approximation to hold is |a − μ|/√2σ 2τc < 1/

√
T , which is consistent with the

expected scaling of Gaussian fluctuations.
For an observable that is Gaussian distributed the quadratic form above is exact. For

more general processes however the rate function contains more information than just
the Gaussian fluctuations. The higher order derivatives of the rate function correspond
to higher order cumulants, and describe fluctuations beyond the Gaussian approxima-
tion. The most interesting aspect of studying the rate function is the reconstruction of
the tails beyond the Gaussian bulk. Equation 30 however can still be of interest, as
discussed in Sect. 4 and for different applications in [25,94,96,217,219].

If the process under study is an ergodic Markov process, the large deviation
functions can be computed using the Donsker–Varadhan theory of additive Markov
processes, essentially extending to continuous time the results presented in Sect. 2.
However, formost applications in geophysical fluid dynamics or in the climate sciences
a very careful analysis is required, as the system typically has an extremely complex
(deterministic) dynamics, whose equations are in some cases not even known (e.g., in
the case of real world climatic observations, or even for climate models data, given
the complexity and relative opacity of the code of these numerical models). Part of
the problem can be bypassed by taking the assumptions discussed in the introduction
of Sect. 3 and more in details in Sect. 3.4, and treating the output of the system as an
effective ergodicMarkov process. However, it is still necessary to understand how one
can compute the large deviation functions empirically, in the (frequent) cases when
this is the only alternative.

Here we give a summary of a possible procedure, presented in more details in
[217,224]. Let us assume that we have a time series of an observable A(t) from time
0 to time T . The idea is to proceed with a block-averaging approach, and divide the
time series in Nb = T /τb blocks of length τb >> τc. Since the length of the block is
much larger than the auto-correlation time, the time averages

a j
b = 1

τb

∫ jτb

( j−1)τb

A(t) dt, j = 1, . . . , Nb (31)

can be considered as sum of τb/τc independent values, possibly leading to conver-
gence to a large deviation result. Additionally, the Nb values a j

b can be considered as
independent realisations of the process ab = 1

τb

∫ τb
0 A(t) dt , and they can be used to

compute the expectation values in the definitions of the large deviation functions as
ensemble averages, and to study the convergence to the limit for τb → +∞.

The large deviation functions for large but finite values of τb can be computed in
two ways. One way is to attempt to estimate directly the rate function by computing

Ib(a) = − ln ρ(ab = a)

τb
, (32)
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that gives an estimate of the rate function for finite τb, up to an additive constant due
to the prefactor in the large deviation scaling. The convergence of Ib(a) to a limit
function I (a) can then be evaluated for each value of a by increasing τb until the value
reaches a plateau up to a given tolerance error. This approach has the advantage of
being extremely straightforward. However, it requires a large amount of data to obtain
a relative error that is constant with τb [224], and it suffers from the drawback that it
is not easy to study precisely the convergence of the estimators, as it is based on the
estimate of a probability density.

A second way consists of computing the scaled cumulant generating function first,
and then use the Gärtner–Ellis theorem to obtain the rate function [217,224]. This
method has the advantage of not involving the estimate of a probability distribution
and of requiring less data to achieve a similar precision. The method however suffers
from the problem of only being able to define upper bounds to the statistical errors on
the values of I (a).

In typical climate applications both methods require a substantial amount of
data to go beyond the Gaussian fluctuations [96,217]. In the direct method the
estimate of the non-Gaussian tails of the rate function is corrupted by the inabil-
ity of properly computing the probability density function in ranges dominated by
sparse data and outliers. In the indirect method the estimate of the tails of the
scaled cumulant generating function becomes artificially linear for large values of
k. For these values the estimate of the generating function is dominated by the
contribution of the outliers of a. Both methods therefore fail to provide reliable
estimates more or less for the same range of values of the fluctuations. A solution
to the problem of estimating the tails of the large deviation functions in numeri-
cal models is given by the use of rare event algorithms, as discussed in [217] and
Sect. 4.3.

Regardless of the method one chooses, there is always a delicate interplay
between the auto-correlation time of the process, the mixing time, the time scale
of the block averaging, and the time necessary to converge to the large devi-
ation limit, that has to be considered. First of all, for a simple process with
exponential auto-correlation function, the integral auto-correlation time and the
mixing time are of the same order of magnitude. However, other cases the pic-
ture can be more complicated, and the integral auto-correlation time may not be
a good “time unit" to estimate the time scales of convergence to the large devia-
tion limit [217]. Secondly, for time series of finite length there is a practical trade
off between τb and Nb. Larger values of τb mean better convergence to the large
deviation limit, but a smaller number of samples Nb and larger statistical errors.
On the other hand, larger values of Nb mean good statistics and small statistical
errors, but poor convergence (if at all) to the limit values. This mirrors the diffi-
culties usually encountered in the statistical analysis of extreme events using EVT
[47,178].

It is therefore important when performing these analysis to provide a systematic
study of the convergence and of the statistical errors, to identify the best compromise
and assess the robustness of the statistical estimators used. As a general rule it would
be probably better to use both approaches side by side, as suggested by [155]. See
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Sect. 4 for a discussion on different analysis performed on climate data by [94,96,217,
219].

3.4 Large deviation laws in chaotic systems

In the previous subsections we have shown how large deviation laws emerge when
looking at the statistical properties of stochastic dynamical systems. A different point
of view on the problem suggests that it is possible to establish foundations for the
study of non-equilibrium systems by taking advantage of the framework of chaotic
dynamics [97,230]. More specifically, the idea is that non-equilibrium ensembles can
be described by the Sinai–Ruelle–Bowen (SRB) measure supported by the attractors
of AxiomA systems [78,229]. These concepts are briefly and informally recapitulated
below.

Let’s consider a flow on a smooth compact manifold M of dimension n such that
St x0 is the evolution at time t of the t0 = 0 initial condition x0 ∈ M. Such evolution
can be represented in differential form as ẋ = b(x), where we have removed the
stochastic component from (21). We assume that the flow has a compact invariant set
Λ such that StΛ = Λ for all t ≥ 0. We also assume that Λ is not decomposable in
two sets that are also invariant and that there is a neighbourhood U of Λ such that
U ⊃ Λ, StU ⊂ U ∀t ≥ 0 and Λ = ∩t≥0StU . U is also called the forward isolating
neighbourhood ofΛ. We assume that 0 < mn(U ) < ∞, where mn is the n−Lebesgue
measure. At practical level, one can think U as a finite-precision approximation of the
true attractor Λ and is the asymptotic set that is de facto experimentally accessible
in numerical simulations and experiments. Indeed, one can assume that, if an orbit
is initialised in the basin of attraction of Λ (the union of all orbits which converge
towards Λ), its forward evolution after a possibly long transient enters the set U . U is
contained in the basin of attraction.

We now assume that on Λ the flow is hyperbolic, which means that in Λ we can
continuously split the tangent space as the sum of three nontrivial subspaces TΛM =
Es + Eu + En , where there are constant c and λ such that DSt (v) ≤ c exp(−λt)|v|
if v ∈ Es and DS−t (v) ≥ c exp(−λt)|v| if v ∈ Eu ; additionally, the dimensionality
of Es and Eu is constant in Λ. In simpler terms, infinitesimal perturbations grow if
initialised along Eu (unstable component) and shrink if initialised along Es (stable
component). Finally, we assume that En—the neutral space—is one-dimensional and
associated with the direction of the flow. No contraction nor expansion takes place
along En .We finally assume thatΛ is densely populated by (unstable) periodic orbits.3

We then have that Λ is an Axiom A attractor and the evolution law St defines an
Axiom A system. Note that if the flow is on the average contractive (∇b < 0), the
Hausdorff dimension of the Λ is strictly smaller than n [78]. Therefore, choosing an
initial condition randomly (with respect to the natural Lebesgue measure) in the set
U , there is zero probability to choose a point belonging to Λ. This further clarifies the
experimental relevance of U .

3 This last hypothesis, which seems unnatural, has important consequences both at dynamical and statistical
level, see [52].
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In general, any invariant measure ν is such that

∫

ψ(y)ν(dy) =
∫

ψ(St y)ν(dy) =
∫

ψ(y)Π tν(dy) (33)

where Π t is the so-called transfer operator, which pushes measures forward in
time [12]. An invariant measure is a fixed point of the transfer operator for
all t ≥ 0: Π tν = ν. For Axiom A systems one can define a special SRB
ergodic measure μS R B with support on Λ such that for almost all (with respect
to the measure mn) x ∈ U and for each continuous observable ψ , we have
that

lim
T →∞

1

T

∫ T

0
ψ(Sτ x) dτ =

∫

ψ(y) μS R B(dy) = μS R B(ψ). (34)

In other terms, long time averages computed from initial conditions in U give the
expectation value computed according to the invariant measure μS R B on Λ. It is
very important to note that we are not requesting that the initial condition is on the
attractor Λ, but in its neighbourhood U , which has finite measure, and that is, phys-
ically speaking, experimentally accessible. The previous equation implies that after a
certain transient almost any trajectory initialised in U explores the attractor Λ accord-
ing to invariant measure μS R B . This measure is, indeed, the one that is selected by
any finite-precision operation on the system. The physical relevance of μS R B is fur-
ther supported by the fact that it coincides with the zero-noise limit of the invariant
measure realised when one consider stochastic perturbations of the system above
[229].

The mathematical setting given above of strange Axiom A attractors gives
a possible (yet restrictive) setting for studying chaotic systems. Chaos is usu-
ally associated with the negative property that divergence of nearby trajectories
leads to having a limited time horizon of deterministic prediction. This is the
celebrated butterfly effect first discussed by Lorenz [171]. The limits posed by
the butterfly effect provide the fundamental reason why improving the skill of
a numerical weather forecast system is excruciatingly difficult; see [137] for an
example of application of the splitting between stable, unstable, and neutral por-
tions of the tangent space in the context of atmospheric predictability. On the other
hand, (34) shows that chaos makes it possible to reconstruct ensemble averages
even if we start outside the attractor (but, clearly, within its basin of attraction).
Hence, we are able to collect the statistical properties of the system without
knowing where precisely its attractor is. Therefore, chaos makes it possible to
define at all the climate as the set of statistical properties of the climate sys-
tem, and makes it operationally feasible to run climate models and interpret their
results [104].

Unfortunately, Axiom A systems are far from being generic or even typical,
as more general, weaker notions of hyperbolicity have to be used to deal with
real-life chaotic systems. Recently, it has been shown that much larger classes of
dynamical system possess SRB measure [45,283], thus providing further support
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to the so-called chaotic hypothesis [97,98], which states, roughly speaking, that
a chaotic system with many degrees of freedom de facto behaves as an Axiom
A system and in particular possesses a physically relevant SRB-like invariant
measure.

3.4.1 Large deviation laws for Axiom A systems

We are now able to formulate more precisely the problem of estimating the probability
of large deviations of a smooth observable ψ for the system defined above. We want
to study the rate of convergence of the averageψT ,x = 1

T

∫ T
0 ψ(Sτ x) dτ for x ∈ U . In

other terms, we want to understand the probability of deviations of finite time averages
with the respect to the asymptotic result given in (34) which is valid for almost all
x ∈ U . We adapt below—in a very simplified way—for the case of flows the treatment
of the problem presented in [41,282] for maps.

We choose a value a ∈ R and define the set Ba,+
T ,ψ = {x ∈ U |ψT ,x ≥ a}.

From (34), we derive that limT →∞ 1
T logP(Ba,+

T ,ψ ) = 0 ∀a > μS R B(ψ), where
P = (1/mn(U ))mn is a conditional probability measure on U . It is indeed possi-
ble to establish in general a large deviation principle for the finite-time averages of ψ .
We obtain:

lim
T →∞

1

T
log

(
P(Ba,+

T ,ψ )
)

= − inf
z∈A

Iψ(z) with A = [a,∞). (35)

where Iψ(z) is the rate function. If, instead, we set a < μS R B(ψ) and define the set
Ba,−

T ,ψ = {x ∈ U |ψT ,x ≤ a}, we obtain:

lim
T →∞

1

T
log

(
P(Ba,−

T ,ψ )
)

= − inf
z∈A

Iψ(z) with A = (−∞, a]. (36)

These two results closely mirror what presented in (3)–(4). Note that the functional
form of the rate function is known but is very non-trivial, as it must take into account
the complex nonlinear correlations of the time evolving value of ψ resulting from the
chaotic dynamics. One can derive the following expression for the rate function:

Iψ(z) = − sup
ν∈N ,ν(ψ)=z

(
h(ν) − Σ+

λ (ν)
)
. (37)

whereN is the set of the invariant measures of the system (if ν ∈ N thenΠ tν = ν ∀t).
Note that we impose as a constraint that the expectation value of ψ computed using
the measure ν must be equal to z. In the previous expression h(ν) is the Kolmogorov–
Sinai entropy, which measures the rate of creation of information, while Σ+

λ (ν)

indicates the sum of the positive Lyapunov exponents w.r.t. ν. The positive Lyapunov
exponents measure the possible asymptotic rates of stretching of infinitesimal pertur-
bations aligned along the unstable manifold [78], see discussion in Sect. 4.2. Note
that Iψ(z) ≥ 0 because for all invariant measures h(ν) ≤ Σ+

λ (ν). The rate function
attains its unique minimum for z = μS R B(ψ), which is realised when ν = μS R B .
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Indeed, in this case one has that the Pesin identity is verified: h(μS R B) = Σ+
λ (μS R B)

[229]. Note that the Pesin identity is implicitly assumed as valid in most numerical
applications where one wants to evaluate the Kolmogorov–Sinai entropy.

Summarising, the large deviation law defined with respect to initial condition in
the neighbourhood of the attractor U is determined by all the non-SRB invariant
measures supported on the attractor Λ. While in the stochastic case the rate function
is determined by the cost of deviating from the deterministic trajectory defined by the
zero noise limit, in the deterministic case the rate function is, in some sense, determined
by the cost of deviating from the reference SRB measure. In geophysical terms, such
alternative invariant measures correspond to exceedingly unlikely, yet possible, exotic
climates.

Following [41], an alternative way to derive a more direct and practically accessible
definition of the rate function relies on using the scaled cumulant generating function
described in Sect. 3.3. One defines:

λψ(k) = lim
T →+∞

1

T
log

∫ [
ek

∫ T
0 dtψ(St x)

]
μS R B(dx), (38)

Taking advantage of the Gärtner–Ellis theorem, whose hypotheses apply in the case
of Axiom A systems, one derives the rate function Iψ(Δ) as Legendre transform of
λψ(k) as follows: Iψ(z) = supk∈R[zk − λψ(k)]. The possibility of using the same
construction for the rate function in both stochastic and Axiom A system clarifies the
fundamental similarity, at statistical level, between the two.

Near the minimum of the rate function z0, the large deviation law describes the
central limit theorem. The results mirror precisely what shown in the previous section.
Indeed,mirroring (30), for small values of z onehas Iψ(z) ≈ (z−z0)2/(2σ 2

ψτ c
ψ),where

σ 2
ψ = ∫

μS R B(dy)(ψ(y) − μS R B(ψ))2 is the variance of ψ and τ c
ψ = ∫∞

−∞ dtCψ(t),

where Cψ(t) = 1/σ 2
ψ

∫
μS R B(dy)(ψ(y) − μS R B(ψ))(ψ(St (y)) − μS R B(ψ)) is the

time-lagged correlation of the observable ψ and τ c
ψ is the integrated correlation time.

We can interpret τ c
ψ as a normalising factor for time in such a way that M consecutive

observations of the observable ψ correspond to M/τ c
ψ approximately independent

stochastic variables.
Note that the possibility of establishing large deviation laws for Axiom A systems

is intimately related to the fact that for such systems one observes a rapid decay
of correlations for observables (loss of memory being another characterisation of
chaotic dynamics). Additionally, under certain conditions it has been possible to prove
the existence of large deviation laws also for systems obeying weaker notions of
hyperbolicity with respect to the Axiom A case. Such large deviation laws might
diverge from the exponential form described above in the case the system has slow
decay of correlations [41,222].

123



V. M. Gálfi et al.

4 Applications of large deviation theory to geophysical systems

4.1 Large deviation of time averaged observables and rare events

The previous section clearly indicates that we can study persistent extremes in geo-
physical flows obliviously to the fact of whether we are considering a deterministic or
stochastic framework for the dynamics. This is a very important point both on practical
and epistemological grounds.

The basic idea that connects a persistent extreme event to large deviations is that the
sample mean recorded during the persistent event can be regarded as a large deviation
from the long term mean. Nonetheless, to be able to answer the question whether the
respective samplemean, besides of being large, represents indeed a large deviation, one
has to check the convergence to the large deviation limit based on the rate functions,
as described in detail in Sect. 3.3.

Geophysical observables are usually correlated in time and space, which should
be considered in the computation of the rate functions (see also Sect. 3.3). In case of
weakly correlated observables (i.e. two values have an exponentially decreasing cor-
relation if they are far enough from each other, in time or in space), it is recommended
to re-normalise the rate function in (32) additionally by the integrated auto-correlation
τ [96]

In(a) = − ln p(An = a)

n/τ
. (39)

Thus, we take into consideration that the averaging block length n consists of n/τ

(nearly) independent data points. Please note that the notation in (39) is slightly differ-
ent from the one used for (32), with n replacing τb. The normalisation by n/τ is useful
especially for comparing rate functions of observables with different characteristic
scales.

Gálfi et al. [96] compared rate functions of near-surface air temperature obtained
based on (39) and found that by looking locally in space at long time averages agrees
with what is obtained, instead, by looking locally in time at large spatial averages
along the latitude. They used the simplified General Circulation Model (GCM) of
the atmosphere PUMA [90] without orography and performed simulations in a non-
equilibrium steady state. These results suggest that, in case of homogeneous statistics
in both time and space, the apparent discrepancy between temporal and spatial large
deviations is only due to the difference between temporal and spatial scales. If one
normalises the rate functions based on the number of independent data, one finds a uni-
versal function describing both temporal and spatial large deviations (Fig. 2). Hence,
the correspondence between properly scaled temporal and spatial large deviations
extends the universality emerging from the asymptotic nature of the large deviation
principle, discussed in Sect. 1.2, by a further level, connecting the dimensions of time
and space. This connection can be useful for the analysis of observational data, for
example. Let us consider the common situation when only time series at sporadic
locations are available. If the universality between time and space is satisfied, one can
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Fig. 2 The rate functions obtained according to (39) based on averaging the near-surface grid point tem-
perature in time (red) and along a latitudinal band (blue) at latitudes a 60◦, b 46◦ and c 30◦ in the GCM
PUMA illustrate the equivalence between temporal and spatial large deviations, as well as the increasing
anisotropy as one goes from North to South, shown by a slight deterioration of the equivalence. From [96]

derive the spatial large deviations based on the information about temporal averages
and the characteristic spatial scale.

The above connection between spatial and temporal large deviations is valid for
asymptotic scales, i.e. if the rate functions have converged to the asymptotic one. This is
fulfilled in the atmosphericmodel used by [96] for temporal and spatial scales of around
20τ , where τ is either the temporal or the spatial integrated auto-correlation. Obtaining
the spatial large deviation law can represent a problem though, due to heterogeneous
orography or even due to the limited size of the Earth, which is in certain cases simply
not large enough to reach asymptotic levels. Hence, the possibility to make use of the
asymptotic connection between temporal and spatial large deviations can be inhibited
by a strong anisotropy between the temporal and spatial dimensions. This is illustrated
by Fig. 2 showing that going from North towards the Equator, the correspondence
between the temporal and spatial rate functions deteriorates slightly, due to the increase
of characteristic spatial scales (391 km at 60◦, 732 km at 45◦, 1292 km at 30◦)—and
consequently a slower convergence in space—while the temporal scales do not change
substantially (1.32 days at 60◦, 1.05 days at 45◦, 1.61 days at 30◦). Besides the purely
spatial and temporal large deviations of local temperature observables, the universal
rate function describes also large deviations in time of spatially averaged observables,
as long as the spatial averaging is performed along the same latitudinal band, and one
disregards the effect of orography.However, the spatial averaging length is crucial here.
Due to strong spatial correlations on certain synoptic scales (≈ 2000−4000 km), the
asymptotic rate function of spatial temperature averages is wider than the universal
function, showing that large deviations on these spatial scales are more probable than
on any other scales. Interestingly, these spatial scales correspond approximately with
the ones of persistent synoptic disturbances, leading to high-impact heatwaves.

Gálfi and Lucarini [94] studied the connection between large deviations of surface
air temperature and persistent temperature events, like heatwaves or cold spells, more
thoroughly. They used CMIP6 simulations [81] performed with the state-of-the-art
Earth System Model (ESM) MPI-ESM-LR [110] with seasonal cycle and orography.
Although, the universality in time and space of large deviations does not hold in the
presence of orography, large deviations in time of local temperature are still connected
to anomaly fields extended in space and persistent in time. They show that large devi-
ations in time of surface temperature at a single, suitably selected grid point, located

123



V. M. Gálfi et al.

Fig. 3 Composites of winter a surface air temperature and 500 hPa geopotential height and c precipitation
anomaly fields corresponding to surface temperature anomalies of − 10.5 K lasting 30 days in the locale
indicated by the green dot from pre-industrial CMIP6 simulations performedwith theMPI-ESM-LRmodel.
Observed b surface temperature (CRU-TS 4.04) and d precipitation (GPCP v2.3) anomalies for February
2019. The isolines in a indicate 500 hPa geopotential height anomalies

in the core of the event of interest, are related to spatially extended anomaly patterns
(temporal averages of surface temperature and 500 hPa geopotential height anomaly
fields), which resemble anomaly patterns from reanalysis data during two high-impact
persistent events, the 2010 Russian Heatwave and the 2010 Mongolian Dzud. For the
model results, [94] use non-equilibrium steady state simulations with pre-industrial
CO2 concentration, thus pointing out that both kind of events are manifestations of
the natural variability of the climate system. Furthermore, these events seem to be
typical persistent events from the perspective of LDT. The fact that by using LDT one
is able to capture the dynamical features of typical events—within the class of the very
unlikely ones—is further explored later in Sect. 4.4; see also discussion in [112]. Thus,
it seems that, based on large deviations, we can identify spatial structures of typical
persistent events of our system, and, at the same time, obtain probability estimates for
their occurrence. We note that the term “typical” does not refer to the magnitude or
severity of the event. Furthermore, precipitation anomaly patterns selected based on
large deviations of temperature are also similar to the one during the 2010 Russian
Heatwave thus supporting the conclusion that the selection method based on large
deviations is meaningful from a dynamical point of view. Remote effects are captured
as well, as shown by the positive precipitation anomalies over the Indian subcontinent
and Pakistan corresponding to the devastating floods in that region during the Russian
Heatwave.

Another case study related to the 2019 North-American cold spell yields as well a
noticeable similarity for both temperature and precipitation anomaly fields between
the large deviation based selection of modelled (same model as in [94]) fields and
reanalysis data for February 2019 (Fig. 3). For the composites in Fig. 3a, c we used
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Fig. 4 Summer rate functions for surface air temperature for increasing averaging windows (see legend)
for a Northwest, b Southwest, and c Southeast America, d the Mediterranean, e North Europe, f Northwest
and g Northeast Asia, h the North Atlantic, and i the North Pacific. The black (blue dashed) line represents
rate functions obtained via multi-seasonal averages for the pre-industrial (quadruple CO2) run. On top, the
mean surface temperature and integrated auto-correlation, τ , for the control (black) and quadruple CO2
(blue) runs. From [94]

CMIP6 pre-industrial control runs performed with the MPI-ESM-LR model, while
Fig. 3b, c represents observed ST (precipitation) anomalies from February 2019 with
respect to the 1981–2010 long-term monthly mean based on the CRU-TS 4.04 [123]
(GPCP v2.3 [3]) data set.

As we have seen, LDT provides the probability of large sample averages, which
then can be related to high-impact persistent events. Figure 4 shows rate function
estimates from [94] of summer surface air temperature for different regions over the
NorthernHemisphere for pre-industrial and quadrupleCO2 concentration experiments
(MPI-ESM-LR model). By comparing the best estimates of the pre-industrial (black
lines) and quadruple CO2 (blue dashed line) experiments, we notice that the rate func-
tion becomes wider over North-American and European regions as an effect of the
increased CO2 concentrations, suggesting that heatwaves in summer become more
frequent and longer lasting. Opposite results are found for cold spells during winter
[94]. Although these results are unsurprising considering the effects of global warm-
ing, they show the utility of large deviation rate functions to quantify the changing
probability of the considered persistent events.

To a good approximation, rate functions of temperature found in [94,96] are sym-
metric and close to a parabolic form. Consequently, Gálfi and Lucarini [94] propose to
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use the formula for the Gaussian approximation to estimate the probability of observ-
ing an average anomaly of temperature Tn of amplitude a over a period of n days:

log (p(Tn = a)) ≈ −nIT (a), IT (a) = a2

2τT σ 2
T

(40)

where σ 2
T is the daily variance of the field and τT is the integrated auto-correlation

of the variable T in units of days, and n ≥ 10τT . This approximate formula, can
be useful for estimating the probability of occurrence of persistent large temperature
deviations, i.e. heat wave or cold spells, from easily accessible statistical properties of
the temperature fields. We note that the temporal resolution of the time series does not
have to be daily, the formula can be used for any arbitrary resolution and for averaged
series as well. However, one expects to obtain more robust results by using:

p(Tn′ = a′) ≈ p(Tn = a) exp

(
na2 − n′a′2

2τT σ 2
T

)

. (41)

Based on (41) one can estimate the probability of occurrence of events of amplitude
a′ > a and length n′ ≥ n from the knowledge of events of amplitude a and length n.
These results can be reframed in terms of average return periods of the events, which
are simply the inverse of the occurrence probabilities.

When dealing with finite sized data, it is advisable to define an optimal averaging
block sizen∗. This is usually theminimal block size, forwhich the rate functionbelongs
to the asymptotic regime, i.e. I (n∗) ≈ I (n > n∗). In case of the GCM used in [96],
n∗ ≈ 20τ , where τ is the integrated auto-correlation. In case of the ESM from [94], the
optimal averaging length is between 12–20 τ (1–2 months) for land areas, depending
on the geographic region and the considered season. Over the oceans convergence,
if any, takes longer than the duration of a season. As mentioned above, [96] and
[94] estimate rate functions directly based on the probability density functions (pdf’s)
of sample averages according to (39), which is a slightly modified version of (32).
[217] follow a different strategy and estimate the rate function of spatially averaged
temperature over Europe as Legendre transform of the scaled cumulant generating
function (29). They rely on an intermediate complexity climate model, run under
perpetual summer conditions, and find a convergence to the large deviation limit at
n∗ = 3 years. Moreover, they find an asymmetric rate function, whereas the ones
found by [96] and [94] are generally symmetric.

The studies conducted by [96] and [94], on the one side, and [217], on the other
side, show some contradictory results although they both look at temperature observ-
ables. Reasons for the discrepancy could be related to differences in the used models,
estimation methods, and spatial averaging regions. Let us shortly discuss the possible
reasons one by one. Both [96] and [94] find that the convergence to the large deviation
limit is quite fast, i.e. shorter than the length of a season, although the used models
are extremely different in terms of model physics and complexity. Consequently, the
model differences are probably not the main reason for the different results, unless the
simplified ocean dynamics in the model used by [217] does not slow down the evolu-
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tion of the system too much leading to slow convergence. Despite the fact that the rate
function estimation methods based on pdf’s and Legendre transforms of the scaled
cumulant generating function (see Sect. 3.3) can lead to slightly different results, they
should provide similar rate functions [155]. The most feasible reason we can think
of is related to the different spatial averaging areas. [217] average over Europe until
longitude ∼ 25◦ E, leaving out the most continental part of Europe and considering
all coastal regions, which can be influenced by the slow ocean dynamics. The slowly
decaying serial correlation of this spatially averaged observable can lead to the slow
convergence of the rate functions estimates.

4.2 Large deviations of finite time Lyapunov exponents

After discussing extremely persistent atmospheric states based on large deviations of
temperature, we explore, in what follows, the finite time dynamics of the system at a
more intrinsic level, based on large deviations of finite time Lyapunov exponents. The
goal is to explore whether LDT can be of help for improving our ability to understand
the predictability of geophysical flows [105,151,201].

LyapunovExponents (LEs) describe the asymptotic growth or decay of infinitesimal
perturbation acting on the trajectory of a dynamical system. Their finite time estimates,
the so-called Finite Time Lyapunov Exponents (FTLEs), refer to stability properties
of a specific state of the system with respect to a predefined predictability horizon [22,
137,203,258,262]. Large deviations of FTLEs point out extremely stable or unstable
states of the system [156] and provide relevant information on its predictability on
time scales that are intermediate between the one given by the inverse of the first LE
and ultra-long ones [155,180].

We briefly and informally introduce the LEs and their finite-time version below.
We consider the autonomous deterministic dynamical system where evolution takes
place in an n-dimensional compact manifoldM obtained by removing the stochastic
component from (21):

dx

dt
= b(x), (42)

where x ∈ R
n is the state vector and b : Rn → R

n is a smooth drift. We assume that
the system possesses an invariant measure ρ(dx) supported on a compact attractor Ω .
We define the orbit x(t, x0) = St x0 as the result of the evolution of the system after
a time t starting from the initial condition x0 inside the basin of attraction of Ω . An
infinitesimal perturbation δx ∈ R

n evolves along the orbit according to the linearised
equation

d

dt
δx(t) = ∇b

∣
∣
∣
∣
x=x(t,x0)

δx . (43)

The propagation of the infinitesimal perturbation between time t0 and t is described
by

δx(t) = M(t − t0, x0)δx(t0), (44)
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where M : Rn → R
n×n is the so-called tangent linear propagator or resolvent matrix.

It follows from (44) that the growth in time of the Euclidean norm of tangent vectors
is controlled by the matrix MTM . If the system is ergodic (as always assumed in this
context), the limit

lim
t→∞ W (t − t0, x0) = lim

t→∞[M(t − t0, x0)
TM(t − t0, x0)]

1
2(t−t0) (45)

exists [196] and does not depend on x0. The logarithm of eigenvalues of W are called
(forward) Lyapunov exponents λi , i = 1, . . . , K ≤ n. Typically (in absence of sym-
metries), one has K = n; additionally, in time-continuous systems one of the LEs has
vanishing value as it corresponds to the direction of the flow. If only one vanishing LE
is present, the system falls in the special category identified by Pesin as an extremely
relevant case of (in general) nonuniform hyperbolicity [207], which provides a nat-
ural generalisation to the stricter properties characterising the splitting between the
stable and unstable manifold for Axiom A systems, described earlier in Sect. 3.4
[229]. Indeed, the number of positive (negative) LEs, taken with their multiplicity if
different from one, defines the dimension of the unstable (stable) manifold; see also
discussion in Sect. 3.4. When sorted in a non-increasing order, the LEs form the so-
called Lyapunov spectrum. The proposal by Pesin has had enormous importance for
giving solidity and strong foundations to the exploration of the tangent space for many
systems of practical relevance, and especially so in a geophysical context [137].

In case one is interested in finite time stability properties instead of asymptotic
growth/decay rates, one has to consider estimates over a finite time τ given by the
FTLEs Λi (τ, x0), which are the logarithms of eigenvalues of W (τ, x0). By definition,
we have that limτ→∞ Λi (τ, x0) = λi . Additionally, the long-time averages of the
FTLEs computed along the trajectory converge to the corresponding global LEs:

λi = lim
T →∞

1

T

∫ T

t=0
Λi (τ, St x0)dt =

∫

ρ(dx)Λi (τ, x) (46)

where we have used ergodicity. Unlike the LEs, the FTLEs are norm-dependent, thus
they depend on the computation method used to obtain them, which can be, for
example, based on forward integration (as presented above), backward integration,
or following the intersections of Oseledec subspaces [109,153]. (46) shows that aver-
ages in time of FTLEs converge to the global LEs, thus suggesting that finite time and
global LEs can be connected by a large deviation law. This is indeed true for Axiom
A systems, and, assuming the chaotic hypothesis, for a wide range of chaotic systems
which are not Axiom A, as explained in Sect. 3.4.1.

A systematic study of large deviations of FTLEs has been performed on geophysical
fluid systems with different degrees of complexity [55,155,262]. Using a three-layer
quasi-geostrophic (QG) atmospheric model with n = 700, in [155], a relatively fast
convergence was found to the large deviation limit for all LEs. Convergence was
slightly slower and rate functions were asymmetric for the strongly positive/negative
LEs (Fig. 5a), whereas convergence was very fast and rate functions were symmetric
in case of the near-zero and weakly positive/negative LEs (Fig. 5b). [262] studied the
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Fig. 5 Rate function estimates of a the first (most positive) FTLE and b the 92nd (zero) FTLE in an
intermediate complexity atmospheric model. The colours represent the averaging block length, according
to the legend. Continuous lines refer to probability density-based estimates, whereas the dashed lines to
Legendre-transform based estimates. From [155]

convergence of the FTLE in a coupled ocean-atmosphere QG model with n = 36.
They found a convergence and quadratic rate functions for positive and negative LEs,
whereas very slow or even no convergence was found for near-zero LEs.

The apparently contradictory results of [155] and [262] show that convergence
properties of FTLEs strongly depend on the dynamical properties of the system.
The Lyapunov spectra of the two systems clearly show the dynamical differences.
Whereas the atmospheric model has a monotonically decreasing Lyapunov spectrum,
the spectrum of the coupled ocean-atmospheremodel has an extended range of slightly
positive and negative LEs, which are indistinguishable from zero, corresponding to
the so-called slow manifold, which appears due to the slow oceanic dynamics and the
interactions between slows oceanic modes and atmospheric ones.

Generally, for a physical observable, the convergence of finite time averages to the
large deviation limit depends on two factors: the strength of the serial correlations
and the asymmetry of the probability distribution. Due to serial correlations, larger
averaging blocks are needed to reach the asymptotic limit, as compared to i.i.d random
variables. Additionally, an eventual asymmetry (or departure from Gaussianity) of the
parent distribution delays the convergence of the small Gaussian deviations around
the minimum of the rate function, as required by the central limit theorem [96,155].
Accordingly, in case of the mentioned atmospheric model, on the one hand, serial cor-
relations are so weak that the speed of convergence to the large deviation limit depends
dominantly on the degree of non-Gaussianity of the FTLE’s parent distribution. On the
other hand, in case of the ocean-atmosphere model the strong, long-term correlations
dominate the convergence (or non-convergence) to the large deviation limit, including
the convergence of the FTLE’s to the global LEs.

In [55] it was shown that a large deviation law can be found for FTLEs in case of
the primitive equations model PUMA [90] run in a standard setting allowing for the
establishment of turbulent, Earth-like conditions for the atmospheric flow. The primary
injection of energy for PUMA occurs by imposing a fixed Equator-to-Pole temper-
ature difference, as typically done for the so-called dynamical cores of atmospheric
models [127]. When such temperature difference is set to the fairly realistic value of
60 K (symmetry is taken between the two hemisphere), one obtains, in the the setting
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Fig. 6 Statistics of the the largest
FTLEs in a primitive equation
model of the atmosphere. a
Probability density functions of
the largest FTLE for different
averaging times. b
Corresponding estimates of the
rate function expressed in terms
of the anomaly with respect to
the asymptotic value of the first
LE. From [55]

described in [55], 68 positive LEs which correspond to a very highly-dimensional
attractor (Kaplan–Yorke dimension [78] of 172.6). Figure 6 shows the statistics of
the largest FTLE computed with averaging times ranging from 21 to 64 days. One
observes a good convergence to a well-define rate function when longer averaging
times are considered. Comparably good properties of convergence have been found
for all the FTLEs [55].

Conversely, in [55] no convergence was found in a higher resolution version of the
coupled ocean-atmosphere model mentioned above [262]. The authors conclude that
the length of the simulations with the coupled model (614 years) is not sufficient to
obtain convergence due to the long-term correlations in the system.

4.3 Rare event sampling algorithms based on large deviation theory

Large deviations provide us with valuable insights into the probability with which and
the way in which rare events occur. The theory is only valid in specific limits, for
example taking the noise intensity in a stochastic differential equation to zero, or the
length of a time average to infinity. Nevertheless the results are in many cases still
useful when this limit has not been reached, which is the realistic setting we are really
interested in.
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In this pre-limit cases we may want to estimate quantities that are not available
from the instanton, for example

P(x(t) ∈ B|x(T ) ∈ A) for 0 < t < T

the probability of entering some set B at an intermediate time 0 < t < T , conditioned
on arriving in the rare event set A at thefinal time. Toobtain such information numerical
estimation is usually the only possible approach.

However, we face a difficult challenge in numerically sampling rare events. By
definition any brute force Monte Carlo simulation will only contain a small sample of
relevant events. This leaves us with large uncertainties on the quantities we want to
estimate.

Numerical sampling methods known as rare event simulation (RES) methods
have been successful in circumventing these sampling issues in many applications.
Although many RES algorithms exist, the approaches are based on the same princi-
ple: we want to preferentially sample rare events, in such a way that it is possible to a
posteriori determine how much more or less likely we have made the paths we have
sampled. This information allows us to estimate probabilities of the system as though
we had not interfered with its path distribution.

RES algorithms have been developed since the 50s [136] for a variety of applica-
tions in applied mathematics and statistical physics, and have been subject of recent
mathematical interest [56]. In recent years there has been several attempts to apply
these methods for geophysical applications. They have been applied to Lorenz models
[275], partial differential equations [226], turbulence problems [77,113,160,164,165],
geophysical fluid dynamics [28], heatwaves in general circulation models [217–219]
and data-based stochastic weather generators [281], and tropical cyclones in regional
climatemodels [212,272]. Here we give an overview ofmethods and their applications
that have been used to study problems directly related to the dynamics of planetary
atmospheres and making use of concepts from LDT. Other applications, including
approaches through minimum action methods also related to LDT, are reviewed in
[114].

One of the applications we have discussed concerns the statistics of time averages
of surface temperature and the study of heatwaves. In order to study long-lasting
extremes of surface temperature, [217,219] have applied a genealogical algorithm to
the intermediate complexity climate model PlaSim, and recently to the more complex,
state-of-the-art model CESM [218]. The algorithm was specifically designed in [107,
108,162] to study large deviation functions of time averages, and is very similar to a
class of methods described by [57] and whose mathematical properties are studied in
details in [56].

The algorithm consists in running an ensemble simulation of N trajectories with
a numerical model starting from different initial conditions. At constant intervals of
a fixed resampling time τ , each trajectory is assigned a weight, which determines
if that trajectory is killed or if it continues its evolution generating copies of itself.
The weight wn

i of trajectory n at time ti = iτ is computed in such a way that the
weight is large when an appropriately chosen score function is large. Choosing well
the score function in order to define the selection criteria is critical. In [217–219] the
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score function used was the time integral of the surface temperature over Europe. The
weights are defined in such a way that, after a total running time Ta , the probability
Pk({X(t)}) of observing a trajectory in the ensemble generated by the algorithm is
related to the probability P0({X(t)}) of observing the same trajectory in a normal
ensemble simulation with no resampling as

Pk({X(t)}) = ek
∫ Ta
0 A(u) du

Z
P0({X(t)}), (47)

where Z is a normalisation term, k is a biasing parameter of the algorithm that deter-
mines how strong is the tilt of the probability distribution, and the equation is valid in
the limit of large N with relative errors on the computation of expectation values of
the order of 1/

√
N [56].

In ensemble simulations performed with the rare event algorithm, trajectories fea-
turing a large value of the time average of the control observable over the entire
simulation period are thus much more likely to be observed than in a normal simula-
tion, and vice-versa. This is called importance sampling. It is important to note that
Eq. 47 applies to the probability of trajectories, not of the score function itself. It can
thus be used to compute any statistical property of the system by averaging over the
trajectories in the tilted ensemble and reweighting the contribution of each trajectory
by the inverse of the factor that multiplies P0({X(t)}) in Eq. (47). Because of the
tilting, statistical estimators based on (47) of quantities conditional on the occurrence
of extremes of the time average of A have statistical uncertainties orders of magnitude
smaller than with direct sampling, for a given computational cost.

This method as developed by [107,108,162] gives optimal estimates of the scaled
cumulant generating function of the time average of the control observables for the
value of k used as biasing parameter. In fact the normalisation term is the generating

function Z = E[ek
∫ T
0 A(t)dt ], and an estimate of it is computed directlywith a dedicated

estimator based on the statistics of the weights responsible for the cloning of the
trajectories. See [217] for a full analysis on this type of application. It is worth noting
that the same method has been used by [253] to compute the large deviation properties
of the finite time Lyapunov exponents of a selection of simple dynamical system,
highlighting peculiar properties of the chaotic dynamics associated to these systems.

The method however proves extremely useful also to study the statistics of time
averages not in the large deviation limit, as shown in [218,219]. Simulations performed
with the algorithm allowed to perform importance sampling of seasonal anomalies of
the European surface temperature (left panel of Fig. 7), in a condition in which conver-
gence to the large deviation limit was far frombeing achieved. This allowed to simulate
and estimate precisely the return times of rare and ultra rare anomalies corresponding
to seasonal heatwaves with return times up to millions of years, with computational
costs 3 order of magnitude smaller than what would have been necessary with direct
sampling (centre panel of Fig. 7). The access to the dynamical trajectories leading
to rare heatwaves allowed to compute precisely composite statistics of anomalies of
surface temperature and 500 hPa geopotential height conditional on the occurrence of
heatwaves with return time larger than 1000 years. This shows how this very rare and
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Fig. 7 Left: importance sampling of average European surface temperature anomalies in ensemble simula-
tions with a large deviation rare event algorithm applied to the general circulation model PlaSim, with the
distribution obtained with the algorithm (red) shifted to the tail of the distribution obtained with a direct
Monte Carlo approach (black), from [219]. Centre: return times of simulated average European surface
temperature anomalies from the same experiments, showing how the application of the rare event algo-
rithm allows to simulate rare and ultra rare events (red) compared with what possible with a direct Monte
Carlo approach (black), from [219]. Right: low wavenumber teleconnection pattern of anomalies of surface
temperature (red) and 500 hPa geopotential height (contours) in the composite averages of rare heatwaves
(return time large than 1000 years) obtained with the large deviation rare event algorithm in the same
experiments, from [219]

intense events are related to the occurrence of a hemispheric teleconnection pattern of
low wavenumber between 3 and 4 (right panel of Fig. 7). The presence of these sta-
tionary patterns (although with varying wavenumbers) seems ubiquitous in analysis of
extreme heatwaves with different approaches (see discussion in Sect. 4), which makes
rare event algorithms a very promising tool to investigate the dynamic constituents
and drivers of these events, thanks to the much better sampling they can provide. This
approach has also been applied successfully to stochastic weather generators based
on circulation analogues to simulate persistent rare European heatwave [281]. Indeed,
the fact that the algorithm is able to select the correct dynamical patterns that generate
extremes of a target observable, makes its pairing with analogue classification and
selection analysis potentially extremely interesting.

A similar method has been used by [212,272] to study the intensification of tropi-
cal cyclones in the high resolution, non-hydrostatic regional climate model WRF. In
this case the score function has been taken as the surface pressure anomaly at the
centre of the cyclone. Additionally, the trajectory selection and cloning procedure has
been modified by mapping at each resampling step the distribution of the weights
on a Gaussian distribution on an equal-quantile basis [272]. This procedure helps to
avoid that for large values of k the trajectory with the largest weight in the ensemble
dominates all the others in the cloning rate, thus reducing the degree of degeneracy
of the trajectories in the resampled ensemble. Applying this method [212,272] were
able to obtain a large number of trajectories of extremely intense tropical cyclones
in simulations featuring boundary conditions corresponding to two historical tropical
cyclones (Fig. 8), thus showing the potential of this approach even with some of the
most challenging applications in climate modelling.

It is worth noting that the resampling methods used in [212,217–219,272] belong to
the same family of methods used in particle filtering by the data assimilation commu-
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Fig. 8 Intensity of tropical cyclones Earl (top) and Joaquin (bottom) in direct Monte Carlo simulations with
the regional climate model WRF (left) and in ensemble simulations with a quantile Diffusion Monte Carlo
rare event algorithm applied to the same model, showing the shift of the trajectories to higher percentiles
of the intensity range thanks to the rare event algorithm. Reproduced with permission from [272]

nity [37,73,260]. Particle filtering is a notoriously difficult problem in data assimilation
[244] due to the difficulty to target specific trajectories in a very high dimensional
space. Particle filtering has nonetheless shown promising advances in recent years
[260]. Although not directly related to extreme events or LDT, it would be interesting
to see how developments in particle filtering and in the emerging field of the applica-
tion of RES algorithms to climate modelling could possibly inform and support each
other.

Another method that has been successfully applied to problems of interest for
the geophysical and climate community is the Adaptive Multilevel Splitting (AMS)
algorithm [39,53]. This method is particularly well suited to study rare transitions
between two metastable states or attractors A and B. A score function or reaction
coordinate is defined to measure the distance of a trajectory from say the target set B.
An ensemble of N trajectories is then simulated starting from the set A, until all of
them end in either A or B. Then the worst performing trajectory (the one falling in A
that was the furthest from B in its evolution) is replaced by a new trajectory whose
initial condition is taken on one of the other better performing N − 1 trajectories.
This step is the resampling step of the algorithm, and is repeated K times. The final
ensemble of trajectories will have probability (1−1/N )K , and it will be populated by
many extremely rare transitions from A to B, which can be used to compute unbiased
estimates of their probability. See [28,226,227] and references therein formore details.

The AMS algorithm has been used among other applications to study transitions
to turbulence [225], the forces acting on a solid object in a turbulent flow [164,165],
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Fig. 9 Left: transitions between attractors with 2 and 3 jets in a stochastic barotropic beta-plane quasi-
geostrophic model of Jupiter atmosphere: Hovmoeller diagram of zonal mean vorticity (top) and time
series of wavenumber 2 and 3 Fourier components of zonal mean vorticity (bottom). Right: reactive tubes
showing the concentration of the transition paths around instantons for the transitions between 2 and 3
jets states in the model of Jupiter atmosphere, obtained with the Adaptive Multilevel Splitting rare event
algorithm. Reproduced with permission from [28]

and transitions between metastable states in geophysical fluid dynamics [28]. For
example, [28] studied the transitions between metastable states with two and three
jets in a stochastic barotropic beta-plane quasi-geostrophic model of the atmosphere
of Jupiter (left panel of Fig. 9). Thanks to the application of the AMS algorithm,
[28] were able to obtain thousands of trajectories representative of the rare transitions
between the two turbulent attractors, showing how they cluster around preferential
paths close to an instanton (right panel of Fig. 9). This was the first demonstration
in a numerical simulation of a turbulent flow of this type of phenomenology. The
AMS algorithm has thus proved to be a powerful tool to study rare transitions between
different chaotic attractors, that could be applied also to climate studies where such
transitions occur (see Sect. 4.5).

As said several other RES methods exist, tailored to different types of studies. The
application of RES algorithms to geophysical and climate problems is an emerging
field of research with a very strong potential. The close connection between large
deviations and rare event simulation, both providing information on rare event proba-
bilities, begs the question whether they can be usefully combined to provide insights
on each other in this context. In particular, it would be extremely interesting to under-
stand for a wider class of processes and applications on one hand if RES algorithms
can be useful in estimating large deviation rate functions in systems and models of
the complexity of the ones typically involved in applications, and on the other hand
if knowing the instanton to a rare event set could be useful to set up an efficient RES
algorithm to study the corresponding physical process.

4.4 Rogue waves

Rogues waves are unusually large and virtually unpredictable surface waves that pose
grave hazards to boats as well as to naval and coastal infrastructures, and to people
living in coastal areas, as they can lead in open sea to tens of meters high water walls.
They are traditionally defined as deep-water waves whose crest-to-trough height is at
least twice as large as the significant wave height, which in turn is defined as four times
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the standard deviation of the ocean surface elevation [2,65,193,241]. Traditionally, the
understanding of such rogues waves, which are found with similar phenomenology
in systems as different from the ocean as optical fibres [4] and plasma [11], has
been approached according to two separate viewpoints. One sees rogue waves as
emerging from linear superposition effects [168], the other one, instead, sees rogue
waves as eminently nonlinear phenomena [17,66] where a solitonic structure emerges
via nonlinear focusing [256].

Recently, a unified theory of rogue waves based on LDT has been proposed [60,61].
The fundamental idea is that rogue waves can be seen as instantons computed by
minimising the action associated with the dynamics described by a one-dimensional
nonlinear Schrödinger equation (NLSE) with random initial data. The initial data are
chosen in such away that their spectrum agreeswith the spectrumof oceanwave height
measured in an oceanographic observational campaign in the North sea, namely the
Joint North Sea Wave Project (JONSWAP) [126]. The idea is to study the probability
of having a wave that increases to a height larger than a given threshold z over a time
T from one of the possible initial conditions:

PT (z) = P(F(u(T ) > z)) (48)

where [0, L] is the domain of the system, F(u(T )) = maxx∈[0,L](ST u0), P is the
probability computed over the distribution defining the initial data u0, and ST is the
evolution operator up to time T defined by the NLSE. The next step is to look at the tail
of the surface height distribution and write PT (z) as a large deviation law of the form
PT (z) ≈ exp (−IT (z)) and define, in a way analogous to what discussed in Sect. 3.24

the instanton as the trajectory minimising the rate function IT (z).
Numerical simulations clearly indicate that rogues waves emerge from fields—

precursors—that are typical in terms of intensity but special in terms of spatial
pattern—see Fig. 10a. Especially impressive is the fact that experimental results
obtained in large water tanks suggest that instantonic solutions do resemble well
actual observed rogue waves—see Fig. 10b. This latter result is—conceptually—in
agreement with what shown in Sect. 4.1 regarding the good correspondence between
observed heatwaves and cold spells and LDT-tailored climate variability generated by
an Earth system model, see Fig. 3. Again, one can interpret such predictive power in
terms of the universality resulting from the fact that LDT describes the most likely
among events that are extreme and overall very unlikely.

4.5 Metastability and noise-induce transitions across melancholia states

As mentioned earlier in the paper, a key problem in geosciences is the investigation of
metastable systems and of the properties of transitions between the competing modes
of operation. And, indeed, there is a complex phenomenology of multistability for the
Earth system at involving different temporal and spatial scales. We describe below
how methods and ideas related to LDT can help us better understand such features.

4 But note that here the noise is included as random fluctuations of the initial conditions, whereas the
evolution defined by the NLSE is fully deterministic.
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Fig. 10 a The rogue wave precursors are wave patterns of regular height, but with a very specific shape.
Upper panel: precursor leading to a roguewave.Bottompanel: regularwave field. From [61].bThe instanton
computed via LDT (grey surface) resembles well individual rogue waves (light red lines) observed in a
large water tank experiment. From [60]

Fig. 11 Bifurcation diagram of
the Ghil–Sellers model [102] as
a function of the ratio between
the solar irradiance and the
present-day one. The order
parameter is the globally
averaged surface temperature.
The stable W and SB states and
the unstable M state are
indicated by the red, blue, and
green solid line, respectively.
Reproduced with permission
from [20]

The current astronomical and astrophysical conditions support the co-existence of
(at least) two competing states, corresponding to the snowball (SB) state and warm
(W) state. Such states are so different that they seem to correspond, counter-intuitively,
to two entirely different planets. The multistability is, by and large, made possible
by the competition of two feedbacks: the negative Boltzmann feedback (a warmer
planet emits more radiation to space) and the positive ice-albedo feedback (a colder
planet stores more water in ice form; the surface ice reflects more radiation to space).
Figure 11 portrays a bifurcation diagram taken from [20] where multistability is given
in terms of globally averaged surface temperature, while the control parameter is the
ratio between the solar irradiance and its present value. The W solution is separated
from the SB solution by an unstable solution—a saddle in the phase space, which we
will refer to as Melancholia (M) state [19,175–177]. The bifurcations of the system
take place when one of the stable states meet the M state, according to the scenario of
basin crisis [197].

On a less dramatic scale, modulations in the parameters of the climate system can
lead to the occurrence of smaller scale critical transitions that have very strong impacts
on specific climatic subsystems, the tipping points [163], see Fig. 12a. Recently, it
has been proposed that future scenarios of climate change (trajectories of the Anthro-
pocene) might be loosely seen as dynamically determined by amotion on some energy
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Fig. 12 a Tipping elements of the climate system. From [163]. b Cartoon of how how the so-called stability
landscape (here: quasi-potential) changes as a result of anthropogenic forcings. From [249]

potential, which might experience multiple local minima corresponding to competing
metastable states [249], see Fig. 12b.

As we are considering a very high-dimensional system that cannot be reduced to a
one-dimensional ordinary differential equation, linking minima of some dynamically-
relevant potential and competing metastable states requires some nontrivial mathe-
matical framework, which is close in spirit to Waddington’s epigenetic landscape
metaphor in evolutionary biology [9,86,130,268].

We take the point of view proposed by the Hasselmann programme [125] discussed
in Sect. 3.1 and assume that the coarse-grained evolution of the climate system can
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be written as in (21). We also assume that the deterministic evolution law ẋ = b(x)

obtained by switching off the noise can be seen as given a smooth flow taking place in
a compact n-dimensional manifold. If stochastic forcing is absent, the initial condition
x0 determines the asymptotic state of its orbit. If several asymptotic states, defined
by the attractors Ω j , j = 1, . . . , J , are present the system is multistable. The phase
space is divided between the basins of attraction B j of the attractors Ω j and the basin
boundaries ∂ Bl , l = 1, . . . , L , which possess a set of saddle points Πlk , l = 1, . . . , L ,
k = 1, . . . , kmax ≥ 1. Such saddle points—the M states—attract initial conditions
on the basin boundaries [119,157,266] and can be computed using the so-called edge
tracking algorithm [240].

We now switch on the stochastic forcing. The presence of noise makes it possible
for transitions between the competing metastable states to take place [93,118,122].
Under fairly general conditions, in the limit ε → 0, one can propose the following
ansatz for the invariant measure in the form of a large deviation law

ρε(x) ∼ Z(x) exp

(

−2Φ(x)

ε

)

, (49)

where Φ(x), a non-equilibrium generalisation of the notion of free energy, plays the
role of a rate function. while Z(x) is a pre-exponential factor. Φ obeys the following
Hamilton–Jacobi equation [101,286]:

Fi (x)∂iΦ(x) + ai j (x)∂iΦ(x)∂ jΦ(x) = 0. (50)

where a(x) = σ(x)σ (x)T : Rn → R
n×n is the noise covariance matrix. Additionally,

Φ is a Lyapunov function whose decrease describes the convergence of an orbit to the
attractor. Specifically, Φ(x) has local minima at the deterministic attractors Ω’s, and
has a saddle behaviour at the saddles Π ’s. If an attractor (saddle) is chaotic, Φ has
constant value over its support, which can then be a strange set [116,121]. Note that
these qualitative properties do not depend on spatial patterns of the noise. Instead, the
simple fact of adding some noise to the otherwise deterministic dynamics (thus setting
σ > 0) allows for a global exploration of the phase space of the system.

The instantons, which give, in the zero-noise limit, the most probable way to exit
an attractor [118,140], can be constructed as minimisers of the Freidlin–Wentzell
actions similarly to what has been shown in Sect. 3.2.5 The instanton is intimately
connected to the quasipotential Φ(x) in that the local quasipotential ΦΩ(x) within
the basin of attraction of Ω is equal to the action for the instanton between Ω and
x [24,112,113]. To recover the global quasipotential Φ(x), one needs to resort to a
pruning-and-stitching strategy, gluing together the local portions ΦΩ j , j = 1, . . . , J ,
see [116] and the careful description recently provided by [287]. A separate view on
this problem, based upon a different interpretation of the noise has been proposed in
[8,284].

Escapes from an attractor Ω through a saddle Π into a neighbouring basin are
Poisson-distributed events, where the probability that an orbit does not transition up

5 Some nontrivial issues emerge when the noise matrix is singular; see [182].
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Fig. 13 Effect of changing the intensity of the noise on the invariant measure of a climate model. a–c y-axis:
globally averaged surface temperature; x-axis: ratio between the solar irradiance and the present-day. Solid
lines: Bifurcation diagram of the deterministic system (W state: red line; SB state: blue line; and M state:
green line are of relevance here). Shading: projection of the invariant measure. Noise increases from a to
c. d Population of the W state (red lines) and of the SB state (blue lines) for different noise intensity. Here
σ 2 = ε. From [177]

to time t is, similarly to the classic Kramers’ law [148], given by:

P(t) = 1

τ̄ε

exp

(

− t

τ̄ε

)

, with lim
ε→0

ε log τ̄ε = 2ΔΦΩ→Π, (51)

being the expected escape time and ΔΦΩ→Π = ΦΩ(Π) − ΦΩ(Ω) is the quasipo-
tential barrier height at the relevant saddle [157]. Unfortunately, due to the global
stitching procedure, one cannot in general simply read off the barrier height ΔΦΩ→Π

from the Φ(x) of Eq. 49. While the global quasipotential Φ(x) yields information
about the relative probability of attractors, and is available e.g. through global sam-
pling of the system, the local notion of potential barriers, ΔΦΩ→Π(x) is relevant for
the time-scale of transition events, and can be obtained e.g. by looking at transition
times between attractors. Equivalence between the information provided by the local
and global quasipotentials is realised if the system is an equilibrium one or, more
generally, if only two competing states are present with a single saddle embedded in
the boundary between the two basins of attraction (Fig. 13) [176,177] .

Margazoglou et al. [182] have recently performed a thorough investigation of the
noise-induced transitions between the competing SB and W states of the open-source
climate model PlaSim [89,179], see Fig. 14. Panel (b) shows the probability density
function in the projected space given by the globally averaged surface temperature
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Fig. 14 Properties of the W → SB and SB → W transitions in a stochastically perturbed version of
PlaSim [89,179]. a Quasi-potential projected in the two-dimensional space given by the globally averaged
surface temperature (x-axis) and difference between surface temperature at low and high latitudes (y-axis).
b Projection of the probability density function obtained for 1.8% per century random fluctuation of the
solar irradiance and estimates of the weak-noise limits of the W → SB and SB → W transition paths. c
Change in the W → SB and SB → W transition times as a function of the intensity of the noise (note
the logarithmic scale in the y-axis). d Three-dimensional representation of the W → SB and SB → W
transition paths, where the sea-ice percentage acts as third dimension. Here σ 2 = ε. From [182]

and by the difference between surface temperature at low and high latitudes, and the
best estimates of the transition paths in the weak-noise limit, while panel (a) shows
the estimate of the projected quasi-potential Φ. Additionally, panel (c) shows the
exponential dependence of the average transitions times with respect to the inverse of
the variance of the noise, as indicated in (51). Note that in this case, because of the
complex structure of the basin boundary, the W → SB and SB → W transitions take
place through separate M states, as can be seen in panel (d) where a third dimension,
corresponding to the sea ice percentage, in included.

Let’s now look specifically at the case of bistable systems, where we have two
attractors Ω1, Ω2, and one saddle Π . We can then express the average transitions
times as follows:

lim
ε→0

ε log τ i→ j
ε = 2(Φ(Π) − Φ(Ωi ), i �= j = 1, 2 (52)
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so that

lim
ε→0

ε log

(
τ 1→2
ε

τ 2→1
σ

)

= 2(Φ(Ω2) − Φ(Ω1)). (53)

This implies that, in theweak noise limit, both escape times diverge, but the escape time
out of the attractor corresponding to the lower value of the quasi-potential diverges
faster. Bymass balance, at steady state the populations P1,ε, P2,ε of the neighbourhood
of the two attractors obey the following relation:

lim
ε→0

ε log

(
P1,ε

P2,ε

)

= lim
ε→0

ε log

(
P1,ε

1 − P1,ε

)

= 2(Φ(Ω2) − Φ(Ω1)) (54)

Equation (54) implies that in the zero-noise limit only one of the two deterministic
attractors will be populated, and specifically the one where the quasi-potential has
lower value.

Equation (54) can be obtained by integrating the invariant measure given in (49) in
the neighbourhoodof the attractors and taking a saddle point approximation.Hence, the
statement above holds true for an arbitrary number of competing multistable states:
in the zero-noise limit, as a result of the large deviation law, the measure will be
concentrated only on the attractor corresponding to the lowest value of the quasi-
potential. Note that, nonetheless, individual stochastic trajectories could be trapped
for a very long time in secondarymetastable states corresponding to the other attractors
because low levels of noise could make it very time-consuming to reach the global
minimum.Wealso note that twodifferent noise laws differing for the correlationmatrix
C acting on top of the same drift field will define two different quasi-potentials, see
(50). As a result of that, they will in general feature a different selection of the limit
measure in the zero noise limit.

Panels (a)–(c) of Fig. 13 provide an illustrative example of the limit behaviour
of the measure for a multistable system undergoing stochastic forcing. The data are
taken from the output of a simplified stochastic climate model havingO(104) degrees
of freedom constructed by coupling an atmosphere described by primitive equations
with an energy balance model—indeed, adapted from [20,102]—that describes in a
parsimonious way the large scale heat transport performed by the global ocean [176,
177]. The deterministic version of this model features multistability of values of the
ratio between the solar irradiance and the present-day one (μ in Fig. 13) ranging from
about 0.97 to about 1.06 [175].Within this range, the system is bistable, except between
1.04 and 1.05, where a third competing state is present. For sake of simplicity—see
[175–177] for further details—we focus on the W and SB states (indicated by the red
and blue solid lines), which are separated by the unstable M state indicated by the
green solid line, similarly to what shown in Fig. 11. The shading in panels (a)–(c) of
Fig. 13 indicates for each value of μ the density of the 1D invariant measure projected
on the globally averaged surface temperature. Going from (c) to (a), the intensity of
the noise—here introduced as a yearly fluctuating value of the solar irradiance around
the value indicated by μ—decreases.
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We observe that as the noise becomes weaker the measure peaks around theW (SB)
attractor for μ larger than about 1.01 (smaller than about 0.99), with a changeover
around μ = μcri t ≈ 1.005. Panel (d) shows the population corresponding to the
W and SB states for various levels of noise. We conclude that for μ < μcri t the
quasi-potential has a lower value at the SB attractor than at the W attractor, while the
opposite occurs for μ > μcri t . We conclude that for μ = μcri t the system undergoes
a non-equilibrium phase transition.

4.6 Transitions between zonal flow and blockings

What has been presented here seems also relevant for investigating a separate,
extremely relevant aspect of geophysical fluid dynamics, namely the existence in the
atmosphere of different regimes of operation, which define the presence of substantial
low-frequency variability on sub-seasonal time scales [104,105]. This boils down to
the fact that, at coarse-grained level, due to extreme dynamical heterogeneity [180],
one is practically looking at a multistable system [13,40,134,144,186,231], where
one can define and detect transitions between different metastable states [26,27]; see
discussion in Sect. 3.1. In particular, the fundamental dichotomy for the mid-latitude
atmosphere is between the standard zonal flowand the blocked state [79,105,169,246],
which is characterised by large spatial extent and long persistence. As discussed in
Sects. 1 and 4.1, blockings are sometimes the leading cause of heatwaves and cold
spells. In the coarse grained setting, the transition between the zonal and the blocked
state are made possible by the stochastic forcing associated with higher frequency syn-
optic variability [13,186]. An accurate analysis of noise-induced transitions between
the zonal and the blocked state in the celebrated Charney and DeVore [40] minimal
model of the atmosphere using the LDT framework has recently been presented in
[114]. There, the authors have been able to compute the optimal paths for both zonal-
to-blocking and blocking-to-zonal transitions, and have elucidated (a) that the two
paths are different, as we are dealing with a non-equilibrium system; and (b) that the
two paths meet at the Melancholia state embedded in the boundary separating the two
basins of attraction, according to the scenario discussed in Sect. 4.5. This is illustrated
in Fig. 15, which portrays various snapshots of the stream function, which, in the
Charney–DeVore model, is intended to approximate the 500 hPa geopotential height
field.

5 Conclusions and perspectives

Extreme Value Theory (EVT) has shown its potential for providing information on the
fundamental properties of the dynamical system generating suitably defined extreme
events [178]. As an example, this feature is now being extensively used for providing
a fresh outlook on the problem of understanding and characterising the predictabil-
ity of the atmosphere [18,82,184], going beyond the more standard use of EVT for
studying (rigorously) the tails of the distribution of meteo-climatic fields of interest
[106,138]. When applying EVT to dynamical systems, universality emerges through
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Fig. 15 Transitions between the zonal flow and atmospheric blocking in the Charney–DeVore model [40].
a From top-left to bottom right: snapshots of the stream function along the transition from zonal flow to
blocked state. b Same as a, but for the reversed transition. The central panel is the same for both paths and
corresponds to the Melancholia state. Reproduced with permission from [114]

the procedure of looking at smaller and smaller portions of the attractor, which makes
it possible to analyse accurately the properties of the physical measure supported on
it [35,95,174,213].

Along similar lines, LDT provides powerful tools for addressing the complexity of
geophysical flows and of the climate as a whole, the basic idea being that by allow-
ing one to focus on specific, non-standard events selected according to a—possibly
universal—statistical procedure, it makes it possible to elucidate fundamental prop-
erties of the system under investigation. Our viewpoint goes along the line of the
scientific programme aimed at the development and interpretation of stochastic cli-
mate models proposed by Hasselmann [125], as discussed in detail in Sect. 3.1. In this
review we have provided a summary of some of the key ingredients of LDT and have
described the emergence and significance of large deviation laws in stochastic and
deterministic chaotic systems. In a nutshell, since the procedure of computing large
deviation laws relies on estimating the probability of occurrence of large anomalies
in the finite size averages of stochastic variables with respect to their asymptotic val-
ues, one explores the combined effect of the static (invariant measure) and dynamic
(statistics of correlations) features of the system of interest. LDT, by definition, cap-
tures the least unlikely of all the unlikely ways a given large and persistent fluctuation
can take place [63]. Therefore, if we are in the correct asymptotic limit, LDT will
define typical extreme events (but, by definition, very atypical standard events). This
does not exclude the possibility of—quantitatively much unlikelier—freak events or
dragon kings [245], which live outside the approximation associated with (finite size)
LDT. The key presence of such a dynamic component marks the conceptual difference
between LDT- and EVT-based approaches to the study of extremes. Indeed, EVT can
deal with the problem of persistence of extreme events only in a rather indirect way,
through the introduction of the so-called extremal index, which measures the inverse
of the characteristic cluster length of consecutive extreme events [87,178,187].
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Hence, the ideas and methods proposed in this paper suggest new ways to look
at the dynamics behind persistent and large fluctuations of the meteo-climatic field,
in such a way that the underlying basic mechanisms behind them can be singled out
and better understood. This paves the way for detailed analyses of the climate system
starting both from observed data and reanalyses up to numerical models. Indeed, it
seems urgent to specifically target audit and inter-comparison studies of Earth system
models to such special events, in order to highlight possible deficiencies that could
hardly be seen by looking at standard statistical properties. This applies to the study of
individual events like heatwaves and cold spells, to the - closely related - investigation
of the transitions between different modes of operation of the atmosphere responsible
for its low-frequency variability, as well as to the analysis of the tipping elements
of the climate system by looking at the noise-induced transitions between competing
states.

It has been found that concurrent persistent extreme events, like heatwaves,
droughts, or floods, are often related to specific almost stationary atmospheric wave
patterns [49,208,236]. This has been shown for the summer of 2018, when several heat
waves and rainfall extremes occurred almost simultaneously over different regions of
the Northern Hemisphere [147]. Persistent weak phases of the stratospheric polar vor-
tex have been related to cold extremes in Northern continental regions, especially in
central Asia [150]. Interactions between persistent stationary mid-latitude wave pat-
terns and tropical variability is poorly understood, but is suspected to cause unusual
persistent extremes, like the consecutive extreme flooding, heat wave and typhoon in
Japan in 2018 [271]. As explained in Sect. 1.2 when discussing the low-frequency
variability of the atmosphere, local persistent anomalies of smooth observables, like
temperature, are related to spatially extended large anomaly fields, and furthermore
to persistent large-scale atmospheric fluctuations, i.e. quasi-stationary waves often
associated with blocking events. An explanation for the phenomena of recurrent wave
patterns linked to persistent extreme events from the perspective of LDT follows the
principle already stated several time above representing one of the key principles of
this theory: there is one least unlikely way from all the unlikely ways that leads to a
persistent extreme configuration of the atmosphere, which seems to manifest itself in
the form of rather similar quasi-stationary wave patterns. Thus, an interesting area
of application would be to analyse persistent states of atmospheric circulation pat-
terns, for example, as large deviations of jet indices, blocking indices, or of spatially
averaged high-level wind fields.

An impressive example of the relevance of the principle above can be found in the
studies dealing with rogue waves, which have been briefly summarised in Sect. 4.4.
LDT allows to make sense of a very complex phenomenology and of competing theo-
ries by providing a (possibly) universal characterisation of rogue waves as instantons
that minimise an action, in such a way that individual rogue waves do resemble the
instantonic solutions, and that precursors can be identified [60,61]. This seems an
excellent meeting point between theoretical results and extremely important applica-
tions in the evaluation and anticipation of natural hazards.

A natural consequence of the connection between quasi-stationary large-scale wave
patterns and persistent extreme events discussed above is that several different extreme
events can appear at the same time. Thus we arrive at the concept of compound
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extremes, which received a lot of attention in the climate science community in the
last years due to their devastating effect on both nature and human society [23,129,
147,159]. Following the computation of multivariate rate functions presented in [155],
large deviation rate functions could be used directly to study compound extreme events.
However, the computation of multivariate rate functions would require a drastically
larger amount of data than the already large amount of data needed to obtain univariate
rate functions. In reference [94] it is shown that the compound nature of the persistent
event can be captured also by a simple composite approach based on large deviations.
We note that a high-impact persistent extreme event is usually a compound extreme
event at the same time, as the probability that it triggers the occurrence of other extreme
events is very high.

Summer weather persistence has been shown to increase as an effect of global
warming [209,210]. As shown in [94], an increasing persistence of heatwaves in sum-
mer has been found in many regions of the Northern Hemisphere due to increasing
CO2 concentrations, based on a large deviation analysis. We point out that LDT pro-
vides a more natural way to define and analyse persistence than empirical approaches
based on counting subsequent values above or below a certain pre-defined threshold.
If the large deviations limit is reached at a certain averaging time scale, one can obtain
the probability of every persistent event with duration equal to or longer than the
respective averaging time, as explained in Sec 3.3 and 4.1. Furthermore, it provides
the probability of events of arbitrary intensity, within the limits set by the finite size
of the available data. We further remark that LDT provides a macroscopic view on
persistent events, in the sense that it focuses on deviations of the sample mean over
a finite time period from the long term mean assumed to be equal to the expectation
value, disregarding the amplitudes of individual instantaneous fluctuations. If one is
interested to study instantaneous extremes instead of persistent ones, methods of EVT
would be more appropriate to tackle the problem. We refer here also to the discussion
about slow onset and fast onset events in Sect. 1.

The studies mentioned in Sects. 4.1 and 4.3 analysing persistent atmospheric
extreme events, focus on persistent events of air temperature, i.e. heatwaves or cold
spells. Nonetheless, by using the same large deviation based methodologies, one can
study obviously in a similar way persistent events related to other geophysical observ-
ables too. Events like droughts, persistent rainfall events, floods, wind and solar lulls
are just a few examples. However, the choice of the right observable is very important
in order to be able to obtain a large deviation principle, as explained in Sect. 3.3. In
case of some meteo-climatic observables the large deviation approaches presented in
this article might not work due to long-term correlations. As an example, in Ref. [94]
it is found that large deviation rate functions do not converge, at least on time scales
shorter than several years, in case of air temperature anomalies over oceanic regions.
However, it is possible that anomalous scaling laws [41,64,111,124,190,222], men-
tioned in Sect. 3.3, act in some cases in which the standard large deviation scaling fails
due to the presence of some form of long-term memory. In a very recent paper [6], a
nonlinear reparametrisation of the scaled cumulant generating functions is proposed
to properly compute instantons in case of observables with heavy tailed distributions.

Besides serial correlations, there are also other factors that can hinder the appli-
cability of LDT to geophysical time series. Non-stationarity is a serious issue, which
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confines the application of LDT to steady state model simulations or to simulations
with many ensemble members, unless one follows a pragmatic approach and pre-
processes the data, for example by removing trends and the seasonal cycle, as discussed
in Sect. 1.2. Strong heterogeneity of the data, i.e. the existence of several different par-
ent distributions, can be another problem with respect to obtaining a large deviation
principle. Nonetheless, LDT can be extremely helpful for several geophysical appli-
cations. Computing large deviation rate functions to obtain probabilities of persistent
events could be useful for attribution studies, which try to answer the question whether
and to which extent it is possible to attribute the probability of occurrence of individual
extreme events to climate change, and rely at the moment mainly on empirical fre-
quentist approaches [5,67,199,200,220]. Large ensemble climate model simulations
[185,259] could be used to study the change in time of persistent event probabilities
based on large deviations.

In case the data availability is poor for a proper computation of rate functions,
one could rely on rare event sampling algorithms, discussed in Sect. 4.3. Rare events
simulation techniques have a long history and have been applied in several fields of
applied mathematics and statistical physics in the past decades. The application to
problems specific to geophysical fluid dynamics and climate science are however very
recent. Their potential in the field of climate modelling in particular is huge, as it
allows to tackle two crucial problems emerging in the study of extreme events in the
climate system, either from observations or numerical simulations.

First, extreme events are rare, which means that statistical errors are large, and
robust analysis are very hard to perform, in particular if one is interested in under-
standing the dynamical properties of the events. This is one of the reasons for which
dynamical properties are often analysed on individual case studies. This is particu-
larly problematic when one wants to understand the impact of climate change on the
statistics and dynamics of extremes (it is difficult enough to obtain estimates for a
given condition, to compute variations is even worse). This however is one of the
main concerns and areas of interest in the climate change debate, both at the scientific
and policy level, and in the communication of the issue to the general public.

A second problem is that, given the length of the observational records (which is
what it is) and given the length of the numerical experiments that is possible to perform
with a given amount of computational power (which again, it is what it is), one can only
study the events that have been sampled. As we discussed in this review, techniques
like EVT and LDT can be used to extend the estimates of return periods or other
statistical properties to events beyond what has been observed, making use of limit
theorems in their corresponding areas of application. However, they do not provide the
specific dynamics in the full phase space of the very rare, unobserved events, which
may be relevant to study their predictability, climatic drivers and impacts. Also, the
reliability of the extensions provided by EVT and LDT is dependent on the robustness
of the statistics of the observed extremes. If the available statistics of extreme events
is just barely enough to use them to fit the limit distributions, the uncertainties on the
estimates of the properties of the unobserved events may be so large to make these
estimates effectively useless. Worse, the very convergence to the limit distributions
may be not properly obtained with the available samples, this may be difficult to
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assess, and the application of these limit theories on data not properly approaching
the asymptotic regime could give misleading results.

Rare event simulations techniques can provide solutions to these issues in numerical
simulations, by improving drastically the statistics of extreme events, and allowing to
explore ranges of events that would be simply impossible to observe in direct numer-
ical simulations. Promising results have been obtained with genealogical algorithms
for heatwaves (and in general persistent events, also not in the LDT regime) in general
circulation models and data-based stochastic weather generators, and for the intensifi-
cation of tropical cyclones in regional climate models. The application tomore general
problems will require different methods, which will be an exciting area of research
in the future years. It is worth noticing that some of the methods used so far share
a similar DNA with the methods used in particle filtering by the data assimilation
community. Therefore, they also share similar problems and challenges when applied
to complex, high dimensional systems (the curse of dimensionality problem). It is
thus very encouraging that positive results have already been obtained with general
circulation and regional climate models of state-of-the-art, nearly operational level of
complexity.

The eventswe are able to investigate usingLDT,while rare, are of disproportionately
great relevance in terms of impacts on human and environmental welfare and need to
be carefully taken into account when planning long-term infrastructures. Additionally,
in many cases, the presence of a correspondence between long temporal persistence
and large spatial coherencemeans that such events can pose situations of systemic risk,
as their impacts can be very relevant for large regions. Hence, the results contained in
this paper might be of extreme practical use for addressing climate risk, because LDT
provides robust ways to estimate return times of yet unobserved events if one is in the
right asymptotic regime. The possibility of establishing accurate climatologies of, e.g.,
heatwaves and cold spells in various regions of the globe seems particularly relevant
for climate service centres, public agencies and private actors active, for example, in
the energy and in agricultural sectors as well as in finance, and re-insurances. Indeed,
in order to achieve full real-life applicability in the context of the presence of the
seasonal cycle and of a changing climate, the results presented in this paper should
be extended in such a way to incorporate the case of non-stationary time series of
observables of non-autonomous dynamical systems, along the lines of what has been
proposed in the context of EVT [47,84,145,189,194]. This is another great example
of a very fruitful meeting point between applied and basic research.

LDT is also extremely useful for investigating some key dynamical properties of
geophysical flows. As discussed in Sect. 4.2, it provides a way to frame the very
important problem of evaluating the fluctuations of the predictability of the atmo-
sphere [105,151,201] on different temporal scales by computing rate functions of
various finite time Lyapunov exponents [55]. Indeed, one finds confirmation that the
atmosphere is extremely heterogeneous in terms of its predictability [180].

LDT is also helpful for quantifying predictability in a statistical sense and on cli-
matic time scales. While tools like response theory allows one to study the impact of
perturbations on the statistical properties of a complex system like the climate [104],
such an exploration is, by definition, a local one. In order to understand the global
stability properties of the climate system one needs to resort to a different view-
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Fig. 16 Cartoon showing an idealised quasi-potential where multistability occurs at multiple scales. Going
from (1) to (3) one looks at smaller and smaller scales. Local maxima, minima, and saddles decorate the
quasi-potential at all scales. From [182]

point. We have shown that LDT is a key tool for studying noise-induced transitions
between competing metastable states for the climate system as a whole. Indeed, one
can introduce a rate function, the quasi-potential, which condenses information from
the deterministic vector field—the drift—and the properties of the noise. This view-
point might prove of great usefulness for better understanding the dynamics of tipping
points. This is another task of great urgency for Earth science, as the unravelling of
critical transitions associated with tipping points poses great danger for human and
environmental welfare. Indeed, one can represent the global stability properties of the
climate system as being given by a multistable and multiscale quasi-potential—see
Fig. 16. The quasi-potential features troughs, saddles, and ridges at different scales and
will be characterised by a relatively few large basins (e.g. corresponding to the warm
and snowball states), separated by high barriers, decorated by smaller local minima
corresponding to hierarchically lower multistability features, e.g. associated to the
tipping elements shown in Fig. 12a. As a result of the existence of large deviation laws
describing the invariant measure and the transition probabilities between the compet-
ing metastable states, the presence of multiscale features in the quasi-potential makes
it hard to perform an accurate exploration of the dynamical landscape of the system
for any given choice of the noise intensity: some large scale feature of the dynamical
landscape might be unattainable in any reasonable time because the noise is too weak
to allow for the system to escape for a given region, whereas, conversely, other smaller
scale features might be entirely washed out because the noise is too strong.

Previous investigations performed in relatively simple yet extremely relevant
near-equilibrium physical systems like the stochastically perturbed two-dimensional
Navier–Stokes equations have shown that LDTmakes it possible to predict the various
competing metastable states [30]; see Fig. 17. Along these lines, one hopes to be able
to make the quasi-potential formalism a more constructive tool, rather than a descrip-
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Fig. 17 Phase transitions in the stochastic 2D Navier–Stokes equations in a doubly periodic domain: time
series and probability density functions of the amplitude of the wavenumber 1 Fourier component in the
y direction of vorticity, showing transitions between dipoles and unidirectional flows. Reproduced with
permission from [30]

tive one, in order to be able to use it to predict at qualitative and quantitative level the
multistability properties of the climate system and of its subsystems. At this regard,
one would like to extend the very promising results [114] obtained on the transitions
between zonal and blocked state in the Charney–DeVore model reported in Fig. 15 to
more complex models of the atmosphere. A limitation for the numerical calculation of
quantities such as minimum action paths and the quasi-potential for complex climate
models is the lack of availability of derivatives of the deterministic fields determining
the model evolution. Such derivatives are required for example when implementing
Hamilton’s equation for the instanton, as discussed in Sect. 3.2. The development of
climate models in flexible and high-performance programming languages that provide
automatic differentiation, as pursued by the SciML [215] and ClimateMachine.jl [44]
projects in the Julia programming language, may soon provide new ways of tackling
this problem.
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A Generalisations of large deviation laws: from pair empirical
measures to empirical processes

In the following, we summarise some generalisations of Theorem 1 and Theorem 2
to higher dimensions, based on [63]. We consider the same situation as in case of
Theorem 2 where Xi takes values in a finite set Γ = {1, . . . , r} ⊂ N, and look at large
deviations of pair empirical measures recording two successive values of X1, X2, . . .

at each instant of time, L2
n = 1

n

∑n
i=1 δ(Xi ,Xi+1). The random measure L2

n belongs
now to the set of two dimensional probability measures M(Γ ×Γ ), the total variation
distance is reformulated accordingly: d(μ, ν) = 1

2

∑
s,t |μst − νst |. The analogue of

Theorem 2 describes the large deviations of the pair empirical measure L2
n away from

the true measure ρ2 = ρ × ρ, whose componentwise expression is ρ2
st = ρsρt :

Theorem 4 Let (Xi ) be i.i.d. random variables satisfying the conditions above, and
L2

n = 1
n

∑n
i=1 δ(Xi ,Xi+1) with periodic boundary conditions. Then, the family (P X

n )

defined by P X
n (·) = P

X (L2
n ∈ ·) satisfies the large deviation principle with rate n and

with rate function

I 2ρ (ν) =
∑

s,t

νst log

(
νst

ν̄sρt

)

:= H(ν|ν̄ × ρ), (55)

with ν̄s = ∑
t νst .

Equation (55) tells us that the rate function I 2ρ (ν) of the pair empirical measure ν

is the relative entropy H(ν|ν̄ × ρ) of ν with respect to ν̄ × ρ.
Large deviations of pair empirical measures are especially useful if one considers

Markov sequences. We stay in the finite state space setting with random variables
taking values on a finite set Xi ∈ Γ = {1, . . . , r} ⊂ N, but this time X1, X2, . . . is
Markov with transition matrix P = (Pst )s,t∈Γ , Pst > 0 for all s, t ∈ Γ . We denote
by π = (πs) the unique stationary distribution of the Markov chain satisfying πs > 0,
for all s ∈ Γ .

Theorem 5 Let (Xi ) be a Markov chain satisfying the conditions above, and L2
n =

1
n

∑n
i=1 δ(Xi ,Xi+1) with periodic boundary conditions. Then, the family (P X

n ) defined
by P X

n (·) = P
X (L2

n ∈ ·) satisfies the large deviation principle with rate n and with
rate function

I 2P (ν) =
∑

s,t

νst log

(
νst

ν̄s Pst

)

:= H(ν|ν̄ ⊗ P), (56)

with ν̄s = ∑
t νst .

By comparing Theorem 4 with Theorem 5 becomes clear that large deviations of
pair empirical measures are strongly related to those of pair dependence in Markov
chains. In particular, note that if we have that Pst = πt ∀s, t ∈ Γ , i.e. all the rows of the
transitionmatrix are identical and are equal to the invariant measure, theMarkov chain
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describes a sequence of i.i.d. random variables distributed according to the measure π .
In this case, indeed, (56) takes the form of (55). Additionally, one can deduce directly
large deviation properties of Markov chains from those of i.i.d. sequences based on
the Radon–Nikodym formula

dPX

dPY
[·] = O(1)enF(L2

n [·]), (57)

with

F(ν) =
∑

s,t

νst log

(
Pst

πt

)

, ν ∈ M(Γ × Γ ), (58)

where X represents the Markov chain and Y denotes i.i.d. Γ -valued random variables
with distribution π . The rate function in (56) can be obtained directly from the rate
function for the pair empirical measure of Y by using F(ν): I 2P (ν) = I 2π (ν) − F(ν).

We have started the discussion of large deviations of Markov sequences with the
pair empirical measure since pairs are innate for Markov chains. Nonetheless, the
empirical measure Ln can still be relevant since it shows how often the Markov chain
visits different points of the sate space. Hence, it is sometimes termed as the occupation
measure. The large deviation principle for the empirical measure can be derived based
on the pair empirical measure by contraction, similarly to the case of i.i.d. random
variables presented above in Sect. 2.1.

We assume that I 2P is finite, continuous and strictly convex. Let P X
n (·) = P(Ln ∈ ·).

Then (P X
n ) satisfies a large deviation principle on M(Γ ) with rate n and with rate

function

IP (μ) = inf
ν∈M(Γ ×Γ ): ν̄=μ

I 2P (ν). (59)

At the end of this section, we present another strategy to derive rate functions for
Markov sequences based on the Gärtner–Ellis theorem.

One can pursue the generalisation of the above large deviation laws further in a quite
straight-forward way by extending the length of the successive values of X1, X2, . . .

to N successive values. The rate functions obtained in this finite state space setting
have the very convenient properties of being finite, continuous and strictly convex.
Furthermore, by letting N → ∞ one can derive the rate function of the empirical
process. Due to N → ∞, the mathematically rigorous way to formulate a large
deviation principle involves the use of upper and lower limits. It is further possible to
relax the condition of the finite state space to countable state space. In that case, Γ =
N, and the rate function looses the everywhere finiteness and continuity properties.
It is clear that Theorem 4 is a generalisation of Theorem 2, and the later one is a
generalisation of Theorem 1. Higher level large deviations laws imply the laws of
lower levels, thus one can follow the link back provided by the contraction principle.
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B Quadratic approximation of rate functions of time averaged
observables

Here we provide a step by step derivation of the approximate form of the rate function
for Gaussian fluctuations. Let us consider the scaled cumulant generating function and
auto-correlation time of a process with mean μ, variance σ 2 and temporal covariance
C(t, s) = E[(A(t) − μ)(A(s) − μ)]

λ(k) = lim
T →+∞

1

T
logE

[
ek

∫ T
0 A(t)dt

]
, τc = 1

σ 2

∫ +∞

−∞
C(τ, 0)dτ. (60)

The scaled cumulant generating function can be rewritten as

λ(k) = μk + lim
T →+∞

1

T
logE

[
ek

∫ T
0 (A(t)−μ)dt

]
. (61)

Expanding the exponential around k = 0 and neglecting terms O(k3) we have

λ(k) ≈ μk + lim
T →+∞

1

T
logE

[

1 + k
∫ T

0
(A(t) − μ)dt + k2

2

(∫ T

0
(A(t) − μ)dt

)2]

. (62)

Using E[A(t)] = μ and rewriting the last term as a double integral on two variables
we have

λ(k) ≈ μk + lim
T →+∞

1

T
log

[

1 + k2

2

∫ T

0

∫ T

0
E[(A(t) − μ)(A(s) − μ)]dtds

]

.(63)

Assuming again k small enough and expanding the logarithm we obtain

λ(k) ≈ μk + k2

2
lim

T →+∞
1

T

∫ T

0

∫ T

0
C(t, s)dtds. (64)

Since the process is stationary and the covariance is a symmetric function of t − s we
have

lim
T →+∞

1

T

∫ T

0

∫ T

0
C(t, s)dtds =

∫ +∞

−∞
C(τ, 0)dτ = σ 2τc, (65)

and the scaled cumulant generating function is eventually

λ(k) ≈ μk + σ 2τc

2
k2. (66)
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Taking the Legendre transform we obtain the equivalent approximation for the rate
function

I (a) ≈ (a − μ)2

2σ 2τc
. (67)

From the way we derived the approximation it is easy to see that σ 2τck2/2 < 1/T
is a necessary condition on the values of k given a value of T for the approximation
to hold. The corresponding condition on the values of a can be obtained using the
approximate form of λ(k) in the solution of the variational problem involved in the
Legendre transformation, a = λ′(k), that gives a = μ + σ 2τck. The condition then
becomes

|a − μ|
√
2σ 2τc

<
1√
T

, (68)

consistently with the expected behaviour of Gaussian fluctuations.
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