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ABSTRACT  

Knowledge of the key drivers of the severity of river flooding from tropical cyclones  

(TCs) is vital for emergency preparedness and disaster risk reduction activities. This global  

study examines landfalling TCs in the decade from 2010 to 2019, to identify those  

characteristics that influence whether a storm has an increased flood hazard. The highest  

positive correlations are found between flood severity and the total precipitation associated  

with the TC. Significant negative correlations are found between flood severity and the  

translation speed of the TC, indicating that slower moving storms, that rain over an area for  

longer, tend to have higher flood severity. Larger and more intense TCs increase the  

likelihood of having a larger area affected by severe flooding but not its duration or  

magnitude, and it is found that the fluvial flood hazard can be severe in all intensity  

categories of TC, including those of tropical storm strength. Catchment characteristics such  

as antecedent soil moisture and slope also play a role in modulating flood severity, and severe  

flooding is more likely in cases where multiple drivers are present. The improved knowledge  

of the key drivers of fluvial flooding in TCs can help to inform research priorities to help  

with flood early warning, such as increasing the focus on translation speed in model  

evaluation and impact-based forecasting.  

SIGNIFICANCE STATEMENT  

Knowing ahead of landfall which tropical cyclones are likely to lead to significant river  

flooding will help those responsible for emergency planning make appropriate decisions to  

minimize loss of life and property. We compare 280 tropical cyclones and find that the cases  

with slow-moving, large, and intense cyclones, affecting areas with wet antecedent  

conditions, have the highest likelihood of experiencing widespread flooding. Slower-moving  

storms also have an increased risk of longer and more extreme floods. Our results show the  
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importance of considering aspects such as the speed of forward movement along the whole 

flood early warning chain, from model evaluation and development, through to warning 

design and communication, to better inform forecast-based action prior to tropical cyclone 

landfall.  

1. Introduction  

Considering fluvial flood hazards in tropical cyclone (TC) forecasting and warning is 

important because this is a leading cause of mortality and damages (Rezapour and Baldock, 

2014). In the US, drowning from excessive rainfall occurs in more TCs than deaths from any 

other cause (Rappaport, 2014). Many of these fatalities occur outside of landfall counties 

(Czajkowski and Kennedy, 2010) and in inland counties (Rappaport, 2000). US residential 

losses from TC freshwater flooding are twice as high compared to TC storm surge losses, 

with nearly half of these being in inland areas (Czajkowski et al., 2017). A multi-hazard 

approach considering both wind-speed and rainfall has been shown to be more appropriate 

for risk-informed decision-making (Song et al., 2020), but studies investigating evacuation 

decision-making during hurricanes in the US have shown that the key determining factor is 

the intensity of the storm on the Saffir Simpson scale based on wind speed (Whitehead et al., 

2000), with no significant relationship between the perceived risk of flooding and evacuation 

(Stein et al., 2010). Therefore, it is important to increase public awareness of the dangers of 

inland flooding, and provide a better understanding of those factors that influence the severity 

of flood hazard to those involved in emergency preparedness and disaster risk reduction 

activities. 

Heavy rainfall can present a risk to communities regardless of the storm’s intensity 

category. The US National Hurricane Center (NHC) and the US National Weather Service 

(NWS) both indicate the importance of other information beyond the storm’s intensity-based 
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category. The NHC state that “Rainfall amounts are not directly related to the strength of  

tropical cyclones but rather to the speed and size of the storm, as well as the geography of the  

area.” (https://www.nhc.noaa.gov/prepare/hazards.php#rain). The NWS state that “It is  

common to think the stronger the storm the greater the potential for flooding. However, this  

is not always the case. A weak, slow moving tropical storm can cause more damage due to  

flooding than a more powerful fast-moving hurricane.”  

(https://www.weather.gov/jetstream/tc_hazards). The total rainfall from a TC in a given  

location is largely determined by the length of time a TC spends over that location, which is  

dependent on the size of the rainfall area and translational speed of the storm (Rogers et al.,  

2009). A slow along-track motion, or stalling near or after landfall, can lead to higher  

amounts of rainfall and a greater flood hazard, as seen during Hurricanes Harvey (2017) and  

Florence (2018). Larger TCs can also increase the rainfall hazard as they precipitate upon one  

spot for a longer time than smaller TCs moving at the same speed. They can also lead to more  

widespread flooding, leading to increased challenges for responders. Forecasting rainfall  

induced by TC landfall is determined by many factors, including the TC track, intensity, size  

and structure, as well as interaction with topography (Qiu et al, 2019), vertical wind shear  

(Chen et al., 2006), and other meteorological systems in the wider atmospheric environment.  

This can lead to seemingly similar landfall locations having different rainfall distributions  

(Cheung et al., 2018; Shi et al., 2017). Hydrological factors, such as soil conditions and  

orography, are also thought to have been important in determining which TC cases had  

elevated impacts from flooding (Rappaport, 2000, Sturdevant‐ Rees et al, 2001).  

While there is broad understanding, largely through case study or regional analysis (Saha  

et al., 2015; Hernández Ayala and Matyas, 2016; Touma et al., 2019, Yu et al., 2017), of  

those factors influencing the rainfall related to TCs, systematic global analysis to objectively  
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confirm these drivers and their relationships to downstream flood hazard is lacking. This 

study aims to address this gap and help to provide more specific information in support of 

efforts to raise awareness of fluvial flood risk from TCs, by undertaking a systematic global 

analysis of the key meteorological and hydrological factors that lead to an increased fluvial 

flood hazard from TCs. 

An improved understanding of the key factors that influence the severity of flood hazard 

from TCs is important to guide research work aiming to understand the predictability of 

fluvial flooding from TCs, to inform research priorities to improve the forecasts of flooding, 

and to guide planning and preparedness activities in the event of an advancing TC. 

Information on which TCs are likely to have storm surge and winds as their main hazard and 

which will also have substantial flood hazard is of vital importance for disaster risk reduction. 

While the strongest winds and largest storm surge usually occur near the center of intense 

TCs, rainfall and flooding often occur far from the center, spread far inland, and last beyond 

when the cyclone has weakened or dissipated (Villarini et al, 2014; Khouakhi et al, 2017). 

This has important consequences for evacuation, emergency management and recovery 

programs. If planners and responders better understand the likely severity of fluvial flooding 

for a given storm, and the locations likely to be at greatest risk from flooding, this can help 

with evacuation and emergency planning, response and recovery efforts.  

This study develops three indices to represent the severity of fluvial flooding for TC cases 

in terms of the flood area, duration and magnitude. These three flood severity indices are 

compared against TC and catchment characteristics in 280 landfalling TCs in the 10-year 

period from 2010 to 2019 in order to identify the key factors that influence the severity of 

river flooding in TCs. 
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The remainder of this paper is set out as follows: Section 2 details the data sources used 

in the study, and section 3 describes the methods used to select the TC cases, and calculate 

the TC characteristics, catchment characteristics and flood severity metrics for each case. 

Section 4 then compares the flood severity metrics for each storm with the TC and catchment 

characteristics to analyze the key factors that influence the severity of flood hazard from TCs. 

Section 5 discusses some important aspects of the results and where future work would be 

beneficial, while section 6 contains the main conclusions of the study. 

2. Data sources 

2.1. IBTrACS 

The main observed TC track dataset used in this study is the International Best Track 

Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2010, 2018). Where IBTrACS 

data is still listed as provisional (the 2018/2019 and 2019/2020 southern hemisphere seasons, 

and the 2019 season in the North Indian and North West Pacific basins), the track points are 

supplemented by the initial positions in the real-time advisories from each Regional 

Specialized Met Center (RSMC), which are collated at the Met Office for use in verifying TC 

track forecasts (Heming, 2017; Titley et al., 2020). 

The IBTrACS data is used to calculate the land footprint for each TC case (section 3.1), 

over which to calculate the flood severity indices. The IBTrACS data also provides the TC 

intensity data (section 3.2.1), and is used to calculate the translation speed (section 3.2.2). 

2.2. Global Precipitation Measurement (GPM) IMERG 

Precipitation data for is taken from the latest Integrated Multi-satellitE Retrievals for 

GPM (GPM IMERG Final Run V06) (Huffman et al., 2019). The “Final Run” data is used as 

this includes gauge data where available to calibrate the rainfall satellite-derived 
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observations, and has been shown to capture tropical cyclone precipitation patterns well, with 

closer agreement with gauge-based measurements than its predecessor for extreme events 

(Yuan et al, 2021). The data has a horizontal resolution of 0.1˚, and is extracted at a 30-

minute temporal resolution and then accumulated to give 24-hour precipitation accumulation 

data. The precipitation summary metrics are described in section 3.2.4. 

2.3. ERA5 

ERA5 is ECMWF’s latest comprehensive atmospheric reanalysis with a global horizontal 

grid resolution of about 31km/0.28125° (Hersbach et al., 2020). ERA5 mean sea level 

pressure (MSLP) data were extracted from the Copernicus Climate Change Service (C3S) 

Climate Data Store (CDS) (Hersbach et al., 2018a) at 6-hourly intervals and used to calculate 

the size of the tropical cyclone (section 3.2.3). Daily ERA5 soil moisture content data were 

also extracted, along with soil type, for use in calculating the antecedent soil moisture 

saturation (section 3.3.1). Precipitation accumulations were extracted hourly and summed to 

give 24-hour precipitation totals to compare to GPM precipitation accumulations. Several 

studies have found large improvements in performance for precipitation in ERA5 compared 

to ERA-Interim (e.g. Beck et al., 2019; Tarek et al, 2020; Nogueira, 2020), including for 

tropical cyclone cases (Hersbach et al., 2018b). A recent study found that ERA5 agrees well 

with gridded gauge data in terms of the spatial distribution of typhoon precipitation, although 

it can underestimate the most extreme precipitation (Jiang et al, 2020).  

2.4. GloFAS-ERA5 reanalysis 

The severity of fluvial flooding from TCs is difficult to calculate in a consistent way from 

observations given the relative sparsity of river discharge observations, particularly in many 

areas impacted by TCs (Lavers et al., 2019). Therefore, this study uses the GloFAS-ERA5 
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global river discharge reanalysis (Harrigan et al., 2020b), as a proxy for river discharge  

observations. The Global Flood Awareness System (GloFAS) is designed to provide a global  

overview of upcoming flood events to decision makers such as humanitarian organizations  

(e.g. Coughlan de Perez et al., 2016) as part of the Copernicus Emergency Management  

Service for floods. In GloFAS, ensemble meteorological forecasts from the European Centre  

for Medium-Range Weather Forecasts (ECMWF) are processed by the revised land surface  

hydrology scheme (HTESSEL) to create land surface runoff fields, with additional  

hydrological processes such as flow routing provided by the LISFLOOD hydrological model  

in order to forecast river discharge (Harrigan et al., 2020a; Alfieri et al., 2013; Balsamo et al.,  

2009 and 2011; Van Der Knijff et al., 2010; Hirpa et al., 2018).   

Daily GloFAS-ERA5 river discharge reanalysis data, with a horizontal resolution of 0.1°,  

were extracted from the C3S CDS (Harrigan et al., 2019), for each day 2010-2019, and used  

to define the flood severity in each landfalling TC case (section 3.4).  

Although GloFAS-ERA5 is partially dependent on model-derived precipitation and soil  

moisture, the groundwater and river routing parameters were calibrated against daily river  

discharge from 1287 observation stations worldwide (Hirpa et al., 2018) and a recent  

comprehensive global evaluation found it was skillful against a mean flow benchmark in 86%  

of catchments (Harrigan et al., 2020b). Other studies have compared GloFAS-ERA5 and  

observed discharge across regions (Ficchì and Stephens, 2019; Towner et al., 2020), or in  

case studies e.g. Emerton et al. (2020), for Cyclones Idai and Kenneth in Mozambique. The  

use of GloFAS-ERA5 reanalysis data allows an analysis of the flooding across the whole area  

affected by each TC, rather than just at isolated points on the river network. It also allows a  

direct comparison of flood severity across all TC cases, using openly available data, in a way  

that would not be possible using discharge observations.  
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3. Methods  

3.1. Selecting tropical cyclone cases and calculating their land footprint  

For the period 2010-2019, the IBTrACS TC track data is filtered to only include those  

TCs with a landfall at tropical storm strength or above (>=34 knots). The 6-hourly latitude  

and longitude track position data are extracted where the storm is at or above tropical storm  

strength, and is over land or within 500km of land. In order to decide the area, henceforth  

termed the ‘footprint’, in which to calculate the flood severity for each TC, the following  

steps are taken (illustrated for Cyclone Eliakim, which impacted Madagascar in 2018, in  

Figure 1):  

a) The TC positions at the start and the end of each day are extracted and used to create a  

daily mask representing the area of precipitation defined as being associated with the TC,  

by calculating all grid points that lie within 500km of that 24-hour storm track segment.  

Most studies that have assigned a set radius for defining TC-related rainfall, have used a  

radius of either 500km (Prat and Nelson, 2013, 2016; Jiang et al., 2011; Luitel et al, 2018),  

550km (Zhou and Matyas, 2017) or 5 degrees (Guo et al., 2017).  

b) The daily masks are combined to create an overall mask for the track of each TC.  

c) The overall mask is combined with a land sea mask to create the final land footprint used  

to analyze the flood severity.  

d) The number of valid 0.1˚ by 0.1˚ points (the GloFAS-ERA5 reanalysis resolution) in the  

land footprint is calculated, and the small number of TCs with fewer than 1,000 points in  

their footprint (equating to an area of c.100,000km2) are excluded to ensure the footprints  

are large enough to allow a sensible comparison of the area affected by severe flooding.   

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-20-0250.1.Brought to you by U.K. National Meteorological Library | Unauthenticated | Downloaded 05/10/21 09:49 AM UTC



10 

File generated with AMS Word template 1.0 

This process results in 280 landfalling TC cases from 2010-2019 being included in the study  

(broken down by basin in Figure 2). For each case a set of TC characteristics, catchment  

characteristics and flood severity measures are calculated, to allow an analysis across the  

cases of the key factors influencing the severity of fluvial flooding.  

3.2 Tropical cyclone characteristics  

3.2.1 INTENSITY  

The minimum mean sea level pressure (MSLP) and maximum sustained wind speed are  

extracted from IBTrACS at each track point and the pre-landfall value is used to identify the  

storm intensity for consideration in each case. To ensure wind speed data is comparable  

between basins, 1-minute maximum sustained winds are used where available.  

3.2.2 TRANSLATION SPEED  

Translation speed (speed in a forward motion) is calculated for each 6-hour track segment  

by dividing the distance between the track points by 6 hours. Three speed measures are then  

taken forward to consider in the analysis: i) translation speed during the track segment where  

it makes landfall; ii) average speed while the storm track is over land (the mean of the  

translation speeds from all 6-hourly track segments over land); iii) minimum translation  

speed while the storm is over land (the minimum of the translation speeds from all 6-hourly  

track segments over land), to take account of storms that stagnate after landfall.  

3.2.3 SIZE AND SHAPE  

TCs span a huge range of sizes, with gale force winds extending anywhere from c.20km  

from the center to over 1000km. A number of methods are commonly used to calculate storm  

size and shape, including the radial extent of winds reaching certain threshold values in knots  
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(R43, R50, R64), the radius of the maximum winds (RMW), and the radius of the outermost 

closed isobar (ROCI) (Merrill, 1984; Weber et al., 2014). The ROCI delimits the outermost 

extent of a TC's wind circulation and is the most relevant of these metrics for this study. Each 

RSMC will have its own, often subjective, procedures to calculate the ROCI recorded in 

IBTrACS, so to allow global comparisons this study re-calculates the ROCI using ERA5 

MSLP fields along the TC tracks. For each track point the MSLP field is centered on the 

storm location, and then decomposed into tangential and radial co-ordinates, essentially 

unwrapping the field around the storm center. A search is carried out for the outermost closed 

MSLP isobar on each radial angle. The distance to this isobar is then averaged for all radial 

angles to give the overall ROCI, and averaged for each quadrant (left-front, right-front, right-

rear and left-rear) to give shape information. Storm asymmetry is calculated by the ratio of 

the quadrant with the highest ROCI to that with the lowest ROCI. The average size and 

asymmetry in the day prior to landfall in each case is used in the subsequent analysis. 

3.2.4 PRECIPITATION 

The daily masks containing all points within 500km of the storm track in each 24-hour period 

(Figure 1a) are applied to the 24-hour precipitation accumulation data from GPM and ERA5, 

to obtain the precipitation considered to be associated with the TC. Three subsequent days are 

also included using the final mask to ensure that precipitation from any slow-moving 

remnants of the storm that may still contribute to flooding are included in the total storm 

precipitation. For the day prior to landfall, the proportion of the masked area with 

precipitation accumulations greater than 100mm is calculated and included as a characteristic, 

to see how this information, which could be better estimated ahead of landfall, compares to 

flood severity. 
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To calculate the total storm precipitation, the masked daily precipitation fields are  

combined to give the overall storm-total GPM and ERA5 precipitation in the land footprint  

(illustrated for Cyclone Eliakim in Figure 3). To investigate a range of precipitation  

characteristics in terms of their influence on the flood severity metrics, the following values  

are calculated from both GPM and ERA5:  

 The highest precipitation accumulation at any point in the land footprint area  

 The average precipitation accumulation across the land footprint area  

 The average precipitation accumulation for points in the land footprint area where the  

total is greater than 25mm (giving an estimate of the average precipitation accumulated  

in those areas where the storm led to rainfall)  

 The proportion of the land footprint area with precipitation accumulations greater than  

25/100/200mm  

3.3 Catchment characteristics  

3.3.1 ANTECEDENT SOIL MOISTURE SATURATION  

ERA5-derived soil moisture saturation fields were calculated as a percentage of the  

progress along a scale from the permanent wilting point soil water content to the saturation  

soil water content (as specified by soil type in table 8.9 of ECMWF (2020)). The data were  

calculated on two levels: layer 1 (0-7 cm), and layers 1-3 combined (0-100 cm). For each TC  

case, the antecedent soil moisture saturation data were taken from the date prior to the storm  

coming within 500km of land, to ensure the pre-storm saturation levels were being recorded.  

The antecedent soil moisture saturation for the Cyclone Eliakim case is shown in Figure 3c.  

For each layer, the average value in the storm land footprint was calculated, along with the  

proportion of the footprint with saturation greater than 90%.  
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3.3.2 OROGRAPHY AND GRADIENT  

Two of the GloFAS input variables, detailing the orography and the gradient of each grid  

point, were extracted for each footprint area. The average orography and gradient within the  

storm footprint area were calculated for consideration in the data analysis.  

3.4 Calculating flood severity  

The period used to calculate the flood severity for each TC case was defined by setting the  

first date as the landfall date and the last date as a week after the final point in the cyclone  

track, to allow time for the affected watersheds to respond to the rainfall. For each day within  

this case period the GloFAS-ERA5 discharge data in the land footprint area were compared  

to return period flood thresholds to calculate the return period exceeded at each point. The  

return period thresholds were taken directly from GloFAS, where they are determined from  

the GloFAS-ERA5 river discharge reanalysis, by fitting a Gumbel extreme value distribution  

on the annual maxima time series over the 1979-2018 period (Alfieri et al.¸2019; Harrigan et  

al., 2020a; Zsoter et al., 2020).  

Flood severity can be defined in several ways, each measuring a contrasting property of  

the flood hazard which may be of particular relevance to different stakeholders. In this study  

the flood severity is calculated in the following three ways for each storm:  

a) Flood severity (Area): This is defined as the percentage of GloFAS grid points within the  

storm’s footprint where the discharge exceeds the 5-year return period value for that point  

at any date during the case period. This has been termed ‘area’ to simplify the  

decomposition of flood severity into three component parts, but it is more akin to  

‘floodiness’ (Stephens et al., 2015) defined over a storm’s footprint than it is to measures  

of inundation extent. For Cyclone Eliakim, the flood severity (area) was 22% (Figure 3d).   
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b) Flood severity (Duration): This is defined by selecting those points where the 5-year 

return period was exceeded on at least one day, and then calculating the average number 

of days for which the 5-year return period was exceeded at those points. This value is set 

to zero for cases where no points exceed the threshold at all during the case period. 

c) Flood severity (Magnitude): For this magnitude-based definition the data is filtered to only 

include points that have an upstream area of greater than 1,000km2, to focus on the 

magnitude of the flooding on larger rivers in the footprint. The magnitude of the flood is 

defined by first calculating the maximum return period that is exceeded at each of these 

river points during this TC event, and then ranking the points from highest to lowest and 

calculating the average return period exceeded over the top 100 points. The return periods 

are capped at 200 years as a sensible upper limit, given that the return period thresholds 

are generated on a 40-year sample (Harrigan et al., 2020a). In this way the magnitude-

based definition of flood severity compares the most severely affected river points in each 

TC case, in terms of the extremeness of the discharge levels experienced. 

4. Results 

4.1 Comparison of flood severity measures 

The flood severity of all the TC cases, split geographically by the TC basin, is 

summarized in Figure 4. For all basins other than the South Indian Ocean, most of the cases 

have relatively low flood severity (Area) (median of 1-5%), but each basin has several cases 

with higher flood severity. However, in the South Indian Ocean basin, more of the cases  

have a higher flood severity (Area), with the median of 13% (4a) found by a Kruskal-Wall H-

test to be significantly different from the other basins (p<0.01). For flood severity (Duration) 

the median duration for those points exceeding the 5-year return period threshold is between 
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one and three days in all regions (4b). The median duration was higher for the Australian 

basin and the lower for the North West Pacific (both significant at p<0.01). For flood severity 

(Magnitude) the South Indian Ocean is again shown to have a higher median value compared 

to other regions (significant at p<0.01). All basins have some cases where very high return 

periods are exceeded (4c). 

There are significant positive Spearman correlations between the three flood severity 

measures (Figure 5). Although the correlations are strong (> 0.5 in each case), there are some 

cases where storms have a very high flood severity in one measure and not in another. Good 

examples of this are Typhoon Hagibis (2019) and Typhoon Lan (2017), which can be seen in 

the bottom right of the plot in Figure 5a, with highest flood severity (Area), but where most 

of that flooding was very short lived, with flood severity (Duration) of only around 1 day. 

This emphasizes the importance of considering multiple indices, to take into consideration all 

characteristics of the flood severity. 

The top ten most severe cases according to each of the flood severity indices are shown in 

Table 1. All basins have storms represented in the lists. Many storms appear in the top ten for 

two of the indices, and two storms, Cyclone Luban (2018) and Cyclone Idai (2019) appear in 

all three lists. Table 2 contains a summary of the impacts from the TC cases that appear in at 

least two of the top tens. While it is harder to ascertain whether there were cases with severe 

impacts that were not highlighted, the fact that all of the storms in Table 2 had significant 

impacts from flooding indicates that the methods used in this paper have correctly 

highlighted high-impact cases of fluvial flooding from TCs. 

4.2 Relationships between flood severity and case characteristics 

4.2.1 CORRELATIONS 
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The Spearman’s Rank Correlation Coefficients between the flood severity metrics and all  

the calculated storm and catchment characteristics are shown in Figure 6. A comparison  

between GPM and ERA5 rainfall (not shown) revealed very strong correlations, so only the  

ERA5 precipitation variables are included. All the flood severity variables are significantly  

correlated with each other, as was seen in Figure 5. All precipitation variables (both for the  

precipitation field prior to landfall and for the accumulated precipitation variables within the  

footprint) are significantly positively correlated with the flood severity (Area) index, with the  

highest correlations for the average accumulation in the footprint where it rained (0.58) and  

for the percentage of the footprint over 100/200mm accumulations (0.57/0.54). For flood  

severity (Duration), there is no significant correlation with the precipitation prior to landfall,  

but there are significant correlations with most total storm accumulation measures. For flood  

severity (Magnitude), there are positive correlations with all precipitation variables apart  

from the percentage of the footprint over the lowest value of 25mm.  

The storm intensity variables, MSLP and wind speed at landfall, are significantly  

negatively (-0.18) and positively (0.13) correlated with flood severity (Area) respectively.  

This shows that generally the more intense the storm (lower MSLP minima and stronger  

winds), the greater the flood severity. However, neither intensity variable is significantly  

correlated for flood severity (Duration) or flood severity (Magnitude), so it is not always the  

case that a strong storm will lead to severe flooding in terms of duration or magnitude, or that  

a weaker storm cannot cause significant flood events. A comparison of the distribution of  

flood severity values for TC cases split into those that are tropical storms at landfall with  

those that have equivalent hurricane or major hurricane strength (Figure 7) confirms that all  

storm categories have some cases with both low and high flood severities. There are no  

significant differences between the severity of flooding in tropical storms and hurricanes, but  
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for major hurricanes there is a notable increase in the upper quartile range and the median is  

significantly higher for the area and magnitude definitions of flood severity (Kruskal-Wall H- 

test with p<0.01).  

The three translation speed variables are all significantly negatively corelated with all the  

flood severity indices i.e. slower-moving storms tending to have to greater flood severity  

when considered in terms of area, duration and magnitude. The strongest correlations are  

with the duration of flooding (-0.31, -0.32, and -0.33 respectively for the translation speed at  

landfall, the average translation speed over land, and the minimum translation speed over  

land).  

The storm size as measured by the ROCI is significantly positively correlated with flood  

severity (Area) (0.12), indicating that larger storms tending to have a greater percentage of  

the land footprint exceeding the 5-year return period. There is no significant correlation with  

flood severity (Duration) or flood severity (Magnitude), and no significant correlation of  

storm asymmetry with any of flood severity measures.  

The relationship between flood severity and soil saturation is complex and varies with  

each of the flood severity indices. For flood severity (Area), all the soil saturation metrics  

have positive correlations, showing that cases with more saturated antecedent soil conditions  

tend to have greater flood severity. However, a different pattern is shown for the other two  

flood severity indices (Duration and Magnitude), where there are significant negative  

correlations with the average soil moisture saturation in the top 100cm layer (-0.27 and -0.15  

respectively).  

There is a significant positive relationship of average orography and flood severity (Area)  

(0.24), and there are significant negative correlations of the average gradient with flood  
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severity (Duration) (-0.44) and flood severity (Magnitude) (-0.31), so lower gradients would 

tend to have greater flood severity in terms of the flood duration and magnitude. 

4.2.2 CONDITIONAL PROBABILITIES 

Conventional wisdom is that translation speed is a significant risk factor leading to 

increased flood severity. Significant relationships were shown between the flood severity 

indices and the translation speed of the TC in Figure 6, but the correlations are perhaps lower 

than anticipated, at -0.22, -0.33, and -0.26 for the minimum translation speed over land when 

compared to flood severity as measured by area, duration, and magnitude respectively. 

However, if we look in more detail at scatter plots for these relationships, and apply a 

conditional probability technique to split the plot into four quadrants, further useful 

information can be found (Figure 8). The x-axis is split by the median value of the minimum 

translation speed over land, to designate slow-moving and fast-moving storms. A sensitivity 

analysis (not shown) was used to select which percentile of the y-axes (the flood severity 

scores) to use to designate non-severe and severe flooding cases. The 90th percentile was 

selected as the threshold that gave the best combination of having sufficient cases included in 

the upper section while also focusing in on the more severe cases (the top 10%). The 

conditional probability of having severe flooding if the storm is slow moving is then 

calculated. For flood severity (Area), the conditional probability of having severe flooding if 

the storm is slow moving is 14%, more than double the conditional probability if the storm is 

fast moving (6%) (Figure 8a). So although there are a few cases (e.g. Hagibis, Man-Yi, and 

Lan) in the upper right quadrant of Figure 8a where flood severity is high in fast-moving 

storms, and lots of cases where slow-moving storms do not lead to severe flooding, overall 

there is a greater risk of severe flooding in slow-moving storms, with a significant cluster of 

storms with high flood severities and low translation speeds (e.g. Komen, Idai, Luban, Kajiki, 
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Eliakim). The results when we apply the same conditional probability technique to the other  

two flood severity metrics are even clearer, with three times the probability of having a  

severe flooding event for slow-moving storms for flood severity (duration), and four times  

the probability of a severe flooding event for slow-moving storms for flood severity  

(magnitude) (Figure 8b and 8c).   

Fast movement of TCs appears to often mitigate severe flooding, and slow movement  

increases the likelihood of severe flooding, but these patterns are not seen in all cases. The  

role of other factors in moderating this relationship can be examined by comparing  

conditional probability plots of flood severity against several different characteristics,  

selected based on the correlation results shown in Figure 6 (Figure 9). Flood severity (Area)  

is used to examine in more detail the interplay between characteristics, as the extent of the  

severe flooding across the whole area affected by the TC is perhaps the most relevant when  

considering preparedness and recovery activities such as evacuation planning. The strong  

relationship between flood severity and the percentage of the footprint with high precipitation  

totals can be seen in Figure 9a, with only 2% of the cases lower than the median precipitation  

having severe flooding. When the conditional probability technique is applied to the average  

soil saturation in the top layer of the soil, there is found to be more than double the risk (14%  

compared to 6%) of having severe flooding where there is high soil saturation (Figure 9b).  

The bottom three plots (9c-e) show three of the TC characteristics that may play a role in  

increasing the overall precipitation accumulation: intensity, translation speed, and size. For  

the more intense storms, there is a small increased probability of severe flooding (12%) when  

compared with the less intense storms (7%) (Figure 9c). The doubling of the likelihood of  

severe flooding for slow translations speeds, as shown in Figure 8a, are repeated in Figure 9d,  
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while Figure 9e shows the conditional probability results for TC size, with nearly double the  

risk of severe flooding for large storms (13%) compared to small storms (7%).  

Typhoons Man-Yi (2013), Hagibis (2019) and Lan (2017) appear as relative outliers in  

the upper right quadrant of Figure 9d (fast-moving storms where flood severities were  

unexpectedly high or very high). On Figure 9e it can be see that these are all very large  

storms, indicating that the size of these storms may have been a significant factor  

contributing to their high flood severity, acting to override the mitigative nature of their fast  

translation speed. They are also categorized in the more intense category for intensity (Figure  

9c), and the high soil saturation category (Figure 9b). Thus, in these cases the high translation  

speed of these typhoons did not prevent a severe flood event due to the presence of several  

other risk factors.   

A similar conditional probability analysis for the other two flood severity measures  

(duration and magnitude) (not shown) found that the main driving factor from the TC  

characteristics was the translation speed of the storm. The other main risk factors were from  

the catchment characteristics, with drier soils and lower gradients being associated with a  

large increase in the risk of having a longer and higher magnitude flood event. These results  

show that the influence of the catchment characteristics on the duration and magnitude of  

flooding is greater than for the flooding measured in terms of the area.  

4.2.3 INTERPLAY OF CHARACTERISTICS  

To investigate further how the combination of several factors helps to determine the  

overall flood severity, two characteristics, TC translation speed and TC size, have been used  

to split the cases into four categories based on whether they are larger/smaller than the  

median size, and faster/slower than the median translation speed (Figure 10). For flood  

severity (Area), cases where the TC is both slow and large have the highest median and upper  
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quartile range, followed by slow and small, then fast and large, and finally fast and small  

cases. Meanwhile for flood severity (Duration) and flood severity (Magnitude) there is a  

clearer split between the fast types and the slow types, showing that for flood duration and  

magnitude the translation speed of the storm is a more important factor than the size of the  

storm.  

This process is taken further by grouping each TC case depending on how many of the  

four risk factors found in Figure 9 (slow-moving storm, large storm, intense storm and wet  

antecedent conditions) are present (Figure 11). Total precipitation is not included here as we  

are focusing on the factors that influence that precipitation, that are easier to estimate a-priori  

when assessing the risk associated with a storm in forecast mode. Figure 11a shows that the  

likelihood of a higher flood severity increases the more risk factors are present. Figure 11b  

splits the categories by which of the risk factors are present. The storms that are classed as  

having all four risk factors (slow, large, strong and wet) have the highest median flood  

severity and the highest upper quartile range. Within those cases that have 3 risk factors,  

cyclones that are slow and large with wet antecedent conditions stand out as having a high  

upper quartile range. For those cases with 2 risk factors, the highest median value is for cases  

with slow TCs with wet antecedent conditions, while where only one risk factor is present,  

there are higher flood severities for slow storms.  

5. Discussion of the key outcomes  

5.1 Applying flood severity metrics to tropical cyclones footprints  

This study has implemented three flood severity indices designed to measure the severity  

of flooding in TCs, based on i) the area affected; ii) the duration of the flooding; and iii) the  

magnitude of the flooding in the most severely affected areas. Although the different flood  
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severity measures are all significantly positively correlated with each other, there are cases 

where a storm has a very high flood severity in one measure and not in another e.g. where a 

large area is affected but flood duration is low. Some of the drivers of an enhanced flood 

severity found in this study are consistent whether considering the area affected, duration, or 

magnitude e.g. high total precipitation and low translation speed, whereas some drivers are 

only significant for one or two of the indices e.g. large storms and the area-based index, and 

gentler slopes with the duration- and magnitude-based indices. This emphasizes the 

importance of considering multiple indices to take into consideration all characteristics of the 

flood hazard, especially given that stakeholders may have differing priorities. An 

organization with responsibility for emergency planning across a large geographical area 

would be particularly concerned about the extent of the area being affected by flooding, 

whereas an individual in an area prone to flooding may be most concerned about the 

magnitude of flooding likely to be experienced. 

5.2 Importance of precipitation and translation speed 

The strongest relationships are found with the metrics summarizing the event total 

precipitation, showing the importance of increasing the availability and profile of 

precipitation forecasts in TC forecast communication and verifying the ability of models that 

drive flood forecasting systems to forecast the precipitation associated with TCs.  

Out of the other TC characteristics, the speed of forward movement of the TC is found to 

be a key factor influencing the severity of the fluvial flood hazard, in terms of its area, 

duration and magnitude. This confirms that slower moving storms, which rain over a given 

area for longer, tend to have higher flood severity, and that greater focus should be given to 

translation speed in forecast warnings and communication. Climate change is thought to have 

caused a general weakening of summertime tropical circulation, decreasing the translation 
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speed of TCs (Kossin, 2018). This, combined with an expected increase in the magnitude of  

rainfall rates in TCs (Knutson et al., 2010), is likely to lead to an increased fluvial flood  

hazard from these events in the future.  

5.3 Presence of flood hazard at all levels of storm intensity  

TC intensity is positively correlated with the flood severity as defined by area, but not  

significantly correlated with the duration or magnitude of the flooding. A further analysis  

splitting cases into those of equivalent tropical storm, hurricane, and major hurricane  

strength, showed that all three have cases spanning the full range of flood severity values.  

This shows the importance of forecasting agencies continuing to emphasize to both the public  

and to organizations involved with disaster risk reduction preparedness and response  

activities that the fluvial flood hazard can be severe in all categories of TC.  

5.4 Complex relationship between flood severity and antecedent soil moisture  

Conventional wisdom, established by looking at small to medium sized flood events, is  

that higher levels of soil moisture saturation would lead to an increased risk of flooding  

(Berghuijs et al, 2019). However, when dealing with the extreme precipitation totals that can  

be found in TC events, the relationship appears more complex. For flood severity (Area),  

there are indeed more cases of severe flooding in those cases with high soil saturation.  

However, a different pattern is shown for the other two flood severity indices (duration and  

magnitude), where there is a higher conditional probability of severe flooding for lower  

(drier) antecedent soil moisture. Areas that are drier climatologically (e.g. the Arabian  

Peninsula) show higher return periods being exceeded, which is likely due to a combination  

of flash flooding, and the difficulty of accurately estimating return period thresholds in arid  
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areas. Using soil moisture anomaly data rather than soil moisture saturation in future studies  

may help to further unpick this complex relationship.  

5.5 Interplay of characteristics in modulating flood severity  

The interplay between different characteristics acts to modulate the overall flood severity.  

For example, although fast-moving storms can mitigate fluvial flooding, there can still be a  

significant flood event if there are other risk factors present. An example of this is Typhoon  

Hagibis, which led to widespread and severe flooding in Japan in 2019. Here, the relative  

mitigation of Hagibis being fast-moving was outweighed by the storm’s size, intensity, and  

wider atmospheric environment, leading to very heavy precipitation and severe flooding,  

albeit over a relatively short period (Takemi and Unuma, 2020). Contrastingly, although  

slow-moving storms significantly increase the conditional probability of a severe flood event,  

many slow-moving storms do not lead to significant flooding e.g. Tropical Storm Beryl  

(2012) which moved very slowly over northern Florida, but was relatively small and weak,  

and passed over an area where the antecedent conditions were dry. As this study included  

over 250 cases it was not possible to explore in detail the varied complexities that contributed  

to the detailed flood response in each individual case, such as the wider atmospheric  

environment, in a way that would be possible if only examining one or two cases.  

Nevertheless it provides a systematic analysis of potential meteorological and hydrological  

drivers, and a key finding is that the more driving factors a case possesses, the higher the  

likelihood of severe flooding, with in particular TCs that were slow, large, and strong, with  

wet antecedent conditions, having a higher flood severity in terms of the area that was  

affected.  

5.6 Implications for research into the predictability of fluvial flooding from tropical cyclones  
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The severity of flooding in TC cases is shown to be dependent on a range of both  

meteorological and hydrological factors, showing the importance of a multi-disciplinary  

Earth system approach to global flood prediction (Harrigan et al., 2020b). The flood forecasts  

from hydrometeorological forecasting systems will be highly dependent on how reliably the  

input meteorological forecasts are able to predict not only the track and the intensity of TCs,  

but also their precipitation extent and intensity. This in turn will be dependent on the size and  

in particular the translation speed of the storm. There has generally been less focus on  

verifying these characteristics of TCs in ensemble forecasts, with most studies focusing on  

the predictability of track, intensity, and genesis. In order to understand and improve the  

forecasts of fluvial flooding from TCs, studies evaluating these aspects of forecast  

performance are recommended. It would also be beneficial to examine how uncertainty in  

each aspect of the forecast, and in each part of the forecasting chain, impacts on the overall  

predictability of fluvial flooding for TCs.   

5.7 Implications for disaster risk reduction, preparedness and response  

The finding that the forward speed of the storm is of more importance than the intensity  

in modulating the severity of fluvial flooding is an important result. The expected speed of  

movement of the storm tends to have far less coverage in both traditional and social media  

than the intensity of the storm. This means that the public, local emergency responders, and  

those involved in planning disaster risk reduction activities may become too focused on storm  

intensity categories when making evacuation decisions, undertaking storm preparedness  

activities, or planning deployment of resources. Significant impacts from fluvial flooding can  

occur regardless of whether it is a strong storm, where there will likely also be significant  

wind and storm surge hazards, or a weak storm, where the fluvial flooding may be the main  

hazard. Both circumstances have important implications for forecast-based early action. An  
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example of a TC that caused significant flooding while being relatively weak is Cyclone  

Komen, which impacted Myanmar, Bangladesh and India in 2015. Komen only reached  

equivalent strength of a tropical storm, but was very slow-moving, with a broad circulation  

leading to prolonged heavy rainfall over areas of Myanmar already saturated due to weeks of  

monsoonal flooding, leading to severe impacts. Raising the profile of cases such as these  

where the wind hazards may be relatively low, but there is potential for a slow-moving storm  

impacting vulnerable areas, meaning the fluvial flood hazard and impacts are likely to be  

more severe, will help to ensure that preparations are made to ameliorate impact. For intense  

TCs, where evacuations and deployment of aid may be being organized in advance of landfall  

due to the anticipated wind impacts, it is also vital to know whether that storm also has an  

elevated likelihood of fluvial flooding due to other risk factors such as a slow translation  

speed or saturated antecedent soil conditions. If it does it would be important to select  

evacuation routes, shelters and aid deployment sites that would not be impacted in the event  

of extensive fluvial flooding, which may extend far from the landfall location. For example,  

Cyclone Idai, which led to catastrophic flooding in Mozambique in March 2019, exhibited  

most of the factors shown in this study to be key drivers of fluvial flood hazard: it was a  

strong storm, but significantly it was also a slow-moving storm at and after landfall, a  

relatively large storm, and also had wet antecedent soil moisture conditions. Highlighting this  

co-occurrence of flood drivers to decision-makers in future cases where a storm is  

approaching landfall will help to ensure early action can be taken to plan for and mitigate the  

impacts of severe flooding.  

6. Conclusions  

Landfalling TCs over the last decade have been classified in terms of the severity of  

fluvial flooding that was associated with each storm using GloFAS-ERA5 reanalyses. Flood  
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severity has been calculated using three different indices, each focusing on a different  

characteristic of the associated fluvial flooding (area, duration and magnitude). The key  

factors that impact the severity of fluvial flooding were investigated by comparing these  

flood severities with a range of TC characteristics (storm speed, size, shape, intensity, and  

precipitation), and catchment characteristics (antecedent soil moisture, orography, and  

gradient). The key findings are:  

• There are cases that have very high flood severity in one measure and not in another,  

highlighting the importance of considering the area, duration and magnitude characteristics of  

TC flood events.  

• Flood severity is strongly positively correlated with metrics summarizing the event  

total precipitation, showing the importance of increasing the availability and profile of  

precipitation forecasts in TC forecast communication and verifying the ability of models that  

drive flood forecasting systems to forecast the precipitation associated with TCs.   

• Slow-moving storms were found to have a much higher conditional probability of a  

severe flood event compared to fast-moving storms, confirming that slower moving storms,  

where storms are raining over an area for longer, tend to have higher flood severity.  

• All intensities of TC have cases spanning the full range of flood severity values,  

including several cases of tropical storm strength that were associated with severe flooding.  

This confirms the need for forecasting agencies to continue emphasizing that the fluvial flood  

hazard can be severe in all categories of TC.  

• Large storms have a higher conditional probability of severe flooding than small  

storms in terms of the area affected. The duration and magnitude of the flooding are found to  

be more dependent on the catchment characteristics within the land footprint of the storm,  

with gentler slopes having a much greater conditional probability of severe flooding. The  
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relationship between flood severity and antecedent soil moisture is found to be complex and  

not consistent across the different flood severity indices.  

• Several TC and catchment characteristics often combine to influence the overall flood  

severity and negate or enhance other factors e.g. fast-moving storms still having a severe  

flood hazard if they are large, intense and passing over saturated ground. The more driving  

factors that a case possesses the higher the flood risk is found to be, with the highest  

likelihood of having a large area affected by flooding found for TCs that were slow, large,  

intense, and affecting areas with wet antecedent conditions.   

The reanalysis data used in this study provides a proxy for the observed severity of  

flooding, and although this allows a direct comparison of flood severity across all TC cases,  

studies of fluvial flooding in TCs would benefit hugely from an increase in the availability  

and consistency of hydrological observations (Lavers et al., 2019).  

This study has highlighted the characteristics of TCs that have the most control on flood  

hazard. For those involved in communicating early warnings and taking forecast-based action  

before a storm our results show the importance of considering aspects such as storm speed  

when assessing the risks. For developers of hydrometeorological ensemble forecasts of river  

flows our work underlines that the input meteorological ensemble forecasts for TCs need to  

be able to reliably predict not just their track and intensity, but also their precipitation, size  

and translation speed. Future research needs to focus on verifying and improving these  

characteristics for agencies to be able to provide more accurate forecasts of flood hazard.  
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TABLES  

Rank Flood severity 

(Area) 

Flood severity 

(Duration) 

Flood severity 

(Magnitude) 

1 Lan (WP, 2017) Mekunu (NI, 2018) Alex (NA, 2010) 

2 Hagibis (WP, 2019) Phet (NI, 2010) Luban (NI, 2018) 

3 Komen (NI, 2015) Harvey (NA, 2017) Mekunu (NI, 2018) 

4 Luban (NI, 2018) Luban (NI, 2018) Idai (SI, 2019) 

5 Kajiki (WP, 2019) Kenneth (SI, 2019) Harvey (NA, 2017) 

6 Idai (SI, 2019) Kelvin (AUS, 2018) Komen (NI, 2015) 

7 Man-Yi (WP, 2013) Pawan (NI, 2019) Hagibis (WP, 2019) 

8 Chedza (SI, 2015) Kajiki (WP, 2019) Yasi (AUS, 2011) 

9 Eliakim (SI, 2018) Carlos (AUS, 2011) Odile (EP, 2014) 

10 Mindulle (WP, 2016) Idai (SI, 2019) Debbie (AUS, 2017) 

Table 1: The 10 highest ranked TCs for each flood severity measure (in bold if that TC case is  

in the top 10 for 2 out of 3 of the indices, and in bold italic if it is in the top ten of all three  

indices).  
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Case Summary of impacts 

Idai 

(SI, 2019) 

Severe flooding in Mozambique, Malawi, and Zimbabwe, leading to a major 

humanitarian crisis. Damages of at least $2.2 billion (2019 USD), 1.85 million people in 

need of humanitarian assistance, and over 600 fatalities in Mozambique alone (Emerton 

et al., 2020). Deadliest tropical cyclone recorded in the South-West Indian Ocean basin 

Luban  

(NI, 2018) 

Flooding in Somalia, Oman, and Yemen, with 14 deaths in Yemen, with damages in the 

country estimated at US$1 billion (Associated Press, 2018). 

Hagibis  

(WP, 2019) 

98 confirmed deaths in Japan and more than 270,000 households left without power 

across the country. Severe damage to transport infrastructures. 

Komen  

(NI, 2015) 

Komen led to 45 deaths in Bangladesh, 83 in India, and 39 deaths in Myanmar. 

Kajiki 

(WP, 2019) 

At least 6 fatalities in Vietnam, with agricultural losses estimated at US$12.9 million. 

Mekunu  

(NI, 2018) 

31 fatalities (Socotra island, Yemen, and Oman). Severe flooding led to power outages, 

and landslides. 

Harvey  

(NA, 2017) 

Unprecedented flooding in Texas inundating hundreds of thousands of homes, displacing 

more than 30,000 people and prompting more than 17,000 rescues. Over 100 fatalities. 

Table 2: A summary of the impacts from those storms that appear in the top 10 for at least two  

of the flood severity measures. All are tropical cyclones that led to significant impacts.  
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FIGURES  

  

Figure 1: Method for calculating the land footprint of each tropical cyclone case, illustrated for  

Cyclone Eliakim, which impacted Madagascar in March 2018.  
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Figure 2: The locations of the first land point in the track of the 280 tropical cyclones included 

in this study (2010-2019), including the breakdown of cases by the tropical cyclone basin. NB. 

No tropical cyclones are included in the South Pacific basin, where the only landfalls are in 

small island nations and therefore the land footprints were too small to allow for a fair 

comparison with the other cases. 
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Figure 3: Cyclone Eliakim (2018): a) Total event precipitation calculated from GPM; b) Total  

event precipitation calculated from ERA5; c) Antecedent soil moisture saturation in the top  

layer of soil; d) GloFAS-ERA5 points that exceeded the 5-year return period during the event  

(22% of land footprint).  
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Figure 4: Box-and-whisker plot showing a) Flood severity (Area), b) Flood severity (Duration),  

and Flood severity (Magnitude) grouped by tropical cyclone basin (AUS=Australian,  

EP=Eastern Pacific, NA=North Atlantic, NI=North Indian, SI=South Indian, WP=North West  

Pacific). In all the box-and-whisker plots in this study, the box extends from the Q1 to Q3  

quartile values of the data and the whiskers extend from the 5th to the 95th percentiles. Outliers  

beyond this point are plotted as circles. The median is shown by a green line, with the 95%  

confidence bounds in that median shown by the notched area of the box, calculated by  

bootstrapping.   

  

  

Figure 5: Scatter plots of the different flood severity indices: a) Flood severity (Area) vs Flood  

severity (Duration); b) Flood severity (Area) vs Flood severity (Magnitude); and c) Flood  

severity (Duration) vs Flood severity (Magnitude). The Spearman’s Rank Correlation  

Coefficient is displayed on each plot. Points are annotated with the storm name if they have  

high values on either axis or are outliers to the general pattern.  
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Figure 6: Spearman’s Rank Correlation Coefficients of the flood severity variables with the 

tropical cyclone characteristics and catchment characteristics fields for each tropical cyclone 

case. Those with a Spearman’s Rank Correlation Coefficient with a significance value <0.05 

are marked in bold with an asterisk. 

 

 

Figure 7: Flood severity (Area (a), Duration (b), and Magnitude (c)), for three categories of 

tropical cyclone calculated based on the maximum wind speed at landfall taken from IBTrACS: 

i) Tropical storm (34–63 knots), ii) Equivalent hurricane strength (64-95 knots), iii) Equivalent 

major hurricane strength (96+ knots). In actuality different storm categories and thresholds are 

used by different RSMCs when defining intensity, but in order to compare across basins, the 

categories based on the Saffir-Simson scale are used here. The 95% confidence bounds in the 

median is shown by the notched area of the box, calculated by bootstrapping. The number of 

cases in each category is overlain. 
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Figure 8: Illustration of the conditional probability technique for examining the relationship 

between minimum translation speed over land and flood severity. The blue lines divide the 

plot into quadrants based on the median translation speed (9.19 knots) and the 90th percentile 

of the flood indices (12.86% for flood severity (Area), 3.10 days for flood severity (Duration) 

and 102.59 for flood severity (Magnitude)). There are therefore equal numbers of cases in the 

orange and green halves of the plots, while the upper section of the plot displays the 10% of 

the tropical cyclone cases with the most severe flooding. The numbers in the top right and top 

left quadrants can be compared to see if there is an elevated risk of severe flooding for slow 

moving storms. Points are annotated with the storm name if they have high values on either 

axis or are outliers to the general pattern. The Spearman’s Rank Correlation Coefficients for 

each plot are as follows: a) -0.22; b) -0.33; c) -0.26. 
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Figure 9: Scatter plots for the flood severity (Area) indices against a) the percentage of the  

footprint with event precipitation totals greater than 100mm; b) average soil saturation in the  

top layer of soil; c) mean sea level pressure minima at landfall; d) minimum translation speed  

over land, and e) size at landfall (ROCI). Each plot has the conditional probability technique  

applied using the median of the variable and the 90th percentile of the flood severity to create  

the quadrants. The Spearman’s Rank Correlation Coefficients for each plot are as follows: a)  

0.57; b) 0.15; c) -0.18; d) -0.22; e) 0.12.  
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Figure 10: Flood severity (Area (left), Duration (center), and Magnitude (right)), for four 

categories of tropical cyclone: i) fast and small, ii) fast and large, iii) slow and small, iv) slow 

and large. The number of cases in each category is overlain. 

 

 

 

Figure 11: Flood severity (Area), for tropical cyclones grouped by risk factors (slow-moving 

storm, large storm, intense storm, wet antecedent conditions): a) grouped according to how 

many of the risk factors they possess; b) further split by which risk factors (highlighted in bold) 

are present in each group. The number of cases in each category is displayed below the box 

plot. 
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