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Abstract 12 

Amid the COVID-19 pandemic, a nationwide lockdown was imposed in the United Kingdom (UK) on 13 

23rd March 2020. These sudden control measures led to radical changes in human activities in the 14 

Greater London Area (GLA). During this lockdown, transportation use was significantly reduced and 15 

non-key workers were required to work from home. This study aims to understand how population 16 

exposure to PM2.5 and NO2 changed spatially and temporally across London, in different 17 

microenvironments, following the lockdown period relative to the previous three-year average in 18 

the same calendar period. Our research shows that population exposure to NO2 declined 19 

significantly (52.3% ±6.1%), while population exposure to PM2.5 showed a smaller relative reduction 20 

(15.7% ±4.1%). Changes in population activity had the strongest relative influence on exposure levels 21 

during morning rush hours, when prior to the lockdown a large percentage of people would 22 

normally commute or be at the workplace. In particular, a very high exposure decrease was 23 

observed for both pollutants (approximately 66% for NO2 and 19% for PM2.5) at 08:00am, consistent 24 

with the radical changes in population commuting. The infiltration of outdoor air pollution into 25 

housing modifies the degree of exposure change both temporally and spatially.  Moreover, this 26 

study shows that the impacts on air pollution exposure vary across groups with different 27 

socioeconomic status (SES), with a disproportionate positive effect on the areas of the city home to 28 

more economically deprived communities.  29 
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1. Introduction 34 

Ambient air pollution levels are strongly associated with human activities, such as transportation, 35 

and can have significant population health impacts; in the UK, for example, air pollution is thought to 36 

contribute 28,000 to 36,000 excess deaths a year (PHE, 2019). On 23rd March 2020, the UK 37 

government imposed a nationwide lockdown due to increasing transmission of coronavirus, which 38 

subsequently led to radical changes in human activities including the transportation and time-39 

activity behaviours of the population. The COVID-19 lockdown offers a unique natural experiment to 40 

evaluate and quantify the impact of rapid changes in people’s activity patterns and emissions on air 41 

pollution and subsequent population exposure.  42 

Numerous studies have already evaluated the impact of COVID-19 lockdowns on outdoor air quality 43 

worldwide (Muhammad et al., 2020). The vast majority of these studies show that radical shutdown 44 

measures in big cities led to lower and less variable outdoor concentrations of urban air pollutants 45 

(Gruener et al., 2020; Zhao et al., 2020; Mahata et al., 2020; Sharma et al., 2020; Mbandi et al., 46 

2020). However, most of these studies focus solely on the reduction of outdoor concentrations, and 47 

a relative few studies have assessed the impact of lockdowns on population exposure to urban air 48 

pollution (Williams, 2020; Zhu et al., 2020). This is important, as exposure to outdoor air pollution 49 

also occurs in non-outdoor microenvironments (MEs) due to the infiltration of polluted air; for 50 

example, housing is thought to significantly modify population exposures (Taylor et al., 2014).  51 

Exposure is also dependent on the time-activity profiles of the population. In cities under lockdown, 52 

much of the population radically changed their daily activities, including working from home instead 53 

of their usual workplace and by avoiding all unnecessary travel. For example, the lockdown led to a 54 

greater than 70% decrease in public and private transportation in London, likely reducing exposure 55 

to outdoor generated air pollution (Williams, 2020). Therefore, to assess spatial and temporal 56 

changes in exposure during the lockdown, key factors such as changes in population activity patterns 57 



and concentrations in different microenvironments, where people spent their daily time (for 58 

example at home, workplaces, in transit, and outdoors) need to be considered. 59 

In addition, there may be important differences in exposure between population groups. 60 

Socioeconomic inequalities in concentration and exposure to outdoor pollution are well established 61 

(Tonne et al., 2018; Shiels et al., 2017; Stringhini et al., 2017; Rivas et al., 2017; Rotko et al., 2001 62 

and 2000) and there is emerging evidence of similar disparities indoors (Ferguson et al., 2020). 63 

Several studies have shown a strong connection between communities of either lower or higher 64 

socioeconomic position and increased concentrations and exposure to urban air pollution (Hajat et 65 

al., 2015). In US, several studies have shown that deprived areas experience higher levels of outdoor 66 

pollution exposures (Su et al., 2012; Gray et al., 2013; Hajat et al., 2015). In London and other big 67 

cities, it has been suggested socioeconomic inequalities in outdoor levels of traffic-related air 68 

pollution are driven by differences in road traffic volume, which affects the amount of emissions 69 

(Tonne et al., 2018; Brook and King, 2017; Pandilla et al., 2014). Therefore, changes in road traffic 70 

following the lockdown provide a unique natural experiment opportunity to investigate exposure 71 

disparities across socioeconomic groups, with potential changes in outdoor generated air pollution 72 

resulting in differences in exposure changes across different such groups.  73 

In this study, we seek to 1) understand how the COVID-19 lockdown changed population-level 74 

outdoor air pollution exposures, and 2) evaluate whether changes in exposures varied across 75 

socioeconomic groups and explore the role of traffic-related pollution on exposure inequalities. 76 

 To achieve this, we aim to quantify and illustrate the spatio-temporal change in population 77 

exposure to outdoor-generated air pollution in London during the lockdown period relative to 78 

previous years for the same period. By accounting for the spatial and temporal variability of outdoor 79 

air pollution, dwelling Indoor-Outdoor (I/O) ratios (the proportion of outdoor air pollution that 80 

infiltrates indoors), and changes in diurnal population activity patterns, we assess the impact of the 81 

lockdown on the population exposure levels. Moreover, we also evaluate socioeconomic differences 82 



in exposure reduction. Understanding the spatial and temporal distribution of air pollution across 83 

different MEs, and subsequent exposure inequalities, is important to develop policies to reduce 84 

inequalities and improve sustainable development. 85 

 86 

2. Material and methods 87 

2.1 Study period and air quality data 88 

Lockdown measures were applied to the Greater London Area (GLA), UK, on March 23rd, 2020. To 89 

examine the impact on short-term air quality, a one-month period (23 March to 22 April) in 2020 90 

was compared against the same calendar period, averaged from 2017-2019. The hourly monitoring 91 

data for two major traffic-related air pollutants (NO2 and PM2.5) were obtained from the London Air 92 

Quality Network (LAQN) (King’s College London). For NO2, 98 monitoring sites were included, 93 

whereas for PM2.5 only 21 monitoring sites were available for the study period. Average hourly 94 

concentrations for each hour of the study period were calculated for each monitoring site. The 95 

Voronoi Neighbor Averaging (VNA) tool in QGIS was used to spatially interpolate hourly data 96 

between monitoring sites, estimating hourly outdoor concentrations pre and post-lockdown at 97 

Lower-Super Output Area (LSOA) level (a census unit with an average of 1500 residents). 98 

 99 

2.2 Microenvironments and infiltration of outdoor pollutants 100 

Four different MEs have been considered in this work: 101 

(i) The home; 102 

(ii) Work, assuming that all individuals work inside buildings;  103 

(iii) Transport, including public or private transportation (i.e., bus, private car/taxi and train) 104 

to travel; and  105 



(iv) Outdoors, including people who are walking or cycling. 106 

We only consider exposure to outdoor-generated pollution. Estimates of indoor pollution from 107 

indoor sources are highly uncertain and have not been considered in this study due to a lack of data. 108 

The infiltration of outdoor NO2 and PM2.5 into the home ME was considered using previously derived 109 

hourly I/O ratios across GLA for the same calendar period (Taylor et al, 2014). This data includes the 110 

hourly average I/O ratios of 1.5 million London dwelling (covering approximately 46% of London 111 

dwellings), and accounts for seasonal wind pressures and summertime window opening; here we 112 

use hourly average dwelling I/O ratios for April to represent the lockdown period, averaged by LSOA 113 

(Figure S1). For both pollutants, central London shows the lowest I/O ratios, likely due to the newer 114 

building stock and the large number of flats in multi-dwelling buildings, where the available surface 115 

for infiltration is considerably smaller. The average I/O ratio in the GLA ranges from 0.40 to 0.63 for 116 

PM2.5 and 0.15-0.40 for NO2. The I/O ratio is likely to significantly modify population exposure to 117 

outdoor air pollution due to the extended amount of time that people spent at home during the 118 

lockdown period.  119 

The spatially and temporally resolved I/O ratios provided by Taylor et al. (2014) have been derived 120 

only for domestic buildings and are not representative of commercial areas and workplaces. Thus, 121 

for the workplace, we have selected representative values according to the available literature. For 122 

PM2.5, we selected an average value of 0.60 (Singh et al., 2020; Soares et al., 2014; Hanninen et al., 123 

2011) and for NO2, we chose to use an average value of 0.68 (Hu and Zhao, 2020, Kornartit et al., 124 

2010). 125 

For outdoor air pollution exposure in the transportation ME, we calculated the in-vehicle 126 

concentration using a mass balance equation (Smith et al., 2016). The same input values as Smith et 127 

al. (2016) were used except for the outdoor concentrations which were updated. As in Smith et al. 128 

(2016), the surface area of each commuter was derived as per Song et al. (2009). 129 

 130 



2.3 London population data and activity 131 

The spatial distribution of the London population was derived from 2011 census data from the Office 132 

of National Statistics (ONS, 2012), representing 95% of households, and was assumed to be the same 133 

in both the baseline and study periods. The spatial distribution of the population was considered 134 

during daytime (defined as the period from 7:00am to 19:00) population (Figure S2a in SI) and night-135 

time (defined as the period from 20:00 to 06:00am) population (Figure S2b in SI). The Census usual 136 

resident population was used for the night-time period and the workday population for the daytime 137 

period. As expected, under normal circumstances the daytime population density is much higher in 138 

Inner London due to much of the population commuting into the city centre, whereas the night-time 139 

distribution is much more uniform across the GLA.  140 

 141 

2.3.1. Pre-COVID  142 

For the pre-COVID-19 period, we analyzed the amount of people at home, at work, in transportation 143 

and outdoors using Census and London Travel Demand Survey (LTDS, 2011) data. We used the 144 

Census workplace population (the number of people in each LSOA that were in their workplace 145 

during a usual weekday) to calculate the percentage of people normally at work. From the LTDS, the 146 

total number of trips per hour of a weekday, and the number of average trips per person were used 147 

to calculate the number of people that use public transportation each hour. As there was no data on 148 

the movements of populations in each LSOA, the temporal variation of the percentage of people in 149 

each ME was estimated using the LTDS data and the daytime and night-time population 150 

distributions. LTDS also provides data on the number of people commuting at each hour, defined as 151 

travelling between the home and workplace. Thus, at each hour the respective number of 152 

commuters was subtracted from the workplace population. 153 

The diurnal variation of the population activity in the four MEs is presented in Figure 1A. During the 154 

morning and afternoon rush hours, the percentage of people in the transportation ME peaks. During 155 



daytime, more than 30% of people are either at work or in transportation, while at the night after 156 

22:00 more than 90% of the population are at home. In this study, children were included in the 157 

home population. 158 

 159 

2.3.2. COVID Lockdown 160 

For the COVID-19 period, changes in population daily movements between MEs were obtained from 161 

App Maps and Google statistics. Google statistics used the median value of each day of the week in 162 

January 2020 (i.e., 5-week period from 3 January until 5 February) as baseline, while App Maps used 163 

13 January 2020. Both datasets show significant changes in population travel and working behavior 164 

after March 23rd, with transportation reduced by more than 70%, and more than 75% of the working 165 

population remaining at home. The remaining population at work during the lockdown period likely 166 

consists largely of key workers, who continued going to their workplace. The data also shows that 167 

less than 1% of the total population are outside at most hours of the day. This data was used 168 

alongside spatial distribution of the usual resident (night-time) population in order to estimate the 169 

variation of the percentage of the population in each ME during the COVID-19 period (Figure 1B). 170 

  171 



a) 

 
b) 

  
 172 

Figure 1: Diurnal variation of the percentage of people in each ME: a) during the pre-COVID-19 period and b) 173 

during the COVID-19 period (first lockdown). 174 

 175 



2.4 Population-weighted exposure 176 

The population-weighted mean exposure (PE) is estimated from the concentration level in each ME 177 

and the amount of people that spent time in those MEs. The PE was calculated as: 178 

𝑃𝐸 =  
∑ 𝐶𝑖,𝑡,𝑗

𝑛
𝑖=1 ×𝑃𝑖,𝑡,𝑗

𝑃𝑇
     (1) 179 

Where PE is the population weighted mean exposure for a population, n is the number of the 180 

populated geographical units (here LSOAs); C and P are the mean concentration of the pollutant and 181 

the number of people, respectively, for LSOA i, microenvironment j and hour t of the day; and PT is 182 

the respective total population.  183 

 184 

2.5 Socioeconomic analysis 185 

To compare concentration and exposure across socioeconomic status (SES), we used LSOA – level 186 

deprivation data from the 2019 Index of Multiple Deprivation (IMD). The IMD is an overall relative 187 

measure of deprivation constructed by combining seven domains of social and economic deprivation 188 

(i.e.,’ Income Deprivation’, ‘Employment Deprivation’, ‘Education, Skills and Training Deprivation’, 189 

‘Health Deprivation’, ‘Crime’, ’Barriers to Housing and Services’ and ‘Living Environment 190 

Deprivation’). The IMD was linked to population exposure in each LSOA based on the usual resident 191 

population distribution. 192 

We then examined the statistical relationship between the IMD and the average change of 193 

concentration and exposure to PM2.5 and NO2 at LSOA-level using Spearman’s correlation. Our goal 194 

was to show the strength of association between the time-averaged air pollution reductions and SES. 195 

Spearman’s correlation was chosen for the statistical analysis because it is considered as a suitable 196 

technique to correlate ordinal variables, such as the ranked IMD data, and has been previously used 197 

to correlate UK IMD data with different environmental exposures (Tonne et al., 2018).  198 

199 



3. Results 200 

3.1 Spatial and temporal change in air pollution concentration and exposure 201 

3.1.1 Spatial distribution of concentrations and exposure reduction 202 

Hourly average outdoor concentrations changed significantly following the COVID-19 lockdown.  203 

Before the lockdown, the three-year London average (2017 - 2019) NO2 and PM2.5 concentrations 204 

from 23 March to 23 April were 45.1 μg/m3 and 18.2 μg/m3, respectively. After implementation of 205 

lockdown measures, the average outdoor concentrations of NO2 and PM2.5 during the same period 206 

were 26.7 μg/m3 and 15.7 μg/m3 (Table 1), respectively, representing a decrease of 40.9% ±6% for 207 

NO2 and 13.9% ±4% for PM2.5.  208 

As changes in outdoor concentrations of NO2 and PM2.5 due to COVID-19 shutdown have been 209 

presented and analyzed by several studies, we focus here on changes in population-weighted 210 

exposure across different environments. We estimate that transportation was the most highly 211 

polluted ME during the lockdown with an average exposure of 22.1 μg/m3 for NO2 and 13.1 μg/m3 212 

for PM2.5, while the average workplace concentration was 17.1 μg/m3 for NO2 and 9.4 μg/m3 for 213 

PM2.5. The home ME had the lowest NO2 and PM2.5 concentrations with 7 μg/m3 and 8.6 μg/m3, 214 

respectively.  215 

 216 

Table 1: Total exposure and concentrations before (2017-19) and during the lockdown period (2020). 217 

MEs 

2017-19 2020 

NO2 
(μg/m3) 

PM2.5 
(μg/m3) 

NO2 
(μg/m3) 

PM2.5 
(μg/m3) 

Outdoor 45.1 18.2 26.7 15.7 

Transportation 37.4 15.1 22.1 13.1 

Work 28.9 10.9 17.1 9.4 

Home 11.9 9.9 7 8.6 

Total Exposure concentration  16.2 10.3 7.7 8.7 



 218 

Population and time-weighted exposure is impacted by population activity patterns, I/O ratios and 219 

outdoor concentration. The indoor levels of outdoor air pollution are directly affected by the I/O 220 

ratios of dwellings, thus modifying exposures to outdoor air pollution. Here, we found that the 221 

average population-weighted mean exposure decreased following lockdown from 16.2 μg/m3 to 7.7 222 

μg/m3 (a 52.3% reduction) for NO2, and from 10.3 μg/m3 to 8.7 μg/m3 (a 15.7% reduction) for PM2.5. 223 

The fact that a much higher percentage of people were spending their daytime inside their homes 224 

(an increase from 50% to 90%), has led to a greater reduction in exposure during the lockdown due 225 

to the protective role of housing on outdoor air pollution exposures (Smith et al., 2016).  226 

Figures 2a and 3a show the concentration and exposure change across London. For NO2, the greatest 227 

exposure reductions (55 to 71%) were observed in Inner London (Figure 2a). PM2.5 showed the 228 

greatest reductions (28% to 32%) in East and West areas of Inner London (Figure 3a). Relatively few 229 

areas in West London showed only minor reductions in exposure (<2%). The spatial variation of 230 

exposure reduction is also in-part due to changes in the distribution of the population across London 231 

and the I/O ratios of the dwellings where they spend their time. The large decrease in exposure in 232 

Central London was due to various factors, particularly the more uniform distribution of the 233 

population during the lockdown, when the population was not concentrated in central London 234 

during working hours (Figure S2). Additionally, the lower average I/O ratios of dwellings (Figure S1) 235 

and the greater reduction in outdoor concentrations (Figures 2 and 3) also contributed to reduced 236 

exposure. In contrast, some areas in western London, which showed higher I/O ratios (particularly 237 

PM2.5) and low reductions in outdoor pollution show comparatively low decreases in overall 238 

exposure levels.  239 

 240 

3.1.2 Temporal change in air pollution concentration and exposure 241 



Figure 4 describes the average hourly reduction in concentration and population exposure to NO2 242 

and PM2.5 during the lockdown. As expected, there is little difference between the concentration 243 

(Figure 4a) and exposure (Figure 4b) reduction during most hours of the day for both pollutants. 244 

However, during morning during rush hours the percent reduction fluctuates differently for both 245 

pollutants, which reveals the strong impact of the change in population activity on exposure. Both 246 

pollutants show the greatest exposure decrease during morning and evening peak rush hours. 247 

During those two time periods, the lowest percentage of people are inside the home relative to 248 

other hours of the day (Figure 1) pre-COVID-19, and thus we expect to observe the most significant 249 

changes after lockdown measures at these times. In particular, there was the greatest reduction in 250 

population exposure for NO2 (66.1% ±5.1%) and PM2.5 (19.2% ±3.9%) at 08:00am.  251 

The spatial distribution of the concentration and exposure reduction at the time of the greatest 252 

hourly decrease (i.e., 08:00am) is illustrated on Figures 2b and 3b. NO2 exposures show the highest 253 

percent reduction (>65%) in Inner and Northwest London, while PM2.5 exposure is reduced more in 254 

the Northeast, South, and parts of Inner London. Because NO2 is strongly related to traffic, the most 255 

traffic congested areas of London, such as central London, show the highest exposure change. PM2.5 256 

shows a slightly different and more uniform distribution of exposure reduction, due to factors 257 

discussed in section 3.1.1. 258 

  259 



 260 

  

a) Average reduction of NO2 concentration 
 
 
 

b) Average reduction of NO2 exposure 

  
 

c) Reduction of NO2 concentration at 08:00am d) Reduction of NO2 exposure at 08:00am 
 261 

Figure 2: Maps a) and b) illustrate the spatial distribution of average NO2 concentration and exposure 262 

reduction (%) during the lockdown period across London.  Maps c) and d) illustrate the spatial distribution of 263 

average NO2 concentration and exposure reduction (%) at 08:00am. 264 

 265 



  

a) Average reduction of PM2.5 concentration 
 
 
 

b) Average reduction of PM2.5 exposure 

  
c) Reduction of PM2.5 concentration at 08:00am d) Reduction of PM2.5 exposure at 08:00am 

 266 

Figure 3:  Maps a) and b) illustrate the spatial distribution of average PM2.5 concentration and exposure 267 

reduction (%) during the lockdown period across London.  Maps c) and d) illustrate the spatial distribution of 268 

average PM2.5 concentration and exposure reduction (%) at 08:00am. 269 

 270 



a) 

 
b) 

 
 271 

Figure 4: Average diurnal a) concentration reduction (%) and b) exposure reduction (%) during the lockdown 272 

period (yellow represents NO2 and blue PM2.5). 273 

274 



3.2 Socioeconomic Status 275 

Air pollution concentration and exposure data are summarized to illustrate the differences between 276 

IMD classifications.  Figures 5 and 6 present PM2.5 and NO2 concentrations and exposure differences 277 

between the two examined periods across each deprivation decile. For PM2.5, the concentration and 278 

exposure differences in the most deprived LSOAs (deciles 1, 2, and 3) demonstrate the lowest 279 

variability, while the LSOAs with moderate deprivation (i.e., deciles 4,5,6) show the largest 280 

variability. For NO2, LSOAs in IMD decile 2 show the highest average and the greatest variability for 281 

both concentration and exposure difference, while the least deprived LSOAs (i.e., decile 10) show 282 

the lowest variability and slightly lower average difference (8.6 μg/m3) compared to the most 283 

deprived (8.9 μg/m3). The magnitude of the variability in each IMD decile is likely influenced by the 284 

corresponding spatial variation of I/O ratios and outdoor concentrations among the LSOAs of each 285 

decile. The smaller variability across the deprivation deciles observed for PM2.5 reductions relative to 286 

NO2 may be explained by the less variable particle concentrations across London (Williams, 2020).  287 

Moreover, the reductions in concentration also indicate that highly deprived populations in London 288 

are disproportionately impacted by air pollution from traffic sources. For both pollutants, the results 289 

demonstrate a negative relationship between deprivation deciles and the average exposure and 290 

concentration difference during the study period (Table 2). Therefore, disadvantaged areas were 291 

associated with higher reduction of concentration and exposure to PM2.5 and NO2. Only a very weak 292 

association was found for NO2 with correlations of -0.11 and -0.05 for concentration and exposure, 293 

whereas the PM2.5 concentration and exposure difference were more strongly correlated with IMD. 294 

All correlations are statistically significant (p-value <0.05). This study provides evidence of weak 295 

associations, but in the direction of the predictions of several previous studies that suggest a great 296 

concentrations or exposure in the most deprived areas (Tonne et al., 2018; Brook and King, 2017; 297 

Pandilla et al., 2014).  298 

 299 



a) 

 
b) 

 

 300 

Figure 5:  a) Variation of PM2.5 concentration difference and the total population of all LSOAs in each decile, b) 301 

Variation of PM2.5 exposure difference and the total population of all LSOAs in each decile. 302 

 303 



a) 

 
b) 

 
 304 

Figure 6: a) Variation of NO2 concentration difference and the number of people in each decile; b) Variation of 305 

NO2 exposure and the number of people in each decile. 306 

 307 



Table 2: Spearman’s correlation coefficient between deprivation index (IMD) and air pollution concentration 308 

(exposure) difference. 309 

 Concentration Exposure 

IMD 
NO2 PM2.5 NO2 PM2.5 

-0.11* -0.25* -0.05** -0.26* 

*p-value <0.001, **p-value<0.05 310 

 311 

4. Discussion 312 

Lockdown measures in different parts of the world due to the COVID-19 outbreak have provided an 313 

opportunity to evaluate the human impact on the urban environment. In this work, we evaluate the 314 

relationship between population exposure and time-activity patterns, including the time spent 315 

indoors. We found a high average percent reduction in NO2 exposure (52.3% ±6.1%) with the 316 

greatest decrease in Inner London, while PM2.5 exposure showed a considerably lower average 317 

percent reduction (15.7% ±4.1%). The very high reductions in exposure to both pollutants during the 318 

morning rush hours show the strong influence of changes in population commuting. By linking 319 

population SES and exposure change, we demonstrate variation in air pollution exposure reduction 320 

following lockdown across IMD deciles, and provide evidence supporting the conclusion that 321 

deprived communities in London are disproportionately affected by road transport pollution. 322 

Numerous prior research studies have investigated and evaluated the influence of coronavirus on air 323 

quality globally, and several approaches can be broadly identified. According to recent literature, 324 

reductions in NO2 and PM2.5 concentrations during the lockdown ranged from 10% to greater than 325 

50% worldwide (Wu et al., 2021; Gruener et al., 2020; Zhao et al., 2020; Williams, 2020; Fonseca et 326 

al., 2020; Brook and King, 2020) with the highest emission reductions observed during morning rush 327 

hours. Here, we estimate an average reduction of approximately 50% and 16% for NO2 and PM2.5, 328 

respectively. The radical changes in population activity and the significant change in the spatial 329 

distribution of the population are likely to have significantly contributed to this reduction in 330 



emissions. As with other studies, we estimated the greatest exposure reductions during morning 331 

rush hours and during the evening peak hours, particularly at 08:00am when there was the greatest 332 

reduction in population exposure for NO2 (66.1% ±5.1%) and PM2.5 (19.2% ±3.9%). The steep 333 

decrease in air pollution exposure levels during rush hours reflects the importance of the temporal 334 

variation of population activity and spatio-temporal variation of the domestic I/O ratios. Conversely, 335 

during night hours and early morning hours, the reduction in exposure was much lower. As the 336 

number of night workers is much lower than the number of day or evening workers and over 90% of 337 

the population was at home during night or early morning, only minor changes were observed to the 338 

population activity patterns at these times. 339 

Many large cities around the world demonstrated lower outdoor concentrations of air pollution 340 

during the quarantine measures, improving air quality (Arregoces et al., 2021; Kumar et al., 2020). 341 

However, it is worth noting that some studies show higher PM2.5 concentrations in several locations 342 

(Daniella Rodriguez-Urrego and Leonardo Rodriguez-Urrego, 2020) relative to the pre-covid period, 343 

and the effect of the lockdown on some pollutants might be still questionable. A direct comparison 344 

between studies is frustrated by the different periods and sites considered, and the methodologies 345 

used to quantify the changes. In the UK, a selection of studies have investigated the impact of the 346 

shutdown on the concentration of urban pollutants (Williams, 2020; Fonseca et al., 2020). However, 347 

there is little research on how changes in population exposure are distributed across urban areas, 348 

accounting for the spatial and temporal variability of the exposures in different MEs. Our novel 349 

approach includes hourly average I/O ratios of more than 1.5 million dwellings - averaged by LSOA - 350 

and estimates an average population exposure reduction of 66% and 19% for NO2 and PM2.5. For 351 

NO2, the highest reduction was observed in Central, Northwest and Southeast London and for PM2.5 352 

in the West and East of Inner London. For both concentration and exposure, NO2 show notably 353 

higher reductions than PM2.5 post lockdown. This is likely due to a significant decrease in traffic-rated 354 

emissions in London, meaning pollutants that are strongly related to traffic emissions, such as NO2, 355 

are more significantly affected. On the other hand, for outdoor PM2.5, the contribution of local 356 



transport emissions is smaller than for NO2 (Reis et al., 2018) and particulate pollution may be 357 

influenced by other factors (for example, local meteorology, transboundary transport, resuspension 358 

and the use of fireplaces).  359 

Health studies have suggested that lower SES populations are more likely to suffer premature 360 

mortality from air pollution exposure than higher SES populations (Krewski et al. 2000a, b). Multiple 361 

studies have been conducted in large cities and metropolitan areas around the world associating the 362 

SES with the air pollution concentration and exposure. Most of them demonstrate high associations 363 

between the most deprived areas and high outdoor (Sarmadi et al., 2020; Cakmak et al., 2016; 364 

Pinault et al., 2016; Pandilla et al., 2014; Gray et al., 2013) and indoor concentrations (Ferguson et 365 

al., 2020). Here, we provide new information about the impact of lockdown measures on people 366 

across different IMD groups. Results indicate negative associations between the reductions of 367 

concentration and exposure during the lockdown period and the area-level deprivation status, 368 

where PM2.5 is more strongly correlated than NO2. Several studies conducted in large urban areas 369 

have presented similar outcomes (Pandilla et al., 2014). In London, Brook and King (2017) predicted 370 

that reductions in exposure to NO2 would be higher for areas that fall within IMD decile 1 (most 371 

deprived) after the implementation of air pollution reduction measures. Furthermore, Tonne et al. 372 

(2018) analyzed the relationship between SES and outdoor air pollution, finding an exposure 373 

different of 0 to 1.9 𝜇g/m3 between the highest and lowest household income groups, and greater 374 

reductions in air pollution in the least advantaged areas after the activation of the Congestion 375 

Charging Zone in London. 376 

The main strengths of our study are the large dataset, including population information at LSOA-377 

level, travel behavior from a representative sample of the London population and the large spatio-378 

temporal variability of the I/O ratios for dwellings. The indoor environment is protective of exposure 379 

to outdoor air pollutants and that is usually reflected in much lower exposures when Home MEs 380 

have been taken into account. Amid the pandemic lockdown measures, when more than 90% of the 381 



population had to stay at their home during the daytime, the incorporation of the spatial and 382 

temporal distribution of domestic I/O ratios when estimating the population-weighted exposure 383 

significantly modifies the magnitude and distribution of the exposure change.  384 

This study contains several limitations. The limitations are the quality of the derived air pollution 385 

data and the absence of meteorological effects.  Because our study is based on recent 386 

measurements, most of the available concentrations for 2020 have not yet been fully ratified by the 387 

LAQN. However, in order to reduce the uncertainty and improve the quality of our data, we did not 388 

include any negative or unusually extreme hourly values to our analysis. A few monitoring sites did 389 

not provide 100% of the data for the whole study period and some hourly readings were missing (or 390 

not included). No sites provided less than 70% of the data (Lang et al. 2019; King’s College London, 391 

2015). Temporal and spatial variability of air pollution concentrations are subject to changes in 392 

emissions and meteorology, which may impact the exposure levels (Bujin et al., 2020). NO2 levels 393 

can be directly linked to the reduction of transport emissions due to its strong relation to traffic (He 394 

et al., 2020a; He et al., 2020b). However, transboundary transport of PM and precursors from 395 

mainland European sources and the associated meteorology play an important role in PM 396 

concentrations in London. Thus, post-COVID-19 concentrations might be different than pre-COVID-397 

19 due to reasons that are not directly related to lockdown. The wind conditions during 2020 have 398 

been exceptional in many ways across the UK (Carslaw, 2020). Moreover, the lockdown period also 399 

coincides with the period of the year where there is an increased frequency of PM2.5 episodes in 400 

Europe (Air Quality Expert Group, 2020). Therefore, the lack of accounting for weather conditions in 401 

our assessment is likely to have affected our results and some reductions may have been over-402 

estimated. However, our approach of averaging the same calendar period of the previous years 403 

might have the benefit of reducing meteorological variability. Another limitation is that exposure to 404 

other urban air pollutants was not considered, mostly due to data inavailability. In this study we 405 

focused on the two most important major air pollutants for London’s air quality 406 

(https://www.london.gov.uk/). Many air pollutants have common sources, and air pollution 407 



reduction strategies that take advantage of these common sources may achieve economies of scale 408 

that control strategies that target one pollutant at a time cannot. Moreover, pollutants can also be 409 

connected by similar precursors or chemical reactions once in the atmosphere. Thus, control 410 

strategies that target one pollutant may affect others, perhaps in unintended ways. A much denser 411 

network of monitoring stations was available for the NO2 compared to PM2.5. As the concentration of 412 

air pollution can change across small distances, the denser network can lead to higher prediction 413 

accuracy. In this work, roadside and urban background sites were included, with roadside sites 414 

mostly located within Inner London. The denser NO2 monitoring network and the smaller distances 415 

between the sites were able to provide adequate coverage of background sites for non-traffic 416 

locations. However, the interpolation of roadside measurements, especially for the less dense PM2.5 417 

network, may have led to an overestimation of the impacts of reduced traffic by interpolating to 418 

non-traffic areas. The surrounding urban environment can significantly influence pollutant transport 419 

and concentration, and to account for this, high-skilled urban modelling accounting for complex 420 

urban morphology is required. However, this kind of advanced modelling was not feasible for this 421 

study, but could be incorporated to future studies. Moreover, schools and commercial buildings 422 

were assumed to have same values as home microenvironment and children were included in the 423 

home population. Finally, the average workplace I/O ratio used in this study was assumed from 424 

several European cities (Soares et al., 2014; Hanninen et al., 2011; Hanninen et al., 2004). Data on 425 

I/O ratios in commercial buildings, and for different type of workplaces are scarce. Therefore, it was 426 

assumed that the values demonstrated in Europe were also representative for London.  427 

This work utilized Google Statistics and App Maps to determine differences in travel patterns. Both 428 

App Maps and Google statistics are based on data sent from users’ devices and users that opt-in to 429 

location history for their account, respectively. Consequently, those data sources contain limitations 430 

in terms of their representativeness of the overall population. Apple Maps has no demographic 431 

information about its users, making it difficult determine data representativeness. In the 432 

calculations, Google statistics includes only data from users that use their Google account and have 433 



opted-in to Location History. Those data also have to meet Google’s privacy threshold. 434 

Consequently, this location data may not represent the exact behaviour of the wider population. As 435 

described in methodology section, the IMD is based on seven main domains. The ‘Living 436 

Environment’ domain contributes approximately 9% to the production of the overall index and 437 

measures the quality of the local environment and the indicators fall into two sub-domains. The 438 

‘indoors’ and the ‘outdoors’, which consists of two elements: air quality and road accidents. 439 

However, the already included ‘air quality’ element is not likely to have affected our calculations, 440 

because here we examined the associations between the IMD and the reduction of concentration 441 

and exposure.  Other studies have already used IMD to investigate SES inequalities in air pollution 442 

(Sheridan et al., 2019; Tonne et al., 2018; Brooks and King, 2017). 443 

Some segments of the working population – so-called essential or key workers - had to continue to 444 

travel to work in their original workplace during the lockdown period. When estimating the 445 

population-weighted exposure, we assumed that all SES groups are equally likely to stay at home 446 

during lockdown, however many essential workers are likely to be low SES individuals. Their total 447 

exposure to air pollution may still decrease due to the reduction in outdoor concentration, however 448 

the change in their exposure to air pollution would be different from other working groups because 449 

their daily activity during the lockdown would be the same as the pre-COVID-19 period. Due to the 450 

unavailability of data, essential workers could not be linked with the IMD analysis to investigate how 451 

this may impact exposure differences between IMD groups. By using the workplace population for 452 

the work ME, and by applying the mean percent reduction for the population that continued going 453 

to workplaces during the shutdown, we assume that the percentage of population in work ME 454 

during post-COVID-19 period (28%) represents essential workers. This percentage is consistent with 455 

the ONS estimate that essential workers are approximately 29.5% of London’s workforce (ONS, 456 

2020). While further work is required to understand uncertainties in travel and work patterns of low-457 

SES essential workers, these results allow us to conclude that the lockdown provided significant 458 

exposure reductions to low-income communities in London. 459 



 460 

5. Conclusions 461 

The implementation of stay-at-home measures due to the global outbreak of COVID-19 has offered a 462 

unique opportunity to assess the effect of the rapid changes in population activity patterns on air 463 

pollution concentration and population exposure. This study quantified and analyzed spatial and 464 

temporal changes in population-weighted mean exposure to air pollution of outdoor origin between 465 

the COVID-19 lockdown period and previous 3-year average during the same calendar period. 466 

Subsequently, we evaluated socioeconomic variation across the distribution of exposure change. We 467 

demonstrate that changes in diurnal population activity and outdoor concentrations have reduced 468 

exposure to air pollution, predominately during the morning rush hours. The average exposure to 469 

NO2 showed a greater than 50% reduction, which was consistent with the remarkable decrease in 470 

traffic levels, a major source of NO2. For PM2.5, the 16% decrease in average exposure could not be 471 

linked directly to the reduction in urban traffic, because other factors, such as meteorological 472 

conditions, may have affected the magnitude of the change in the outdoor concentrations. While 473 

there were not large inequalities in how the exposure change was distributed among people with 474 

different SES, our results provided useful evidence about the strength of association between the 475 

concentration and exposure reduction, and the impact on the most and the least deprived areas. 476 

By quantifying exposure reduction, and accounting for the significance of the time spent indoors and 477 

the spatio-temporal variability of average dwelling I/O ratios, this study offers insight into the 478 

effectiveness of extreme traffic-control measures on reducing the outdoor pollution and the 479 

exposure. Although these measures are extreme and highly unlikely to be adopted under normal 480 

conditions, this natural experiment offers the opportunity to assess the influence of some key 481 

elements (e.g., population activity, important indoor MEs) on population exposure, using largely 482 

real-world data. The estimated exposure reductions may provide best-case estimates of the degree 483 

to which more realistic control strategies for stationary and mobile urban sources, such 484 



technological (e.g., new-source certifications, retrofits of existing vehicles, etc.) or non-technological 485 

(e.g., management of transportation, etc.) may reduce exposures. The analysis of the SES 486 

inequalities across the distribution of the exposure reduction also demonstrates the importance of 487 

developing strategies that can reduce existing exposure inequalities. 488 

 489 
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Figure S1: Spatial variability of 24h average indoor/outdoor (I/O) ratios. 671 



 

a) Daytime 
 
 
 

 

b) Night-time 
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 673 

Figure S2: The spatial distribution of LSOA population in London: a) during daytime (defined as the period 674 

between 07:00am and 19:00), and b) during nighttime (defined as the period between 20:00 and 06:00am). 675 


