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Abstract. Drought is predicted to increase in the future due
to climate change, bringing with it myriad impacts on ecosys-
tems. Plants respond to drier soils by reducing stomatal con-
ductance in order to conserve water and avoid hydraulic dam-
age. Despite the importance of plant drought responses for
the global carbon cycle and local and regional climate feed-
backs, land surface models are unable to capture observed
plant responses to soil moisture stress. We assessed the im-
pact of soil moisture stress on simulated gross primary pro-
ductivity (GPP) and latent energy flux (LE) in the Joint UK
Land Environment Simulator (JULES) vn4.9 on seasonal and
annual timescales and evaluated 10 different representations
of soil moisture stress in the model. For the default configura-
tion, GPP was more realistic in temperate biome sites than in
the tropics or high-latitude (cold-region) sites, while LE was
best simulated in temperate and high-latitude (cold) sites. Er-
rors that were not due to soil moisture stress, possibly linked
to phenology, contributed to model biases for GPP in tropi-
cal savanna and deciduous forest sites. We found that three
alternative approaches to calculating soil moisture stress pro-
duced more realistic results than the default parameteriza-
tion for most biomes and climates. All of these involved in-
creasing the number of soil layers from 4 to 14 and the soil
depth from 3.0 to 10.8 m. In addition, we found improve-
ments when soil matric potential replaced volumetric water
content in the stress equation (the “soil14_psi” experiments),
when the critical threshold value for inducing soil moisture
stress was reduced (“soil14_p0”), and when plants were able
to access soil moisture in deeper soil layers (“soil14_dr*2”).
For LE, the biases were highest in the default configuration
in temperate mixed forests, with overestimation occurring
during most of the year. At these sites, reducing soil mois-
ture stress (with the new parameterizations mentioned above)
increased LE and increased model biases but improved the
simulated seasonal cycle and brought the monthly variance
closer to the measured variance of LE. Further evaluation of
the reason for the high bias in LE at many of the sites would
enable improvements in both carbon and energy fluxes with
new parameterizations for soil moisture stress. Increasing the
soil depth and plant access to deep soil moisture improved
many aspects of the simulations, and we recommend these
settings in future work using JULES or as a general way to
improve land surface carbon and water fluxes in other mod-
els. In addition, using soil matric potential presents the op-

portunity to include plant functional type-specific parameters
to further improve modeled fluxes.

1 Introduction

Drought has a range of impacts on terrestrial ecosystems
(Allen et al., 2010; Choat et al., 2012), plays a role in
feedbacks on the weather and climate systems across scales
(Seneviratne et al., 2013; Lemordant et al., 2016; Miralles
et al., 2019; Lian et al., 2020), and affects the global carbon
cycle (Green et al., 2017; Humphrey et al., 2018; Peters et
al., 2018). These impacts and feedbacks have the potential
to affect society, either directly through moisture availabil-
ity effects on crops or indirectly by adjusting near-surface
temperatures or forcing large-scale variations to the climate
system. Roughly 40 % of the vegetated land surface is lim-
ited by seasonal water deficits (Nemani et al., 2003; Beer et
al., 2010), which are a major control on gross primary pro-
ductivity (GPP) in sub-humid, semi-arid, and arid regions
(Stocker et al., 2018). In the future, soil moisture stress for
ecosystems is predicted to increase over large regions (Berg
et al., 2016; Ukkola et al., 2020). In this paper, we define
“soil moisture stress” as the physiological stress experienced
by vegetation due to its interactions with dry soils. For these
reasons, accurate process-based models of plant response to
soil moisture stress are needed in coupled land–atmosphere
climate models. However, the models used to represent bio-
geophysical and biogeochemical processes in Earth system
models (ESMs) are often unable to properly capture observed
responses to soil moisture stress (Beer et al., 2010; Powell et
al., 2013; Medlyn et al., 2016; Restrepo-Coupe et al., 2017;
De Kauwe et al., 2017; Peters et al., 2018; Paschalis et al.,
2020).

Plants respond to reductions in soil moisture content
(SMC) through a range of drought tolerance and prevention
strategies. Commonly, plants respond to low SMC by reduc-
ing their stomatal aperture to conserve water and protect the
xylem from damage (Field and Holbrook, 1989; Sparks and
Black, 1999). Embolism is caused by low soil and/or leaf
water potential due to dry climatic conditions, and it causes
water tension inside the plant to increase enough to drive the
formation of air bubbles within the xylem vessels (Lambers
et al., 2008; Choat et al., 2012). Embolized xylem is unable
to transport water, and for some vegetation types, this is a
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dominant cause of plant mortality under drought conditions
(Brodribb and Cochard, 2009; Choat et al., 2018). To avoid
this, many plants limit water loss by reducing their stomatal
conductance when soil moisture levels reach a certain thresh-
old (Tyree and Sperry, 1989; Sperry et al., 1998; Choat et al.,
2012) or by shedding leaves (Wolfe et al., 2016). High at-
mospheric vapor pressure deficits (VPD), which sometimes
occur in conjunction with meteorological drought, may also
result in stomatal closure. The reduced stomatal conductance
triggers a cascade of other responses, beginning with re-
duced rates of photosynthesis (Ball et al., 1987), which re-
duce carbon uptake and possibly growth and change alloca-
tion between above- and below-ground stocks (Merbold et
al., 2009b; Doughty et al., 2015). Lower stomatal conduc-
tance will reduce transpiration, which causes more surface-
available energy to be converted into sensible heat. This
transference of latent to sensible heat can contribute to fur-
ther desiccation of soils, increased land surface temperature,
and amplification of heat waves (Seneviratne et al., 2010).
Over the long term, droughts can lead to changes in plant
species composition (Liu et al., 2018) or large-scale forest
mortality (Mcdowell et al., 2008), sometimes causing a tran-
sient situation where large ecosystems switch from being a
sink of carbon dioxide to a source (Ciais et al., 2005; Gatti et
al., 2015).

There is a spectrum of mechanisms through which species
tolerate or acclimate to drought, meaning a “one-size-fits-all”
approach to modeling can be inadequate. Explicit model rep-
resentations of the xylem hydraulics are complex and dif-
ficult to parameterize globally. The emergence of plant trait
databases has enabled early models to represent the hydraulic
properties of the soil–plant–atmosphere continuum (Sperry
et al., 2016; Eller et al., 2018, 2020; De Kauwe et al., 2020;
Sabot et al., 2020). In addition, new approaches are emerg-
ing that focus on “plant profit maximization”, where pho-
tosynthetic uptake of CO2 is optimally traded against plant
hydraulic function as an alternative to the empirical func-
tions commonly used in models to regulate gas exchange dur-
ing periods of water stress (Sperry et al., 2017; Sabot et al.,
2020).

For now, land surface models (LSMs) more often rep-
resent the regulation of stomatal conductance as a simple
generic function of SMC, generally expressed in terms of
volumetric water content (θ , m3 m−3). This simple generic
function is the so-called “beta” function, where β is a fac-
tor between zero and one that limits photosynthesis in some
way (depending on the model, see Sect. 2). Above a criti-
cal SMC, there is no stress (β = 1), and below the critical
threshold value, stress increases as SMC decreases until the
wilting point is reached (β =0). Alternative, yet related, ex-
pressions are available whereby stomatal regulation occurs
through changes in the soil matric potential (ψ , expressed in
pressure units, such as MPa); θ and matric potential (a mea-
sure of how tightly the water is held in the soil pores, thereby
affecting water uptake by the roots) are closely related via

Figure 1. Comparison of JULES soil moisture stress factor (β) to
measurements from various potted experiments from Verhoef and
Egea (2014). β is calculated from Eq. (4). Two different values of
p0 (Eq. 5) are shown: p0= 0.4 was used for the “soil14_p0” and
“p0” soil moisture stress experiments.

the water retention curve. However, using one function for
all plant responses to drying soils can result in errors; for ex-
ample, the parameters describing plant and soil hydraulic re-
sponses to soil moisture may change in time (Robinson et al.,
2019) and can vary between ecosystem types (Teuling et al.,
2010). Such variation may be in response to climate change
or evolving vegetation and soil properties and their structure.

In this study, we focus on the effects of droughts on vegeta-
tion that occur due to low SMC. Although droughts are often
associated with changes beyond low precipitation levels, in-
cluding high air temperatures and VPD, these climate drivers
have their own set of impacts on vegetation, adding to the ef-
fects of low SMC, which will not be addressed here. We ex-
plore different ways in which soil moisture stress can be rep-
resented in a widely used model of the terrestrial biosphere,
the Joint UK Land Environment Simulator (JULES) (Best et
al., 2011; Clark et al., 2011). JULES is a community model
and is used in coupled or stand-alone mode forced by mete-
orological variables. Its applications are on timescales rang-
ing from weather forecasting to climate projections, and the
model is the terrestrial component of the UK Earth System
Model and the HadGEM family of models (The HadGEM2
Development Team, 2011). The spatial scales are similarly
diverse. Studies range from single-point modeling of crop
yield at one site (Williams et al., 2017), which requires de-
tailed knowledge of one crop variety under carefully con-
trolled conditions, to global predictions of land sources and
sinks of CO2 for the annually updated Global Carbon Project
(Friedlingstein et al., 2019), which requires reliable perfor-
mance for all vegetation types across the globe. The aim of
this study is to find an improved general model equation and
parameters for global applications of JULES.

Soil moisture stress has been identified as a key driver of
variability in JULES projections (Blyth et al., 2011). Ver-
hoef and Egea (2014) showed that the standard β function
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in JULES and similar LSMs needs urgent attention as to
whether it is the most appropriate functional form and/or if it
has been parameterized correctly. For example, JULES cal-
culates β based on θ , but using soil matric potential instead
results in a curvilinear increase in stress as soils dry, which
may be more realistic (Fig. 1; Verhoef and Egea, 2014). In
an evaluation of the model across 10 flux tower sites, Blyth
et al. (2011) showed that the “dry-down” of the sites in semi-
arid areas was too quick and the seasonal variation of evapo-
ration in the tropics was too great, possibly due to the roots
being modeled as too shallow (Blyth et al., 2011) or due to
modeled stress beginning when soils were still relatively wet.
Other studies have suggested that the root depths of LSMs
were too shallow (Teuling et al., 2006; Wang and Dickin-
son, 2012). Indeed, some LSMs (CLM, SiB3, TERRA-ML)
were able to improve model performance by representing
deeper (e.g., 10 m) and more efficient roots (Baker et al.,
2008; Akkermans et al., 2012; Liu et al., 2020).

Evaluating the impact of simulated soil moisture stress on
vegetation requires that other model errors that also affect
CO2 and water fluxes are minimized. For instance, it is pos-
sible that the rapid drying found in Blyth et al. (2011) was
due to overestimation of soil evaporation. The fact that land
surface models in general overestimate evapotranspiration
during wet periods is well documented (Blyth et al., 2011;
Mueller and Seneviratne, 2014; Martínez-De La Torre et al.,
2019) and leads to unrealistically low soil moisture after long
dry periods (Ukkola et al., 2016). The high evaporation (and
subsequent low SMC) could be due to errors in factors not
being addressed in this study, such as radiation absorption
or turbulent exchanges with the atmosphere. Leaf area in-
dex (LAI) also strongly affects the magnitude and seasonal-
ity of fluxes coming from vegetation and soil (via variations
in shading).

This study aimed to evaluate the simulation of GPP and
latent energy flux (LE) for a range of biomes and climates, to
diagnose sites and seasons when soil moisture stress affects
the results, and to evaluate different methods for represent-
ing soil moisture stress in JULES as a first step in improv-
ing the simulated plant responses to low SMC in global ap-
plications of JULES. To do this, we chose a subset of sites
in the FLUXNET2015 database and from the Large Scale
Biosphere-Atmosphere Experiment in Amazonia (LBA) ex-
periment based on availability of data. Where possible we
prescribed soil moisture and LAI from site measurements to
differentiate the roles of SMC, β parameterization, or mod-
eled phenology in model biases. We used the GPP calculated
before soil moisture stress is applied to understand seasons
and locations where the β parameterization was contribut-
ing to model errors. We also reviewed other commonly used
approaches for modeling soil moisture stress, presented in
Sect. 2.2, to motivate the representations evaluated in the re-
mainder of the paper. This work is one of the first published
results from a JULES community-wide focus group (called a
JULES Process Evaluation Group, or JPEG) on understand-

ing soil moisture stress impacts on vegetation, which began
in 2016.

2 Methods

2.1 Photosynthesis and stomatal conductance in
JULES

The Joint UK Land Environment Simulator (JULES) (Best
et al., 2011; Clark et al., 2011) is a process-based model that
simulates the fluxes of carbon, water, energy, and momentum
between the land surface and the atmosphere. JULES treats
each vegetation type as existing on a separate tile within a
grid box. Energy and carbon flux calculations are performed
separately for each tile, depending on plant functional type
(PFT)-dependent parameters. The tiles share a common soil
column. Leaf-level net photosynthesis is integrated over the
canopy, according to the canopy radiation scheme specified.
In the present study, we used 10 canopy layers of equal LAI
(in JULES this is “canopy radiation model 6”), although
another option in JULES is to use a “big leaf” approach
(Clark et al., 2011). Potential (non-stressed) photosynthesis
is calculated based on three limiting rates: Wc (a RuBisCO-
limited rate), Wl (a light-limited rate), and We (a transport-
limited rate for C3 plants and a PEP carboxylase limitation
for C4 plants). For full details on the photosynthesis scheme
in JULES, see Clark et al. (2011) and Harper et al. (2016).

Stomatal conductance to water vapor gs (in m s−1) is re-
lated to net photosynthesis A (in mol CO2 m−2 s−1) through

gs =−1.6A
RT ∗

ci− ca
, (1)

where ca and ci are the atmospheric and intercellular CO2
concentrations, respectively, in Pa and 1.6 is the molar diffu-
sivity ratio of CO2 to H2O in air (Guerrieri et al., 2019). R
is the universal gas constant (8.314 J K−1 mol−1), and T ∗ is
the leaf temperature (K). Vapor deficit at the leaf surface (D,
kg kg−1) affects stomatal conductance through the gradient
between ca and ci:

Ci−0
∗

Ca−0∗
= f0

(
1−

D

Dcrit

)
. (2)

Here, 0∗ is the photorespiration compensation point (Pa) and
Dcrit and f0 are PFT-dependent parameters (Cox et al., 1998;
Best et al., 2011).

2.2 Soil moisture stress in JULES and other terrestrial
biosphere models

Many land surface, terrestrial biosphere, and crop models in-
clude a β function to represent the effect of soil moisture
stress on vegetation. The implementation of the stress fac-
tor can generally be split into two categories: stomatal and
biochemical limitation (Bonan et al., 2014; De Kauwe et
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al., 2015). JULES falls under the latter category, with poten-
tial leaf-level carbon assimilation, Ap, being converted to the
water-limited net leaf photosynthesis through multiplication
with the stress factor:

A= Apβ. (3)

Other land surface models apply biochemical limitation
through reducing RuBisCO or reducing electron transport
(e.g., ORCHIDEE, Krinner et al., 2005). CABLE applies
limits to both the stomata (via reducing gs) andA (De Kauwe
et al., 2015).

In JULES, soil moisture stress (β, unitless) for each soil
layer k is a function of volumetric water content (θ ) in each
layer (θk , m3 m−3) using

βk =


1 θk ≥ θupp,k
θk−θwilt,k

θupp,k−θwilt,k
θwilt,k ≤ θk ≤ θupp,k

0 θk ≤ θwilt,k

, (4)

where θwilt and θupp are the water contents at the wilting point
and at which the plant starts to become water stressed, re-
spectively (Cox et al., 1998). θupp is a function of θcrit, the
critical water content (usually defined as the field capacity),
and p0, a PFT-dependent parameter:

θupp = θwilt+ (θcrit− θwilt)(1−p0). (5)

The parameter p0 was added to JULES in version 4.6 to al-
low β = 1 for θ < θcrit, in other words delaying the critical
threshold value for inducing stress as soils dry below the field
capacity. In the default configuration, p0 is set to 0 (mean-
ing θupp = θcrit), and θwilt and θcrit correspond to soil ma-
tric potentials of −1.5 and −0.033 MPa, respectively. Equa-
tion (4) means that, for each soil layer, soil moisture stress
completely limits root water extraction from that layer if θk
is at or below the wilting point (βk = 0), while there is no soil
moisture stress (βk = 1) if θk is at or above θupp,k . In between
these points, there is a linear increase in stress (decrease in
βk) as water content decreases (blue line in Fig. 1). An effec-
tive root fraction per layer (rk) is used to calculate the overall
soil moisture stress factor:

β =

nsoil∑
k

rkβk, (6)

where

rk = e
z/dr . (7)

In Eq. (7), z is the depth of each soil layer, and dr is a
PFT-specific parameter that weighs the effective root fraction
within each layer. rk is an effective root fraction and is not the
same as the actual root mass distribution, as it accounts for
other traits and processes not present in JULES, such as the

surface area of roots, conductivity, and hydraulic redistribu-
tion. JULES has four soil layers (nsoil = 4) that together ex-
tend to 3 m depth (Fig. 2a). The smaller the dr, the more em-
phasis is given to shallow layers, while deeper layers are em-
phasized with a larger dr. As a specific example, with JULES
default soil depth of 3 m, 87 % of the root water extraction is
from the top 1 m for C3 and C4 grasses (dr = 0.5), compared
to 45 % in the top 1 m for tropical broadleaf evergreen trees
(dr = 3.0). As Fig. 2 shows, dr is not the root depth because
roots are present in every soil layer, even though the fraction
of roots is very small towards the bottom of the column for
small values of dr.

The stress factor is also applied to leaf maintenance res-
piration (and optionally to stem and root maintenance respi-
ration). The effective root distribution and stress factor also
affect the fraction of total plant transpiration extracted from
each soil layer, εk:

εk =
rkβk

β
. (8)

Although not used in this study, it is worth noting that many
land surface and terrestrial biosphere models apply soil mois-
ture stress through limiting stomatal conductance (the “stom-
atal” grouping from Bonan et al., 2014) (Egea et al., 2011;
Fatichi et al., 2012; De Kauwe et al., 2015). These include
JSBACH and DLEM (Raddatz et al., 2007; Tian et al., 2010).
For example, CABLE uses β to modify the slope of the rela-
tionship between stomatal conductance and net photosynthe-
sis (De Kauwe et al., 2015). In other models (e.g., crop model
WOFOST), they interact through allowing the actual or po-
tential evapotranspiration to impact the soil moisture thresh-
old for unstressed vegetation (Tardieu and Davies, 1993).
Models that limit stomatal conductance from soil moisture
stress can include the explicit consideration of the plant or
soil hydraulics (Williams et al., 1996; Zhou et al., 2013; Bo-
nan et al., 2014; Mirfenderesgi et al., 2016; Eller et al., 2018;
Kennedy et al., 2019; De Kauwe et al., 2020) and/or chemical
signalling, such as the abscisic acid (ABA) concentration in
the xylem sap (Tardieu and Davies, 1993; Dewar, 2002; Ver-
hoef and Egea, 2014; Huntingford et al., 2015; Takahashi et
al., 2018). In other models, β can affect root growth and leaf
senescence (Arora and Boer, 2005; Song et al., 2013; Wang
et al., 2016) or reduce mesophyll conductance (Keenan et al.,
2010).

2.3 Alternative representations of soil moisture stress

In this study, we evaluated JULES GPP and LE using alter-
native parameterizations for β based on a review of methods
found in the literature and supported by measurements. The
10 experiments are summarized in Tables 1 and 2, includ-
ing settings in the default configuration. To summarize, these
experiments aim to capture the impact of the following vari-
ables:

https://doi.org/10.5194/gmd-14-3269-2021 Geosci. Model Dev., 14, 3269–3294, 2021
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Figure 2. Effective root water extraction profiles for JULES. The parameter dr is the e-folding depth for weighing root water extraction
and soil moisture stress. The plant functional types (PFTs) are C3 and C4 grasses, evergreen and deciduous shrubs (ESh, DSh), needleleaf
evergreen trees (NET), temperate broadleaf evergreen trees (BET-Te), broadleaf deciduous trees (BDT), needleleaf deciduous trees (NDT),
and tropical broadleaf evergreen trees (BET-Tr). The horizontal dotted lines show the bottom depth of each layer. Profiles for the experiments
in this study are shown: with the default 3 m deep, 4-layer soil (a); with an updated 10.8 m deep, 14-layer soil (b); with the 10.8 m deep
soil and doubled dr (c); with water extraction weighted by layer thickness and 3 m deep soils (d); with water extraction weighted by layer
thickness and 10.8 m deep soils (e); and with all PFTs having dr = 0.5 and the 10.8 m deep soil (f). For comparison, panel (g) shows root
fractions from Zeng (2001), where distributions were calculated based on available measurements of root profiles.

1. using deeper soils and roots (“soil14” and
“soil14_dr*2” experiments, Sect. 2.3.1);

2. reducing the critical soil moisture content below which
stress begins to increase (“p0” experiments, Sect. 2.3.2);

3. using soil matric potential rather than θ to calculate soil
moisture stress (“psi” experiments, Sect. 2.3.3);

4. emphasizing deep roots that may have small fraction of
total root biomass but can extract large amounts of soil
water (“mod1” experiments, Sect. 2.3.4);

5. assuming a strong decay rate of root functioning for all
PFTs (“soil14_dr0.5”, Sect. 2.3.5).
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Table 1. Summary of the 10 JULES model experiments related to the treatment of soil moisture stress.

Experiment name Summary of change

default Equation (4) used for β; four-layer soil to 3 m depth. Root profile in Fig. 2a.

psi Use soil matric potential (Eq. 8) rather than volumetric water content (Eq. 4) to calculate β. Induces a curvilinear
response.

p0 Reduce the critical volumetric water content where stress begins. p0 in Eq. (5) is changed from 0 to 0.4 (dashed
green line in Fig. 1).

mod1 Allow plants to access all soil moisture in the column. Equation (9) replaces Eq. (4), and Eq. (10) replaces Eq. (7).
Double default dr (max value 3). dr is the maximum depth of roots instead of e-folding depth. Root profile in
Fig. 2d

soil14 Increase soil layers to 14 to 10.8 m depth, but dr remains unchanged. Root profile in Fig. 2b.

soil14_dr*2 Increase soil layers to 14 to 10.8 m depth but with double dr (gives more emphasis to deeper layers). Root profile
in Fig. 2c.

soil14_psi Combine soil14 and psi experiments.

soil14_mod1 Combine soil14 and mod1 experiments, except dr is not capped at 3m. Root profile in Fig. 2e.

soil14_p0 Combine soil14 and p0 experiments.

soil14_dr0.5 Increase soil layers to 14 to 10.8 m depth. Set dr = 0.5 m for all PFTs, gives a more realistic reduction of root
density with depth. Root profile in Fig. 2f.

2.3.1 Deeper soil column and roots (soil14 and
soil14_dr*2)

Several studies have found that deep roots are an essen-
tial part of modeling plant drought responses (Canadell et
al., 1996; Teuling et al., 2006; Baker et al., 2008; Akker-
mans et al., 2012; Wang and Dickinson, 2012). Canadell
et al. (1996) found that the global average maximum root
depth is 7± 1.2 m for trees and 2.6± 0.1 m for herbaceous
plants, although maximum rooting depth is difficult to ascer-
tain. For example, one study found that only 9 % of 475 root-
ing profiles extended to depths where roots were no longer
present (Schenk and Jackson, 2005). We evaluated the im-
pact of deeper soils by using a 14-layer soil, extending to
10.8 m depth. The 14-layer soil is being evaluated for use
in future global configurations of JULES both offline and
coupled in the UK Earth System Model. For example, it has
been used for studying freeze–thaw dynamics in permafrost
regions (Chadburn et al., 2015), but the impacts on surface
fluxes in the middle and low latitudes have not yet been eval-
uated. In the “soil14” experiments, nsoil increased from 4 to
14 and the thickness of each soil layer (dzsoil) was changed as
in Table 1 to give a total depth of 10.8 m. This also increased
the vertical resolution of layers in the top 2.8 m of soil, which
is more accurate for solving the nonlinear Richards’ equation
(Mu et al., 2021). The parameter dr remained unchanged, re-
sulting in the effective root profiles shown in Fig. 2b. As a re-
sult, for C3 and C4 grasses (dr = 0.5), 99 % of root water ex-
traction was from the top 2.4 m, while for tropical broadleaf
evergreen trees (dr = 3), 95 % of root water extraction was

from the top 7.8 m (the remaining 5 % was from the bottom
soil layer, which extended from 7.8 to 10.8 m). These num-
bers compare well to the observed maximum rooting depths
(Canadell et al., 1996).

To evaluate the impact of placing more emphasis on
deeper soil layers (in Eqs. 6 and 8), we doubled dr in an
additional experiment (“soil14_dr*2”) (Fig. 2c). In these ex-
periments, 99 % of root water extraction was from the top
4.8 m for C3 and C4 grasses (dr = 1), and for tropical ever-
green trees (dr = 6), 87 % of root water extraction was from
the top 7.8 m.

2.3.2 Delayed onset of stress (p0 and soil14_p0)

Measurements of transpiration rates show that plants do not
limit transpiration until intermediate levels of soil dryness
occur (Fig. 1) (Verhoef and Egea, 2014). In JULES, having
no stress until soils dry below field capacity can be repre-
sented with the parameter p0 (Eq. 5), where a value of 0.4–
0.5 for p0 would capture the range of responses found in
Verhoef and Egea (2014). In the “p0” experiments, we used
p0 = 0.4. This was done with both the 4-layer (p0) and 14-
layer (soil14_p0) soils.

2.3.3 Curvilinear response (psi and soil14_psi)

While Eq. (4) assumes a linear increase in stress as wa-
ter content decreases, some models assume a curvilinear in-
crease in stress (Sinclair, 2005; Oleson et al., 2010; Egea et
al., 2011) or an S-shaped curve (Tardieu and Davies, 1993;
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Table 2. Default parameter settings (changed in experiments summarized in Table 1). In the JULES code, p0 is called fsmc_p0, nsoil is called
sm_levels, dr is called rootd, ψopen is psi_open, and ψclose is psi_close.

JULES parameter Explanation Default setting Change in experiments

fsmc_shape Switch that controls whether β de-
creases linearly with VWC θ or with
soil matric potential ψ .

0 1 in psi and soil14_psi

l_use_pft_psi Switch that controls whether β is a
function of θwilt and θcrit (false) or
ψclose and ψopen (true)

false true in psi and soil14_psi

ψopen Soil matric potential (MPa) above
which β is 1. Dimension of npft.

None (only used when
l_use_pft_psi= true)

−0.033 MPa for all PFTs in psi and
soil14_psi

ψclose Soil matric potential (MPa) below
which β is 0. Dimension of npft.

None (only used when
l_use_pft_psi= true)

−1.5 MPa for all PFTs in psi and
soil14_psi

p0 Threshold at which plants begin to feel
stress (when l_use_pft_psi= false). Di-
mension of npft.

0 0.4 for all PFTs in p0 and soil14_p0

fsmc_mod Switch for method of weighting the
contribution that each soil layer makes
to the total β. Dimension of npft.

0 1 for all PFTs in mod1 and
soil14_mod1

dr If fsmc_mod= 0, dr is the e-folding
depth of roots assuming an exponen-
tial root distribution with depth. If
fsmc_mod= 1, dr is the total depth of
the root zone. Dimension of npft.

Tropical broadleaf evergreen
trees= 3 m
Other broadleaf trees and de-
ciduous needleleaf trees= 2 m
Evergreen needleleaf
trees= 1.8 m
C3 and C4 grasses= 0.5 m
Shrubs= 1 m

10.8 for all PFTs in soil14_mod1
0.5 for all PFTs in soil14_dr0.5

nsoil Number of soil layers 4 14 in all soil14 experiments

dzsoil Soil layer depths in meters, starting
with the uppermost layer.

0.1, 0.25, 0.65, 2.0 (total depth
= 3 m)

0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4,
0.4, 0.4, 1.0, 1.0, 3.0, 3.0 (total depth=
10.8 m) in all soil14 experiments

De Kauwe et al., 2015). Nonlinear responses can be repre-
sented by a parameter to induce curvature (Egea et al., 2011)
or through using the soil matric potential, ψ , rather than θ :

βψ,k =
ψk −ψclose

ψopen−ψclose
, (9)

Here, ψopen is the soil matric potential above which β = 1,
and ψopen is the soil matric potential below which β = 0.
We set ψopen and ψclose to −0.033 and −1.5 MPa, respec-
tively, which are typical values for field capacity and wilting
point. Models that use soil water potential include (Verhoef
and Egea, 2014; Fatichi et al., 2012; Manzoni et al., 2013;
Lawrence et al., 2019), while other models use leaf water po-
tential (Tuzet et al., 2003; Christina et al., 2017). In the “psi”
experiments, we replaced Eq. (4) with Eq. (9). This was done
with both the 4-layer (psi) and 14-layer (soil14_psi) soils.

2.3.4 Remove root-weighted access to soil moisture
(mod1 and soil14_mod1)

The measure of water availability for β can be a function of
each layer’s water content (Eq. 6), water in the wettest layer
(Martens et al., 2017), or the contribution of the water in each
layer can be weighted by the root density or plant and soil
hydraulics (Oleson et al., 2010; Christina et al., 2017). An-
other approach is to use a function of water in the whole root
column (θ ), rather than layer-by-layer, which is equivalent to
assuming that plants can access water anywhere in the soil
column if there are roots present (Baker et al., 2008; Harper
et al., 2013):

βmod1 =
θ − θwilt

θupp− θwilt
. (10)
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Figure 3. Location of sites used in this study. Details on site characteristics are provided in the Supplement.

In this approach, root water extraction per layer is weighted
by layer thickness (dzsoil) rather than by beta:

ε0
k = dzsoil(θk − θwilt). (11)

In the “mod1” experiments, Eqs. (4) and (6) were replaced
with Eq. (10) and Eq. (8) was replaced with Eq. (11). In ad-
dition, dr was implemented as the maximum root depth in-
stead of the e-folding depth and was double its default value
(with a maximum depth of 3 m). The effective root fraction
in each soil layer was set equal to the proportional thickness
of each layer, up to the maximum depth of roots (Fig. 2d).
In “soil14_mod1”, dr was double its default value (Table 2)
but without enforcing a maximum depth of 3 m (Fig. 2e).
With the default interpretation of dr, roots are present in ev-
ery layer, but in these experiments plants could not access
water at depths below the parameter dr. Therefore, this ap-
proach should benefit deep-rooted PFTs, as they could ac-
cess more of the soil column than shallow-rooted grasses and
shrubs.

2.3.5 Exponential decline of roots with depth
(soil14_dr0.5)

The effective root profile from grasses with nsoil = 14 and
depth of 10.8 m more closely resembles the observed rapid
decay of root biomass with depth than the profiles for other
PFTs (Zeng, 2001) (Fig. 2g). We evaluated the impact of us-
ing more realistic root distributions by setting dr to 0.5 for
all PFTs in the “soil14_dr0.5” experiment (Fig. 2f). Essen-
tially, this gave more emphasis to shallow layers in calculat-
ing root water extraction and β and was an opposite approach

of the “mod1” experiments, which gave more emphasis to the
thickest soil layers.

2.4 Model set up and evaluation

We evaluated JULES at 40 sites covering eight general biome
types from the tropics to the Arctic (Fig. 3, Table S1). Each
JULES simulation was run with meteorological measure-
ments taken at each site (i.e., point-scale runs rather than
simulating the entire grid box). The meteorological and flux
tower observations were obtained from the LBA Model In-
tercomparison Project (sites with “LBA” in the name) or
FLUXNET2015 dataset (Pastorello et al., 2020). We selected
sites with soil moisture measurements at the time of our
original data request (26 July 2016). At each site, we ex-
tracted temperature, precipitation, wind speed, surface pres-
sure, specific humidity, and longwave and shortwave radia-
tion for running JULES at either half-hourly or hourly resolu-
tion, depending on the data available. We then used measured
LE and calculated GPP as supplied in both datasets (for the
FLUXNET2015 data, these are variables LE_F_MDS and
GPP_NT_VUT_REF, respectively). Details of the data pre-
processing are provided in the Supplement.

We individually contacted site principal investigators (PIs)
to gather details on LAI; the depth of soil moisture mea-
surements (where available); and other details on soil tex-
ture, physical properties, and root depth. Based on the re-
sponses, this resulted in a subset of 21 sites with soil moisture
measurements plus the additional information necessary for
prescribing soil moisture in JULES. Of these sites, 14 also
had the information necessary for prescribing LAI (these are
listed in Table S1). Often the time period of LAI/SM mea-
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surements was shorter than the full record, and we only ran
JULES for the time periods with the most data to avoid the
need for gap-filling. The time periods of the simulations and
soil layers for prescribing data are provided in Table S1.

The default plant parameter set was taken from Harper
et al. (2016). When LAI was not prescribed, we used the
JULES phenology scheme to predict LAI. This scheme pre-
dicts leaf growth and senescence based on temperature alone.
Fractions of each PFT (or bare soil) present at the site were
determined from the vegetation class (Tables S1, S2). We cal-
culated soil properties from information supplied by site PIs
where possible; otherwise, we used the grid box sand, silt,
clay fractions of the Met Office Central Ancillary Program
(CAP) high-resolution input file (Dharssi et al., 2009) to de-
rive the Brooks and Corey (1964) parameters, along with the
approximations of the parameters (via pedotransfer function)
required for the soil hydraulic properties as detailed in Cosby
et al. (1984) (Table S3). Each simulation began with a 50-
year spin-up of the soil moisture using recycled meteorology.

This evaluation focused on seasonal and annual timescales
of fluxes. We started with daily measurements from the
sites, then masked any modeled outputs on days when mea-
surements were not available and calculated monthly means
when > 50 % of the data was present. To evaluate the model
performance, we used four metrics: normalized absolute er-
ror (NAE), variance ratio (VR), correlation coefficient (r),
and root-mean-squared error (RMSE). The NAE gives an in-
dication of the average model–data mismatch:

NAE=
Xobs−Xmod

Xobs
, (12)

where Xobs is the observed flux, Xmod is the modeled flux,
and the overbar denotes an average taken over the entire
simulation period. The other metrics were calculated from
monthly mean fluxes. The VR is the ratio of variance in
the simulations to the observations. For a perfect fit, the
VR would be 1: lower values mean the model variance is
too low and vice versa (Carvalhais et al., 2008). R is the
Pearson’s correlation coefficient and it gives an indication of
model–data agreement on both a seasonal and year-to-year
timescale. For the soil moisture stress experiments, we used
Taylor diagrams based on monthly mean fluxes to evaluate
the best fit, along with RMSE from fluxes averaged over daily
and monthly periods and VR and correlation calculated from
monthly fluxes.

3 Results

3.1 Simulated GPP and ET

On average, JULES matched the pattern of observed seasonal
cycle of GPP well for sites in non-agricultural biomes in tem-
perate and cold climates (mean r > 0.79) (Fig. 4, Table 3).
The correlation was fairly good for sites in tropical grass-

lands and savannas (mean r > 0.70) and cropland (r = 0.67).
However, the seasonal cycle was not well represented for
sites in tropical dry forests (mean r = 0.43) or tropical ev-
ergreen forests (mean r =−0.10).

In terms of model biases, the NAE was lowest
(mean< 0.2) for GPP at tropical evergreen forest and tem-
perate woody savanna sites, while NAE was highest in trop-
ical grassland, tropical savanna, and cold grassland sites
(mean> 0.50) (Fig. 5). The variance ratio (VR) indicates the
amount of simulated variability in comparison to observa-
tions, a perfect simulation would have a VR of 1.0. A low
VR indicates that simulated variability (either magnitude of
seasonal cycle or interannual variability) was too low – this
was the case for sites in cold grasslands and cropland (av-
erage VR of 0.35 and 0.21, respectively). On average, VR
was between 0.55–0.92 for sites in tropical savannas, temper-
ate non-agricultural biomes, and boreal forest. Conversely, a
high VR indicates that simulated variability was higher than
observed. Sites in tropical dry and evergreen forests and trop-
ical grasslands had an average VR of 4.8, 5.5, and 4.8, re-
spectively, due to an overestimated seasonal cycle (ie LBA-
K67 in Fig. 6).

The model tended to perform best in temperate midlatitude
climates. The average NAE and correlation (r) for temperate
forest sites was 0.15 and 0.92, compared to 0.51 and 0.75
for the three sites in a Mediterranean climate (IT-CA1, IT-
Ren, and IT-Col). Sites in temperate grasslands had an aver-
age NAE of 0.35 and were better simulated than those in cold
and tropical grasslands (NAE= 0.50 and 0.99, respectively).
NAE also was significantly higher for sites in tropical savan-
nas (NAE= 0.79) compared to those in temperate savannas
in the US (NAE= 0.14).

The model performance was also more related to cli-
mate than biome for LE. On average, the seasonal cycle
of LE was well simulated for sites outside of the tropics
(mean r per biome> 0.84) and for sites in tropical savan-
nas (r = 0.79) (Table 4, Fig. S1). However, in tropical dry
and evergreen forests and tropical grasslands, the seasonal
cycle was overestimated, as indicated by low correlations
(mean r = 0.52, 0.29, 0.35, respectively) and high variance
ratios (mean VR= 1.9, 3.8, 5.2, respectively). Model vari-
ance was close to observed for the tropical savanna sites
(VR= 0.99). Unlike for GPP, the highest NAE occurred in
temperate mixed forests (NAE= 0.55) (Fig. S2). The NAE
was lowest for the cropland sites (NAE= 0.03), followed by
tropical evergreen and dry forest sites (NAE= 0.13 for both).

3.2 Role of soil moisture stress in GPP errors

Based on the above analysis, on average the model per-
formance is poorest for evergreen broadleaf sites, Mediter-
ranean climates, cold and tropical grasslands, and tropical sa-
vannas. We compared the GPP that JULES would calculate if
there was no soil moisture stress to the actual simulated GPP
(Figs. 6, S3) to elucidate the role of soil moisture stress in
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Table 3. Summary of model performance for GPP with no prescribed data. The statistics are averages for each biome: Pearson’s correlation
coefficient (r), normalized absolute annual error (NAE), and variance ratio (VR).

Normalized
Correlation absolute Variance

Climate Biome coefficient (r) error (NAE) ratio (VR) Diagnosed source of error

Tropics Evergreen forests −0.10 0.12 5.5 Soil moisture stress during the dry season, or other
phenological controls on GPP

Deciduous forests 0.43 0.26 4.8 GPP too high except during dry to wet season tran-
sition

Grasslands 0.75 0.99 4.8 GPP is too high all year
Savannas 0.70 0.79 0.79 GPP is too high all year

Temperate Forests 0.87 0.28 0.92 Soil moisture stress during growing season
Grasslands 0.85 0.35 0.57 GPP underestimated at wetter sites
Woody savannas 0.82 0.14 0.64 Multiple factors (soil moisture stress, hydrology,

and phenology)
Cropland 0.67 0.24 0.21 Phenology and soil moisture stress

High latitude Boreal forests 0.90 0.43 0.55 Underestimated GPP during summer months
or altitude Grasslands 0.79 0.50 0.35 Frozen soils

Figure 4. Correlation coefficient for simulated monthly mean GPP
at Fluxnet sites for the following 10 biomes: TrEF stands for trop-
ical evergreen forests, TrDF stands for tropical deciduous forests,
TrG stands for tropical grasslands, TrS stands for tropical savannas,
TeMF stands for temperate mixed forests, TeG stands for temperate
grasslands, TeS stands for temperate savannas, Cr stands for crop-
land, CoG stands for continental or high-altitude grasslands, and
BoF stands for boreal forests. The sites that fall into each category
are listed in the Supplement.

generating model bias from 3.1. This was possible through a
new diagnostic added to the model, which output GPP prior
to multiplication by β. At the tropical evergreen forest sites
(GF-Guy, LBA-K34, LBA-K67, LBA-K83, and LBA-BAN),
simulated GPP decreased during the dry season, while the
unstressed GPP and observed GPP remained high or even
increased during dry seasons (Fig. S3), which indicates that
the model was overestimating soil moisture stress during the
dry season. At the tropical grassland and savanna sites (AU-

Figure 5. Normalized absolute errors for simulated GPP at Fluxnet
sites for the following 10 biomes: TrEF stands for tropical evergreen
forests, TrDF stands for tropical deciduous forests, TrG stands for
tropical grasslands, TrS stands for tropical savannas, TeMF stands
for temperate mixed forests, TeG stands for temperate grasslands,
TeS stands for temperate savannas, Cr stands for cropland, CoG
stands for continental or high-altitude grasslands, and BoF stands
for boreal forests. The sites that fall into each category are listed in
the Supplement.

Fog, CG-Tch, LBA-PDG, LBA-K77, and LBA-FNS), the
modeled GPP was often too high, and the unstressed GPP
was even higher. An exception was ZA-Kru, where the ob-
served GPP was somewhere in between simulated GPP and
unstressed GPP. There were mixed results for the sites with
a Mediterranean climate (IT-CA1 deciduous broadleaf for-
est, US-Ton woody savanna, and US-Var grassland): stress
was impacting the GPP but other processes were also affect-
ing the simulation. For example, at IT-CA1 the modeled GPP
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Table 4. Summary of model performance for LE with no prescribed data. The statistics are averages for each biome: Pearson’s correlation
coefficient (r), normalized absolute annual error (NAE), and variance ratio (VR).

Normalized
Correlation absolute Variance

Climate Biome coefficient (r) error (NAE) ratio (VR)

Tropics Evergreen forests 0.29 0.13 3.83
Deciduous forests 0.52 0.13 1.90
Grasslands 0.35 0.31 5.24
Savannas 0.79 0.34 0.99

Temperate Forests 0.88 0.55 1.47
Grasslands 0.94 0.23 1.15
Woody savannas 0.91 0.32 1.34
Cropland 0.84 0.03 0.70

High latitude or altitude Boreal forests 0.89 0.26 1.25
Grasslands 0.84 0.42 0.64

Figure 6. Average seasonal cycle of GPP (g C m−2 d−1) for representative sites in biomes with large biases. Full dates of simulations are
provided in the Supplement; here we give the years that are included in each simulation: AU-Fog (2006–2008), BE-Vie (1996–2006), CA-Oas
(1996–2010), DE-Tha (1996–2014), IT-Col (1996–2014), LBA-BAN (2004–2006), LBA-K67 (2002–2003), RU-Che (2002–2005), US-Ne1
(2001–2012), US-Ton (2001–2014), ZA-Kru (2000–2013).
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was very close to measured values when observed soil mois-
ture and LAI were used, indicating that errors in soil hydrol-
ogy and phenology were important at this site. At other semi-
arid sites (IT-Col deciduous broadleaf forest, US-Ton, and
US-Var), the bias occurred during the peak growing season,
when JULES GPP was lower than observed but unstressed
GPP was closer to observations, indicating that soil moisture
stress was impacting results at these sites. In the cold grass-
land sites, soil moisture stress sometimes resulted in under-
estimated GPP (e.g., RU-Che), possibly due to JULES not
simulating enough unfrozen soil moisture at these sites. Con-
versely, at two temperate climate grasslands (AT-Neu and
CH-Cha), the simulated GPP was too low even with soil
moisture stress removed. Other sites where JULES showed
a large improvement with the unstressed GPP were the as-
pen site in Canada (CA-Oas), Tharandt evergreen needleleaf
forest in Germany (DE-Tha), the deciduous broadleaf for-
est in Belgium (BE-Vie), and the cropland site (US-Ne1).
This analysis gives a list of sites that are useful for further
exploring the role of soil moisture status in vegetation func-
tioning: all sites with a Mediterranean climate or in tropical
evergreen forests, as well as ZA-Kru, RU-Che, CA-Oas, DE-
Tha, BE-Vie, and US-Ne1. These sites are further evaluated
in Sect. 3.3.

When prescribing soil moisture and LAI (see Sect. 2.4),
the general trends in model performance were similar to prior
simulations, although often the simulated GPP was less real-
istic with more prescribed data. This could be due to other
errors within the soil physical parameterizations related to
infiltration or soil evaporation (Van Den Hoof et al., 2013).
The simulations at the tropical evergreen forest sites still did
not resemble the measured GPP (as indicated by very low
or negative correlations), even with prescribed LAI and soil
moisture. It is possible that soil layers below those typically
measured are influencing the forests soil water balance and
canopy exchange processes, so more data are needed to ac-
curately prescribe the full soil moisture profile. Only 14 sites
had enough data to prescribe both soil moisture and LAI
from site observations (Sect. 2.4), and often the time reso-
lution of data was monthly, which for soil moisture could
miss impact of extremely wet or dry periods. However, most
often adding the LAI data resulted in an improved simulation
of GPP, indicating biases resulting from the JULES phenol-
ogy scheme. The improvements with incorporation of pre-
scribed LAI were particularly large for the cropland sites and
at LBA-RJA, which is a seasonally dry tropical forest.

We categorize the sites depending on the impact of soil
moisture stress on their simulation of GPP with the most
available prescribed data (for example, in the simulation with
soil moisture and LAI prescribed at LBA-BAN, and for the
simulation with soil moisture only at CN-HaM). The four
categories are as follows.

1. Sites with underestimated GPP. Simulated GPP was
lower than observed. However, β was often 1 and re-

moving soil moisture stress had a small effect on the
simulation, indicating the importance of other processes
in regulating GPP at these sites. Two tropical (LBA-
K34, LBA-RJA) and two temperate grasslands (AT-
Neu, CH-Cha) sites fall into this category

2. Sites with overestimated GPP. Simulated GPP was
higher than observed, so removing soil moisture stress
increased GPP and made the simulation worse. This cat-
egory includes one tundra site (CN-HaM), a Mediter-
ranean woodland (IT-CA1), two coniferous evergreen
forests in Finland and Italy (FI-Hyy and IT-Ren), an
arid grassland (US-SRG), and two tropical savanna sites
(CG-Tch, SD-Dem).

3. Soil-moisture-stressed sites. As in the first set of sites,
there was a low bias in GPP but removing soil moisture
stress improved the simulation. The “stressed” sites in-
clude three temperate mixed forests (BE-Vie, DE-Tha,
and US-UMB), a Mediterranean deciduous forest (IT-
Col), a boreal aspen forest (CA-Oas), a tropical ever-
green forest (GF-Guy), and a cropland site (US-Ne1).

4. Stressed sites plus other errors. At several sites, remov-
ing soil moisture stress made the simulation slightly
better, but other missing processes also apparently af-
fect the simulation. The difference between this cate-
gory and the soil-moisture-stressed sites is the fact that
there would still be a large bias even without soil mois-
ture stress. Sites in this category include tropical forests
(LBA-Ban, LBA-K83, LBA-K67), cropland (US-Ne2,
US-Ne3), two savanna sites (ZA-Kru and US-SRM),
and a tundra site (RU-Che).

The challenge is to determine a representation of soil
moisture stress which improves the simulations at sites
falling into categories 3 and 4 without degrading the simula-
tion at the other sites. Clearly, we do not want to completely
remove soil moisture stress as this plays an important role
in regulating seasonal cycles in many ecosystems. In the re-
mainder of the paper, we will focus on examples of changes
at some of these sites.

3.3 New treatments of soil moisture stress

We ran the 10 experiments (Sect. 2.3, Table 1) at a subset
of 11 sites that span the categories listed in Sect. 3.2. This
included four sites where soil moisture stress was the main
contributor to model biases (soil-moisture-stressed sites: GF-
Guy, BE-Vie, DE-Tha, and CA-Oas), sites with a Mediter-
ranean climate (IT-Col, US-Var, US-Ton), and sites with soil
moisture stress plus other errors (LBA-K67, LBA-BAN, ZA-
Kru, and RU-Che). Because some experiments focused on
extending the soils far below the deepest soil moisture mea-
surements available, we were unable to use prescribed data
for these experiments. Taylor diagrams for GPP and LE for
all sites are shown in Figs. S5 and S7, respectively, and
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Table 5. Average results of soil moisture stress experiments for GPP
at the soil-moisture-stressed sites GF-Guy, BE-Vie, DE-Tha, and
CA-Oas.

RMSE RMSE
Experiment (monthly) (daily) NAE VR r

Default 2.30 2.59 0.28 2.15 0.75
p0 1.92 2.33 0.21 2.33 0.78
Psi 1.83 2.24 0.20 2.00 0.79
Mod1 2.33 2.63 0.29 2.20 0.74
Soil14 1.84 2.22 0.25 0.95 0.85
Soil14_p0 1.59 2.07 0.21 0.97 0.88
Soil14_psi 1.54 2.03 0.20 0.90 0.89
Soil14_mod1 1.79 2.21 0.23 0.96 0.86
Soil14_dr0.5 2.57 2.88 0.31 2.61 0.69
Soil14_dr*2 1.73 2.17 0.23 0.85 0.89

seasonal cycles of GPP, simulated β, and LE are shown in
Figs. S6 and S8.

3.3.1 Soil-moisture-stressed sites

At these sites, there was an improvement when the 14-layer
soil was combined with model settings p0, psi, or dr*2 (rep-
resenting, respectively, setting p0 in Eq. (3) to 0.4; using
Eq. (9), which depends on the soil matric potential, to repre-
sent β; and doubling the parameter dr). Monthly RMSE de-
creased from 2.30 g C m−2 d−1 on average to 1.59, 1.54, and
1.73 g C m−2 d−1, respectively, in the soil14_p0, soil14_psi,
and soil14_dr*2 experiments, averaged across the four sites.
There was also an improvement in the VR and the correla-
tion coefficient (Table 5). The VR reduced from 2.15 in the
default simulation to nearly 1 in the soil14, soil14_p0, and
soil14_mod1 experiments. For LE, the RMSE was slightly
higher in these experiments (22.57, 22.49, and 20.77 W m−2,
respectively, for soil14_p0, soil14_psi, and soil14_dr*2)
compared to the default experiment (19.78 W m−2), and the
correlation coefficient was > 0.81 (Table S4).

At the tropical forest site (GF-Guy), experiments with de-
fault 3 m soil depth had correlation coefficients r < 0.4 and
an exaggerated seasonal cycle, as indicated by the high nor-
malized standard deviation in the Taylor diagrams (Fig. 7).
In the soil14_p0, soil14_psi, and soil14_dr*2 experiments,
the correlation r was > 0.7 (compared to 0.2 in the default
configuration), and the standard deviation was closer to ob-
served. The GF-Guy site experienced the lowest amount of
soil moisture stress in the soil14_p0 and soil14_psi exper-
iments, which led to a more realistic simulation of GPP at
this site (Fig. 8). Using a shallower effective root profile (set-
ting dr to 0.5) produced the worst results, and β was very
low during the dry season at the tropical forest sites in the
“soil14_dr0.5” experiments (Fig. 8). In the “soil14_dr0.5”
simulation, β was still weighted by root distribution, so
the dry top soil layers had a relatively large impact on the

Table 6. Average results of soil moisture stress experiments for GPP
at the sites with Mediterranean climate (IT-Col, US-Var, and US-
Ton).

RMSE RMSE
Experiment (monthly) (daily) NAE VR r

Default 2.14 2.41 0.29 0.45 0.82
P0 1.94 2.26 0.26 0.83 0.82
Psi 1.93 2.26 0.26 0.88 0.82
Mod1 2.10 2.38 0.28 0.48 0.82
Soil14 1.97 2.27 0.26 0.53 0.82
Soil14_p0 1.94 2.27 0.25 0.89 0.82
Soil14_psi 1.98 2.32 0.27 0.90 0.82
Soil14_mod1 2.31 2.57 0.20 0.47 0.68
Soil14_dr0.5 2.28 2.56 0.34 0.40 0.82
Soil14_dr*2 2.01 2.30 0.25 0.56 0.80

stress experienced by the plants. Another site in the soil-
moisture-stressed category was DE-Tha, where most simu-
lations yielded reasonable results (r > 0.9) (Fig. 7). Only the
default and soil14_dr0.5 simulations produced results out-
side the standard deviation of measured GPP (Fig. 8). Vari-
ability (denoted by standard deviation in the Taylor diagram
as well as VR close to 1) was best in the soil14_p0, p0,
soil14_psi, and psi simulations.

3.3.2 Mediterranean climate sites

At the sites with a Mediterranean climate (IT-Col, US-Var,
US-Ton), soil14_psi and soil14_p0 removed the most stress,
but p0 and psi with the default soil depth also produced a
good fit for GPP (Figs. S5b, S6b, Table 6). However, the
RMSE for LE was significantly higher in these four ex-
periments (RMSE= 22.55, 23.59, 25.52, and 26.09 W m−2

for the p0, psi, soil14_p0 and soil14_psi experiments, re-
spectively, compared to 19.67 W m−2 in the default simula-
tion), while the correlation coefficient was high (r = 0.85–
0.87 compared to 0.88 in the default) (Fig. S7b, Table S5).
US-Var and US-Ton are dominated by grass and shrubs,
which have an effective root depth dr of 0.5 and 1 m, respec-
tively. At these sites, the “soil14_mod1” experiments had
β < 0.5, and GPP was underestimated during the growing
season (Fig. S6b). In these experiments, access to soil mois-
ture was not weighted by effective root fractions, and dr was
double its default value and was interpreted as the maximum
root depth. This meant that grasses and shrubs could not ac-
cess water below 1 and 2 m depth, respectively, resulting in
the strong soil moisture stress seen at the US-Ton and US-Var
sites.

3.3.3 Sites with soil moisture stress and other errors

At the sites with soil moisture stress plus other errors,
there were fewer improvements; however, RMSE decreased
from 2.81 g C m−2 d−1 in the default simulation to 2.08,
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Figure 7. Example of impacts of soil moisture stress representations on GPP model skill for two soil-moisture-stressed sites: GF-Guy
(tropical evergreen forest) and DE-Tha (temperate evergreen needleleaf forest). The GF-Guy simulations included the years 2007–2009, and
the DE-Tha simulations included the years 1996–2014. Details of the simulations are provided in Sect. 2.3 and Tables 1–2. The solid lines
indicate the centered rms error (based on the normalized standard deviations).

Figure 8. Example of impacts of changes to the representation of soil moisture stress (see Table 1) on simulated seasonal cycle of GPP at
two soil-moisture-stressed sites (see Sect. 3.3; similar examples for BE-Vie and CA-Oas are given in Fig. S9a). The GF-Guy simulations
included the years 2007–2009, and the DE-Tha simulations included the years 1996–2014. GF-Guy is a tropical evergreen broadleaf forest
and DE-Tha is an evergreen needleleaf forest. Details of the simulations are provided in Sect. 2.3 and Tables 1–2.

2.14, and 2.17 g C m−2 d−1 in the soil14_psi, soil14_p0, and
soil14_dr*2 simulations, respectively (Figs. S5c, S6c, Ta-
ble 7). These sites are LBA-K67, LBA-BAN, ZA-Kru, and
RU-Che. The VR was best captured in the soil14_dr*2 simu-
lations, while the correlation coefficient was highest in the
default simulation and in the soil14_dr0.5 simulation. At
LBA-K67 (a tropical forest site), soil14_psi and soil14_p0
had the lowest RMSE and seasonal variation in GPP, al-
though for all experiments the correlation coefficient was
negative (Fig. S5c). When dr = 0.5 m (as in “soil14_dr0.5”),
there were proportionally more roots in the top soil layers,
and as these dried out, there was a sharp decline in β. This

is further illustrated in Fig. S9 at the LBA-K67 site, which
plots β against soil moisture in the top 1 m. In comparison,
with dr = 3 m (the default value) the trees were able to access
water from deeper layers, so β did not decline as rapidly.
At ZA-Kru, all results were within the range of the mea-
surements, although the growing season GPP was underes-
timated (Fig. S6c). At LBA-BAN, soil14_dr*2, soil14_psi,
and soil14_p0 gave the lowest RMSE, but VR was very high
(> 3), and the correlation coefficient was low (r < 0.4) for
all simulations. There was very little difference between any
of the simulations at RU-Che, and β was < 0.25 year-round
for all experiments. For LE, there was a significant reduction
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Table 7. Average results of soil moisture stress experiments for GPP
at sites with soil moisture stress plus other errors (LBA-K67, LBA-
BAN, RU-Che, ZA-Kru).

RMSE RMSE
Experiment (monthly) (daily) NAE VR r

Default 2.81 3.07 0.43 3.22 0.24
P0 2.77 3.06 0.34 3.32 0.19
Psi 2.69 3.00 0.31 3.02 0.16
Mod1 2.86 3.13 0.43 3.33 0.22
Soil14 2.30 2.58 0.38 1.81 0.22
Soil14_p0 2.14 2.44 0.34 1.51 0.21
Soil14_psi 2.08 2.39 0.32 1.33 0.20
Soil14_mod1 2.45 2.71 0.42 2.67 0.05
Soil14_dr0.5 2.82 3.13 0.45 3.49 0.33
Soil14_dr*2 2.17 2.44 0.39 1.06 0.22

in RMSE from 22.54 W m−2 to < 18 W m−2 for all experi-
ments with 14-layer soil at these sites (Table S6). The cor-
relation coefficient was also significantly improved in these
experiments (from 0.48 in the default simulation to > 0.67).
The exception to these improvements was the “soil14_dr0.5”
experiment, where the RMSE increased to 25.17 W m−2 and
correlation coefficient decreased to 0.35.

3.3.4 Average response across sites

Averaging across the 11 sites where we performed addi-
tional experiments, the lowest RMSE for GPP occurred in the
soil14_p0, soil14_psi, and soil14_dr*2 experiments (on both
daily and monthly timescales). The variability was best cap-
tured by the soil14, soil14_p0, and soil14_psi experiments
(as denoted by VR of 1.06, 1.06, and 0.98, respectively).
The mean correlation coefficient was similar across all ex-
periments (0.50–0.57). All of the experiments were an im-
provement compared to the default configuration, except for
the p0, mod1, and soil14_dr0.5 experiments.

For LE, averaged across all sites, the daily and monthly
RMSE was lowest for the soil14 experiment, and this was the
only experiment with RMSE lower than the default configu-
ration. There was an improvement in the VR for the soil14,
soil14_p0, soil14_psi, soil14_mod1, and soil14_dr*2 exper-
iments compared to the default (with VR between 1.26–1.44
compared to 1.58 in the default). The correlation was highest
(r ∼ 0.74–0.76 compared to default r = 0.70) for all experi-
ments with 14-layer soil except for soil14_dr0.5.

4 Discussion and conclusions

4.1 Default model configuration

Tables 3–4 summarize some of the key findings from
this study pertaining to the default configuration. JULES-
simulated GPP was more realistic in temperate biome sites

than in the tropics or high-latitude (cold-region) sites, as in-
dicated by three statistics to measure annual biases (NAE),
seasonal cycles (r), and variability (VR). LE was best sim-
ulated in temperate and high-latitude (cold) sites based on
the same statistics (except for temperate mixed forests). For
sites in the tropics, the default β parameterization contributed
to an exaggerated seasonal cycle of GPP compared to the
measurements, especially in tropical evergreen forests. Al-
though the NAE was low in tropical evergreen forest sites
(e.g., LBA sites K34, K83, K67, and BAN), the seasonal cy-
cle was overestimated (despite LAI being nearly constant all
year), as indicated by high VR and low correlation coeffi-
cients. A similar result was observed with LE in most trop-
ical sites: the seasonal cycle was incorrect and the VR was
high. For example, at LBA-K67, the measurements show an
increasing trend in GPP from August to October (coinciding
with the dry season), while JULES predicted a decreasing
trend during this time. Even with soil moisture and LAI pre-
scribed for the four tropical evergreen forest sites, the corre-
lation coefficients were negative. At these sites, it is possi-
ble that including a seasonally varying photosynthetic capac-
ity would improve the results, as in Wu et al. (2017). The
dry season is often accompanied by enhanced carbon up-
take in Amazon forests, due to a combination of fewer clouds
and increased incoming solar radiation (Saleska et al., 2003;
Restrepo-Coupe et al., 2013; Von Randow et al., 2013; Zeri
et al., 2014) and seasonal leaf flushing (Wu et al., 2016). The
observed seasonality in GPP is enabled by deep roots that can
access ample soil moisture and by the relatively high photo-
synthetic capacity of new leaves (Wu et al., 2017), a process
not yet represented in JULES.

Other errors, possibly linked to phenology, also con-
tributed to model biases in tropical savanna and deciduous
forest sites. The improvements seen when LAI was pre-
scribed at LBA-RJA (a seasonally dry tropical forest site) fur-
ther suggest that JULES’ lack of a moisture-driven phenol-
ogy scheme could be affecting the results at this site. LBA-
RJA serves as interesting comparison to LBA-K67: RJA re-
ceives a similar amount of annual rainfall, but the dry sea-
son is more intense, with about half as much rainfall dur-
ing the dry season compared to K67 (Restrepo-Coupe et
al., 2013). The bedrock is relatively shallow at RJA (2–3 m)
(Christoffersen et al., 2014); therefore, deep soil moisture is
not present. At this site, measured GPP drops steadily from
January until reaching a minimum in the middle of the dry
season. JULES captured this seasonal cycle very well, al-
though the amplitude was slightly dampened with predicted
GPP being higher than observed during most of the year
(with prescribed LAI and soil moisture).

In cold grassland sites, JULES underpredicted the variabil-
ity of GPP and had high annual biases. The biases were due
to very little GPP being simulated, with β being low year-
round. At RU-Che, giving more emphasis to deeper layers
(with “soil14_dr*2”) did not increase GPP, which is not un-
expected due to the presence of frozen soils both in the simu-
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lations and in reality at this site (Merbold et al., 2009a). The
C3 grass PFT at this site has the most roots in the top 0.5 m,
which indicates that evaporation or sublimation could be dry-
ing the soils too much in the layers with the most roots and
unfrozen soil moisture content.

4.2 Overview of alternative approaches for
representing soil moisture stress

We found that three alternative approaches to calculating
soil moisture stress produced more realistic results than
the default parameterization for most biomes and climates:
14-layer soil with a curvilinear stress response function
(“soil14_psi”, Eq. 9), 14-layer soil with delayed induction
of stress (“soil14_p0”, Eq. 3), and 14-layer soil with deeper
roots (“soil14_dr*2”). Within the default configuration, LE
biases were greatest in temperate mixed forests, with over-
estimation occurring during Spring–Autumn. At these sites,
reducing soil moisture stress (i.e., with soil14_psi, soil14_p0,
and soil14_dr*2) increased LE and increased RMSE, but im-
proved the simulated seasonal cycle and variance. Further
evaluation into the reason for the high bias in LE at many
of the sites would enable improvements in both carbon and
energy fluxes with new parameterizations for β.

There is ample justification for having deeper soils and
roots in JULES. Total soil column depth and root distribu-
tion determine the total amount of water and nutrients avail-
able to plants. Deep roots can access soil moisture at depth
(Christina et al., 2017) and potentially the water table and
hence contribute to tree transpiration during dry periods, e.g.,
for GF-Guy where many canopy trees are not impacted by
dry season droughts (Stahl et al., 2013a, b). Deep roots have
been found to be important for many vegetation types and
ecosystems (Canadell et al., 1996; Pierret et al., 2016; Ger-
mon et al., 2020): for multiple tree species in tropical forests
(Nepstad et al., 1994; Jipp et al., 1998; Strey et al., 2017;
Brum et al., 2019), for Acacias in semi-arid savannas such as
SD-Dem (Ardö et al., 2008), and for fast-growing Eucalypt
and Acacia mangium plantations in Brazil (Christina et al.,
2011; Laclau et al., 2013; Germon et al., 2018), to name a few
examples. In particular, in tropical forests, the global average
maximum rooting depth is approximately 7 m (Canadell et
al., 1996). Although estimates of maximum rooting depth are
uncertain (Schenk and Jackson, 2005; Pierret et al., 2016),
these examples contrast with the shallow soils (3 m) in the
default JULES simulations. In addition, weighting root wa-
ter uptake or soil moisture stress by fraction of roots in each
layer could produce too much stress if the shallow layers
(with the most roots) dry out too quickly. Deep roots are
very efficient at moving water, for example, specific hy-
draulic conductivities (Ks) of deep roots can be as much as
15 times higher than Ks of superficial roots for Banksia sp.
(Pate et al., 1995), and deep roots can redistribute water from
deep to shallow layers (Caldwell et al., 1998; Burgess et al.,
2001; Oliveira et al., 2005). However, not all plants rely on

deep roots during a drought (Prechsl et al., 2015; Brinkmann
et al., 2019), and at sites dominated by grasses and shrubs
there were high biases in the “soil14_mod1” experiments
(weighting the contribution of each layer’s βi by the thick-
ness of that layer rather than by the effective root fraction
in that layer). Studies with other land surface models have
drawn similar conclusions. Increasing the soil column from
3.5 to 10 m and allowing roots to access this entire reser-
voir improved the fit of the SiB3 model to observations at
the LBA-K83 site (Baker et al., 2008). Similarly, the ability
of the G’DAY model to accurately simulate wood produc-
tion in fast-growing sub-tropical plantations was consider-
ably improved by accounting for tree ability to uptake water
in deep soil layers (Marsden et al., 2013). On the other hand,
using the default calculation for β with an e-folding depth
dr = 0.5 m emphasized shallow layers, and the overall soil
moisture stress increased at most sites, resulting in a poor fit
to measured GPP and LE in the “soil14_dr0.5” experiments.

4.3 Outlook for modeling soil moisture stress in JULES
and other land surface models

In this study, we used flux tower observations and de-
tailed site information when possible. Working with site re-
searchers enabled us to narrow down reasons for model bi-
ases by prescribing soil moisture and LAI at some sites and
to better understand mechanisms of drought responses at oth-
ers. These are invaluable benefits of working with site-level
data. Future studies could benefit from incorporating more
sites (the full FLUXNET2015 dataset includes 212 sites),
particularly if the focus is reducing biome-scale model bi-
ases. There is potential to extract even more information
from available datasets to improve the representation of soil
moisture–vegetation interactions (Gentine et al., 2019). This
includes better utilization of satellite data, and one partic-
ular opportunity is to consider soil moisture measurements
in parallel with those of solar-induced fluorescence, which
is used to estimate photosynthesis (Lee et al., 2013). Satel-
lite records have large spatial coverage, and modern machine
learning algorithms could be used to characterize Earth ob-
servation datasets of drought conditions (Huntingford et al.,
2019). Such methods could address the difficulty in model-
ing the high complexity and geographical diversity of plant
adaptive responses to soil moisture deficits that exist in na-
ture.

Future work should build upon these results to further eval-
uate JULES response with these parameterizations, focusing
on deeper soils and either using a non-zero p0 (we used 0.4
in this study) or using the soil matric potential (ψ) rather than
volumetric water content for calculating β. We note that such
alternative parameterizations are not a replacement for im-
proved representations of the soil–plant hydraulic system that
have been developed for many models (Bonan et al., 2014;
Christoffersen et al., 2016; Kennedy et al., 2019), including
JULES (Eller et al., 2020). Instead, they provide a practi-
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cal, alternative way to represent some aspects of the soil–
plant hydraulic system, including hydraulic differences be-
tween PFTs through the parameters ψopen and ψclose (Eq. 9),
which can be adopted by any model that uses the β func-
tion to represent vegetation responses to soil moisture. Sev-
eral other land surface models use soil water potential (e.g.,
CLM; Oleson et al., 2010; Lawrence et al., 2019) for calcu-
lating soil moisture stress, and a further benefit of this ap-
proach is the ability to set PFT-specific values for ψopen and
ψclose (Eq. 9), with measured turgor loss points serving as a
starting point for ψclose (Bartlett et al., 2012). Whereas our
new parametrization generally improves JULES skill to sim-
ulate GPP and LE, it remains to be tested if similar results
would be achieved by other models, including models that
apply the β function at different parts of their photosynthesis
and stomatal conductance schemes (e.g., Keenan et al., 2010;
De Kauwe et al., 2015).

Currently, the land partially offsets anthropogenic CO2
emissions by photosynthetic drawdown, but this could be re-
versed if droughts increase in frequency or intensity in the
future. Feedbacks from the land surface can amplify and
lock-in existing drought conditions (Morillas et al., 2017),
and land surface responses to regional drought can affect
precipitation and circulation in other regions (Harper et al.,
2013; Lian et al., 2020). Improving responses of vegetation
to drought in land surface models such as JULES would have
far-reaching implications for global climate modeling and are
therefore of utmost importance.

Code availability. Both the model code and the files for running
it are available from the Met Office Science Repository Ser-
vice: https://code.metoffice.gov.uk/ (last access: 13 April 2021).
Registration is required and code is freely available subject
to completion of a software license. The results presented
in this paper were obtained from running JULES branch
https://code.metoffice.gov.uk/trac/jules/browser/main/branches/
dev/karinawilliams/r9227_add_gpp_unstressed_diagnostic (last
access: 13 April 2021, Williams, 2020) which is a branch of
JULESv4.9 with the additional unstressed GPP diagnostic added.
The runs were completed with the Rose suite https://code.
metoffice.gov.uk/trac/roses-u/browser/a/l/7/5/2/u-al752-jpegpaper
(last access: 13 April 2021, Williams et al., 2020), which also
includes Python scripts for creating the plots. The Taylor diagrams
(Figs. 7, S5 and S7) were made with Python scripts from Yannick
Copin (https://gist.github.com/ycopin/3342888, last access: 13
April 2021, Copin, 2018).

Data availability. The FLUXNET2015 data used to run
JULES are available for download from https://fluxnet.org/
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