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Predicting non-attendance in hospital outpatient appointments using deep 
learning approach
M. Dashtban and Weizi Li

Informatics Research Centre, Henley Business School, University of Reading, Reading, UK

ABSTRACT
The hospital outpatient non-attendance imposes a substantial financial burden on hospitals 
and roots in multiple diverse reasons. This research aims to build an advanced predictive model 
for predicting non-attendance regarding the whole spectrum of probable contributing factors 
to non-attendance that could be collated from heterogeneous sources including electronic 
patients records and external non-hospital data. We proposed a new non-attendance predic-
tion model based on deep neural networks and machine learning models. The proposed 
approach works upon sparse stacked denoising autoencoders (SDAEs) to learn the underlying 
manifold of data and thereby compacting information and providing a better representation 
that can be utilised afterwards by other learning models as well. The proposed approach is 
evaluated over real hospital data and compared with several well-known and scalable machine 
learning models. The evaluation results reveal the proposed approach with softmax layer and 
logistic regression outperforms other methods in practice.

ARTICLE HISTORY 
Received 19 May 2019  
Accepted 21 April 2021 

KEYWORDS 
No-show patients; deep 
learning; outpatient 
appointment; prediction; 
machine learning; health 
care; electronic patients 
records

1. Introduction

Missed appointments have obvious operational and 
financial implications for health-care systems around 
the world resulting in health impact on patients’ 
groups who have unmet sufficient health needs (Ellis 
et al., 2017; Hasvold & Wootton, 2011). For example, 
from 2014 to 2015 only, there around 5.6 million (9% 
of the total) NHS outpatient appointments were 
missed in England (Quarterly Hospital Activity Data, 
2019). Non-attendance can potentially lead to worse 
care for patients, inefficient use of staff, and increased 
waiting times. An estimate by the National Audit 
Office claimed that missed first outpatient appoint-
ments have costed the NHS up to £225 million in 
2012 to 2013 (National Audit Office, 2014). Another 
estimate has placed the cost of missed UK general 
practice (GP; community-based family medicine) 
appointments at £150 million per year (George & 
Rubin, 2003). Recent Scottish government data sug-
gest that each missed hospital outpatient appointment 
costs National Health Services (NHS) Scotland £120 
(CampbelL. et al., 2015). Similarly, in the USA in 
a community hospital, it is reported that an average 
no-show rate of 62 appointments per day and an 
estimated annual cost of 3 USD million in 
a community hospital setting (Kheirkhah et al., 
2015). It is also found that no-show and cancellation 
represented 31.1% of overall scheduled appointments 
among approximately 45,000 patients per year at 
a large family practice centre with an estimated total 

annual revenue shortfall of 3% to 14% (Moore et al., 
2001).

Understanding the complexity of factors that 
contribute to non-attendance and predicting 
patients’ behaviours can develop targeted/persona-
lised intervention to increase patient engagement 
and effective use of healthcare resources. Existing 
research on hospital non-attendance mainly focuses 
on finding associated factors in specific patient 
groups such as cardiovascular and diabetes. Other 
approach with additional attributes incorporating 
social economic, patient demographic and practice 
factors was proposed to investigate non-attendance 
patterns for general practices appointment in 
Scotland, but those variables were not analysed 
with data yet (Williamson et al., 2017). Although 
there are digital innovations developed for second-
ary hospitals to engage patients through mobile text 
message reminders, there is no evidence about what 
the reminder should contain in order to minimise 
missed appointments [2]. The key challenge is that 
there is scarce knowledge in pattern recognition and 
risk prediction of non-attendance in secondary hos-
pital appointment. Moreover, patient behaviour and 
health usage problems result from a complex inter-
play of several forces. It includes behaviours, social 
environment, surrounding physical environments, 
as well as health care access and quality (Gerdtham 
& Johannesson, 2001). There are very few research 
studying the whole spectrum of big data 
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incorporating those factors and their complexities 
for non-attendance prediction. One solution to uti-
lise all of those factors is through deep learning. 
Deep learning as a particular subset of machine 
learning uses representation learning to map input 
features to output (Beaulieu-Jones et al., 2018) (ana-
logues to prediction variables in traditional statis-
tics). It learns latent features, non-linear 
relationships, and creates compact form of input 
features through several learning units (neurons) 
in many learning steps (epochs) (Goodfellow et al., 
2016). This advantage makes the deep learning 
a preferable choice for many applications particu-
larly where the data is high dimensional, sparse, or 
with many unknown relationships (Ferrão et al., 
2020; Miotto et al., 2016). Beside the theoretical 
perspective, the key success of deep learning is its 
superior performance in many real-world applica-
tions (Georgevici & Terblanche, 2019; Miotto et al., 
2016). Notwithstanding, deep learning is quite data- 
hungry such that it may not perform very well on 
small-scale data sets. This research aims to develop 
a novel approach to predict non-attendance based 
on deep learning on large healthcare-associated data 
(both in-hospital EPR data and outside-hospital 
data) with the following specific contributions:

(1) ) predicting the risk of non-attendances for 
patients with future appointments, considering 
a large and highly diverse number of variables 
which can impact patients’ behaviour. Majority 
of existing research only identify non- 
attendance factors of certain diseases. Very 
few research developed the prediction model 
on an individual basis and usually include 
a limited number of factors;

(2) ) developing a deep learning model based on 
sparse stacked denoising autoencoders (SDAE) 
to address representation challenges of high 
dimensionality, noise, sparseness, incomplete-
ness, random errors, and imbalance in EPR. We 
adopt the SDAE for data reconstruction and pre-
diction. Our model firstly learns the compact 
representation of data by which having missing 
values recovered, resulting in a better data repre-
sentation. Then it uses a direct layer to predict the 
non-attendance event with an integrated softmax 
classification layer. Our approach is demon-
strated to be more accurate based on performance 
evaluation with traditional machine learning 
methods in the context of outpatient appoint-
ment attendance.

(3) ) risk profile with live patient data and interven-
tion applications to reduce non-attendance. 
Different from existing machine learning where 
most of them still stay in performance experi-
ments stage, we incorporate the prediction 

model into hospital information systems and 
public services for more targeted intervention 
and patient engagement.

This work is presented in several sections. The 
following sections present a review of previous works 
on non-attendance and deep learning studies in 
healthcare. The methodology in section 3 describes 
the training datasets, deep learning model and the 
training process. Section 4 presents the performance 
evaluation results, feature importance and model 
application in real hospital information systems. 
Finally, the conclusions and future work are discussed 
in section 5.

2. Literature review

Existing research on non-attendance mainly focuses 
on traditional quantitative and qualitative methods 
analysing factors and probability estimation for popu-
lation groups. Most of the research in this domain 
studies factors contributing to non-attendance in 
both specific speciality and all appointments from 
the hospital or general practice. A variety of factors 
were found effective on patient’s attendance in pae-
diatric urology unit (Bush et al., 2014), pulmonary 
rehabilitation (Hayton et al., 2013; Sabit et al., 2008), 
psychiatric (Killaspy et al., 2000; Mitchell & Selmes, 
2007a, 2007b) and HIV (Catz et al., 1999), primary 
care (Giunta et al., 2013), inpatient and outpatient in 
the hospital (Shahriar Tavakoli-Tabasi, 2015) through 
analysing multiple correlation from hospital adminis-
trative database. A few studies also used survey and 
interviews to explore and compare the views of patient 
and health professionals on the reasons for non- 
attendance (Harte et al., 2018; Husain-Gambles et al., 
2004; Lawson et al., 2005; Martin et al., 2005). The 
factors relate to inaccessibility, including physical 
location (Lasser et al., 2005), opening hours and days 
(Chariatte et al., 2007), and barriers such as language, 
stigma and cultural differences (Burns et al., 2007; 
Franks et al., 2007) may all be important. However, 
the interplay between the accessibility of a service and 
the perceived worthiness of the attendee, or “candi-
dacy”, competing priorities (Harte et al., 2018; 
Mackenzie et al., 2013; Martin et al., 2005; Woods 
et al., 2005) (both self-perceived and as perceived by 
the service provider) can also lead to differences in 
how likely particular groups are to “get into, through 
and on” with services (Rosengard et al., 2007).

Moreover, morbidity differences can also affect 
attendance where the illness reduces the ability to 
navigate access to the health-care system (Mitchell & 
Selmes, 2007a). Variation in social and economic cir-
cumstances may mean certain times are inconvenient 
(Neal et al., 2005) and that the perceived importance 
of the appointment may vary between social groups in 
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and of itself, or in the context of wider life complex-
ities. Within psychiatry, for example, one study found 
that alcohol and drug users had particularly high non- 
attendance rates (Mitchell & Selmes, 2007a; 
CampbelL. et al., 2015).

However, above studies have focused on single dis-
ease areas. Studies of single disease area have produced 
conflicting results when it comes to designing effective 
interventions to reduce non-attendance (Cashman 
et al., 2004; Lehmann et al., 2007; Masuda et al., 
2006; Nielsen et al., 2008). This may be due to 
a reliance on small data sets and limited variables in 
certain speciality settings. The non-attendance in pri-
mary care (Giunta et al., 2013), hospital inpatient and 
outpatient from all specialities (Shahriar Tavakoli- 
Tabasi, 2015) are studied focusing on single missed 
appointment. Factors are reported to be associated 
with age, sex, transport logistics, and clinic or practi-
tioner factors such as booking efficiency and the rap-
port between staff and patients (Lawson et al., 2005; 
Martin et al., 2005; Murdock et al., 2002; Neal et al., 
2005; Nielsen et al., 2008; Waller & Hodgkin, 2000). 
Williamson et al. (Williamson et al., 2017) and Ellis 
et al. (Ellis et al., 2017) focused on the patient demo-
graphics and practice factors that predict serial missed 
appointments in general practice. Although those stu-
dies considered multiple missing appointments as one 
of the factors, only a limited number of patient and 
practice variables. This has led to limited coverage of 
personal health, behavioural, environmental and 
social support information in the prediction model, 
lacking the capability of revealing the whole spectrum 
of patterns at the individual level. How the whole 
spectrum of patterns affects patients’ behaviour in 
attendance remains unclear.

Furthermore, those studies use population-based 
techniques rather than at an individual patient level. 
For example, logistic regression is mostly used to pre-
dict the probability of non-attendance by fitting 
numerical or categorical predictor variables in data 
to a logit function (Alaeddini et al., 2011; Ellis et al., 
2017). The problem with these population-based 
methods is that they do not differentiate between the 
behaviours of individual persons and are based on 
small datasets. Therefore, it will affect the effectiveness 
of predicting results in practice. At present, little 
agreement exists on what works in practice to reduce 
missed appointments (Ellis et al., 2017).

Meanwhile, there is another group of research 
focusing on scheduling and rescheduling of no-show 
patients. The main aim of scheduling in healthcare 
system is to provide solutions to alleviate the problem 
of resource overburden, waiting room congestion, 
hospital-acquired infections, and longer appointment 
delays. Considering solely the outpatients appoint-
ment system, a practical strategy must cope with dif-
ferent events happening with appointment in rather 

real-time basis. Such approaches account for circum-
stances in which patients either come late, or cancel 
the appointment with a very short notice or won’t 
come at all. Although scheduling and rescheduling 
are not the focus of this study, its application in 
healthcare system specifically those adopted machine 
learning is quite relevant to ours in two perspectives. 
One perspective is that the variables they engage to 
build their models are somehow relevant and so could 
give us extra insight. Secondly, rescheduling is typi-
cally a post-hoc plan that can be added on top of 
predictive frameworks could increase practical effec-
tiveness. Notwithstanding it is true that if a predictive 
system works rather well in a way that can be relied on, 
a rescheduling plan would be essential to increase the 
efficacy of system in practice. Meanwhile, this fact has 
been already accounted for in many hospital systems, 
each having their strategies to deal with cancelations, 
delayed patients, overbooking and no-show patients. 
To this context, some representative works are 
explained in the following.

Sharan and Ravi (Srinivas & Ravindran, 2018) 
developed a new rules-adapted framework for opti-
mising outpatient appointment system using machine 
learning algorithms and scheduling rules. Their fra-
mework was basically motivated by a real-life case 
study involved in designing a real-time appointment 
scheduling system. This analytical framework employs 
machine learning to classify patients based on their 
no-show risk. This approach attempts to elucidate 
scheduling rules by incorporating three AS design 
decisions described such as no-show adjustment and 
patient sequencing. The identified rules are then 
assessed by considering the weighted sum of resource 
overflow time, resource overtime, resource idle time, 
patient waiting time and number of denied appoint-
ments. The main contribution of them lied in the 
development of eight novel appointment scheduling 
rules, which were modelled in the combination of 
sequencing and overbooking policies. They employed 
electronic health records and the variables such as 
patient information including age, gender, race, mar-
ital status, zip code, insurance group and weather data 
including minimum temperature, maximum tempera-
ture, and precipitation probability. However, they 
have not used geographical variables like the distance 
between patients’ home to the clinic which we 
employed too. Another successful application pro-
posed by Samorani & LaGanga (2015) tries to develop 
an efficient overbooking strategy based on cost- 
sensitive Bayesian network and data mining techni-
ques. Another representative work is in Deceuninck 
et al. (2018) where they developed a re-scheduling 
method for patients who do not attend or arrive late. 
Such scheduling and re-scheduling approaches can be 
quite useful in combination with accurate predictive 
solutions. In this research, our focus was on predictive 
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modelling for which, briefly, a new deep learning 
approach is developed to consider a wide range of 
factors and extract important features and complex-
ities towards meaningful patterns from the large data-
set and more accurate at the individual level.

Actually, compared with traditional statistical 
methods, deep learning methods have attracted many 
researchers and institutions in clinical research tasks 
which are difficult or even impossible to solve with 
traditional methods (Raghupathi & Raghupathi, 2014; 
Wu et al., 2010). They are more robust to learn knowl-
edge from high-dimensional and high-volume data 
such as health, social economics, and environmental 
information. It has proven to be competent to identify 
patterns and dependencies with cases superior to 
human experts. Therefore, deep learning methods 
provide great potential to present a whole picture 
embedded in large-scale data and reveal unknown 
structure to serve better prediction of non- 
attendance risk and effective engagement to optimise 
the health resource usage.

Deep learning classification from electronic patient 
records (EPR) is initially studied to predict disease 
progression. For example, (Choi et al., 2016) applied 
recurrent neural network (RNN) in longitudinal time 
stamped EPR to predict diagnoses and medications for 
the subsequent visit by building a generic temporal 
predictive model that covers observed medical condi-
tions and medication uses, followed by the develop-
ment of specific heart failure prediction model. (Pham 
et al., 2016) utilise the long-short memory (LSTM) 
method to model disease progression and predict 
future risk. Recently more attention is received in 
using deep learning method to predict the risk of 
readmission. For example, (Wickramasinghe, 2017) 
and (Wang et al., 2017) applied convolutional neural 
network methods to detect and combine predictive 
local clinical motifs to stratify the risk of readmission. 
(Jamei et al., 2017) developed an artificial neural net-
work model to predict the all-cause risk of 30-day 
hospital readmission and (Xiao et al., 2018) developed 
a hybrid deep learning model that combines topic 
modelling and RNN to embed clinical concepts in 
short-term local context and long-term global context 
to predict readmission. (Rajkomar et al., 2018) further 
developed a scalable deep learning model using RNN 
for prediction across multiple centres without site- 
specific data harmonisation which is validated in read-
mission task.

However, as discussed, the existing application of 
deep learning in healthcare is mostly limited by the 
EPR data in the hospital. The tasks performed by 
existing deep learning research are highly clinical 
oriented such as disease detection/classification and 
sequential prediction of clinical events (Xiao et al., 
2018). There is no deep learning research predicting 
patients’ behaviour while patients who miss 

appointments are more likely to have complex social 
and health needs (Husain-Gambles et al., 2004; 
Williamson et al., 2017). This research will contribute 
to the literature in developing deep learning methods 
that cover both EPR and outside hospital data to 
capture complex health and social situation and to 
predict patients’ behaviours.

3. Methodology

This section introduces our methodology from data-
sets preparation, classification model, performance 
evaluation to the operationalisation of non- 
attendance prediction model as shown in Figure 1. 
The proposed deep learning approach is actually an 
end-to-end model that starts from pipelining the data 
through to prediction stage and presentation layer 
which is actually the outpatient management system 
in hospital. Similar to any other data-driven machine 
learning application in practice, this approach is typi-
cally comprised of several stages including data acqui-
sition, processing to model development and 
deployment.

In the following section, first this deep learning 
approach is more technically detailed in two subsec-
tions involving the theoretical foundations behind 
SDAE and its training phase. Then, in the other sec-
tion, the description of data, processing and balancing 
techniques are detailed. Finally, the performance of 
proposed approach has been compared with other 
well-known methods.

3.1. Deep learning model based on sparse 
stacked denoising autoencoders (SDAE)

Hospital information systems typically process high- 
dimensional EPR data. Moreover, they store data 
where attributes have a large number of missing values 
(Miotto et al., 2016). There are several algorithms in 
the literature to deal with such issues. The simplest 
way is to replace the missing values with the mean 
values, median values, or some other statistics. It is 
naturally fast and straightforward but not effective as it 
does not include the relations of such missing values 
with other known/unknown values. To this point, the 
SDAE is an unsupervised learning solution for recon-
structing the whole data through by recovering the 
missing values and provide a compact data represen-
tation. Additionally, learning highly non-linear and 
complicated patterns such as the relations among 
input features is one of the prominent characteristics 
of SDAE (Suk et al., 2015). To this end, in this paper, 
the SDAE was employed for recovering whole data in 
the first step (after data preparation from our hospital 
EPR system).

A denoising autoencoder (DAE), as shown in Figure 
2, is a neural network with one hidden layer that should 
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be trained to reconstruct a clean version of input 
X from a corrupted/current version of x’ through 
a stochastic mapping ~xqD ~xjxð Þ. It is accomplished by 
a so-called encoder that is a deterministic mapping 
from an input vector x into hidden representation 
y. X is a dataset with variables to predict patient’s non- 
attendance mentioned in section 3.1. 

fθ xð Þ ¼ s Wx þ bð Þ

where the parameter θ is (W, b), W is a weight matrix 
indicating the weight of each of the contributing vari-
ables of patients with non-attendance, b is an encod-
ing bias vector. In denoising autoencoders, the loss 
function is used to minimise the reconstruction loss 
between a clean X and its reconstruction from Y [50]. 
A decoder is then used to map the latent representa-
tion into a reconstructed (“repaired”) vector such as 
z∈ [0,1]^d where W’ is a decoding matrix, and b’ is 
decoding bias vector; 

z ¼ gθ0 yð Þ¼ sWyþb 

In stacking denoising autoencoder (SDAE), the 
auto-encoder layers are placed on top of each other. 
Each layer is trained independently (“greedily”) and 
then is stacked on top of the previous one. The SDAE 
could have several layers. For training an SDAE, each 
layer is trained on top of the previous one. The train-
ing process starts with pre-training the first hidden 
layer fed the training samples as input, training 

the second hidden layer with the outputs flowing 
from the first hidden layer and so on. This is how 
autoencoders stack hierarchically to form a deep 
SDAE. The parameters of the model θ and θ′ are 
optimised during the training phase to minimise the 
average reconstruction error, 

θ; θ
0� ¼ arg min

θ;θ0�
L x; zð Þ ¼ arg min

θ;θ0�

1
N

XN

i¼1
L x ið Þ; z ið Þ
� �

;

where L(x,z) is a loss function, and N is the number of 
data samples in the training set. The reconstruction 
cross-entropy function is usually used as the loss as 
depicted in the equation below: 

LH x; zð Þ ¼ �
Xd

k¼1
xklogzk þ 1 � xkð Þlog 1 � zkð Þ½ �

One serious issue concerning autoencoders is the 
size of the hidden layer that could potentially affect 
the performance. If the dimensionality of the hid-
den unit (number of neurons) is the same as or 
larger than the input layer, this approach could 
potentially learn the identity function. It means 
that the model would overfit to input data instead 
of learning non-linear relations. Furthermore, 
employing larger dimensionality conducts the 
model to learn a sparse representation of data 
which may result in learning more latent variables 
and non-linear relations. Considering to use the 

Figure 1. Research framework to develop non-attendance prediction model and evaluating performance gains from deep learning 
architecture.

Figure 2. Denoising Autoencoder Architecture.
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denoising type only may ultimately result in learn-
ing the identity function, whereas (Xie et al., 2012) 
showed that sparse type of denoising autoencoders 
could learn other features than the denoising type. 
In this regard, espousing a sparsity constraint could 
practically solve such issues providing SDAEs with 
more hidden units of larger dimensionality. The 
equation below depicts a sparsity constraint added 
to the previous equation. 

SC ¼ L X;Zð Þ þ γ
XH

h¼1
KLðρjjρ̂jÞ

where γ denotes the weight of penalty factor, H is the 
number of hidden units, ρ is a sparsity parameter and 
is typically a small value close to zero, ρ̂j is the average 
activation value of hidden unit j over the training set, 
KLðρjjρ̂jÞ is the Kullback–Leibler (KL) divergence as 
defined below. 

KLðρjjρ̂jÞ ¼ ρ log ρ
.

ρ̂j

þ 1 � ρð Þ log 1 � ρð Þ= 1 � ρ̂j

� �h i

The KL is principally an asymmetric measure of the 
distance between two given sample distributions. It 
provides the sparsity constraint on the coding. For 
instance, if two distributions are equal (e.g., ρ=ρ̂j), 
the KL would be zero. A standard backpropagation 
algorithm can be used to solve this optimisation 
problem.

Besides data recovery and construction by non- 
linear transformation resulting ultimately in 
a compact representation, the SDAEs could include 
a standard predictor to make the predictions. This 
layer could be a proper function like logistic regres-
sion, max and softmax. In this work, we used 
a softmax layer which has proven performance in 
the most recent application. We will predict not 
only binary classification but also more detailed 
patients’ attendance behaviours including atten-
dance, non-attendance without prior notification 
and non-attendance with prior notification through 
multi-classification as the next step future research. 
Furthermore, using softmax will get a probability 
distribution which we can apply cross-entropy loss 
function. This layer contains a softmax function as 
depicted below. 

pðy¼jjxÞ ¼
exj

PN
k¼1 exk 

where x is an N-dimensional vector of real numbers 
from the previously hidden unit and transform it into 
a vector of a real number in the range 0; 1ð Þ thus, it is 
the output probabilities for each class. As is clear in the 
equation, the output is always positive numbers which 
have also been normalised.

3.2. Model training

For training the model, the conventional practice was 
followed such that 75% of data over time was 
employed for training data. The remaining records 
were utilised as testing data for evaluating the model 
performance. We tried to use a natural split as the 
model is going to be run over the live data, the most 
recent data samples were used for testing the model 
comprising statistically around 25% of all samples. 
The remaining samples were divided using stratified 
random sampling into of 15% validation and 85% 
training sets. In this context, it is worth noting that 
the conventional split in data science practice is 
70–30% train-test split from which, a small proportion 
of testing samples were drawn for model selection. 
However, in our evaluations for model selection, 
other splitting odds including 1:9, 5:5 were addition-
ally experimented. Nevertheless, those splits did not 
reveal any better performance.

For model selection part, the Stratified random 
sampling (Marqués et al., 2013) is essential to main-
tain the original class distribution among both subsets. 
Moreover, in stratified random sampling, all features 
were used to select more balanced subset for validation 
(model selection) purpose. Furthermore, a simple ran-
dom sampling could also be employed but may not 
guarantee to have an equal ratio from two classes 
whereas we will need them to select a model that 
generalises upon both two classes.

In brief, the training model is able to minimise the 
difference between the feeding data and recovered 
replicate (i.e., the output of the autoencoders) while 
trying to build an overall high-performance classifica-
tion model with backpropagation. It is noteworthy 
that the pre-training the SDAE layers is unsupervised 
as no label is being used. However, the optimisation 
process is supervised as we exploit the target vector 
(i.e., prepared binary labels indicating attendance vs. 
non-attendance). Our method was implemented and 
evaluated with SQL Server (for fetching data, prepar-
ing tables and cleansing), Matlab 2018a (deep learning 
and machine learning packages) and Jupyter 
Notebook. The experiments were conducted on CPU 
4 Ghz, RAM 32GB, Highest Speed SSD: 1TB, and 
VGA Card: GTX 1080TI with 11GB of RAM having 
over 3600 CUDA cores.

The training of the model comprises two phases. At 
first, the model is trained using a training dataset 
together with its associated labels. In the former 
phase, we try to minimise the difference between the 
recovered and ground truth training dataset: X vs. 
X. In the later phase, the purpose is to optimise the 
model regarding supervised prediction performance.

It is worth mentioning that training the model 
using standard backpropagation algorithms usually 
yields poor performance. To this end, a greedy layer- 
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wise unsupervised learning algorithm is proposed by 
(Hinton et al., 2006) to pre-train the SDAEs layer by 
layer in a bottom-up way. Just afterwards, fine-tuning 
the model’s parameters in a top-down direction is 
applied with backpropagation to improve the perfor-
mance at the same time. The training procedures of 
this study briefly involve the following steps drawn 
from the proposed algorithms in Bengio et al., (2007) 
and Hinton et al. (2006).

Step 1: Minimize the objective function of the first 
autoencoder over the input data

Step 2: Minimize the second autoencoder’s objective 
function over the output of the previous layer

Step 3: Iterates through steps 1 and 2

Step 4: Obtain the probability of no-show patient 
class based on the output of the last hidden layer

Step 5: Optimize the whole network with backpropa-
gation algorithms

The first three steps are unsupervised as it is aimed to 
minimise the reconstruction error; whereas in the last 
step, where the generated labels from the last autoen-
coder fed to a softmax layer, all stacked layers will be 
optimised using backpropagation as a whole network. 
The optimisation is performed in a supervised way 
based on the respective class labels.

Moreover, it is critical to consider that the num-
ber of hidden layers could potentially leverage the 
performance of SDAE. Very shallow structure of 
SDAE could result in poor performance whereas 
a very deep structure (i.e., with many hidden 
units) makes the constructed model very complex 
and diversely affects the performance as well. We 
used a three-layer SDAE according to classification 
experiment from 0 to 5 layers using training and 
validation data sets. The Area of Under Curve 
(AUC-ROC) and F score stabilise after using three- 
layer SDAE. The shallower networks resulted in 
poorer performance have failed to learn proper 
representation while going very deeper added just 
complexity than any improvement. Our empirical 
observation was already reported in (Vincent et al., 
2010) as they also found the higher stability of 
results (error convergence) on the three-layer 
architecture, especially for sparse types.

4. Experimental analysis

This section compares the performance of traditional 
classifiers and deep learning architectures in predict-
ing outpatient appointment attendance. The evalua-
tion provides evidence that deep learning is superior 
to traditional classification approaches in predicting 
patients’ attendance behaviours.

4.1. Dataset

The data source is from in-hospital data (e.g., electro-
nic patient records (EPR)) and outside hospital data 
(e.g., environmental and social, economic data). In 
EPR, the information of over 150,000 outpatients 
spanning on around 1.6 million records were gathered 
from an acute NHS hospital in the UK. The informa-
tion is distributed beginning from April 2015 and 
going through September 2018. Figure 3 demonstrates 
the number of attended appointments and non- 
attendance appointments each month. The number 
of attended appointments varies from 42,008 to 
57,581 while the number of non-attendances varies 
from 3450 to 5230. The total number of non- 
attendance appointment records is 298,812, and the 
total number of appointments is 3,747,285.

As shown in Table 1, the model variables cover 
various areas that could affect attendances including 
demographic and patient profile, appointment char-
acteristics and patient appointment history, depriva-
tion attributes, weather and activities carried out after 
the patients’ admission. Those variables are identified 
through literature and focus groups with hospital 
operation teams who manage appointments at the 
frontline, which represent domain knowledge. In line 
with what was found in the literature, with several 
studies proving the added value of integrating the 
domain knowledge into forecasting models, these 
five groups of variables will be considered for the 
construction of the non-attendance models. 
A complete list of variables is added to the Appendix 
1 for more reference.

Regarding Table 2, our dataset contains not only 
outpatient information but also inpatient information. 
We used it to take the advantages of possibly available 
historical health data when new-coming patients had 
previous in-patient experiences. Such historical health 
records contain diagnostic codes which in turn could 
be used to draw some very informative variables from 
the patient profile such as co-morbidities. If a patient 
had inpatient records for more than once, we will only 
use the record where there was an overlap between 
inpatient period and outpatient appointment time or 
less than 14 days gap between discharge and outpati-
ent date. This is based on the discussion with focus 
groups that patient may choose not to attend the out-
patient appointment if it is within their inpatient time 
or it is close to their discharge date. It should be noted 
that some variables are particularly conditional. For 
instance, length of stay (LOS) is non-zero if and only if 
the patient had an immediate inpatient record in the 
EPR. The zero value is used for every empty element in 
the resulting table if the patient did not have an 
immediate inpatient record.

Moreover, each variable has statistically or intui-
tively its own association with non-attendance event 
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as addressed in the literature and empirical data from 
hospital focus group. The deep learning-based meth-
ods involve the contribution of all variables to the 
target model rather than considering each singularly. 
We have three kinds of variables comprising catego-
rical variables, nominal variables, and real-valued 
types. For the first two types, we performed digitisa-
tion in which, distinct values of each variable were 
extracted, and a unique number was assigned to. 
After digitisation, a normalisation procedure was 
applied to centre the data and making them in 
a closed range [0,1]. The normalisation considerably 
diminishes the inverse effect of large-scale variables to 
hinder the network from incorporating small-scale 
attribute in both the neural networks and classification 
models (Witten & Frank, 2002). Besides the input 
variables, the target variable that is a binary event 
i.e., attendance & non-attendance, should be con-
structed. The target vector contains either zero or 
one for the corresponding event for each row of 
information.

Furthermore, considering Table 2, some variables 
could be merged to create representative variables 
such as these deprivation indexes. However, deep 
learning attempts to learn the relations and high- 
level representation of variables (Goodfellow et al., 
2016), thereby making the feature engineering phase 
easier. On the other hand, sometimes ignoring some 
variables may reversely affect the final model as we do 
not know some hidden relations which laid within 
data. Table 2 represents some of those important 
variables.

This Table depicts the distribution of non- 
attendance with respect to ethnicity, care groups and 
gender over all the data in this study. As can be seen, 
most of the care groups are planned (over 52%) and 
the majority of non-attendance coming from British 
(62.4%). This, in turn, can be an indicative for 
machine learning classifier to predict the non- 
attendance; nevertheless, no conclusion can be literally 
drawn; since the non-attendance is dramatically 
higher for British ethnicity as most of the 

appointments concern them as well. For male group, 
similarly, higher proportion of attendance comprises 
females and they have higher proportion of non- 
attendance in the cohort.

Furthermore, the distribution of non-attendance 
across different age groups is demonstrated in Figure 
4. As can be seen, the non-attendance rate varies 
between roughly 6–13% within different age groups. 
Besides, the highest proportion of non-attendance is 
coming from ages 2–10 and 22–28-year-old patients 
all having non-attendance rate greater than 11% 
(Figure 4(a)). Nevertheless, the higher proportion of 
appointments have actually booked by elderly patients 
looking at Figure 4(a). This fact is more evident parti-
cularly where the total number of appointments starts 
sharply increasing at age 43 reaching its peak at 73; 
nonetheless, the degree of non-attendance faces 
a consistent decline at the same time interval. This 
fact in our data actually states the elderly patients 
who required evidently more provision of care utilises 
services more efficiently having lower operational bur-
dens in practice. There could be many discussions 
around which is basically out of the scope of this 
paper.

Besides these figures, the distribution of non- 
attendance as well as other statistics, are all provided 
in Appendix A. In the current practice, descriptions of 
these variables are reported to hospital operational 
team monthly to understand the characteristics of 
patients with non-attendance. However, a more accu-
rate prediction of non-attendance risk on an indivi-
dual basis from large data set is needed for the 
operation team to contact the high-risk patient, 
which will be discussed in the following sections.

4.2. Class imbalance

One central challenge in many real-life applications is 
class imbalance ignoring which results in over- 
classifying the majority group due to its increased 
prior probability (Johnson & Khoshgoftaar, 2019). 
There are many types of class imbalance as discussed 
comprehensively in this review (He & Garcia, 2009; 

Table 1. Brief description of variable groups for non- 
attendances prediction.

CATEGORY VARIABLE

Demographic Age, Gender, Ethnicity,
Patient History Multi-Comorbidities, Address stability
Appointment 

Characteristics
Follow-up or first-time appointment, GP referral 

time to appointment, care Speciality, Site
Time Variables Day, month, year, time of the day
Patient 

Appointment 
History

Statistics on number/ratio of attended and non- 
attended within and out of 30 days,

Socioeconomics Education decile, Index of Multiple Deprivation, 
Income Decile, Living Environment Rank, etc.

Weather Temperature, Condition (e.g., rain/snow, etc.), 
Humidity

Admission History Recent admission, length of Stay, Procedure, time 
interval

Table 2. Distribution of non-attendance over ethnicity group, 
care group and gender type.

Attribute 
cluster Levels

Non- 
attendance

total appointments 
%

Ethnicity British 62.39% 68.23%
Non-British 20.57% 16.98%
Not Known 17.04% 14.79%

Care Group CG2 – Planned 52.65% 52.63%
CG3 – 

Networked
26.71% 28.21%

CG1 – Urgent/ 
etc.

18.97% 19.17%

Gender Female 55.40% 57.6%
Male 44.69% 42.4%
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Manonmani & Balakrishnan, 2020); concerning 
intrinsic and extrinsic properties, “Variable factors 
such as time and storage also give rise to data sets 
that are imbalanced”. The time property is an impor-
tant factor within in-hospital data casing it to be 
relatively highly imbalanced. For example, a patient 
may have even 500 appointments in 3 years while one 
may have a few one. Therefore, the data induces two 
critical challenges. First, the data is biased in favour of 
patients with significantly more records. Subsequently, 
it can be said that the data is biased at individual level. 
Secondly, the rough probability of outcome of the 
interest is about 7% in our hospital. It denotes a very 
imbalance odd of 93:7 revealing a quite high imbal-
ance. There are several rather successful method in 
literature targeting class imbalance mostly through 
resampling techniques such as what is listed in this 
survey (Johnson & Khoshgoftaar, 2019). Or, using 
ensemble learning techniques and classifiers such as 
Random Forest or XGBoost (the newer version of 
Random forest with lower time complexity). Among 
such resampling techniques we can name Random 
Under Sampling (RUS), Random Over Sampling 
(ROS), the combination of both RUS/ROS, SMOTE- 
Synthetic Minority Oversampling Technique 
(Johnson & Khoshgoftaar, 2019) and other hybrid 
techniques. However, most of them endeavour mainly 
to randomly create target-based balanced sets; actu-
ally, ignoring the fact how such imbalance was created. 
Thus, in some application, it is wise to seek other way 
around to see if we can do something about the data 
itself. Hence, in this study, a simple yet effective strat-
egy to deal with both challenges of class imbalance and 
high individual-level bias was adopted by simply 
removing consecutive successful appointments at 
care speciality level. Thus, on the one hand, this pro-
cess reduces the individual bias and on the other hand, 
led to significantly more balanced sets. Regarding the 
proposed strategy for class imbalance, several small- 
scale experiments on bootstraps of data have been 
conducted employing different strategies. Ultimately, 
it was found that a few strategies work superior as 
below:

(a) Removing successful follow-ups,
(b) Removing repetitive appointments,
(c) Removing repetitive appointments at treatment 

speciality level,
(d) Removing successful follow-ups at treatment 

speciality level.
Additionally, we found that the cancelations’ 

records work typically like noise for this applica-
tion. Thus, they should have been actually 
removed both in training and testing phase. It 
was operationally intuitive; though it was not 
noticed beforehand. That is actually a true fact 
that when an appointment is cancelled, literally 
there is no appointment at all to predict or not; 
thus, why it should have been involved for predic-
tion. Despite that, predicting cancelation or parti-
cularly late cancelation can be quite interesting 
which is out of the scope of this research. 
Among all these four strategies for balancing, as 
can be noted in the above algorithm, strategy (c) 
unveiled to have higher performance while produ-
cing more stable results in many small-scale 
experiments.

4.3. Evaluation

The evaluation phase consists of three stages. In the 
first stage, the original test data was fed into the 
previously trained model. The trained model will 
elucidate the recovered version of the feeding test 
data while at the same time producing a probability 
of non-attendance event. There are multiple evalua-
tion measures in the literature to evaluate the per-
formance of a predictive model. However, the most 
important ones in practice specially when the data 
is highly imbalanced are precision, recall, and 
F-score. Recall is actually the detection rate indicat-
ing the capability of a predictive model to identify 
positive class of interest (non-attendance patients 
in this study). It is obvious that the higher a system 
can detect such cases the higher capacity we have 
to prevent such events happening. On the other 
hand, high. Number of false alarms can potentially 

Figure 3. Number of attendances vs non-attendances during 2015 to 2018 at monthly basis (note two stacked lines follow 
different scales given at vertical axis in right and left of the figure, respectively).
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prevent taking any interventions particularly for big 
data application. Because, we do not have either 
huge resource or that might cost more than it 
benefits. Thus, the precision of a predictive model 
plays a very important role which is actually an 
indicative of proportion of false alarms too. 
Taking both into considerations, F-measure was 
introduced in literature to provide a weighted mea-
sure of combination of both precision and recall 
which is computed using the following formula. 

F � measure ¼
2� Precision� Recall

Precisionþ Recall 

Considering F-measure, one can say, a system with 
higher F-measure is probably a better system. 
Nevertheless, it is not always true. Assume that we 
want to use that such models in practice like our 
application. Then, it is sometimes better to slightly 
compromise F-measure for higher recall.

The proposed method was applied to the test 
data and its performance compared with represen-
tative predictive methods presented in Table 3. All 
these methods have been evaluated over the 

balanced data since almost all of them failed to 
generalise over imbalanced original data. Seven 
well-known machine learning classifiers were 
employed and benchmarked including support 
vector machines (SVM), K-nearest neighbours’ 
algorithm, Decision Tree (DT), Naïve Bayes, 
Random Forest, Rotation Forest (Rodriguez et al., 
2006), Logistic Regression (Hilbe, 2009). Many of 
these methods have already shown promising 
results in different and similar areas of healthcare 
[1]. In this study, we utilised these methods with 
different parameter settings too. In experimenta-
tions for approximating near optimal parameter 
settings, aside from guidelines from previous stu-
dies over high-dimensional data such as previous 
studies (Dashtban & Balafar, 2017; Dashtban et al., 
2018; Duda et al., 2012; Wang et al., 2018), we 
applied these methods upon some bootstraps of 
data. Applying such methods on whole data is 
quite resource intensive although we have already 
had quite great resources in place provided by 
NHS Foundation Trust. In this context, using 
other guidelines, previous experience, and 

Figure 4. Trend of non-attendance at different ages: (a) exhibits the number of non-attendance against the percentage of non- 
attendance at each age group, and (b) demonstrates the percentage of non-attendance vs the percentage of appointments.
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bootstrapping could save a lot of time and 
resource. Thus, we vary the hyperparameters of 
those methods to see if we can see a significant 
change. If so, we further continued diving 
through. In this regard, Table 3 represents the 
performance of classifiers over whole data only 
with few important hyperparameters that rather 
reveal some changes.

Moreover, hyperparameters vary with different 
methods or classifiers. For example, for KNN classifier 
the main parameter is K that is an indicative of num-
ber of nearest patients to the case we are going to 
decide on. K should be usually an odd number. The 
higher the K, the more time-consuming the learning 
carries out. It seems for our application, higher 
K resulted in worst performance. It is highly possible. 
Because when K is larger, more uncertainty imposed 
from more patients would be accounted for and more 
probably the generalisability of KNN classifier 
becomes lower. Nevertheless, the performance differ-
ence is not that significant at all; less than 0.02 in all 
the three measures (recall changes from 0.92 to 0.94, 
likewise for F-measure).

Naïve Bayes classifier that learns based upon Bayes 
theorem is inherently a probabilistic approach. Similar 
to other probabilistic approach like Bayesian 
Networks works basically on the grounds of normal 
distribution by default. Nonetheless, its performance 
is remarkably higher with Kernel distribution (with 
F-measures of 0.16 and 0.21 for normal and kernel 
distribution, respectively; Naïve Bayes classifier with 
Normal distribution leads to higher precision model 
(0.20 vs 0.14) though). Kernel distribution is realised 
by statisticians to work superiorly over skewed distri-
bution that is actually the case of many high- 
dimensional data (Dashtban et al., 2018).

The performance of Bayesian Networks (BNs) was 
assessed using the Bayes Net library implemented in 
Weka Data mining package which actually adopts Hill 
climbing search and Bayes simple estimator. There are 

other estimators such as taboo search, genetic algorithm 
and other search strategies for which their time com-
plexity is expansional and consequently not applicable 
for large data samples. BNs are actually the extension of 
Naïve Bayes and accordingly employ probabilistic 
approach for prediction. They do not involve represen-
tation learning which is intrinsically included in Deep 
Learning methods. On the other hand, for high- 
dimensional data (data with many features), the deep 
learning is the one that has unveiled many successful 
applications in different domains. We applied this 
approach to our data and the results reveal no better 
performance than Naïve Bayes classifier. One possible 
reason is possibly that Bayesian Network approach may 
work much better on an individual level rather than all 
data. Another speculation could be the representation 
of data was not very suitable for Bayesian learning. 
Utilising probabilistic approach in more comprehen-
sive way could be a potential future work.

Support Vector Machine (SVM) classifier which is 
a popular supervised classification method been 
widely successful in many complicated classification 
tasks such as cancer diagnosis (Huang et al., 2018). 
SVM can be used with different kernel functions to 
learn linear and non-linear relationships in database 
feature space by forming different hyperplane decision 
boundary between the classes. There are many kernel 
functions associated with classification and prediction 
that are nicely described by Yuichi Motai (Motai, 
2015). Among them, three most widely used kernels 
with SVM are Gaussian Radial Basis function (RBF), 
Linear Kernel and polynomial kernels. Linear kernel 
can be defined as a polynomial function of degree 1. 
The time complexity of RBF and Polynomial is way 
higher than linear kernel function. However, in this 
application, SVM with polynomial function of degree 
3 has a relatively higher F-measure of 0.20 followed by 
linear and RBF kernels with 0.18 and 0.16, respec-
tively. With RBF, the SVM reached its highest recall 
rate of 0.61 though having the lowest precision of 0.09 
among other kernels. However, its F-measure is the 
lowest; one interesting point is that the fact that when 
KNN classifier does not function very well over var-
ious K, the SVM with RBF does not work very well too. 
There are actually some theoretical foundations for 
that too; as both KNN and RBF are non-parametric 
methods that estimate the density of probability of 
different regions in feature space. Nevertheless, that 
does not strictly state that the performance of one is an 
indicative of the other. Overall, it can be said that SVM 
performed as good as Random Forest and 
Probabilistic approach like Bayesian Network reach-
ing to F-measure of about 0.20.

Decision tree-based classifiers have added benefit 
over other classifiers as they can work directly over 
categorical variables making them more suitable for 

Table 3. Performance of different predictive methods (*num-
bers in bold represent top five F1-scores over 0.21).

Method

Measures

Precision Recall
F1- 

Score

Logistic Regression (Hilbe, 2009) 0.197 0.286 0.233
SVM + Linear 0.115 0.487 0.186
SVM + Polynomial = 3 0.122 0.557 0.200
SVM-RBF Kernel 0.094 0.617 0.163
KNN (best K = 50) 0.059 0.926 0.111
KNN (best K = 3) 0.062 0.941 0.117
Naïve Bayes (Kernel) 0.146 0.424 0.217
Naïve Bayes (Normal) 0.200 0.143 0.167
Bayesian Network Classifier 0.175 0.272 0.213
Decision Tree (Optimised, pruned, min 

leaf = 2)
0.101 0.451 0.165

Random Forest (optimised,2000 trees, 50 
cycles, minleaf = 10)

0.176 0.415 0.247

Rotation Forest (K = 10) 0.117 0.514 0.191
Rotation Forest (K = 50) 0.081 0.751 0.146
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real-life application with various types of features. 
That is possibly why they have been mostly successful 
in big data so far (Genuer et al., 2017); having both 
sequential and even parallel implementation for dis-
tributed computing (Chen et al., 2017). Decision Tree, 
itself, is among the simplest widely used baseline 
method with relatively competitive performance. 
“The key advantage of decision trees over other meth-
ods is that they are very interpretable, and in many 
applications, such as healthcare, this interpretability is 
often preferred over other methods that may have 
higher accuracy but are relatively uninterpretable” 
(Bertsimas & Dunn, 2017). Random forest (RF)gener-
ally performs better for more complicated classifica-
tion task particularly when the number of variables is 
much larger than the number of samples (Biau & 
Scornet, 2016). The RF classifier is basically on the 
basis of creating several randomised decision trees 
and aggregates their predictions by averaging. 
Random forests can be thought of as a multi-agent 
system that functions better when there is high uncer-
tainty in data. The experimental results exhibit 
a significantly higher performance of Random Forest 
over all other classifiers followed by Logistic 
Regression with F-measure of 0.24 vs 0.23 for RF and 
Logistic Regression, respectively. However, the model 
generated by Random Forest is a more practical solu-
tion. Because the recall of Random Forest is markedly 
higher than that of logistic regression (recall of 0.41 vs 
0.28) whilst the difference in precision between the 
two is only 0.02 (0.17 vs 0.19). Considering other 
factors, it is necessary to note that, the computational 
complexity of building a big random forest (with 2000 
trees) is dramatically higher than both Logistic 
Regression or Decision tree classifiers. The perfor-
mance of decision tree with respect to recall is slightly 
better than Random Forest (0.45 vs 0.41). 
Notwithstanding the recall, its F-measure is drastically 
lower than that of Random Forest (0.24 vs 0.16) 
because of noticeably lower precision compared to 
Random Forest (0.10 vs 0.17, over 70% lower). This 
considerable improvement over a single decision tree 
was caused possibly through ensemble of decision 
trees by Random Forest and alleviating over fitting 
problem. Presumably the high uncertainty in data 
that potentially caused the single classifiers failed to 
generalise well, therefore, ensemble learning by 
Random Forest helped enhance the precision by redu-
cing the errors over many sub-classifiers.

The Random forest classifier employed in this study 
was tweaked using the Hyper parameter optimisation 
integrated in MatLab 2017a. We have not observed 
any better results through manual parameter settings 
over that library which is computationally extensive. 
In this context, in practice, finding near-optimal 

random forest over all data is computationally very 
extensive, hence, some independent experiments were 
conducted on small proportion of data to set the 
parameter settings (Hyper parameter optimisation 
results with grid search). The decision tree classifier 
was also tweaked in the same way (with other Hyper 
Parameter Optimisation Results + Grid Search/ 
Random Search). In particular, the results of decision 
tree before and after parameter tuning is significantly 
different but the random forest were not that sensitive.

Rotation Forest is another ensemble learning-based 
method which is relatively newer than other classifiers 
proposed in 2016 (Rodriguez et al., 2006) with many 
successful application. It works by simply generating 
classifier ensembles based on feature extraction. It 
iteratively splits randomly the feature set into 
K subset (K is a parameter of the algorithm) and 
applies principal component analysis (PCA) on each 
of which. Its key idea was to “to encourage simulta-
neously individual accuracy and diversity within the 
ensemble”; thus, to possibly alleviate the overfitting 
problem we can see in training of other ensemble- 
based algorithms such as Random Forest. Hence, one 
may expect higher performance than Random Forest 
classifier. Nevertheless, an experimental study by 
Bagnall et al. observed that rotation forest works better 
for problems with all continuous features (Bagnall 
et al., 2018). That is consistent with our experiment 
too; as possibly, the lower performance of Rotation 
Forest compared to Random Forest is associated with 
the fact that our feature space is not entirely contin-
uous. This is an extremely important fact since many 
classifiers could not perform well over mixed feature 
space. The performance of Rotation Forest did not 
increase with increase in K, but similar to other classi-
fiers, the recall significantly was improved from 0.51 to 
0.75; whilst because of markedly lower precision, the 
F-measure decreased sharply about 0.05 from 0.19 to 
0.14 for K = 10 and K = 50, respectively.

Overall, Logistic Regression and Random forest were 
the top performing classifiers with 0.23 and 
0.24 F-measures. Furthermore, considering perfor-
mance of classifiers with different parameter settings, 
it can be roughly expected that F-measure of about 0.20 
is possibly an upper boundary that most classifiers can 
reach to through more or less tweaking. 
Notwithstanding reaching out to F-measure of over 
the upper limit seems to be associated with the cap-
ability of the classifier to better learn real patterns in 
training samples and generalise. In this context, it could 
conclude that Random forest obtained the best perfor-
mance and trained the most practical model with 
0.24 F-measure and a relatively good recall of 0.41. 
Logistic Regression stands just right to Random Forest 
with slightly lower F-measure. Despite that slight dif-
ference, its model is not practical for our application 
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since both of its precision and recall are almost in the 
lowest quartile (both below 0.29). Meanwhile, interest-
ingly, the SVM classifier with Polynomial kernel func-
tion is the only classifier with F-measure of 20 with 
a recall figure over 0.50. All of the other high F-measure 
models are coming with recall < 0.42. taking all into 
account, it could be said that SVM model is actually 
the second-best performing classifier with respect to 
both F-measure and recall.

Meanwhile, the performance of the proposed 
method is detailed in Table 4. Despite other classifiers, 
for training SDAE which is simply a neural network, 
the training samples cannot be fed into the network in 
a single step. Data should be fed into the model in small 
parts called batch. The batch containing 64 samples was 
utilised in our experiments as similarly was adopted 
primarily in Adam optimiser (Kingma & Ba, 2015) 
and suggested by other works (Jamei et al., 2017). 
There are other parameters such as sparsity weight, 
learning rate and L-2 regularisation parameters which 
were not altered from default values (set out already in 
Matlab with their default suggested parameters). The 
features extracted from SDAE were employed to train 
different classifiers independently. Actually, each classi-
fier performed learning upon the feature space having 
either 16 or 32 extracted features. There are numerous 
combinations of parameters to tweak, notwithstanding 
these were among the best performing we have found 
that reveals general trend among candidate classifiers 
and the SDAE with integrated Soft Max layer.

It is interesting to note that the Logistic Regression 
and Random forest that were among the top perform-
ing classifiers with 0.23 and 0.24 F-measures; when 
merged with SDAE performed quite differently. The 
Random Forest classifier performance measures are 
different in many ways over the extracted features of 
SDAE than the original feature space. This observation 
was pretty much expected considering an utter con-
tinuous feature space generated by SDAE. The 
F-measure obtained by Random Forest this time is 
noticeably lower with about 15% decrease (or 0.40 
from 0.247 down to 0.210). As aforementioned, a key 
advantage of Decision Tree-based approaches about 
their capability to work with intact feature space; with-
out the need for encoding nominal features and 

transformation that is typically mandatory for other 
classifiers to operate. Therefore, the SADE with RF 
classifiers did not perform as good as the RF alone. 
In spite of marginally lower F-measure, it seems this 
model is more practical with markedly higher recall 
(0.25 higher according to recall of 0.66 against 0.41 for 
SADE+RF and RF, respectively) whilst actually sacrifi-
cing about 0.05 of the previously obtained precision 
(0.12 vs 0.17). Despite Random Forest, the perfor-
mance of Logistic Regression has improved remark-
ably with rising F-measure from 0.23 to 0.27 that is 
actually a big improvement. The quality of predictive 
model produced by logistic regression is also remark-
ably higher with the highest observed AUC of 70% 
against no greater than 60% for random forest.

It is worth noting that these models can be sorted 
on the ground of AUC values which shows how well 
a classifier predicts a value better than a random guess 
classifier. A random guess classifier can obviously 
acquire the AUC of 0.5% or 50%. In this context, we 
can see that only the proposed method with logistic 
regression and softmax can produce models with AUC 
of 0.70 that are acceptable in real application. The 
worst case we see AUC 0.64 and 0.66 for logistic 
regression and softmax, respectively. Meanwhile, the 
logistic regression obtained the highest AUC and 
highest precision whilst the softmax comes very close 
in AUC whilst generating an equivalent quality model 
with noticeably higher recall.

Furthermore, there is no general trend saying the 
lower number of features had a significant impact of 
the results. However, one can say, the top performing 
models performed nearly 4–8% better compared to 
their performance with 32 features having AUCs of 
0.69 vs 0.66 for softmax and AUCs of 0.70 vs 0.64 for 
logistic regression models. This observation is fol-
lowed by random forest models with 0.60 and 0.56 
for 16 and 32-feature models, respectively. Despite 
that, for other classifiers such as SVM, this rule is 
reversed observing AUCs of 0.55 vs 0.59 for 16 and 32- 
feature models, respectively.

Moreover, it is critical to leverage the intervention 
strategy into model selection. For example, if the 
intervention strategy is by texting people, then the 
model with higher recall is obviously more preferable 

Table 4. Performance of SDAE in combination of candidate classification algorithm Numbers in parentheses represent either the 
number of extracted features by SDAE, or the number of features in the last layer of SDAE.

Method

Measures

Precision Recall F1-Score AUC

SDAE (16) + Random Forest 0.095 0.743 0.168 0.568
SDAE (32) + Random Forest 0.125 0.661 0.210 0.603
SDAE (16) + Logistic Regression 0.223 0.405 0.288 0.704
SDAE (32) + Logistic Regression 0.162 0.482 0.242 0.641
SDAE (16) + SVM (polynomial 3) 0.087 0.821 0.157 0.559
SDAE (32) + SVM (polynomial 3) 0.143 0.492 0.222 0.593
SDAE-Softmax (16) 0.188 0.601 0.286 0.696
SDAE-Softmax (32) 0.160 0.655 0.257 0.667
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than higher precision. In this context, it is easy and 
much feasible to choose among models mostly when 
their AUCs are similar. Otherwise, it would not be 
easy comparing recall and precisions and selecting 
model based on which. For example, it is evident 
that very low-performing models over the testing sam-
ple that are actually Random forest and SVM pro-
duced unrealistically high recalls of 0.82 and 0.74 
whilst their AUCs are about 0.55 signifying that 
these models do perform a little better than 
a random guess classifier. In this regard, among the 
top-forming models obtained, the SDAE with Softmax 
is more suitable taking into account the fact that we 
are interested in texting strategy for intervention. 
Despite that, if the intervention was through calling 
people which costs much, then undeniably the models 
with high precision are suitable considering which 
none of the produced models are good enough for 
such intervention.

Moreover, considering interpretation and studding 
causal relations, these series of models and in particu-
lar the deep learning models have inherently poor 
interpretability. Large parameter space and the inter-
action between neurons prevent us from interpreting 
the model coefficients directly. However, there are 
some approximation methods to roughly see which 
group of variables is relatively more important. 
Among various methods that can be adopted within 
machine learning application, some representative 
wrapper approaches are described expansively in 
(Hall & Holmes, 2003; Lazar et al., 2012) for identify-
ing subset of more important features. In this study, 
the Representation Erasure (Li et al., 2016) is 
employed. Representation erasure is a general method 
for analysing and interpreting decisions made by 
a black-box model. We erase individual variables and 
observe how the model performance degenerates. If 
the model’s AUC decreases by a significant amount 
when we remove a particular variable, the model con-
siders the variable to be important. In practice, due to 
the high number of variables and complexity of 
dimensions, we remove variables in groups of 
“Demographic information”, ’Appointment charac-
teristics’, “Patient appointment history”, 
“Deprivation”, “Weather” and “Admission history” 
as mentioned in table 1. We then calculate the impor-
tance score for each variable group as the differences 
between the original deep learning model’s AUC and 
the same model but with the erased input.

The results are graphically represented in Figure 5, 
where the predictors are listed in descending order of 
importance. The results show “demographic informa-
tion” as the most critical variable group that affect 
patients’ attendance, which includes patients’ age, eth-
nicity, gender, long-term condition, and address sta-
bility is important to affect attendance. “Appointment 
characteristics” is the second most important variable 

group that affects attendances outcomes, which 
includes speciality, treatment function, site, date/ 
time, duration, follow-up or first-time appointment. 
This means that if only those variable groups are 
excluded from the model, there will be a more negative 
effect on the predictive capability of the model than 
the exclusion of other variable groups. Furthermore, 
patient appointment history is another important 
variable group that indicates attendance, which 
includes number/ratio of previously missed appoint-
ments, number/ratio of previously attended appoint-
ments, history of rebooking and cancellation and 
history of cancellation and rebook by the hospital. 
Weather, deprivation and admission history variable 
groups have less influence on attendance. From the 
managerial point of view, these insights can support 
the hospital operation team to provide appropriate 
support for patients to attend the appointment. For 
example, as the site of appointment is one of the 
important variables, we have started the collaboration 
with public transportation company to provide 
patients who live far away with a ticket voucher for 
their travel.

4.4. Risk profile visualisation with live patients’ 
data

One extremely important fact that districts this study 
from many others, although is yet in the experiment 
stage, is the fact that this has been successfully 
deployed our model into hospital business intelligence 
and reporting system as graphically shown in Figures 
6,7 and 8. After deployment of the model, the obtained 
risk profiles of live patients’ data are visualised to 
hospital operational team for targeted intervention. 
As Figure 6 reveals the different layers from data 
layer at the bottom, prediction model at the middle 
and finally action layer which works based upon the 
recommendation of the model. Our research has been 
integrated with hospital information systems as auto-
mated algorithms into appointment systems. We have 
built a dataflow that actually fetches and process live 
data, feeds the transformed data into the model and 
employs the predicted risk into an outpatient appoint-
ment data table. After making prediction through the 
trained model in the middle layer, another team works 
at last level to take proper interventions. Figure 7 
demonstrates how each patient’ non-attendance risk 
profile is visualised in hospital reporting system with 
identifiable information removed. Appointments at 
certain time period (e.g., appointments in next two 
weeks), speciality (e.g., general surgery), clinical slot 
(e.g., Breast F/U15) with different contact status (e.g., 
patients not contacted for appointment reminder) can 
be filtered (Figure 8) and accordingly visualised with 
predicted risk both individually and in the different 
risk groups. The risk profiles are defined based on the 
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prediction probability produced by the model at 
appointment level for each patient. The high-risk 
patients (non-attendance risk over 80%) are flagged 
with red, middle-high risk patients (non-attendance 

risk between 60%-80%) with yellow, moderate risk 
patients (non-attendance risk between 50% and 60%) 
with orange and low-risk patients (non-attendance 
risk below 40%).

Figure 5. Variable group importance in attendance prediction.

Figure 6. Non-attendance prediction model integrated with the hospital appointment system.

Figure 7. Non-attendance application in hospital reporting system (with identifiable information removed).
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According to the risk profile, the hospital opera-
tional team will be able to prioritise the interventions 
methods. There are several interventions already 
implemented attempting to reduce non-attendance 
rates in hospitals. This includes reminder letter sys-
tems, phone reminder system (Shahriar Tavakoli- 
Tabasi, 2015) and short message services (SMS) 
reminder system (Guy et al., 2012; Taylor et al., 
2012). Research shows that there is no significant 
reduction in non-attendance rates using reminder let-
ter but there is evidence that telephone or text message 
reminder substantially reduce missed appointments 
(Gurol-Urganci et al., 2013). In our case study SMS 
was the primary approach to remind patients about 
their appointments before the prediction model 
deployment. According to the risk profile, hospital 
operation team contact low- and middle-risk patients 
through message reminders. The high-risk patient will 
be contacted through both message and telephone as 
having conversations could be more effective with the 
ability of understanding patients’ potential reason and 
difficulties of missing the appointment so support 
could be provided for those patients. As shown in 
Figure 8, five contact outcomes are recorded to track 
how those interventions affect patient’s behaviours 
regarding planning and attending the appointments. 
For outcomes of other actions, it involves potential 
support available according to patient’s situations 
(e.g., transportation support). Those contact outcome 
and action data can be further used to analyse the 
effectiveness of the interventions as well as to update 
the model over time with new appointments data.

5. Conclusions and future works

In this study, we represented a novel non-attendance 
prediction method incorporating a broad spectrum of 
factors relating to health, social economics and envir-
onment for improved understanding and prediction 
of patient behaviours. The proposed approach is an 

end-to-end deep learning model which adopted the 
latest architecture of sparse stacked denoising autoen-
coders (SDAEs). The SDAEs were used for data recon-
struction, dimensionality reduction and classification. 
It was used also as a hybrid method with other classi-
fiers. In the prediction phase, a softmax layer that has 
been used in modern deep learning models was added 
to the network. This layer produced the probability of 
non-attendance events based on the outputs of the last 
hidden unit in SDAE. The performance of the model 
over the testing samples was compared with other 
classification models which revealed that the logistic 
regression, and softmax classifiers could produce 
high-quality models with AUCs around 0.70. The 
experiments illustrated that the proposed approach 
outperformed other approaches regarding important 
evaluation metrics including AUC-ROC, Precision, 
Recall, and F-Score.

An important advantage of this model is its cap-
ability to represent complex datasets with high dimen-
sionality and sometimes incomplete information, 
which is widespread in real-world practical applica-
tion. One critical benefit of our proposed approach is 
the scalability. Scalability is defined in three different 
ways: (1) the number of variables and (2) the number 
of samples we can use and most importantly (3) model 
update over time. We could add new variables to the 
existing model with the same practice. New variables 
provide a way to incorporate more information into 
the model resulting in a more reliable model for man-
agers. It is a commonplace that every practical appli-
cation has a life-period. In this context, update-&- 
upgrade potential is a critical issue which impacts the 
future of organisations by directly leveraging the 
operational costs. Artificial intelligence, fortunately, 
produces a highly scalable application that is easy to 
maintain and easy to upgrade. For example, consider-
ing our application in two years later, we could re- 
train the model, add or remove any variables, incor-
porate the knowledge of latest patients’ records, and 

Figure 8. Contact actions (DNA refers to “Do not attend”).
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ultimately achieve an updated model with higher per-
formance and reliability.

Another bottleneck to address as future work is the 
problem of fine-tuning procedures and dealing with 
several free parameters which is quite challenging. 
Perhaps in future with advancing AI technology, we 
would see high-scale self-adaptable algorithms. From 
another viewpoint, more relevant data and higher 
quality improve the performance of all current mod-
els. We believe the current trends for developing 
health-care systems in the world follow strategies to 
reduce operational costs, reduce clinical costs, and 
improve clinical outcomes. Adopting such intelligent 
algorithms in healthcare application with high-scale 
dimension could potentially contribute to this process.
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Distribution of non-attendance across care specialities and other variables.

Attribute name Category/value Non-attendance % Non-Attendance # Appointments % Appointments

Ethnicity African 4350 1.46% 37,805 1.01%
Any other Asian background 8509 2.85% 91,227 2.43%

Any other Black background 2208 0.74% 18,991 0.51%
Any other ethnic group 5369 1.80% 54,456 1.45%

Any other mixed background 1797 0.60% 16,816 0.45%
Any other white background 17,815 5.96% 201,197 5.37%

Bangladeshi 670 0.22% 6887 0.18%
British 186,419 62.39% 2,556,810 68.2%
Caribbean 3168 1.06% 30,095 0.80%

Chinese 963 0.32% 13,398 0.36%
Indian 6060 2.03% 68,277 1.82%

Irish 1228 0.41% 15,282 0.41%
Not known 3531 1.18% 9201 0.25%

Not stated 45,502 15.23% 540,797 14.4%
Pakistani 7168 2.40% 62,762 1.67%
White and Asian 626 0.21% 6502 0.17%

White and Black African 392 0.13% 3503 0.09%
White and Black Caribbean 1162 0.39% 9165 0.24%

Others 1875 0.63% 4114 0.11%
Care Group Description CG2 – Planned 157,311 52.65% 1,972,086 52.6%

CG3 – Networked 79,817 26.71% 1,056,996 28.21%
CG1 – Urgent 56,686 18.97% 702,491 18.75%

NULL 4998 1.67% 15,712 0.42%

(Continued)
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(Continued).

Attribute name Category/value Non-attendance % Non-Attendance # Appointments % Appointments

Speciality Accident and Emergency 477 0.002% 4732 0.001%
Allied Health Professional Episode 18,811 0.063% 268,796 0.071%

Anaesthetics 6804 0.023% 87,880 0.023%
Audiological Medicine 11,759 0.039% 213,210 0.056%

Cardiology 8968 0.030% 167,115 0.044%
Chemical Pathology 283 0.001% 1898 0.0005%
Clinical Haematology 7740 0.026% 67,392 0.017%

Clinical Oncology 4726 0.016% 101,404 0.027%
Clinical Physiology 0 ~0 8 ~0

Community Medicine 0 ~0 2 ~0
Critical Care Medicine 327 0.001% 9909 0.0026%

Dental Medicine Specialities 1 0.000% 10 ~0
Dermatology 10,573 0.035% 181,812 0.048%

Endocrinology 8103 0.027% 60,910 0.016%
ENT 14,710 0.049% 160,874 0.043%
Gastroenterology 8533 0.029% 89,036 0.024%

General Medicine 1322 0.004% 12,534 0.003%
General Surgery 11,871 0.040% 183,527 0.048%

Genito-Urinary Medicine 213 0.001% 1835 0.0004%
Geriatric Medicine 1098 0.004% 11,362 0.003%

Gynaecology 6547 0.022% 116,086 0.031%
Haematology 60 ~0 635 0.0002%
Medical Oncology 69 ~0 1521 0.0004%

Midwife Episode 9681 0.032% 61,306 0.0164%
Nephrology 4278 0.014% 56,974 0.015%

Neurology 6971 0.023% 72,550 0.019%
Neurosurgery 0 ~0 2 ~0

Nursing Episode 38 0.032% 65 ~0
Obstetrics 9470 ~0 128,421 0.034%
Obstetrics and Gynaecology 17 0.215% 197 ~0

Ophthalmology 64,260 0.008% 730,747 0.195%
Oral and Maxilla Facial Surgery 2457 0.013% 23,099 0.006%

Oral Surgery 3960 0.006% 55,880 0.015%
Orthodontics 1783 0.001% 20,289 0.005%

Paediatric Cardiology 255 ~0 3627 0.001%
Paediatric Surgery 61 0.043% 471 0.0001%

Paediatrics 12,728 ~0 115,615 0.031%
Palliative Medicine 3 0.005% 7 ~0
Plastic Surgery 1538 ~0 27,379 0.007%

Psychotherapy 11 ~0 352 ~0
Radiology 107 0.004% 1232 0.0003%

Rehabilitation 1138 0.027% 11,931 0.003%
Respiratory Medicine 8109 0.025% 94,251 0.025%

Rheumatology 7403 0.075% 94,660 0.025%
Trauma and Orthopaedics 22,281 0.015% 344,663 0.092%
Unknown 4597 0.048% 13,726 0.004%

Urology 14,257 0.001% 145,304 0.039%
Others 414 0.002% 2049 0.0005%

Gender Female 165,373 55.40% 2,160,125 57.65%
Male 133,419 44.69% 1,586,900 42.35%

Multiple deprivation indexes Average score of multiple deprivation in for patients 
with non-attendance = 14.81860624

Average rank of multiple deprivation indexes for patients 
with non-attendance = 20,780.94586

a“~0” indicates the numbers close to zero, “#” denotes for “the number of”.
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