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H I G H L I G H T S 29 

⚫ Aquaculture ponds emit CH4. 30 

⚫ Large variations in diffusive CH4 fluxes are estimated by different thin boundary layer (TBL) models. 31 

⚫ Methane fluxes measured by chambers and match those estimated by only some TBL models.32 
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A B S T R A C T 33 

Static floating chambers (FCs) are the conventional method to measure CH4 fluxes across the 34 

water-air interface in ponds, while thin boundary layer (TBL) modelling is increasingly used 35 

to estimate CH4 fluxes. In this study, both FCs measurements and TBL models of gas transfer 36 

velocity were used to determine CH4 evasion from aquaculture ponds in southeastern China. 37 

The surface water CH4 concentrations ranged from 0.4 to 9.1 μmol L-1 with an average of 38 

4.8 ± 0.8 μmol L-1. CH4 flux was always positive, indicating the ponds as a persistent 39 

CH4 source to air. Mean CH4 flux based on different TBL models showed large variations, 40 

ranging between 19 and 316 μmol m−2 h−1. Compared against the direct measurement FCs, 41 

three TBL models developed for the open sea, flowing estuarine system and lentic ecosystem 42 

(TBLW92a, TBLRC01, and TBLCL98, respectively) overestimated CH4 emission by 43 

40–200%, while the wind tunnel-based TBL model (TBLLM86) underestimated 44 

CH4 emission. Two TBL models developed for lakes (TBLW92b and TBLCW03) gave 45 

estimates similar to FCs. 46 

Keywords: Methane fluxes; Thin boundary layer models; Floating chambers; Water-air interface; Shallow 47 

aquaculture pond; Subtropical estuary 48 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aquaculture
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1. Introduction 49 

Methane (CH4) emissions from inland and coastal aquatic systems are potentially significant sources of 50 

atmospheric CH4 (Bastviken et al., 2011; Musenze et al., 2014; Yang et al., 2011). CH4 release from open 51 

water surfaces can take place via diffusion and/or ebullition (bubbling) (Bastviken et al., 2004). Diffusive 52 

fluxes across the water-air interface are traditionally measured by using static floating chambers (FCs) or 53 

thin boundary layer (TBL) model. The FCs approach determines CH4 fluxes based on the change in CH4 54 

concentrations in the chamber headspace over time. The TBL approach calculates the CH4 flux using a 55 

piston velocity and gas concentration in the water (Natchimuthu et al., 2017; Zhao et al., 2019). TBL 56 

modelling can be used to estimate CH4 emissions from aquatic environment at a large-scale (Zhao et al., 57 

2015), while static FCs measurements are widely operated to quantify the small-scale spatial variation in 58 

CH4 fluxes over an area of < 1 m2 (Denmead, 2008; Xiao et al., 2016). Previous studies have used either 59 

one of the two approaches to quantify CH4 fluxes from aquatic ecosystems (e.g., Musenze et al., 2014; 60 

Natchimuthu et al., 2016; Wang et al., 2017; Welti et al., 2017). However, integrated comparative studies 61 

of these two methods for determining CH4 emissions from aquatic ecosystems remain scarce (e.g., 62 

Duchemin et al., 1999; Matthews et al., 2003), particularly in small pond ecosystems. 63 

Recent studies have shown that very small ponds (area <0.001 km2) are hotspots of CH4 emission 64 

(Holgerson, 2015; Holgerson and Raymond, 2016; Wik et al., 2016; Yuan et al., 2019). However, the 65 

accuracy of these estimates are largely constrained by the lack of rigorous quantifications of the area, 66 

number, and spatial distribution of small ponds globally (Jonsson et al., 2008; Zhao et al., 2019) and the 67 

large variations in flux measurement methods between different studies. In particular, the lack of 68 

consensus between existing gas flux measurement methods remains a major source for the uncertainty of 69 
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GHGs accounting. This lack of agreement might be related to the variation in developing environment 70 

between methods. For instance, the TBLLM86, TBLWan92a and TBLWan92b, TBLRC01, TBLCL98, and 71 

TBLCW03 models which were developed by Liss and Merlivatt (1986), Wanninkhof (1992), Raymond 72 

and Cole (2001), Cole and Caraco (1998), and Crusius and Wanninkhof (2003), respectively, are widely 73 

accepted wind-based models to estimate CH4 transfer velocities and  fluxes. Among these TBL models, 74 

the TBLLM86, TBLWan92a, and TBLRC01 models were developed in wind tunnels, open sea, and 75 

flowing estuarine systems, respectively, while TBWan92b, TBLCL98 and TBLCW03 models were 76 

established in the lentic ecosystem (e.g., lake). It is still unclear to what level of certainty these different 77 

models can accurately calculate the gas transfer velocities in various aquatic ecosystems (Musenze et al., 78 

2014). Thus, a simple, low-cost, and standardized technique is still required for the accurate estimation of 79 

CH4 fluxes at the regional and global scales.  80 

Aquaculture ponds form an important component of the global network of small ponds (FAO, 2017), 81 

and the total surface area of freshwater and brackish aquaculture ponds is estimated to be around 110,000 82 

km2 (Verdegem and Bosma, 2009). Despite the importance of aquaculture ponds for CH4 emission (Hu et 83 

al., 2016; Wu et al., 2018; Yang et al., 2015, 2019a; Yuan et al., 2019), CH4 flux data are 84 

disproportionately scarce, and the published results were predominantly determined by FCs, rather than 85 

TBL modelling (Hu et al., 2016; Wu et al., 2018; Yang et al., 2015, 2019a). Clearly, there is a paucity of 86 

researches on comparing CH4 fluxes obtained by using different approaches. In this study, FCs and six 87 

TBL models were applied in aquacultural ponds in Southeast China, and the CH4 fluxes were compared. 88 

The primary research aims are: (1) to evaluate the performances of different wind-based TBL models for 89 

the estimation of CH4 fluxes; (2) to compare the diffusive CH4 emissions from aquaculture ponds derived 90 

from the FCs measurements and TBL modellings; and (3) to identify the TBL model(s) which can be 91 
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applied to replace the FCs for the measurement of CH4 fluxes from ponds, with the minimal uncertainty. 92 

2. Materials and Methods 93 

2.1. Study area  94 

Our study sites were located at the central-western Shanyutan Wetlands in the Min River Estuary 95 

(MRE) in Southeast China (Figure S1, 26°00′36″–26°03′42″ N, 119°34′12″–119°40′40″ E). This area is 96 

characterized by a subtropical monsoon climate, with a multi-year average annual temperature and 97 

precipitation of 19.6 °C and 1,350 mm, respectively (Tong et al., 2010). The wetlands are dominated by a 98 

semidiurnal tide with a large tidal range (2.5-6 m) that follows a spring-neap-spring tidal cycle (Luo et al., 99 

2014; Tong et al., 2010). The dominant vegetation in the wetland are the native Cyperus malaccensis and 100 

Phragmites australis, and the invasive Spartina alterniflora. Over the past 10 years, much of the tidal 101 

marshes have been converted to aquacultural ponds (Yang et al., 2017a).  102 

2.2. Aquaculture pond management 103 

Small and shallow aquaculture ponds (area of 0.8−2.5 ha and depth of 1.1−1.8 m) are a key feature in 104 

the MRE, covering an area of around 234 ha in the Shanyutan Wetland (Yang et al., 2017b). Aquaculture 105 

production, which is concentrated between June and November, yields a single annual crop of shrimps 106 

from the semi-intensive earthen ponds, which are filled with salt water (average salinity of 2.0− 8.5‰) 107 

from the MRE using a submerged pump. The shrimps are fed twice a day (at 07:00 and 16:00 hr) with 108 

commercial aquatic feed pellets containing 42% protein. Three to five 1500 W paddlewheel aerators 109 

operate four times a day (07:00–09:00, 12:00–14:00, 18:00–20:00, and 00:00–03:00 hr) to provide 110 

sufficient oxygen. This study selected three replicate ponds that were separated by a distance of <10 m (see 111 

Table S1 for basic characteristics) (Zhang et al., 2019) for the field measurements. Additional details about 112 
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the shrimp pond system and management can be found in Yang et al. (2017b).  113 

2.3. Determination of dissolved CH4 concentration 114 

Field sampling campaigns were carried out at three aquaculture ponds between June and November 115 

2017 following the main aquaculture practice. In each pond, a wooden bridge was built reaching ~10 m 116 

from the pond embankment to the pond center in order to conveniently collect the water and gas samples at 117 

three sites. Samples were collected two or three times each month in the three aquaculture ponds. Overall, 118 

sampling was conducted for 15 different times. The total number of samples was 3 ponds × 3 sites × 15 119 

times = 135. To measure the dissolved CH4 concentrations, surface water (at a depth of ~20 cm) was 120 

collected using a homemade water sampler and transferred into a 55-mL gas-tight glass serum bottle that 121 

had been flushed with pond water for 2-3 times. After being completely filled, the glass bottles were 122 

immediately sealed with a butyl rubber stopper using an aluminum screw cap, ensuring that all air bubbles 123 

were excluded. To inhibit bacterial activity, 0.2 mL of saturated HgCl2 solution was added to each bottle of 124 

water sample (Borges et al., 2018; Hu et al., 2018). Samples were transported back to the laboratory in an 125 

ice-packed cooler. Dissolved CH4 concentrations of the samples were measured within 2 d of collection 126 

following the headspace equilibration method. Approximately 25 mL headspace was created by injecting 127 

ultra-high purity N2 gas (>99.999%) into the glass bottle, while simultaneously 25 mL water sample was 128 

withdrawn. The bottle was then shaken vigorously for 20 min and left at room temperature for 30 min to 129 

form a complete equilibration between the air and water phases (Cotovicz et al., 2016). Approximately 10 130 

mL of the equilibrated headspace air was subsequently extracted and injected into a gas chromatograph 131 

(GC-2010, Shimadzu, Kyoto, Japan) equipped with a flame ionization detector (FID) to determine the CH4 132 

concentrations. Standard CH4 gases at five concentrations, namely 2, 8, 500, 1000, and 10,000 ppm, were 133 
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used to calibrate the FID of gas chromatograph. Dissolved CH4 concentrations of the sample were 134 

calculated based on the volume of water, headspace air in the sampling glass bottle, and gas solubility 135 

coefficient that was a function of water temperature and salinity (Farías et al., 2017; Wanninkhof, 1992; 136 

Xiao et al., 2017).  137 

2.4. Determination of diffusive CH4 flux across the water-air interface  138 

2.4.1. Measurement using floating chambers  139 

The floating chamber methods (FCs) are one of the foremost techniques for directly measuring CH4 140 

emissions from aquatic ecosystems (e.g., Chuang et al., 2017; Gålfalk et al., 2013; Welti et al., 2017). In 141 

order to measure the diffusive CH4 effluxes from the aquaculture ponds, this study used a modified 142 

chamber placed on a floating buoy (Figure S2). The opaque floating chambers were made from inverted 143 

plastic basin (polyethylene/plexiglas®) with a volume and area of 5.2 L and 0.1 m2, respectively. The 144 

chambers were covered with aluminum tape to minimize internal heating by sunlight (Natchimuthu et al., 145 

2016; Yang et al., 2019). Thin gauze (bore diameter 0.001 mm) was used to cover the FCs aperture to 146 

minimize the entry of bubbles into the chamber (Figure S2). A fan was installed inside the chamber to mix 147 

the headspace air during the gas sampling. In order to quantify the potential contribution of CH4 ebullition 148 

flux from the aquaculture ponds, total CH4 fluxes were also determined by using floating chamber without 149 

gauze.  150 

CH4 fluxes were measured over a period of 45 min, with four headspace air samples being collected 151 

inside the chamber at 15-min interval using 60-mL plastic syringes equipped with three-way stopcocks. 152 

The gas samples were immediately transferred into pre-evacuated airtight gas sampling bags (Dalian Delin 153 

Gas Packing Co., Ltd., China), transported to the laboratory, and analyzed within 48 h using a gas 154 
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chromatograph (GC-2010, Shimadzu, Kyoto, Japan) equipped with a FID, following the method of Tong et 155 

al. (2010). The detection limits for CH4 were 0.3 ppm, and the relative standard deviations of CH4 156 

analyses were ≦2.0% in 24 h.  157 

CH4 emission fluxes (FCH4, µmol m−2 hr−1) were calculated based on the slope of the regression 158 

between headspace CH4 concentration and time (Yang et al., 2019). Generally, if r2 of the correlation 159 

between headspace CH4 concentration and the elapsed time is larger than 0.90, the CH4 emission is 160 

considered as diffusion only (Bastviken et al., 2010; Zhu et al., 2016). If r2 is below 0.90, the emission is 161 

considered as the combination of ebullition and diffusion. The floating chambers with gauze (FCs-G) and 162 

without gauze (FCs-NG) showed distinct linear (r2>0.9) and nonlinear (r2<0.9) increases in methane 163 

concentration, and therefore the contribution of ebullition was calculated by the difference of the diffusion 164 

flux measured between the FCs-G and the FCs-NG methods. 165 

2.4.2. Estimation using thin boundary layer models 166 

Saturation (S) of CH4 in pond water was the ratio between the in situ dissolved concentration of CH4 167 

in pond water and the calculated saturated CH4 concentration corresponding to ambient air CH4 168 

concentration (Hu et al., 2018) (Eq. 1):  169 

S = Cwater/CWs = Cwater/(α×Cair)×100%                                 (Eq. 1) 170 

where Cwater is dissolved CH4 concentration in pond water; CWs is the saturated CH4 concentration 171 

(μmol L−1); Cair is the atmospheric concentration (μmol mol-1) of the sampling sites; and α is the Bunsen 172 

coefficient (Wanninkhof, 1992). 173 

Diffusive fluxes of CH4 (F, µmol m−2 hr−1) across the water-air interface can be described by using 174 

a theoretical diffusion model (Eq. 2) (Musenze et al., 2014): 175 
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)( ater eqw CCkF −=
                                               (Eq. 2) 176 

where Cwater (μmol L-1) is the measured dissolved CH4 concentration in surface water, Ceq (μmol L-1) is 177 

the dissolved CH4 concentration in equilibrium with the air above, and k is the gas transfer velocity (cm 178 

h-1). The k value was parameterized as a function of wind speed and normalized for surface water 179 

temperature (T, oC) using a Schmidt number (Sc) derived from Eq. 3: 180 

32 04043704209331120202039 T.T.T..cS −+−=                     (Eq. 3) 181 

This study evaluated the variations in CH4 fluxes across the water-air interface estimated by eight widely 182 

used wind-based models developed in various conditions, including wind tunnels, open sea, estuarine 183 

systems, and lakes, as follows: 184 

LM86 (Liss and Merlivatt 1986)  185 

)()600/(17.0 3/2

1086 eqwaterLM CCScUF −= −

         
3.6≦0 10U

         (Eq. 4) 186 

)()600/(65.985.2 2/1

1086 eqwaterLM CCSc-UF −= −）（
    

13≦6.3 10U
       (Eq. 5) 187 

W92a (Wanninkhof, 1992) 188 

)()660/(31.0 2/12

10a92 eqwaterW CCScUF −= −

                              (Eq. 6) 189 

RC01 (Raymond and Cole, 2001)  190 

)()600/)(35.0(91.1 1

1001 eqwater

/2-

RC CCScUexpF −=
                        (Eq. 7) 191 

CL98 (Cole & Caraco, 1998) 192 

)()600/)](215.0(07.2[ 27.1

1098 eqwater

/3-

CL CCScUF −+=
                      (Eq. 8) 193 

W92b (Wanninkhof, 1992) 194 
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)()600/(45.0 2/164.1

10b92 eqwaterW CCScUF −= −

                            (Eq. 9) 195 

CW03 (Crusius & Wanninkhof, 2003)  196 

)()600/(72.0 3/2

1003 eqwaterCW CCScUF −= −

           
7.310 U

         (Eq. 10) 197 

)(600) / c13.3)(-(4.33 -1/2

1003 eqwaterCW CCSUF −=
     

3.7≥10U
          (Eq. 11) 198 

where U10 was determined according to the logarithmic wind profile relationship using Eq. 12 (Crusius 199 

and Wanninkhof, 2003): 200 

)]
10

ln(
)(

1[
2/1

10
10

zK

C
UU d

z +=
                                                   (Eq. 12) 201 

where Uz is the wind speed (m s-1) at height z above the water surface (2.5 m in this study), Cd10 is the 202 

drag coefficient at 10 m above the water surface (0.0013 m s-1), and K is the von Karman constant (0.41). 203 

Generally, the stability of the atmosphere was an important factor influencing the calculation of U10 using 204 

the wind-based equations. If the atmosphere over the aquatic systems is unstable, and the equation used to 205 

calculate U10 needs to be adjusted. The air-water temperature difference can be used to determine if the 206 

atmosphere over the aquatic systems is stable or not. If the air-water temperature difference is positive, the 207 

atmosphere over the aquatic systems is stable. In the present study, the air temperature in ponds were 208 

higher than water temperature during the study period, with the air-water temperature difference period 209 

ranged from 0.1 to 3.8 oC, indicating that the atmosphere over the ponds is neutral stability regime. 210 

Therefore, no adjustment is needed for U10, and the equation (12) was appropriate for the calculation of 211 

U10. 
Some recent studies have

 applied surface renewal models that take into account both wind speed and 212 

buoyancy to determine the k values (e.g., Czikowsky et al., 2018; MacIntyre et al., 2010; MacIntyre et al., 213 

2018). 214 
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2.5. Measurement of meteorological and environmental variables 215 

Meteorological variables, including air temperature (AT), air pressure (AP), wind speed (WS), and 216 

precipitation, were recorded at 30-min intervals using an automatic meteorological station (Vantage Pro 2, 217 

China) installed at the MRE weather station in the China Wetland Ecosystem Research Network. The 218 

distance between the automatic meteorological station and sampling ponds is about 75 m. The precision for 219 

air temperature, atmospheric pressure, and precipitation were ± 0.2 °C, ± 1.5 hPa, and ± 0.4 mm min-1, 220 

respectively (Yang et al., 2020). The air temperature and wind speed were sampled at 1 Hz. WS were 221 

determined using a cup anemometer that was connected to a Anemometer Sensors that registered the wind 222 

speed in 1.0 m s-1 bins at 1-min interval. The threshold for startup of the anemometer was 0.4 m s-1. 223 

Approximately 6% of wind speed measurements during the study period were below the threshold of 0.4 m 224 

s-1 at 2.5 m height. 225 

Water temperature, electrical conductivity (EC), pH, dissolved oxygen (DO), total organic carbon 226 

(TOC), and total dissolved nitrogen (TDN) content of surface water (~20 cm below the water surface) were 227 

recorded at the three study sites in all 15 sampling campaigns. Water temperature and pH were measured 228 

using a portable pH/mV/Temperature meter (IQ150, IQ Scientific Instruments, USA), and EC and DO 229 

were determined using an electrical conductivity meter (2265FS EC, Spectrum Technologies, USA) and a 230 

multiparameter water quality probe (550A YSI, USA), respectively. The relative standard deviations of EC, 231 

pH, and DO analyses were ≦1.0%, ≦1.0% and ≦2.0%, respectively 232 

Water samples for TOC and TDN analyses were collected using a 5-L plexiglass hydrophore, 233 

transferred to a 150-mL polyethylene bottle, and then transported to the laboratory in an ice-packed cooler. 234 

TOC and N-NOx- (NO2- + NO3-) concentrations were analyzed, after filtering through a 0.45-μm 235 
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cellulose acetate filter (Biotrans nylon membranes), using a TOC analyzer (TOC-VCPH/CPN, Shimadzu, 236 

Kyoto, Japan) and a flow injection analyzer (Skalar Analytical SAN++, The Netherlands), respectively. 237 

The detection limits for N-NOx− and TOC were 6 μg L-1 and 4 μg L-1, respectively. The relative standard 238 

deviations of N-NOx− and TOC analyses were ≦3.0% and ≦1.0%, respectively. 239 

2.6. Statistical analysis 240 

Repeated-measures analysis of variance (RMANOVA) was conducted to test the differences in 241 

diffusive CH4 fluxes between the two approaches over the study period. Pearson correlation analyses were 242 

conducted to examine the relationships between (1) dissolved CH4 concentration or CH4 fluxes and 243 

environmental variables, and (2) diffusive CH4 fluxes measured using FCs and estimated using the gas 244 

transfer velocity models. The coefficient of variation (CV) for CH4 fluxes on each sampling campaign was 245 

determined by dividing the standard deviation by the mean value. Statistical analyses were conducted 246 

using software SPSS (v. 17.0, SPSS Inc., USA) at a significance level of 0.05. Data are presented as mean 247 

± 1 standard error. 248 

Generalized linear modelling was conducted to determine the variables that influenced CH4 emission 249 

fluxes from these seven different methods (i.e. FCs + 8 TBL models). The “gls” function from the “nlme” 250 

R package (Pinheiro et al., 2018) with a saturated model was conducted for all variables (dissolved CH4, 251 

U10, water temperature, dissolved oxygen, total dissolved carbon and dissolved nitrate). This model was 252 

run using the stepAIC function in R “MASS” package that follows the Akaike Information Criterion (AIC) 253 

(Venables and Ripley, 2002). It can identify the best model (lowest AIC value) in each case. 254 

3. Results  255 

3.1. Meteorological and environmental variables 256 
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The average air temperature (AT) and air pressure (AP) during the research period were 28.7±0.4 °C 257 

(range: 18.6−35.6 °C) and 1010.0±0.5 hPa (range: 985−1025 hPa), respectively. Notably, the maximal AT 258 

appeared in July and the minimal AP happened in August, very different from other months. The WS 259 

during the study period ranged from 0.2 to 18.8 m s-1, and varied between seasons, with a peak in July 260 

(Figure S3a). Approximately 92% of WS fell within the range of 0.2−4.0 m s-1 (Figure S3b). 261 

There were also clear temporal variations in surface water characteristics during the study period. The 262 

mean water temperature ranged from 18.1 °C (November) to 34.4 °C (August) (Figure S4a), while the 263 

mean DO concentration changed between 9.4 mg L-1 (August) and 19.9 mg L-1 (November) (Figure S4). 264 

The mean TOC concentrations varied between 9.9 mg L-1 (July) and 57.3 mg L-1 (November) (Figure S3), 265 

while N-NOx- concentrations ranged from 504 µg N L-1 (June) to 10.7 µg N L-1 (November) (Figure S4). 266 

3.2. Model estimated k values and dissolved CH4 concentrations   267 

The mean k values showed considerable variations between different models and decreased in the 268 

order: kRC01 (6.5±0.8 cm h-1) > kW92a (3.5±0.7 cm h-1) > kFCs (3.2±0.4 cm h-1) > kCL98 (2.9±0.3 cm 269 

h-1) > kCW03 (2.5±0.5 cm h-1) > kW92b (2.4±0.4 cm h-1) > kLM86 (0.6±0.1 cm h-1) (Figure 1).  270 

Dissolved CH4 concentrations demonstrated large variations over the study period (0.1−31.1 µmol 271 

L-1), and they increased first and decreased to a valley later (Figure 2). CH4 concentrations were 272 

supersaturated across all ponds and all sampling dates, with an overall mean of 4.8 ± 0.8 µmol L-1 (162.0 273 

±18.4 ppmv), equivalent to 8700% saturation (range of 200–5.9 × 104% saturation).  274 

3.3. CH4 flux estimates by using TBL models and FCs method 275 

There were considerable differences in the estimated diffusive CH4 fluxes among 276 
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the TBL models (TBLRC01: 215.9 ± 39.2 μmol m−2 h−1; TBLCL98: 277 

115.0 ± 21.9 μmol m−2 h−1; TBLW92a: 102.9 ± 19.5 μmol m−2 h−1; TBLW92b: 278 

78.3 ± 13.9 μmol m−2 h−1; TBLCW03: 74.9 ± 13.2 μmol m−2 h−1; and, TBLLM86: 279 

19.5 ± 3.7 μmol m−2 h−1) (Table 1, Fig. 3 and Figure S5). Although there were marked 280 

variations in the flux estimates among the various models, results from all models showed 281 

similar temporal patterns (Fig. 3). The largest fluxes were generally recorded between August 282 

and October, while the lowest fluxes were consistently recorded in June and November (Fig. 283 

3). 284 

Direct measurements using FCs with gauze (FCs-G) and without gauze (FCs-NG) 285 

methods were 75.0 ± 12.5 (Fig. 3) and 231.3 ± 681.3 μmol m−2 h−1 (Figure S6; Yang et al., 286 

unpublished data), showing significant difference between the two methods (Independent 287 

Samples T-Test, F = 118.190, p < 0.001). On average, ebullitive CH4 flux accounted for 288 

33%–99% of the total CH4 emissions during the study period. 289 

3.4. Environmental influences on dissolved CH4 concentrations and fluxes 290 

Pearson correlation analysis showed that dissolved CH4 concentrations in the shrimp ponds were 291 

significantly positive correlated with air temperature and TOC concentration (p<0.01), and negatively 292 

corelated with N-NO3− concentration and EC (p<0.01) (Table 2). CH4 fluxes were found to be positively 293 

correlated with air temperature (p<0.05), TOC concentration and dissolved CH4 concentration (p<0.01), 294 

and negatively correlated with water N-NO3− concentration (p<0.01) and EC (p<0.05) (Table 2 and Table 295 

S3). This study also analyzed the relationships between the CH4 fluxes derived from the seven different 296 

methods and various environmental variables. N-NO3- concentration was consistently and negatively 297 

https://www.sciencedirect.com/science/article/pii/S135223102100203X#tbl1
https://www.sciencedirect.com/science/article/pii/S135223102100203X#fig3
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https://www.sciencedirect.com/science/article/pii/S135223102100203X#fig3
https://www.sciencedirect.com/science/article/pii/S135223102100203X#fig3
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correlated with CH4 fluxes (Table S2). Environmental variables explained a larger proportion of variability 298 

in CH4 fluxes derived from the six TBL models (R2=0.46-0.54) than those from direct FCs measurements 299 

(R2=0.35) (Table S2).  300 

4. Discussion  301 

4.1. CH4 supersaturation and degassing from aquaculture ponds  302 

There are few studies on CH4 concentrations in small ponds, particularly, those created for 303 

aquaculture purposes. In this study, the dissolved CH4 concentration in surface water of the aquaculture 304 

ponds ranged from 0.14 to 31.13 µmol L-1 during the study period. The CH4 concentration in our ponds 305 

were higher than those observed in many small ponds in Florida (~2.2 µmol L-1; Barber et al., 1988), 306 

Colorado (~1.0 µmol L-1; Bastviken et al., 2004), and Wisconsin and Minnesota (0.3−2.3 µmol L-1; Smith 307 

and Lewis, 1992) in the USA, in Sweden (~1.3 µmol L-1; Natchimuthu et al., 2014), Canada (0.5−6.7 308 

µmol L-1; Pelletier et al., 2014), and Siberia (~2.6 µmol L-1; Repo et al., 2007). In addition, CH4 309 

concentration in our researched aquaculture ponds were generally larger than those in some 310 

nutrient-enriched rivers in China, i.e. Lixiahe River (0.2−0.81 µmol L-1; Wu et al., 2019), and Beitang 311 

Drainage River and Dagu Drainage River (0.3−1.7 µmol L-1; Hu et al., 2018). Similar to inland aquatic 312 

systems, such as lakes (e.g., Wen et al., 2016; Wik et al., 2016; Yan et al., 2018), reservoirs (e.g., Deemer 313 

et al., 2016; Musenze et al., 2014; Wang et al., 2017), rivers (e.g., Barbosa et al., 2016; Striegl et al., 2012), 314 

floodplains (Barbosa et al., 2020) and small ponds (e.g., Holgerson and Raymond, 2016; Wik et al., 2016), 315 

aquaculture ponds were supersaturated for CH4 (range of 2.71−599.81 folds supersaturation) with respect 316 

to the atmospheric equilibrium (Figure 2b). The small temporary ponds in the Yale Myers Forest in 317 

Connecticut, the USA, have, until now, the highest  concentrations of CH4, with the range of 21.0−58.9 318 
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µmol L-1, equal to 119.0−2906.6 folds supersaturation (Holgerson, 2015). The CH4 concentrations and 319 

supersaturations in our aquaculture ponds fall well within the range reported previously by Holgerson 320 

(2015). Our results indicated that aquaculture ponds in the subtropical estuaries were hotspots for CH4 321 

emission.  322 

In inland aquatic ecosystems, the strong CH4 release is likely a result of large organic matter input 323 

from the catchment that sustains high methanogenic rates (Finlay et al., 2009; Lundin et al., 2013; 324 

Venkiteswaran et al., 2013; Yan et al., 2018), which is supported by the significant relationship between 325 

dissolved CH4 and nutrient level (Huttunen et al., 2003; Kortelainen et al., 2001; Wen et al., 2016). In this 326 

study, aquaculture shrimp ponds were semi-artificial ecosystems that were maintained through a daily feed 327 

supply for the production of aquatic animals. However, only a small portion of the feed input was actually 328 

converted into shrimp biomass, with the feed utilization efficiency of ~4.0−27.4% (Chen et al., 2016; 329 

Molnar et al., 2013; Yang et al., 2017b). Surface sediments in the aquaculture systems typically retain a 330 

large amount of organic matter from feces and residual feeds (Chen et al., 2016; Yang et al., 2017b) that 331 

can support high levels of CH4 production and its subsequent release to atmosphere. Although organic 332 

matter content was not quantified in this study, our results confirmed the significantly positive correlation 333 

between dissolved CH4 and TOC concentration (p<0.01; Table 2), which lent support to the idea that CH4 334 

supersaturation in the aquaculture ponds was related to the large input of organic matter. 335 

4.2. Comparison of six different TBL modelled CH4 fluxes  336 

Although previous studies have compared the performance of different TBL models in estimating 337 

diffusive CH4 fluxes in inland waters (Amouroux et al., 2002; Li et al., 2015; Musenze et al., 2014; Xiao 338 

et al., 2017; Zappa et al., 2007), such comparison is scarce for shallow ponds, particularly those created for 339 
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aquaculture. To the best of our knowledge, this study is the first attempt to compare the estimates of 340 

diffusive CH4 flux using different TBL models over the whole aquaculture period in aquaculture ponds. 341 

Interestingly, although the patterns of temporal variations in diffusive CH4 fluxes in the shrimp ponds were 342 

largely consistent across the TBL models (Figure 3), there were differences in the magnitude of fluxes 343 

estimated from different models (Table 1).  344 

Notably, the mean flux estimate using the TBLRC01 model (215.6 µmol m-2 h-1) was an order of 345 

magnitude greater than that derived from the TBLLM86 model (19.4 µmol m-2 h-1, Figure 3). Moreover, 346 

CH4 fluxes estimated using the TBLRC01 model were 2 - 3 folds larger than those using the TBLW92a, 347 

TBLCL98, TBLW92b, and TBLCW03 models (Table 1 and Figure S5). However, there were no 348 

significant differences in mean fluxes between the TBLW92a and TBLCL98 models (p>0.05; Table 1 and 349 

Figure S5), as well as between the TBLW92b and TBLCW03 models (p>0.05; Table 1 and Figure S5). 350 

Inland waters (river and reservoirs), similarly, Gao et al. (2014) and Musenze et al. (2014) found that the 351 

estimated diffusive CH4 fluxes derived from the TBLRC01 model were substantially greater than those 352 

from other TBL models. These results indicated a potential bias in diffusive CH4 flux estimation when 353 

only a single TBL model was used. As Musenze et al. (2014) suggested, the lack of consensus among the 354 

existing TBL models might be a major source for the uncertainty in GHGs accounting.  355 

The difference of the estimated CH4 fluxes between TBL models was likely a result of the variation 356 

in weighting wind as a driver of gas transfer velocity (Musenze et al., 2014, Figure 1). Since these 357 

wind-based models were developed using a range of techniques under different conditions in specific 358 

systems (Gao et al., 2014; Musenze et al., 2014), their generalized applicability could be limited by the 359 

local conditions (Bade, 2009; Musenze et al., 2014; Schilder et al., 2013). Therefore, the TBLCL98 and 360 
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TBLCW03 are more appropriate wind-based models for estimating k value and CH4 fluxes in aquaculture 361 

ponds, due to that their experiment environments (e.g., lentic ecosystem, a range of wind speeds) were 362 

closest to the studied aquaculture ponds. Obviously, more in situ measurement is still needed to further 363 

increase the accuracy of the estimate. 364 

4.3. Comparison of CH4 fluxes derived from FCs measurement and TBL models  365 

Previous studies have shown that CH4 fluxes estimated by TBL models tend to be lower 366 

than those measured by FCs (Chuang et al., 2017; Duchemin et al., 1999; Li et al., 367 

2015; Matthews et al., 2003). This study also compared CH4 fluxes measured by FCs and 368 

those estimated by TBL models over the aquaculture season (Table 1 and Figure S5). 369 

Although there were significant correlations between TBL model estimates 370 

and FCs measurements (p < 0.05 in all cases), the agreement between the two methods varied 371 

considerably between models (Fig. 4).   The TBLW92b and TBLCW03 models gave the 372 

largest r2 values (0.82 and 0.83, respectively) and good agreements with FCs measurements 373 

(slope = 0.92 and 0.89, respectively), whereas TBLCL98 yielded mean estimates virtually 374 

identical to FCs measurements (slope = 1) but with larger variability around the mean 375 

(r2 = 0.53) (Fig. 4d–f). In contrast, TBLLM86 vastly underestimated FCs fluxes 376 

whereas TBLRC01 grossly overestimated FCs fluxes (Fig. 4a and b). Approximately 80% of 377 

the diffusive CH4 fluxes estimated by the models fell within the range measured by 378 

the FC method (see Fig. 5). 379 

Balancing the consideration of overall agreement (regression slope) and estimate variability 380 

(regression r2), the TBLW92b and TBLCW03 models appeared to give the best 381 
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approximations of FCs measurements. While previous studies showed that FCs were more 382 

appropriate for determining greenhouse gas fluxes in heterogeneous environments such as 383 

lakes and reservoirs (Cole et al., 2010; Duchemin et al., 1999; Murray et al., 2015; Vachon et 384 

al., 2010; Wu et al., 2018), our results suggest that TBLW92b and TBLCW03 models are 385 

reliable alternatives for estimating CH4 diffusive flux in shallow aquaculture ponds. 386 

In addition to diffusive flux from the water column, bottom sediment could also contribute to 387 

CH4 emission via ebullition, especially in eutrophic, shallow aquaculture ponds. This is 388 

illustrated by the differences in the measured CH4 flux using FCs with and without gauze in 389 

our aquaculture ponds (Figure S6). The CH4 flux measured by FCs without gauze 390 

(2231.3 ± 681.3 μmol m−2 h−1) were one to two orders of magnitude higher than that 391 

by FCs with gauze (75.0 ± 12.5 μmol m−2 h−1) (Figure S6); from this ebullition was estimate 392 

to contribute 96.6% to the total CH4 emissions. Overall, our results showed that ebullition was 393 

the primary path of CH4 emission in aquaculture ponds, and that ebullitive flux vs. diffusive 394 

flux could be easily resolved with a simple design of FCs with a detachable gauze. 395 

4.4. Implications of the comparison between different methods  396 

   The FCs method is the popular technique for measuring CH4 emissions due to its ability to 397 

detect low fluxes and the simplicity of its operating principle (Bastviken et al., 2015; Lorke et 398 

al., 2015; Musenze et al., 2014; Podgrajsek et al., 2014). However, the FCs method requires 399 

time-consuming manual operation, which limits the frequency of measurements and can be 400 

difficult to deploy in remote areas (Acosta et al., 2017; Morin et al., 2017). Improvement of the 401 
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global CH4 budget would require high-resolution emission data covering large time and spatial 402 

scales, which obviously is difficult to achieve with the FCs method. 403 

Large-scale estimates of aquatic CH4 emissions using TBL models has been gaining popularity 404 

(Holgerson and Raymond, 2016; Martinez-Cruz et al., 2016; Musenze et al., 2014; Wang et al., 405 

2017) due to their simplicity, practicality and low cost. There are, however, 406 

different TBL models to choose from, and the large differences in the model performances (Fig. 407 

4) mean that selecting the appropriate model(s) would be critical, or otherwise large errors 408 

would occur when upscaling the results from small ponds to the regional/global scale. Our 409 

results suggest that TBLW92b and TBLCW03 models could be used as effective and 410 

convenient alternatives to FCs in shallow aquaculture ponds. 411 

4.5. Limitation and future research 412 

The FCs method is a common method to measure CH4 fluxes from aquatic ecosystems. 413 

However, FCs may create microenvironments that affect the boundary layer conditions 414 

through, for instance, blockage of wind, change of atmospheric pressure at the measurement 415 

point, and change in the gas transfer rate through pressure build-up (Duchemin et al., 416 

1999; Matthews et al., 2003; Musenze et al., 2014). For example, the turbulence resulted from 417 

the chamber walls can enhance the efficiency of gas exchange and increase gas fluxes during 418 

low wind conditions (Matthews et al., 2003; Xiao et al., 2016). 419 

TBL models rely on the gas transfer velocity coefficient (kx), which itself is estimated from 420 

some empirical wind-based models. Effects of artificial aeration, which is commonly done in 421 

aquaculture ponds, on kx are unknown. More importantly, the TBL models ignore the effect of 422 
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buoyancy fluxes near the air-water interface on kx. An alternative is the surface renewal model 423 

(SRM), which considers both wind speed and buoyancy (e.g., Czikowsky et al., 424 

2018; MacIntyre et al., 2010; MacIntyre et al., 2018). 425 

The use of eddy covariance (EC) technique is increasingly popular as it can provide a better 426 

characterization of the variation in CH4 fluxes through quasi-continuous measurements 427 

(Acosta et al., 2017; Morin et al., 2017; Xiao et al., 2014; Zhao et al., 2019). However, its 428 

application in small water bodies (e.g., ponds) is limited by footprint contamination (Zhao et al., 429 

2019). Developing a practical and effective way to reduce the flux footprint and the 430 

contamination from gaseous sources outside the water body will allow broader application of 431 

EC method in the future. 432 

Different methods have their own limitations; careful comparison and cross calibration would 433 

be needed to increase the overall accuracy of these methods and to improve the global 434 

CH4 budget. 435 

5. Conclusions 436 

Despite the large CH4 emission from ponds, there is limited information about the comparison 437 

between different methods applied for the estimations of CH4 fluxes across the water-air interface. In this 438 

study, FCs and six TBL models were applied to estimate CH4 fluxes from aquaculture ponds. Our results 439 

indicate that dissolved CH4 concentrations in the subtropical shallow aquaculture ponds were on average 440 

~87 times more oversaturated than the ambient air, and thus the pond surfaces acted as considerable 441 

atmospheric CH4 sources. The high organic matter loading contributed to the CH4 supersaturated in the 442 

aquaculture ponds. As the first attempt in aquaculture ponds, this study also compared the CH4 fluxes 443 
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directly measured by using floating chambers (FCs) and estimated by six thin boundary layer (TBL) 444 

models (TBLLM86, TBLW92a, TBLRC01, TBLCL98, TBLW92b, and TBLCW03). The diffusive CH4 445 

fluxes estimated by different TBL models were largely variable, but overall they were 27 - 300% larger 446 

than those directly measured by FCs. The agreement between FCs-measured and model-estimated CH4 447 

fluxes was highest for the TBLW92b, TBLCW03 models. While our results suggested that the estimation 448 

of CH4 fluxes using a single TBL model could lead to high levels of uncertainty, the application of 449 

TBLW92b and TBLCW03 models could provide a robust and simple way for characterizing CH4 fluxes 450 

over direct measurements using FCs. Our results suggest that the comparison of different methods and 451 

selection of the most appropriate method(s) for determining CH4 flux should be a top research priority to 452 

improve the estimation accuracy of GHGs fluxes in aquaculture ponds and other aquatic ecosystems. 453 
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Table 1  739 

Summary of the TBL and FCs methods applied to measure CH4 diffusive fluxes from the aquaculture ponds in Min River Estuary during the 740 

aquaculture period. 741 

 

TBL methods 

FCs method 

TBLLM86 TBLW92a TBLRC01 TBLCL98 TBLW92b TBLCW03 

Minimum (µmol m-2 h-1) 0.6 1.3 5.6 1.9 1.9 1.3 1.3 

Maximum (µmol m-2 h-1) 108.8 650.0 1079.4 527.5 454.4 428.8 476.3 

Average (µmol m-2 h-1) 19.4 103.1 215.6 115.0 78.1 75.0 71.9 

Standard deviation 23.1 130.6 236.3 122.5 91.3 86.9 88.8 

Coefficient of variation 1.18 1.27 1.09 1.06 1.16 1.15 1.24 



 

 

Table 2  742 

Pearson correlation coefficients for dissolved CH4 concentration, CH4 diffusive fluxes and environmental variables from the aquaculture 743 

ponds in Min River Estuary during the aquaculture perioda. Bold numbers denote correlation coefficients for significant relationships. 744 

Environmental variables Dissolved CH4 concentration  CH4 diffusive fluxes 

Meteorological parameters   

  Air temperature 0.214* 0.203* 

  Wind speed (WS) NS 0.281* 

  Atmospheric pressure NS NS 

Water parameters   

  Water temperature NS NS 

  Dissolved oxygen (DO) NS NS 

  TOC concentration 0.312** 0.296** 

  N-NO3
− concentration -0.401** -0.392** 

  Electrical conductivity (EC) -0.361** -0.185* 

a The symbols * and ** indicate significant correlations at the 0.05 and 0.01 levels, respectively. n = 135 for environmental variables and CH4 diffusive fluxes from the aquaculture 745 

ponds. CH4 diffusive fluxes were directly measured using floating chambers method. 746 
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748 

Figure 1. Temporal variation in CH4 transfer velocities from the aquaculture ponds during the aquaculture period in the Min River 749 

Estuary. Values represent the means of nine replicates samples, while the vertical lines indicate standard errors .750 

http://dict.youdao.com/w/temporal%20and%20spatial%20variation/#keyfrom=E2Ctranslation
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Figure 2. Temporal variation in (a) CH4 concentration and (b) CH4 saturation in the surface water (20 cm depth) of the aquaculture ponds in the 752 

Min River Estuary during the aquaculture period. Values represent the means of nine replicates samples, while the vertical lines indicate standard 753 

errors.754 

http://dict.youdao.com/w/temporal%20and%20spatial%20variation/#keyfrom=E2Ctranslation
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Figure 3. Temporal variation in CH4 diffusive fluxes measured with the floating chamber method and the gas transfer velocity model methods 756 

during the aquaculture period from the aquaculture ponds in the Min River Estuary. Values represent the means of nine replicates samples, while 757 

the vertical lines indicate standard errors.758 
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Figure 4. Comparison of CH4 diffusive flux measured by using the FCs method and TBL models. Regression equation, linear correlation (r2) and 760 

significance (p) are also shown. Parameter bounds on the regression coefficients are 95% confidence intervals.761 
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Figure 5. Frequency distribution of CH4 diffusive fluxes from (a) TBLLM86, (b) TBLW92a, (c) TBLRC01, (d) TBLCL98, (e) TBLW92b, (f) TBLCW03, and 763 

(g) FCs measurements at the aquaculture ponds in the Min River Estuary during the aquaculture period. 764 
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