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S P E C I A L I S S U E : R E S E A R CH A R T I C L E
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Gellan gum (GG) has been used to prepare polymeric carriers with prolonged reten-

tion on the eye surface for topical ocular drug delivery. In this work, GG was chemi-

cally modified with short poly(2-ethyl-2-oxazoline) (PEtOx) chains that were

expected to have minimal adhesion to mucosal tissues (mucoadhesion). The choice of

synthetic procedure, solvents, and reagents has been dictated by biocompatibility of

the materials and possible application in drug delivery. The grafts were synthesized

via cationic ring-opening polymerization and their living chains were attached onto

deprotonated gellan backbone. The derivatives with three degrees of grafting were

prepared by varying the in-feed mass ratio of PEtOx grafts over GG. NMR and FT-IR

spectroscopies, thermogravimetric analysis, and SEC evidenced that the grafting had

actually taken place. However, a greater diffusion coefficient determined for the

copolymer, using diffusion-ordered spectroscopy (NMR), in relation to the diffusion

of the unmodified GG, suggested either partial degradation of the backbone or a

more compact structure of the copolymer. GG and its graft copolymers (GG-g-PEtOx)

were found to be highly biocompatible with cells cultured under their induction at

concentration of 1, 0.1 and 0.01 mg/mL demonstrated a physiological morphology,

as well as an increase in viability and proliferation.

K E YWORD S

gellan gum, graft copolymer, mucoadhesion, mucus penetration, poly(2-ethyl-2-oxazoline)

1 | INTRODUCTION

Ocular drug delivery is a challenging field of pharmaceutics owing to

specific conditions on the eye surface. Many drug carriers often have

disadvantages such as poor retention on ocular surfaces; additionally

their ocular administration may cause irritation and blurred vision.

Topically administered drugs are easily diluted by tears or removed by

blinking, which results in subtherapeutic drug levels.1 Ongoing

demands exist for innovative drug carriers capable of prolonged

retention on the ocular surface and enhanced effectiveness of ther-

apy. Gellan gum (GG) is an attractive material that has already found

applications in the design of dosage forms for ocular drug delivery

due to its mucoadhesive properties and ability to form gels in situ.2

GG is an anionic tetra-saccharide with a repeating sequence com-

prising of D-glucuronate, L-rhamnose and two D-glucose units.3 GG is

typically produced in a fermentation process by Pseudomonas bacteria

isolated from Elodea plant.4 The native form of GG contains on aver-

age one glyceryl and 0.5 acetyl groups per glucose unit that can be
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removed by hot alkaline treatment giving the deacetylated form, so

called low-acyl GG.5 Both native and low-acyl GG form gels. Gels

formed by the native GG are typically elastic and weak, whereas more

compactly packed low acyl GG produces hard and brittle gels. Gela-

tion of GG occurs upon cooling and the gel turns back to fluid if

heated again.6 Gelation is also promoted by minute amounts of mono

and divalent metal cations, which is not always the case with all gelling

polysaccharides.7-8 The advantages of GG over the other gelling poly-

saccharides are the thermal and enzymatic stability and high strength

of the gel.

GG has been approved as a gelling agent in foods (E418, FDA

code 21CFR172.665).9 Its low toxicity, biodegradability, commercial

availability, and low cost render GG suitable for applications in drug

delivery and tissue engineering.10-12

Tear fluid contains over four times excess of cations required to

promote gelling of a 1 wt% GG solution.13 Therefore, effective oph-

thalmic drug delivery can be thought in two phases: liquid formulation

facilitates the administration of the drug onto the eye surface,

whereas subsequent gelation promoted by tear fluid resists ocular

drainage and prolongs the drug retention time. Thus, significant

increase in the contact time due to the fast ion-activated in situ gelling

has been demonstrated for the low acyl GG.14 Administration of solu-

tions on human and rabbit eyes showed minimal irritation, though

some blurred vision was observed.15

Above-mentioned applications employ mucoadhesive properties

of GG. It has recently been demonstrated that modification of silica

nanoparticles surface with poly(2-methyl-2-oxazoline) and poly

(2-ethyl-2-oxazoline) (PEtOx) decreases mucoadhesion and facilitates

wthe diffusion of the particles in gastric mucin,16-17 whereas more

hydrophobic poly(2-n-propyl-2-oxazoline) shows no significant increase

in the particles mobility compared to the pristine particles.17 As a devel-

opment of this research, we propose the modification of GG with short

PEtOx chains.

PEtOx is chemically stable, non-toxic, and has structural similari-

ties with polypeptides owing to the amide group in its repeating units.

It has shown stealth properties comparable with poly(ethylene glycol),

that is, low recognition by the immune system.18-22 These features

have risen interest in PEtOx for biomedical applications.23-27 Homo-

geneous and controlled modification of GG with PEtOx is not an easy

task owing to the gelling of GG and the limited number of common

solvents appropriate for PEtOx synthesis and modification. Addition-

ally, the chemicals and synthetic reactions used ought to be biologi-

cally safe, which rules out click-reactions for well-defined grafting.

Post-functionalization of intentionally terminated end-groups of

PEtOx has to be also avoided.

Therefore, in this research, GG was modified by grafting with

short PEtOx chains to prepare graft copolymers of various degrees of

grafting. The length of the PEtOx blocks was selected to be approxi-

mately 5000 g/mol, which has been shown to have mucus penetrating

properties.16,17

PEtOx has been synthesized via cationic ring-opening poly-

merization (CROP).28 The method suggested for poly(2-isopropyl-

2-oxazoline-co-2-butyl-2-oxazoline) grafting to β-glucan29 and to

κ-carrageenan30 was adjusted to GG-g-PEtOx. A key factor for suc-

cessive PEtOx synthesis followed by its grafting to deprotonated GG

is the living nature of polymerization with a minimum number of chain

transfer and termination reactions. The living chain ends can be termi-

nated with nucleophilic reagents. Therefore, special care has been

taken of purity and dryness of chemicals. Three GG-g-PEtOx samples

with different degrees of grafting were synthesized.

2 | EXPERIMENTAL

2.1 | Materials

Chemicals were purchased from Aldrich and used as received unless

stated otherwise. Calcium hydride (CaH2, 95%) was used for drying

2-ethyl-2-oxazoline (EtOx, ≥99 %) and sulfolane (99%). Methyl

trifluoromethanesulfonate (MeOTf, 98%) and methyl p-toluenesulfonate

(MeOTs, 97%) were used to initiate polymerization. Dimethyl sulfoxide

(DMSO, 99.99%, Fischer Scientific Oy) and toluene (≥99.9 %, Merck Mil-

lipore) were dried over molecular sieves (3 Å, VWR) prior to use. Sodium

hydride (NaH, 60% dispersion in mineral oil), diethyl ether (anhydrous,

J.T. Baker) were used in the synthesis too. Tetrahydrofuran (THF, ≥99.9

%, Honeywell) was used for drying GG. Low acyl GG was purchased

from Zhejiang DSM Zhongken Biotechnology Co., Ltd. (Mn = 106 g/mol

estimated by viscosity31). Acetone (≥99.8 %) and isopropanol (≥99.5 %,

Fischer-Chemicals Oy) were used in the purification of GG. Deuterated

chloroform (CDCl3, 98% D + 0.03% Tetramethylsilane, Euriso-Top) and

deuterated water (D2O, 99% D, Euriso-Top) were used in NMR experi-

ments. Dialysis membranes (molecular weight cut off 3.5 kDa and 12-14

kDa) were purchased from Spectrum laboratories. Milli-Q water,

obtained from a Millipore apparatus, with a resistivity of 18.2 MΩ cm at

298 K was used for all experiments.

2.2 | Selection of solvent

Preparation of GG-g-PEtOx proceeds in two main phases: polymeriza-

tion of PEtOx via CROP and then attachment of living PEtOx chains

to deprotonated GG at 70�C. An appropriate solvent, which is com-

mon for GG and PEtOx and also suitable for CROP is a prerequisite

for this synthesis. Commercial low acyl GG is poorly soluble in other

solvent than water, whereas PEtOx synthesis cannot be conducted in

water. Acetonitrile is a typical solvent for CROP,32 however GG is not

soluble in it. Water-free DMSO do not cause significant gelling of

gellan33 and expected to be good candidate for this synthesis. DMSO

and sulfolane are aprotic dipolar solvents that can be used for

CROP.34 Sulfolane is less hydroscopic than DMSO. Sulfolane is

slightly more toxic than DMSO, while chain transfer is more probable

in DMSO.32 Commercial GG is not completely soluble neither in

sulfolane nor in DMSO in the “as received” form, though it swells in

sulfolane. Therefore, GG was purified as described below. After purifi-

cation, GG becomes soluble in DMSO, which was selected as the sol-

vent for grafting. The polymerization of EtOx was performed in
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sulfolane and then the solution of living PEtOx chains was added to

the DMSO solution of GG.

2.3 | Preparation of GG for modification

Commercial low acyl GG is in a powder form and per se cannot be

homogeneously modified. A 1 w/v % GG solution is not uniform even

in water; it forms a fraction of soluble chains and a dispersed fraction

of swollen gellan particles. GG may contain Ca2+, Mg2+, Na+, and K+,

from which divalent cations impair the solubility the most and act as

intermolecular crosslinks.35 Proteins remaining after fermentation are

another possible source of impurities.4 However, elemental analysis

did not show contamination of GG with proteins (see Supporting

Information).

The network-like particles were removed in two consecutive pre-

cipitations. At first, gellan (1 w/v %) was dissolved for 3 h in deionized

water at 50�C. Turbid solution/dispersion (see Supporting Informa-

tion) was centrifuged for 30 min at 40�C with a spinning rate of 5000

rpm. The clear supernatant fraction was collected and precipitated in

acetone (1:4 v/v). GG was separated from water-acetone mixture by

vacuum filtration using Whatman Grade 541 filter paper and dried for

~30 min. Then, the separated GG was redissolved in deionized water

again, reprecipitated in acetone and dried. Dry GG was twice washed

with isopropanol. Then, GG was dissolved in deionized water and dia-

lyzed against deionized water (cut off 12–14 kDa) for at least 24 h.

The product was freeze-dried and collected as dry fluffy white fibers.

The yield of purification was 45%–50% of the original weight of

GG. FT-IR and NMR spectroscopy did not reveal any significant differ-

ences between purified and pristine GG. Thus, there was no indication

that GG was incompletely deacetylated and that a fraction was removed

during purification. This conclusion is also supported by the elemental

analysis, which reveals equal carbon and hydrogen contents in both sam-

ples. Therefore, the most likely reason for the low yield of purification is

divalent cations. Small amount of these metal cations binds gellan chains

into particles, which are removed by centrifugation.

Purified GG homogeneously dissolves in water and becomes solu-

ble in DMSO. However, it is not soluble in sulfolane but remains solu-

ble in DMSO/sulfolane mixtures used in this report. This determined

the choice of DMSO as the solvent for grafting.

Freeze-dried GG is highly hydroscopic. Azeotropic distillation

with tetrahydrofuran and toluene was performed prior to grafting to

remove absorbed moisture. Two azeotropic distillations were tested

for the GG drying. In the first, GG was dried during distillation of THF

and was stored in a vacuum desiccator over silica gel. Ther-

mogravimetric analysis and NMR spectroscopy estimate the water

content of dried GG to be about 6%. The other method was shown to

be more effective. GG (200 mg, 1.14 mmol that is an averaging of the

four sugar units) was first dissolved in 20 mL of anhydrous DMSO.

The solution was dried by addition of anhydrous toluene (3 × 5 mL)

and subsequent evaporation under reduced pressure. If several reac-

tions were performed simultaneously, excess GG solution was pre-

pared, which was at this stage split into separate flasks.

2.4 | Synthesis of PEtOx

Glassware used in the synthesis and distillations was kept overnight in

an oven at 90�C prior to use. Calcium hydride was used for drying

EtOx and sulfolane. EtOx placed in a round-bottom flask, and CaH2

was added until the mixture turned milky. Drying tube filled with cal-

cium chloride granules was connected to the flask and the mixture

was stirred until the next day. For sulfolane, drying was identical, but

the flask was placed in an oil bath set to 32�C, which was above the

freezing point of sulfolane (28.4�C).36 Next day EtOx was distilled

under a nitrogen atmosphere and sulfolane under reduced pressure.

Polymer synthesis described in Loukotová et al.29 was adapted. The

monomer-to-initiator ratio was 50:1 in the PEtOx polymerizations

targeting the molar mass of 5000 g/mol. The trial polymerizations were

performed using methyl p-toluenesulfonate (MeOTs) as an initiator.

Although these polymerizations proceeded successfully, the solid form of

the initiator at room temperature made handling challenging and for that

reason MeOTs was replaced with methyl trifluoromethanesulfonate

(MeOTf). MeOTf was extremely reactive as initiator and could not be

added directly to the hot reaction mixture: loss of the initiator was

observed due to the evaporation at elevated temperature and subse-

quent condensation on the reaction flask walls. The addition of MeOTf

to monomer mixtures has been reported at 0�C37 and at room tempera-

ture18 followed by heating. Because sulfolane is solid under 28�C, the

handling of the initiator at lower temperatures was not possible.

For the synthesis of living PEtOx grafts, the polymerization proce-

dure started by bubbling EtOx (2 g, 20.18 mmol) and sulfolane (4 mL)

with nitrogen at 35�C for 30 min. Higher monomer concentration

results in too viscous polymer solution, which is not practical. About

100 mg/mL solution of MeOTf was prepared in another flask (5 mL)

and purged for 15 min with nitrogen at 35�C. The solution of the initi-

ator (0.66 mL) was transferred to the reaction mixture with a needle.

The mixture was stirred at a moderate stirring rate for 60 min and

then the temperature of the oil bath was raised to 70�C. The stirring

of the mixture was continued for about 24 h under a nitrogen atmo-

sphere. Further details of PEtOx polymerization and analysis of the

PEtOx homopolymers (samples P1–P5) are presented in Supporting

Information. PEtOx sample P5 (Mn = 7960 g/mol) was used in the syn-

thesis of the GG-g-PEtOx copolymers.

2.5 | Synthesis of GG-g-PEtOx

Procedure for the GG-g-PEtOx synthesis is shown in Figure S5. Gellan

chains were grafted in two parallel processes starting with polymeriza-

tion of EtOx. The GG backbone was activated with NaH, producing

alkoxide ions. However, grafting can also take place at carboxylic

groups of D-glucuronate. In the course of the grafting, a new covalent

ether bond is formed between a PEtOx chain and GG.

Grafting was tested at three temperatures. Grafting at 70�C

resulted in extensive degradation of gellan gum. Synthesis at and

below 40�C promotes gelling that is not favorable. About 50�C was

selected for the reported polymers.
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Sodium hydride (340 mg, 8.4 mmol) was added to the 10 mg/mL

solution of GG in DMSO azeotropically dried using toluene (200 mg,

1.14 mmol that is an averaging of the four sugar units was dissolved in

20 mL). The mixture was stirred for 3 h at 50�C. A needle was placed

through the rubber septum to release formed hydrogen gas. Next, the

pre-determined amount of living PEtOx chains in sulfolane (sample P5)

was added with a needle to the gellan/DMSO mixture, and the mixture

was stirred overnight. Polymerization of the remaining PEtOx chains was

terminated by the addition of 1 M methanolic NaOH and this mixture

was stirred at room temperature for 24 h to confirm complete termina-

tion. Finally, the PEtOx mixture was dialyzed (cut off 3.5 kDa) for a week,

freeze-dried, and characterized.

Fifteen milliliters of water was added to the resulted mixture and

the mixture was then poured into the 250 mL separatory funnel. The

mineral oil was removed by washing the mixture with 50 mL of diethyl

ether and separating the aqueous phase. This was done at least twice.

If gelling occurred during this washing, warm water was added to the

separatory funnel and the mixture was shaken to dissolve the gel.

Finally, the aqueous mixture of GG-g-PEtOx with unreacted PEtOx

was dialyzed (cut off 12–14 kDa) for a week to remove PEtOx and

other low molar mass impurities. The product was isolated as white

fibers after freeze-drying.

2.6 | Characterization

Elemental analysis was used to determine the composition of the com-

mercial GG as received in comparison to purified GG. Elemental com-

position was determined by the HANAU Elementar Analysensysteme

GmbH, Germany.vario MICRO cube using sulfanilamide as a standard.

Three samples (~2 mg of dry polymer per measurement) were studied

and the average of those values is presented as a result.

NMR spectroscopy: Zg20 pulse sequence was applied to record 1H

NMR spectra with a Bruker Avance III 500 spectrometer. In diffusion-

ordered spectroscopy (DOSY) experiments, ledbpgp2s pulse sequence

was used: longitudinal eddy current delay (LED) with bipolar gradient

pulse pair, two spoil gradients. Parameters used in DOSY: 32 scans,

diffusion time d20 was set to 0.1 s, gradient pulse 2%–95%, and delay

d1 was 5 s. The spectra were recorded at room temperature in D2O

(10 mg/mL concentration for solutions of GG-g-PEtOx and PEtOx).

The concentration of pristine gellan was 3–5 mg/mL. The conversion

samples of PEtOx were recorded in CDCl3 and contained a couple of

drops of polymerization mixture. Bruker's TopSpin™ 3.6.2 software

was used for analysis of spectra.

Size exclusion chromatography (SEC): Molar mass analysis was per-

formed in dimethylformamide (DMF) at a flow rate of 0.8 mL/min.

The SEC setup consisted of Waters 515 HPLC pump, Waters 2410 RI

detector, and Waters Styragel HR2, 4, and 5 columns. The tempera-

ture of the columns was 30�C. Samples were calibrated against

poly(methyl methacrylate) (PMMA) standards (Polymer Standard Ser-

vice) and analyzed with OmniSEC software.

Fourier Transform Infrared (FT-IR) spectra were obtained by means

of a PerkinElmer Spectrum One FT-IR spectrometer within the

scanning range of 650–4000 cm–1. Attenuated total reflection sam-

pling was used. The spectra were plotted and analyzed using the Ori-

gin 2018 software.

Thermogravimetric analysis (TGA) was performed using a Perkin

Elmer TGA 850 instrument. Samples (3–5 mg) were heated from 25 to

800�C with a heating rate of 10�C/min in a nitrogen atmosphere.

Thermograms were plotted and analyzed using the Origin 2018

software.

Dynamic light scattering (DLS) measurements were performed

using a Zetasizer NanoZS instrument (Malvern Instruments Ltd.)

equipped with a 4 mW He-Ne laser operating at λ = 632.8 nm. The

scattered light intensity from 0.05 wt% aqueous solution of the graft

copolymers was collected at a scattering angle of 90� at 25�C. All

solutions were filtered through 0.45 μm filters. The reported values

are the intensity-weighted diameters, which were calculated as aver-

ages of three repetitive measurements.

Scanning electron microscopy (SEM) images were obtained using

a field emission scanning electron microscopy (FESEM; JEOL JSM

7000F) at an accelerating voltage of 15 kV. The samples for SEM

were prepared by depositing a droplet of a 0.05 wt% aqueous

solution of the graft copolymers on a silicon substrate and allowing

it to dry overnight at room temperature. The sample was sputter

coated with 10 nm thick Au to minimize charging, before the

measurement.

The optical transmittance of the graft copolymers aqueous solu-

tion (0.7 w/v %) was measured at 650 nm using a Lambda 25 Perkin-

Elmer UV/vis spectrophotometer as the solution temperature was

raised from 20 to 80�C.

2.7 | In vitro biocompatibility assessment

Cell culture maintenance: The fibroblast-like cell line L929 (DSMZ

Braunschweig, Germany, ACC-2) established from normal subcutane-

ous areolar and adipose tissue of a male C3H/An mouse was used for

the cell viability and proliferation assessment. This is a relevant cell

type for the biocompatibility testing of materials. Cells were cultured

in RPMI culture medium (biosera), supplemented with 10% Fetal

Bovine Serum (FBS) 10% v/v (Gibco), 50 IU/mL penicillin (Sigma-

Aldrich, St. Louis, MO), 50 g/mL streptomycin (Sigma-Aldrich,

St. Louis, MO) in a 5% CO2 incubator (Heal Force) at 37�C.

Cell viability and proliferation assay: Cell viability was evaluated

according to ISO 10993-5 (2009) standards and measured by the

PrestoBlue® viability assay (Invitrogen) according to our protocol38

and the manufacturer instructions. For the assessment of gellan gum

(GG) and its graft copolymers (GG-g-PEtOx), 5 × 103 cells per well

were seeded in 96 well plates, and after 24 h, the culture medium was

replaced with new medium containing the samples at the concentra-

tions of 1, 0.1, and 0.01 mg/mL. Cell viability was assessed on days

2, 4, and 7 by measuring the absorbance at 570 and 600 nm in a spec-

trophotometer (Synergy HTX Multi-Mode Microplate Reader, BioTek,

Bad Friedrichshall, Germany). After the measurement at each time

point, new medium containing the samples was added to the cells.
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Tissue culture treated polystyrene (TCPS) was used as a control sur-

face for the cells.

Cell morphology by optical microscopy: The cells placed in multi-

well plates and cultured under the induction of GG and GG-g-PEtOx,

were examined daily for 7 days and visualized by means of a Zeiss

Axiovert 200 optical microscope. Images were taken from the cells

containing the highest concentration of 1 mg/mL of the materials by a

ProgResVR CFscan Jenoptik camera (Jena, Germany) using Pro-

gResVR CapturePro 2.0 software and objective lenses for 10-fold

magnification.

Statistical analysis was performed for the cell viability assessment

using the one-way ANOVA Tukey's multicomparison test (n = 6) in

GraphPad Prism v.8 software. At each time point, the values of the

materials of one concentration were compared to those of the other

two concentrations. A probability value of p < 0.01 was considered

insignificant, if no other indication is stated.

3 | RESULTS AND DISCUSSION

3.1 | Characterization of GG-g-PEtOx

GG-g-PEtOx copolymers of three different grafting densities were

prepared by adjusting the living PEtOx content in the reaction feed

(Table 1). This is given as weight equivalent in feed, that is, the mass

ratio of PEtOx grafts over GG used in the grafting reaction. The mass

content of PEtOx is estimated from the assumption that all the initia-

tor reacts and forms a propagating chain. This may deviate from the

actual molar amount as Mn of PEtOx was higher than the theoretical

molecular weight. Also, the molar mass of the attached PEtOx grafts

may slightly differ from the Mn value measured for the corresponding

PEtOx sample P5 obtained by polymerization termination.

Figure 1 shows 1H NMR spectra of pure gellan gum and the GG-

g-PEtOx copolymers. The rhamnose unit is represented with two sep-

arate peaks: at 5.03 ppm for the CH proton and a relatively intensive

peak at 1.18 ppm for the methyl protons. The peak at 4.43 ppm corre-

sponds to two CH protons of the first glucose unit and one CH proton

of the rhamnose unit.3

1H NMR spectra of the G1–G3 graft copolymers show typical

peaks of GG: methyl protons of rhamnose unit at 1.18 ppm and CH

protons on both sides of the solvent peak. The intensity of these sig-

nals decreases as the PEtOx content increases indicating a higher

degree of grafting. The characteristic peaks of PEtOx are also present

at 0.97 and 2.26 ppm for CH2 and CH3 protons of the ethyl side

group and at 3.44 ppm for the backbone. The degree of grafting was

estimated using the peaks from the methyl end group (2.84–

2.98 ppm) corresponding to PEtOx.

The grafting density is given as the number of repeating

sequences (i.e., four sugar units constituting GG) per one PEtOx graft.

Hence, every 12th repeating sequences (i.e., 12 × 4 sugar units) of the

G1 copolymer has in average one PEtOx grafted chain. In the case of

G2, the grafting density is 3, and for G3, that is 2.

The peak intensity from the end-group is low and the peak

from rhamnose becomes evident at the higher GG contents and

overlaps with another peak at 0.96 (methyl protons of the side

group of PEtOx), the accuracy of the grafting density calculation is

not perfect. However, the difference in grafting densities between

the copolymers is evident. Examination of the yields of the gellan

copolymers indicates increasing graft content relative to the weight

equivalent.

Figure 2 shows FT-IR spectra of the GG-g-PEtOx copolymers.

Spectra of pure GG and PEtOx homopolymer are given in Figures S6

and S7. The band at 3447 cm–1 corresponds to GG and is practically

the same for all copolymers. The varying intensity of the peaks at

1632 and 1422 cm–1 proves the presence of PEtOx and shows a

decreasing trend with decreasing the degree of grafting. The peak at

1052 cm–1 may be a superposition of two contributions: one comes

from GG (1039 cm–1) and corresponds to the stretching of the C O

bond of the hydroxyl group, whereas the other one comes from

PEtOx (1061 cm–1) and corresponds to the tertiary amide. The inten-

sity of this peak does not change with degree of grafting because of

the equivalent formation of new CH O CH2 bonds between PEtOx

and GG.

Thermograms of pure GG, PEtOx, and the GG-g-PEtOx copoly-

mers are presented in Figure 3. GG shows a two-step degradation

process. Six percentage weight loss of absorbed water is observed in

the temperature range of 25–100�C. Decomposition of the GG back-

bone takes place between 200 and 300�C (about 50% of the weight).

The fastest weight loss occurs at 247�C (Figure S8). At 800�C, the

total weight loss was 76%. Degradation of PEtOx happens between

TABLE 1 Experimental conditions for the GG-g-PEtOx copolymer synthesis

Sample m (gellan) (mg) n (living EtOx)a (mmol) m (PEtOx)b (mg) w, equiv.c Yield (mg)
Repeating sequences
per grafted PEtOxd

G1 216 0.045 360 2 284 12

G2 212 0.135 1076 5 524 3

G3 206 0.306 2433 12 749 2

Note: In this synthesis, Mn of the PEtOx grafts was 7960 g/mol by 1H NMR (sample P5 in Supporting Information).
aAn estimation from the sample weight of living PEtOx in relation to the total mass of PEtOx mixture.
bm(PEtOx) = n(living PEtOx) × M(PEtOx).
cm(PEtOx)/m(gellan gum).
dEstimated by 1H NMR. Repeating sequence is a block of four sugar units constituting GG.
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260 and 440�C. The fastest degradation appears at 420�C (Figure S8).

The PEtOx decomposition proceeds to almost 100% weight loss and

results in negligible char yield.

All thermograms of the GG-g-PEtOx copolymers show weight

loss within 25 to 100�C, indicating the presence of water. The higher

moisture content corresponds to the copolymer with the higher GG

F IGURE 1 1H NMR spectra of pure gellan gum and the GG-g-PEtOx copolymers. Assignments of the peaks to corresponding chemical
structures are given is Figures S2 and S3

F IGURE 2 FT-IR spectra of the GG-g-PEtOx copolymers. FT-IR
spectra of gellan gum and of the PEtOx homopolymer, sample P5 and
the bands assignments are given in Figures S6 and S7 correspondingly

F IGURE 3 Thermograms of pristine gellan gum, PEtOx
homopolymer and the graft copolymers
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content. Degradation of the GG backbone starts at ~200�C and

results in a 35% weight loss for G1, 20% for G2, and 10% for G3. Deg-

radation of the PEtOx grafts happens within 300 to 400�C. The char

yield of the samples follows the GG content with the highest yield

found for G1. The derived weight losses of the graft copolymers

(Figure S9) show that the fastest losses happen at somewhat lower

temperatures than those for the pure polymers. Also, the lower tem-

perature process (GG backbone) splits into two with increasing

grafting density. Very similar results were obtained for corresponding

physical mixtures of GG and PEtOx, see Figure S10. In the derived

thermogram, the splitting of the first process (GG degradation) is pre-

sent too and therefore it does not originate from grafting. Therefore,

more solid proofs of successful grafting are needed.

The grafting of PEtOx to the GG backbone was confirmed

using G2 sample by means of diffusion-ordered spectroscopy

(DOSY), see Figure S11. The diffusion coefficients (D) were mea-

sured for pristine GG, PEtOx chains and for the GG-g-PEtOx copol-

ymers. The calculated diffusion coefficient for GG was 9.2 × 10–12

m2 s–1 whereas D = 7.5 × 10–11 m2 s–1 for the corresponding

PEtOx, which is close to the value obtained for the G2 copolymer

(D = 7.9 × 10–11 m2 s–1). The larger diffusion coefficient deter-

mined for the copolymer in comparison the diffusion of the

F IGURE 4 Distributions of the hydrodynamic diameter of gellan
gum and its graft copolymers. Measurements are performed at 25�C
using aqueous 0.05 wt% solutions at 90� scattering angle

F IGURE 5 SEM images of the dry films composed of graft copolymers. Images for G1 were taken using 10k (left) and 20k (right)
multiplication. Images for G2 and G3 are taken with 2k multiplication
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unmodified GG could suggest the partial degradation of the GG

backbone. Degradation of GG was observed during grafting at

70�C and was confirmed by FT-IR and NMR. A more compact struc-

ture of the copolymer chain in comparison to GG can also explain

the bigger diffusion coefficient of the copolymer.

Interestingly that dilute aqueous solutions of the G1 copoly-

mer are somewhat opaque or cloudy, which is not observed for

solutions of G2 and G3. The optical transmittance of the graft

copolymers does not change significantly upon heating in the

range of 20–80�C (Figure S12). Opacity may be a sign of particle

formation and suggests the existence of specific interactions

between GG and PEtOx (e.g., via H-bonding). This is partially con-

firmed by the DLS results (Figure 4). Pristine GG shows a bimodal

size distribution, which is typical for charged, highly swollen and

interacting coils. The distributions of the copolymers are broad but

monomodal with the peak, which corresponds to the size of the

individual GG molecules. Taking into account the stronger scatter-

ing from the G1 copolymer solutions, the particles formed by G1

are expected to be denser than the coils of GG and the particles

formed by G2 and G3. From the above, it is evident that the

degree of grafting affects the solution properties of the synthe-

sized copolymers.

In order to visualize the apparent difference between the GG-g-

PEtOx copolymers, SEM images of the G1, G2, and G3 samples were

taken. Figure 5 clearly demonstrates that the packing density of dried

G1 is significantly higher than that for G2 and G3 and decreases with

increasing grafting. Moreover, spherical particles are always present in

the images of G1.

The nature of the interaction between GG and PEtOx and possi-

ble partial degradation of the GG backbone in the course of the

F IGURE 6 Cytotoxicity assessment of gellan gum (GG) and the GG-g-PEtOx copolymers (G1, G2, and G3). Cell viability and proliferation
(A) and percentage viability compared to the TCPS control (B) after 2, 4, and 7 days in culture under the induction of 0.01, 0.1, and 1 mg/mL of
the polymers
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grafting reaction will be investigated further and the synthesis will be

optimized and improved.

3.2 | In vitro biocompatibility assessment

In vitro testing was performed in order to assess the potential of

the synthesized GG-g-PEtOx copolymers for ocular drug delivery.

The validation of the biocompatibility of GG and the GG-g-PEtOx

copolymers at concentrations of 1, 0.1, and 0.01 mg/mL was per-

formed by the investigation of the cell morphology, viability, and

proliferation using L929 murine fibroblasts. The results indicate

that cells adhere strongly from the first day in culture under the

induction of all polymers and concentrations, depicting their

characteristic elongated fibroblast morphology. The images of

Figure S13 indicate that cell morphology in the presence of the

materials at the concentration of 1 mg/mL is similar to this on the

TCPS control, without any differences among the various materials.

On day 2, as the initial cell number is low, single cells adhered on

the surface are visible, whereas on day 7, the number of prolifer-

ated cells is so high that they form a confluent layer of densely

populated cells.

The cell viability was quantified at the polymer concentrations

of 0.01, 0.1, and 1 mg/mL using L929 murine fibroblasts after 2, 4,

and 7 days in culture in direct contact with the polymers, and the %

viability to the TCPS control (set at 100%) are graphically presented

in Figure 6. We observe a significant twofold increase in cell prolif-

eration from day 2 to day 4 (p = 0.0007), and a similar increase from

day 4 to day 7 (p = 0.002) in culture independent of the applied

concentration as depicted in Figure 6A. Additionally, cells prolifer-

ate from day 2 to day 7 in a similar manner under the induction of

the materials as on the TCPS control. All materials present a cell

viability of at least 85% compared to the TCPS control at all three

time points, at all three investigated concentrations as shown in

Figure 6B. According to the ISO 10993-5:2009 standard, a limit of

70% cell viability considers the polymers cytocompatible. As all the

investigated polymers demonstrate viability above this value, they

are highly biocompatible. Statistical analysis indicates no significant

differences among the materials concentrations at each time point

(p > 0.1), and no significant differences between unmodified and

grafted gellan gum (p > 0.5).

Similar to our study, cell metabolic activity assessment on hydro-

philic nanogels based on partially hydrolyzed poly(2-ethyl-2-oxazoline)

evidenced that they are not cytotoxic when investigated in a concen-

tration range from 0.1 to 400 μg/mL.39

4 | CONCLUSIONS

In this research, we have synthesized biologically safe polymeric car-

riers for topical drug delivery based on graft copolymers of GG, an

anionic polysaccharide that forms transparent gels in situ in water and

in the presence of metal ions, and can bind drug molecules, and PEtOx

chains, which enable the penetration of the copolymers in the human

tissues.

We report the successful synthesis of GG-g-PEtOx copolymers of

three different degrees of grafting. A feasible purification procedure for

commercial low acyl GG was developed. GG was purified prior to modifi-

cation, which removed gelling impurities and significantly improved its

solubility in DMSO. The synthesis procedure reported for grafting of

other polysaccharides was significantly altered and applied to GG. The

copolymers were investigated by means of NMR, FT-IR, ther-

mogravimetric analysis, and SEC. The characteristic peaks of GG and

PEtOx were detected in the 1H NMR and FT-IR spectra of the GG-g-

PEtOx copolymers and the peaks intensities confirm the different grafts

content. DOSY NMR proved that the PEtOx grafts are actually attached

to the GG backbone. Unexpected intramolecular interactions between

the GG backbone and the PEtOx grafts were observed which should be

considered in the further development of the drug vehicle. In this

respect, the more compact conformation of GG-g-PEtOx in comparison

to unmodified GG might be very practical. However, a possible degrada-

tion of the backbone and these specific interactions between GG and

PEtOx require further investigation and the optimization of the synthetic

approach. Further characterization of GG and the graft copolymers by

asymmetric field flow fractionation may also be useful.

The ability of GG to form transparent gels in situ triggered by

metal ions, which are naturally present in tear fluid can be exploited in

the application of the copolymers to prolong the drug retention time

on the surface of the eye. Our in vitro tests validate that the investi-

gated GG-g-PEtOx copolymers are highly cytocompatible as they

demonstrate a physiological cell morphology as well as an increase in

the viability and proliferation of cells cultured under their induction.

These results confirm that the proposed materials may further be

developed for use in ocular drug delivery. At this stage, our concept is

based on gellan as a natural drug delivery vehicle.40 We expect that

PEtOx grafts enable penetration of GG-g-PEtOx into the eye mucus

whereas GG binds and carries the drug. Future studies will evaluate

the effect of PEtOX grafts on the mucoadhesive properties of gellan

gum. It is expected that these properties will be inhibited similarly to

previously reported effect of PEtOX on mucoadhesion of thiolated sil-

ica nanoparticles41 and this should lead to enhancement in mucus-

penetrating properties. Ultimately, the performance of both types of

materials will be compared for the ability to delivery drugs to the eye.
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