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ABSTRACT 47 

Life on Earth vitally depends on the availability of water. Human pressure on freshwater 48 

resources is increasing, as is human exposure to weather-related extremes (droughts, storms, 49 

floods) caused by climate change. Understanding these changes is pivotal for developing 50 

mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines 51 

a suite of Essential Climate Variables (ECVs), many related to the water cycle, required to 52 

systematically monitor the Earth's climate system. Since long-term observations of these 53 

ECVs are derived from different observation techniques, platforms, instruments, and retrieval 54 

algorithms, they often lack the accuracy, completeness, resolution, to consistently to 55 

characterize water cycle variability at multiple spatial and temporal scales.  56 

Here, we review the capability of ground-based and remotely sensed observations of 57 

water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant 58 

land, atmosphere, and ocean water storages and the fluxes between them, including 59 

anthropogenic water use. Particularly, we assess how well they close on multiple temporal 60 

and spatial scales. On this basis, we discuss gaps in observation systems and formulate 61 

guidelines for future water cycle observation strategies. We conclude that, while long-term 62 

water-cycle monitoring has greatly advanced in the past, many observational gaps still need 63 

to be overcome to close the water budget and enable a comprehensive and consistent 64 

assessment across scales. Trends in water cycle components can only be observed with great 65 

uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the 66 

water cycle requires improved model-data synthesis capabilities, particularly at regional to 67 

local scales. 68 

 69 

CAPSULE 70 
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By assessing the capability of available ground-based and remotely sensed observations 71 

of water cycle Essential Climate Variables, we discuss gaps in existing observation systems 72 

and formulate guidelines for future water cycle observation strategies.  73 

1. Introduction 74 

Life on Earth is intimately connected to the availability of water, to the point that when 75 

we search for life on other planets, we search for water. Its circulation through the 76 

hydrological cycle sustains the Earth's biosphere, which remains inherently vulnerable to the 77 

variability in water supply. With a steadily increasing world population and economic 78 

development, the demands on water resources and the potential damage by 79 

hydrometeorological extremes like droughts and floods are increasing too. But it is not only 80 

the hydrosphere that has impacted us, as vice versa, it is likely that human activities have 81 

influenced the global water cycle since mid-20th century (e.g. Bindoff et al. 2013; Marvel et 82 

al. 2019; Padrón et al. 2020; Bonfils et al. 2020).  However, observational uncertainties in 83 

combination with strong natural climate variability render estimates of the human 84 

contribution to recent trends uncertain, and overall challenge the detection and attribution of 85 

change, in particular with regard to extremes and local phenomena (Hegerl et al. 2015; 86 

National Academies of Sciences 2016).  87 

The Paris Agreement of the UNFCCC also addresses these observational needs and 88 

demands that “Parties should strengthen [...] scientific knowledge on climate, including 89 

research, systematic observation of the climate system and early warning systems, in a 90 

manner that informs climate services and supports decision-making” (United Nations 2015). 91 

The call of the UNFCCC for enhancing systematic observations expresses the need for 92 

climate monitoring based on best available science, which is globally coordinated through the 93 

Global Climate Observing System (GCOS). In the current Implementation Plan of GCOS, 94 
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main observation gaps are addressed and it states that “closing the Earth's energy balance 95 

and the carbon and water cycles […] through observations remain outstanding scientific 96 

issues that require high-quality climate records of ECVs” (GCOS 2016). Water-related ECVs 97 

are specified by GCOS and critically contribute to the characterization of Earth’s climate 98 

including the global water cycle  (Bojinski et al. 2014).  99 

a. Components of the water cycle 100 

The water cycle, also known as the hydrological cycle, describes the continuous 101 

movement of water between storages at, above, and below the Earth's surface (Figure 1 102 

Observed estimates of global water cycle storages (in 103 km3) and their uncertainties. 103 

Sources of individual estimates are reported in Table 1. and Figure 2). We summarize status 104 

and long-term changes trends of both, the changes in storage but also changes in fluxes, 105 

respectively. Storages include water bodies (oceans, seas, lakes, rivers, artificial reservoirs), 106 

atmospheric water (water vapor, clouds), subsurface water (soil moisture, groundwater), 107 

frozen water (glaciers, ice sheets, sea ice, snow, ground ice) and the biosphere as a whole. 108 

The key fluxes linking these storages include: 109 

 Terrestrial and surface water evaporation and sublimation; 110 

 Precipitation, either in liquid, gas, or frozen state;  111 

 Uptake and release by the cryosphere, lakes and artificial reservoirs, and aquifers;  112 

 Surface water runoff and flow;  113 

 Recharge and depletion of water bodies by humans; 114 

On a yearly basis, only about 0.008% of the water available on Earth is cycled (Oki and 115 

Kanae 2006). In other words, theoretically, it takes about 12,500 years until all water 116 

molecules have completed a full ocean–atmosphere–land–ocean cycle.  117 
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The largest water cycle fluxes take place over the ocean: The ocean produces about 87% of 118 

the global evaporation and receives approximately 78% of the global precipitation 119 

(Baumgartner and Reichel 1975; Oki and Kanae 2006). The imbalance implies a net moisture 120 

transport from the ocean to the continents through the atmosphere, making the ocean an 121 

important source of continental precipitation (Trenberth et al. 2011; Gimeno et al. 2012). The 122 

net transport of freshwater from the ocean to the continents through the atmosphere is 123 

compensated by river discharge. Other runoff sources, such as annual snow and ice melt and 124 

groundwater flow into the ocean are estimated to be less than 10% of the river discharge 125 

(Burnett et al. 2001). 126 

b. Human impacts on the water cycle 127 

Nowadays, nearly all components of the water cycle are directly or indirectly influenced 128 

by humans (Abbott et al. 2019). Direct anthropogenic impacts include the extraction of 129 

ground or surface water for agricultural, domestic, or industrial purposes or the construction 130 

of reservoirs. However, indirect changes, caused by human-induced global warming or land 131 

use and land cover change, have possibly even further-reaching consequences. Rising 132 

temperatures impact the cryosphere by causing the decline of glaciers and ice sheets (Zemp et 133 

al. 2019), by shortening the snow-covered season in alpine areas and northern latitudes 134 

(Pulliainen et al. 2020), and by exacerbating sea ice melt. The resulting changes in albedo 135 

have shown to lead to more stable weather patterns, thus influencing the distribution of 136 

precipitation in space and time (Doughty et al. 2012). At a more local scale, a change to more 137 

rain and less snow in montane catchments in a warmer future may have severe implications 138 

for seasonal water availability (e.g. Singh and Bengtsson 2004; Berghuijs et al. 2014). 139 

Discharge is expected to peak in some catchments as glacier melt swells rivers before 140 

declining as glacier mass reduces in a warming climate (e.g. Pritchard 2019; Allan et al. 141 

2020). 142 
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Anthropogenic global warming increases the water holding capacity of the atmosphere, with 143 

consequences for evaporation and precipitation patterns over ocean and land (See Sidebar). It 144 

is expected that in a warmer world extreme precipitation events will deliver a larger 145 

proportion of total annual precipitation (Fowler et al., 2021, Pfahl et al., 2017). This may 146 

impact many water cycle processes, including increased surface runoff, and more variable 147 

rainfall arrival may reduce water security (Eekhout et al. 2018). Simultaneously, an increase 148 

in large rainfall events may beneficially enhance groundwater recharge, particularly in dry 149 

climates, where major rainfall events are frequently required to trigger groundwater recharge 150 

(Thomas et al. 2016). Precipitation is also subject to modification if the condition of the land 151 

surface is altered: large-scale loss of tropical forests may cause rainfall change via reduced 152 

and seasonally changed plant transpiration and the altered precipitation recycling that can 153 

result (Ellison et al. 2017; Peña-Arancibia et al. 2019). Changes in land surface conditions 154 

may also affect large-scale temperature gradients and thus circulation and moisture advection 155 

(Zhou et al. 2021). 156 

There is also strong evidence of clear links between global warming, evaporative demand 157 

and the promotion of drought and aridity (Zhou et al. 2019a; Williams et al. 2020; Vicente‐158 

Serrano et al. 2020), but the strength of these relationships varies regionally and seasonally 159 

(Cook et al. 2020a).  Conversely, Cook et al. (2020b) have shown that large-scale expansion 160 

and intensification of irrigation has buffered warming trends in some regions, but it is not 161 

certain if these trends will persist under future climate change conditions.  A reduction in 162 

relative humidity over land is a particularly strong climate change signal in both observations 163 

and model results and has been clearly linked to warming over neighboring oceans (Byrne 164 

and O’Gorman 2016, 2018). 165 

Agricultural production, especially from irrigation as noted above, alters evaporative 166 

fluxes from the land surface. The net effect of raising atmospheric CO2 levels on plant 167 
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physiology and the water cycle are still uncertain. On the one hand, CO2 fertilization may 168 

cause increased water use efficiency and suppress plant transpiration (Gedney et al. 2006, 169 

Berg and Sheffield 2019) resulting in higher maximum daily temperatures (Lemordant and 170 

Gentine 2019) with an additional possible feedback to evaporation, but also allows greater 171 

retention of soil moisture, and larger runoff ratios during rainfall (e.g. Idso and Brazel 1984; 172 

Kooperman et al. 2018). On the other hand, enhanced transpiration losses associated with 173 

CO2-driven greening may lead to reduced streamflow (Ukkola et al. 2016).   174 

c. Observing the water cycle 175 

The Earth's water cycle is monitored through three pillars – in situ observations, satellite 176 

observations, and observation-driven modelling. GCOS has currently defined a set of 54 177 

ECVs, which are variables that are fundamental for monitoring the state of the climate and 178 

from an observational perspective mature enough to provide long-term consistent 179 

measurements in a systematic way (Bojinski et al. 2014; GCOS 2016). Especially over land, 180 

in situ data provide long-term records of the different components of the water cycle (see A1 181 

and A2). Global in situ data centers, often operating under the auspices of UN organizations, 182 

collect globally available water data, harmonize them, and make them again publicly 183 

available. For some variables (e.g., precipitation and river discharge), time series from in situ 184 

observations are long enough (>30 y) to allow for detection of climate trends and variability 185 

but for most variables (e.g., evaporation over ocean and land), records are much shorter. 186 

Moreover, in situ data are sparse and, depending on the variable and process, representative 187 

only for a limited spatial domain. The shorter the time series, the more difficult it becomes to 188 

separate climate change signals from natural variability and changes caused by direct human 189 

interference in the water cycle. 190 

Over the last four decades, the amount of relevant satellite-derived hydrological variables 191 

has significantly increased (Rast et al. 2014), and programs like ESA’s Climate Change 192 
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Initiative (Hollmann et al. 2013) have promoted the combination of water cycle observations 193 

from multiple satellites into long-term Climate Data Records (CDRs) (Appendix Tables A1, 194 

A2). The recent expansion of operational missions (e.g., Copernicus Sentinels, EUMETSAT 195 

Metop, NOAA JPSS) jointly with innovative explorer satellites (e.g., GPM, GRACE(-FO), 196 

Aeolus, SMOS, SMAP, SWOT) is improving our observational capacity, while 197 

methodological progress such as artificial intelligence reduces retrieval errors and improves 198 

uncertainty descriptions. Nonetheless, observing subtle climate change signals like extreme 199 

events, and adequately characterizing errors of the observations remains challenging. 200 

Reanalysis systems assimilate a broad array of observations into atmosphere, ocean, and 201 

land models to compute a suite of prognostic variables (e.g. Hersbach et al. 2020). 202 

Reanalyses are particularly important for studying water cycle variability, since they aim to 203 

provide complete and continuous information. However, self-consistency in reanalyses is not 204 

guaranteed (Albergel et al. 2013; Trenberth et al. 2011). Issues arise from the heterogeneous 205 

mix of assimilated observations (which exhibit varying spatial and temporal 206 

representativeness and accuracy), as well as systematic biases in the modelling system itself 207 

(Bosilovich et al. 2017). Although the latest generation of reanalysis products, e.g., MERRA-208 

2 or ERA5, show improvements over their predecessors, trends in many of their water cycle 209 

components remain uncertain (Bosilovich et al. 2017; Hersbach et al. 2015; Yu et al. 2020). 210 

Besides, global scale changes are particularly difficult to capture in reanalyses since the 211 

moisture and energy balances are not constrained. While atmospheric moisture variability has 212 

been much improved in the latest generation reanalysis products, global mean changes in 213 

precipitation are still not captured. Thus, global‐ scale water cycle trends in general are 214 

unrealistic in reanalysis products (Allan et al., 2020). 215 

d. Recent state of water budget closure and imbalance 216 
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Because of the large variety of observation platforms, methodological approaches, and 217 

scientific communities involved, current observed water cycle ECVs are in imbalance, 218 

meaning that when adding up all components, water is added to or removed from the global 219 

cycle (Sheffield et al. 2009; Luo et al. 2021; Abolafia-Rosenzweig et al. 2021). Popp et al. 220 

(2020) proposed a set of rules to improve consistency between CDRs but further research and 221 

development, e.g., on ECV interdependencies at the retrieval and scientific levels, is needed 222 

to achieve this goal for observed water cycle components. There is also the problem of 223 

missing variables pertinent to the closure of the water cycle that cannot be readily observed 224 

but have to be obtained from observation-driven modelling, e.g., atmospheric water vapor 225 

transport from ocean to land, infiltration. 226 

Based on the state-of-the-art of existing datasets and challenges ahead, GCOS defined 227 

observation targets for each individual ECV and for closing the water cycle including 228 

associated uncertainty estimates on annual time scales (GCOS 2016). The GCOS target for 229 

closing the global water cycle is within 5% annually, but without being backed up by a solid 230 

argument. In theory, the CDRs currently available should be sufficient to achieve this target 231 

and, indeed, in the majority of cases, the observed annual surface and atmospheric water 232 

budgets over the continents and oceans close with much less than 10% residual (GCOS 233 

2015). Posing additional closure constraints allows to further reduce the errors of the 234 

individual variables (Pellet et al. 2019).   235 

Even if annual closure within 5% uncertainty can be attained, this does not necessarily 236 

allow for monitoring water cycle variability in all its facets. Appropriate climate monitoring 237 

also requires consistency at sub-annual time scales (e.g.,  seasonal, monthly, or shorter) to 238 

monitor changes in extremes like storms, floods, heatwaves, and droughts (Koutsoyiannis 239 

2020). For these time scales, observed residuals and optimized uncertainty estimates are 240 

considerably larger, often nearing or exceeding 20% (Rodell et al. 2015). Moreover, even at 241 
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the time scale of only a few decades average storages and fluxes are not static, since human-242 

induced global warming and direct intervention in the Earth system have substantial impact 243 

on each of the terms (Wada et al. 2012). Thus, apart from water cycle closure at short time 244 

scales, also the sum of all trends needs to close (e.g. Stephens et al. 2012; Allan et al. 2020; 245 

Gutenstein et al. 2021; Thomas et al. 2020) 246 

The goal of this paper is to provide a holistic review of available global long-term land, 247 

atmosphere, and ocean water cycle storage (section 2) and flux (section 3)products from in 248 

situ and Earth observations. Reanalysis data are only discussed if direct observations are 249 

impossible. In particular, supported by a review on existing water cycle closure studies, we 250 

evaluate how well these products perform in closing the water cycle at multiple temporal 251 

(annual, monthly, multi-decadal) and spatial (global, basin, pixel) scales (section 4). Based on 252 

the review, we discuss gaps in existing observation systems and formulate guidelines for 253 

future water cycle observation strategies for implementation in GCOS (section 5). While in 254 

section 2 and 3 we focus on the storages and fluxes one by one, we synthesize the common 255 

benefits, limitations or difficulties in section 5. 256 

2. Observing Water Cycle Storages 257 

a. Ocean (fresh)water storage 258 

Oceans contain 96.5% of the water on Earth (Eakins and G.F. Sharman 2010), taking into 259 

account water voume in the upper 2 km of the Earth’s crust. Observations of global mean sea 260 

level (GMSL) can be used to infer the change of ocean freshwater storage after removing the 261 

effect of thermal expansion and glacial isostatic adjustment.  262 

Tide gauge networks date back to the late 19th century and are sparsely distributed along 263 

the coasts, which is a major factor contributing to the uncertainty of the estimated change of 264 

GMSL. Historical ocean temperature measurements have been used to estimate the thermal 265 
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expansion of the global ocean through time (e.g. Levitus et al. 2012; Ishii et al. 2017), 266 

however, much of the historical ocean temperature measurements had been in the upper few 267 

hundred meters and sparsely distributed along ship tracks. The development of the Argo 268 

profiling floats since the mid-2000s have enabled a near-global array of Argo floats that 269 

sample the ocean down to a depth of 2000 m. Full-depth Argo floats are being developed, 270 

complementing the full-depth ship-board hydrographic measurements from research vessels. 271 

Satellite altimeters have revolutionized the study of GMSL change by providing full 272 

global coverage since the 1990s. Satellite measurements from GRACE(-FO) have provided 273 

reliable estimates of the change of global ocean mass from 2003 onward, although this record 274 

is likely too short to characterize the long-term trend (Blazquez et al. 2018). 275 

b. Lakes and artificial reservoirsLakes range in size from small ponds to inland seas. 276 

Their geographical distribution is very irregular, while most are located at high latitudes in 277 

formerly glaciated areas of the northern hemisphere (Downing et al. 2006; Williamson et al. 278 

2009). Reservoirs are water bodies with artificial regulation of water reserves. Most 279 

reservoirs are constructed for hydropower purposes, but smaller ones exist for irrigation 280 

purposes. 281 

Water volume (change) is estimated from water level observations using a so-called 282 

volume curve, which describes the relationship between water level and the corresponding 283 

water volumes based on the lake’s or reservoir’s morphology. For many large lakes, such 284 

volume curves are available but need to be regularly updated due to changes in the 285 

morphometric characteristics over time. For reservoirs, these curves are computed in the 286 

design phase and regularly updated in connection with the sedimentation of reservoirs. In situ 287 

observations of lake water level are usually carried out by national hydrological networks, 288 

adopting the standards prescribed by WMO. Thus, most in situ observations of lake water 289 

level are globally consistent and have accuracies of ±1 cm (WMO 2008). Long-term 290 
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sampling efforts have primarily focused on northern temperate sites, while observations are 291 

scarce in many other areas, including remote, lake-rich regions in the Canadian and Siberian 292 

(sub-)arctic, less-populated areas like the Himalayas and the Andes, and populated regions 293 

like the African Great lakes.  294 

Despite being less accurate than in situ observations, current satellite altimeters provide 295 

dense measurement time series of water surface elevation for the largest lakes, and optical 296 

and radar observations of lake area. Water volume (change) of a large number of lakes can 297 

thus be inferred from the combination of satellite observations of water level and extent (Gao 298 

et al. 2012; Busker et al. 2019; Crétaux et al. 2016).  Water height and extent observations 299 

collected at different epochs can be used to build hypsometry relationships between height 300 

and volume changes in order to obtain water volume variations from water heights measured 301 

by satellite altimetry (Crétaux et al. 2016). 302 

c. Atmospheric moisture 303 

The atmosphere is one of the smallest storages for water within the water cycle 304 

(Trenberth et al. 2007; Gleick 1996). Regionally, seasonal and inter-annual variations in 305 

atmospheric moisture are driven by changes in the distribution of sources (evaporation), sinks 306 

(precipitation), and the moisture flux convergence (e.g. Oki 1999). Under steady-state 307 

assumptions, the large sources and sinks lead to a short (8.9±0.4 days) global average 308 

residence time for atmospheric water (van der Ent and Tuinenburg 2017). Yet despite the 309 

small storage capacity of the atmosphere, atmospheric transport is the rate-limiting step in 310 

moving water ‘upstream’ from oceans to land. It is noteworthy that this transport constitutes 311 

only 10% of the oceanic evaporation source. 312 

Atmospheric moisture is measured by a wide variety of ground-based, balloon- and 313 

aircraft-borne, and satellite instruments. A near-global network of sites launching balloon-314 
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borne radiosondes has provided high-resolution vertical profiles of relative humidity (RH) 315 

since the mid-1940s (Stickler et al. 2010), but only a few stations provide reliable long-term 316 

records for climate trend analysis (Wang and Zhang, 2007; Ferreira et al. 2019). Balloon-317 

borne frost point hygrometers provide high-resolution, high-quality profiles of water vapor 318 

number density up to the middle stratosphere, but soundings are sparse in space and time. 319 

Ground-based microwave radiometers, LIDARs, FTIRs and GPS receivers provide coarser 320 

resolution profiles. Routine, high-quality RH measurements are made from commercial 321 

aircraft (Brenninkmeijer et al. 2007; Petzold et al. 2015; Moninger et al. 2010). 322 

Satellite observations of atmospheric moisture (Schröder et al. 2016; Hegglin et al. 2013; 323 

Willett et al. 2020) offer near-global coverage, show steady quality and coverage 324 

improvements since the late 1970s, and are the main source of measurements over the oceans 325 

and developing countries where high-quality in situ measurements are scarce. Nadir-viewing 326 

sensors can provide coarse-resolution vertical profiles (e.g. Schröder et al. 2016). Limb-327 

viewing sensors have higher vertical resolution, but are limited mostly to measurements 328 

above the middle troposphere (e.g. Hegglin et al. 2013). Nadir-viewing satellite microwave 329 

instruments have provided TCWV retrievals, mostly over oceans, since the late 1980s. The 330 

SSM/I-based data records exhibit consistent results in tracking changes in precipitable water 331 

vapor over the ice-free ocean (e.g., Schröder et al., 2016) and, when combined with ERA5 332 

over remaining regions, can be used to analyse global trends (e.g., Allan et al. 2020) . 333 

Nadir-viewing infrared sounders date back to the early 1980s (radiometers) and 2000s 334 

(spectrometers with higher accuracy and vertical resolution). Infrared instruments measure 335 

over both ocean and land but are limited to (near-)clear sky views, while near-infrared 336 

retrievals are limited to over-land and clear-sky views. Finally, high-accuracy GPS radio-337 

occultation profile measurements are routinely made in all weather conditions since 2001 338 

(Wickert et al., 2001). 339 
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d. Soil moisture 340 

Soil moisture strongly interacts with highly dynamic major water and energy fluxes, 341 

importantly precipitation, evaporation, and runoff. Therefore, observing systems must be 342 

capable of capturing soil moisture dynamics at their native process scales, which is from sub-343 

daily to 10-daily time steps, and from tens of meters to tens of kilometers, depending on the 344 

considered soil depth and climatic process studied.        345 

The first systematic soil moisture measurements were taken in the 1950s in the former 346 

Soviet Union (Robock et al. 2000). Today, many countries, organizations, and individual 347 

scientists freely share their in situ soil moisture measurements, most importantly via the 348 

International Soil Moisture Network (Dorigo et al. 2021, 2013). Yet, most stations are in 349 

economically developed regions with temperate climatic conditions and have limited 350 

temporal coverage (most stations were established after 2000). Besides, nearly all networks 351 

have their unique purpose, design, measurement setup, and representativeness errors, which 352 

complicates their use to predict soil moisture at larger scales (Gruber et al. 2013; Dorigo et al. 353 

2021). 354 

Microwave remote sensing satellites have provided a growing number of global soil 355 

moisture data sets since the beginning of this century. Global soil moisture data sets are 356 

operationally provided for several passive and active microwave missions  (Entekhabi et al. 357 

2010; Kerr et al. 2012; Wagner et al. 2013) and many of them are fused into global long-term 358 

(Gruber et al. 2019; Dorigo et al. 2017) or near-real-time (Yin et al. 2019) multi-satellite 359 

products. The spatial resolution of these soil moisture datasets ranges between 10 and 50 km, 360 

and the temporal sampling is 1 to 3 days. The native satellite soil moisture products can only 361 

provide information about the soil moisture conditions in the top few centimeters of the soil, 362 

but model-data integration and infiltration models can be used to estimate the water content 363 

in the root zone (Ford et al. 2014; Babaeian et al. 2019). Estimates of deeper soil layers 364 
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remain unobserved while their skill reduces for dense vegetation (Dorigo et al. 2010). 365 

Although in many areas satellite soil moisture observations are still outperformed by 366 

reanalysis products, they start to converge and, in many areas, provide complementary skill 367 

(Beck et al. 2021; Dorigo et al. 2017). 368 

e. Groundwater 369 

Groundwater is by far the Earth’s largest liquid freshwater storage (Gleeson et al. 2016), 370 

and supports about one third of human water use (Wada et al. 2014). Its widespread non-371 

sustainable use has led to a depletion of aquifers in many regions worldwide (Famiglietti 372 

2014). 373 

Traditionally, groundwater level is monitored by in situ observations in boreholes or 374 

wells and many countries operate a national groundwater monitoring network. (e.g. Hosseini 375 

and Kerachian 2017). As setting up and maintaining the networks is costly, groundwater 376 

records are often sparse, short, or discontinuous and thus poorly suitable for climate studies. 377 

This is further complicated for observations in confined aquifers or those affected by human 378 

withdrawals, and by restrictive data sharing policies. The latter also hampers initiatives to 379 

combine observations to provide an overview of changes in groundwater levels at a global 380 

scale, such as pursued by the Global Groundwater Monitoring Network. Converting the 381 

observed head variations into regional groundwater storage variations involves considerable 382 

uncertainty from poorly known storage coefficients or specific yield values (Chen et al. 383 

2016), site-specific dynamics (Heudorfer et al. 2019), or management-driven clustering of 384 

observation wells in highly productive aquifers while neglecting others. 385 

 Since April 2002, GRACE and GRACE-FO provide estimates of the Earth's variations of 386 

total terrestrial water storage (TWS) with at least monthly resolution. After removing from 387 

TWS the signal components that are not due to groundwater (i.e., soil moisture, surface 388 
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waters, snow and ice), it allows for monitoring groundwater storage dynamics (e.g. Rodell et 389 

al. 2018). Limitations of satellite gravimetry for monitoring groundwater dynamics are its 390 

coarse spatial resolution (>200 km), the necessary filtering of the raw data to remove noise at 391 

the expense of attenuation and spatial smoothing (leakage), and the uncertainties in usually 392 

model-based estimates of other mass variations (Chen et al. 2016). 393 

Beyond recent progress with dynamic, gradient-based groundwater models at the global 394 

scale (de Graaf et al. 2015; Reinecke et al. 2019), there have been numerous developments on 395 

assimilating GRACE-based TWS into land surface and hydrological models with simple 396 

groundwater schemes. This allows for separating TWS into its compartments for individual 397 

river basins and aquifers, and recently also globally (Li et al. 2019). Results tend to indicate 398 

that GRACE data assimilation improves the simulation of groundwater storage variations as 399 

long as human groundwater withdrawal schemes are part of the model structure. 400 

f. Permafrost and ground ice 401 

Permafrost is defined as subsurface material with temperatures constantly below 0°C. 402 

Relevant for the water cycle is the so-called “ice-rich permafrost”, which covers huge areas 403 

in Arctic countries and the Tibetan Plateau. Ice-rich permafrost in mountain areas is mostly 404 

found in frozen scree slopes, rock glaciers and relict ice bodies. Most of the ground ice is 405 

perennial, but the upper decimeters to meters are subject to seasonal thaw and refreeze cycles, 406 

thus playing a role in the yearly water cycle. Likewise, the permanent melting of permafrost 407 

due to global warming adds water to the transient part of the water cycle. 408 

Permafrost cannot be directly mapped and its distribution, ice richness, and volumes are 409 

extrapolated from available ground borehole observations using models. The most up-to-date 410 

estimates of the total amount of ice stored in Northern Hemispheric permafrost stem from 411 

Zhang et al. (2000, 1999), and are based on the Circum-arctic map of permafrost and ground 412 
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ice conditions (Brown et al. 2002; Heginbottom et al. 1993), with assumptions on total area, 413 

thickness, and mean ice-content. Permafrost is present also in ice-free areas of Antarctica, but 414 

there is no available estimation of its ice-volume. 415 

Ice content of permafrost in rock glaciers is usually estimated through geophysical 416 

methods, but more precise quantification can only be achieved by boreholes. Due to large 417 

costs and logistical and technical difficulties these are extremely rare. A global estimation of 418 

ice content in rock glaciers was achieved from a rock glacier inventory and the use of a 419 

standard area/thickness relationship and assumptions on the ice content (Jones et al. 2018). 420 

This does not include dead ice bodies from glacial origin that can remain over centuries or 421 

millennia in periglacial conditions, and which are considered neither in glacier nor in rock 422 

glacier inventories.  423 

Changes in permafrost water storage are due essentially to the deepening of the active 424 

layer, which induces melting of ice at the top of the perennially frozen ground and its 425 

restitution to the water cycle. Observations of the active layer thickness only partly account 426 

for ice volume loss, as land surface subsidence (remotely sensed with ground validation) need 427 

to be considered too. 428 

g. Snow  429 

Terrestrial snow is characterized by high spatial and temporal variability and until very 430 

recently, snow has been one of the more uncertain components of the water cycle, 431 

particularly in mountain areas (Lievens et al. 2019). 432 

Various terrestrial snow parameters have been measured using conventional means for 433 

centuries. Snow depth observations are performed at most weather stations in cold climates. 434 

Accurate snow mass information can be derived from surface observations of snow depth and 435 

SWE for regions and time periods with a sufficiently dense observing network (Brown and 436 
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Derksen 2013) but there remain vast alpine and high latitude regions with insufficient 437 

coverage by conventional observing networks (Brown et al. 2019). SWE is further measured 438 

in fixed point-wise locations using snow scales and microwave instruments. Ground-based 439 

snow measurements are severely limited by a lack of confidence in how they capture the 440 

variability in conditions across larger scales, particularly for heterogeneous landscapes. An 441 

improvement to point-wise observations are multiple in situ snow courses along a predefined 442 

transect. These are available from several national and regional agencies (Haberkorn 2019) 443 

and provide more representative estimates on a regional scale. The amount of snow course 444 

data is however even more limited in time and space; thus, they are more often used as 445 

reference data.  446 

Regional to hemispheric estimation of SWE and snow mass has been obtained since the 447 

1980s from standalone passive microwave observations (e.g. Chang et al. 1990; Kelly et al. 448 

2003) or from synergistic approaches combining satellite observations with ground data 449 

(Pulliainen 2006; Takala et al. 2011, 2017). Standalone passive microwave approaches are 450 

somewhat limited in their applicability for hemispheric monitoring, but in combination with 451 

in situ data perform similar to reanalysis datasets (Mortimer et al. 2020). Both EO- and 452 

model-based approaches can be further improved using appropriate bias correction 453 

techniques (Pulliainen et al. 2020). A key challenge for satellite passive microwave 454 

instruments is their coarse spatial resolution, which prohibits their accurate utilization for 455 

mountainous regions. There is potential in C-band SAR to provide high-spatial-resolution 456 

snow depth information in mountainous areas (Lievens et al. 2019), but these estimates are 457 

still somewhat uncertain and only available with relevant coverage since 2014, thus limiting 458 

the potential to retrieve time series relevant for climate studies. 459 

h. Glaciers 460 
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At decadal to annual time scales, glaciers act as storages with related changes, while at 461 

annual scales, their annual mass-turnover corresponds to hydrological fluxes. As such, 462 

glaciers contribute to runoff during dry/summer seasons even in years with positive annual 463 

mass-balances, i.e. annually net increase in storage (Weber et al. 2010; Huss 2011). Glaciers 464 

are among the highest-confidence natural indicators of climate change (GLIMS and NSIDC 465 

2005; Paul et al. 2009; Bojinski et al. 2014; RGI 2017) Water storage in glaciers cannot be 466 

directly measured but is assessed from inventories of glacier surface area and glacier 467 

thickness estimates. Glacier inventories are compiled at national to regional levels mainly 468 

based on optical images from air and spaceborne sensors (Paul et al. 2009). Glacier ice 469 

thickness observations from field and airborne surveys (Gärtner-Roer et al. 2014; Welty et al. 470 

2020) are used to calibrate analytical and numerical models to estimate the regional and 471 

global storage of glacier ice (Farinotti et al. 2019). 472 

Glacier mass changes have been measured in situ with seasonal to annual resolution at a 473 

few hundred glaciers worldwide, with a few observation series reaching back to the early 474 

20th century (Zemp et al. 2015). Decadal glacier elevation and volume changes are assessed 475 

from topographic surveys and differencing of related maps and digital elevation models 476 

(Zemp et al. 2015), using density assumptions (Huss 2013) for conversion to glacier mass 477 

changes. Such geodetic mass changes are available for several glaciers from terrestrial 478 

surveys back to the late 19th century, for several hundred glaciers from aerial and early space 479 

borne surveys back to the mid-20th century, and potentially for all glaciers from spaceborne 480 

surveys since the beginning of the 21st century (WGMS 2020; Zemp et al. 2019). For data-481 

scarce regions, these results have been complemented with regional glacier change estimates 482 

based on satellite altimetry and gravimetry (Moholdt et al. 2012; Bolch et al. 2013; Treichler 483 

and Kääb 2016; Gardner et al. 2013; Wouters et al. 2019). 484 

i. Ice sheets 485 
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Ice sheets are defined as ice volumes covering an area of continental size. Only the 486 

Antarctic and Greenland ice sheets comply with this definition, with Antarctica often 487 

subdivided into the West and East Antarctic ice sheets. By definition, ice sheets only concern 488 

the grounded part; the floating parts are attributed to the ice shelf, the melt of which does not 489 

change the sea level (Cogley et al. 2011).  490 

The water stored in ice sheets is estimated from ice sheet volume measurements, which 491 

are derived by combining airborne radar measurements to define the bottom boundary of the 492 

ice and surface height measurements made by airborne and satellite laser and altimeters. Both 493 

Greenland and Antarctica have been almost completely covered in this way. Changes in ice 494 

mass can be determined in various ways: by elevation change measurements from satellite 495 

altimetry, combined with models of snow density and firn compaction; by estimating changes 496 

in mass flux across the grounding lines, using ice velocities from radar interferometry 497 

combined with meteorological observations and atmospheric reanalysis of interior 498 

precipitation, and climate-firn models; and most reliably by satellite gravity measurements of 499 

GRACE/GRACE-FO. Uncertainties in global isostatic adjustments is a major error source in 500 

mass change estimates, with uncertainties up to 30% in Antarctica and 5-10% in Greenland 501 

(Shepherd et al. 2018). 502 

j. Water stored in living biomass 503 

About 40–80% of the world’s terrestrial vegetation is composed of water, but this fraction 504 

may strongly vary between species, seasons, and meteorological conditions (e.g. Yebra et al. 505 

2018). The remaining fraction is referred to as living (dry) biomass, which can be divided 506 

into the two main components above-ground biomass (AGB) - including living stems, 507 

branches, leaves, and fruits - and below-ground biomass (BGB), commonly defined as living 508 

root biomass (Penman et al. 2003). The ratio below- and above-ground biomass (known as 509 
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root:shoot ratio) is between 0.2 and 0.4 for most forest ecosystems but may vary considerably 510 

across biomes and vegetation types, ranging from 0.1 in some forest types to 26 in a cool 511 

temperate grassland (Mokany et al. 2006).  512 

While vegetation water content has frequently been estimated from optical remote 513 

sensing observations at the local scale (e.g. Dorigo et al. 2009), only very few studies 514 

attempted to estimate it for larger spatial domains (e.g. Yebra et al. 2018). On the other hand, 515 

microwave observations have a very high sensitivity to the water stored in above-ground 516 

vegetation (Jackson and Schmugge 1991). Datasets of microwave VOD, which describes the 517 

attenuation of microwave radiance by vegetation, have been developed for various sensors, 518 

even over multi-decadal timescales (e.g. Moesinger et al. 2020), and related to total 519 

vegetation water content (Konings and Momen 2018).  520 

Alternatively, vegetation water content can potentially be estimated from EO-derived 521 

AGB and extended to total biomass (AGB+BGB) by applying a plant-specific root:shoot 522 

ratio. By applying a multiplication factor based on the characteristic plant-specific relative 523 

water content, the total biomass can be used to estimate the total water stored in the 524 

vegetation (Yebra et al. 2018). Both optical and radar data can be useful for biomass 525 

measurements, but commonly SAR and LIDAR data are used in combination (e.g. Asner et 526 

al. 2012; Mitchell et al. 2017). EO-based AGB estimates need ancillary data, e.g., ground 527 

data and close-range remote sensing sources such as terrestrial and airborne LIDAR data for 528 

the calibration and validation of the satellite observations (Herold et al. 2019).  529 

Large uncertainties in global estimates of water stored in biomass result from various 530 

measurement errors and generalization throughout the computation chain and from the 531 

uneven distribution and quality of in situ data. Additionally, uncertainty information 532 

associated with the ground data is often not available. Current biomass mapping from space 533 

is hindered by its disconnection from plot-based national forest inventory efforts (Böttcher et 534 
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al. 2017), and varying definitions used for the source data, and methods used to construct the 535 

maps (Herold et al. 2019). Remote sensing signals can also saturate at high biomass values, 536 

making mapping in natural and tropical forests particularly uncertain (Avitabile et al. 2016). 537 

3. Observing Water Cycle Fluxes 538 

a. Ocean evaporation 539 

With a share of 86% to total global evaporation, evaporation from the oceans dominates 540 

the surface-to-atmosphere flux of the water cycle. Direct measurements of ocean evaporation 541 

through the eddy-covariance method are currently limited to selected locations with limited 542 

duration due to technical challenges in operating the instruments from mobile platforms at 543 

sea (Edson et al. 1998; Landwehr et al. 2015). Evaporation cannot be directly observed from 544 

satellites because it does not emit, reflect, or absorb electromagnetic radiation. Evaporation is 545 

therefore commonly estimated by parameterizing ocean evaporation process models with 546 

surface meteorological variables that can be observed (Liu et al. 1979; Fairall et al. 2003). 547 

The required variables are SST, wind speed, near-surface air temperature, and humidity, 548 

which can be measured from in situ platforms, including Voluntary Observing Ships (VOS), 549 

research cruises, and moored buoys, or derived from optical and/or microwave satellites. 550 

VOS observations have a rich history before satellites became available (e.g. Josey et al. 551 

1999). The VOS provide direct observations for all variables required to estimate the 552 

moisture flux at the ocean surface, but the observations are spatiotemporally inhomogeneous 553 

and clustered over the major shipping lanes. However, in densely sampled regions such as the 554 

North Atlantic, the VOS-based flux estimates with a multi-decade span are a valuable in situ 555 

climatology (Berry and Kent 2011). 556 

Not all variables can be directly retrieved from satellites. SST and wind speed have a 557 

relatively direct relationship to the radiance measured by the satellites, whereas air 558 
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temperature and humidity have to be derived indirectly because the electromagnetic signal is 559 

emitted from relatively thick integrated atmospheric layers. Retrieval algorithms are fully 560 

empirical and require ancillary data from, e.g., ships and buoys. Presently, the accuracy of 561 

derived air temperature and humidity stands as the main source of uncertainty in satellite-562 

based ocean flux products (e.g. Prytherch et al. 2015; Liman et al. 2018), but recent 563 

technological advances hold great promise in reducing the uncertainties input variables (e.g. 564 

Gentemann et al. 2020). 565 

Reanalysis products have also been used to estimate ocean evaporation (directly related to 566 

latent heat flux), but their fidelities are affected by the uncertainties and coverage of the 567 

satellite observations assimilated (e.g. Yu et al. 2017; Robertson et al. 2020). Changes in 568 

ocean salinity (See sidebar) offer a proxy for inferring ocean evaporation in regions where 569 

evaporation dominates over precipitation such as subtropical high-salinity regimes (e.g. Yu et 570 

al. 2020). However, the contributions of ocean dynamics need to be accounted for. 571 

b. Land evaporation 572 

Corresponding to approximately two thirds of the precipitation falling over the continents, 573 

terrestrial evaporation is the second largest hydrological flux over land (Gimeno et al. 2010; 574 

Miralles et al. 2011). Its fast response to radiative forcing makes evaporation an early 575 

diagnostic of changes in climate, while its pivotal influence on land–atmosphere interactions 576 

leads to either amplification or dampening of weather extremes such as droughts or 577 

heatwaves (Miralles et al. 2019; Seneviratne et al. 2010).  578 

Today, terrestrial evaporation remains one of the most uncertain and elusive components 579 

of the Earth’s water balance: it cannot be observed directly from space, and it is only seldom 580 

measured in the field through the eddy-covariance method, which often have limited spatial 581 
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representativeness, particularly over heterogenous landscapes (Miralles et al. 2011; Fisher et 582 

al. 2017).  583 

A range of datasets have been proposed that indirectly derive evaporation from models 584 

that combine satellite-observed environmental and climatic drivers of the flux (Fisher et al. 585 

2017; McCabe et al. 2019; Jung et al. 2019). These datasets largely rely on multiple sensors 586 

from the Aqua and Terra platforms, and some long records also include data from earlier 587 

optical (e.g., AVHRR) and microwave (SSM/I, SMMR) sensors or use satellite soil moisture 588 

data in their retrievals (e.g. Martens et al. 2017). Several studies brought to light strong 589 

discrepancies amongst widely-used observation-based global land evaporation datasets (e.g. 590 

Talsma et al. 2018; Miralles et al. 2016; McCabe et al. 2016). Current global datasets share 591 

(i) systematic errors in semiarid regimes and tropical forests, (ii) an imperfect representation 592 

of water stress and canopy interception, and (iii) a poorly constrained partitioning of 593 

terrestrial evaporation into its different components (transpiration, interception loss, bare soil 594 

evaporation, snow sublimation, and open water evaporation). Few algorithms to compute 595 

transpiration include the effect of CO2 fertilization processes on water use efficiency 596 

explicitly, which can be crucial to address long-term trends (Miralles et al. 2016). 597 

Nonetheless, these satellite-based datasets of land evaporation are still used as reference for a 598 

wide range of climatic applications, even though recent reanalysis datasets (such as ERA5) 599 

show clear improvements with respect to their predecessors (Martens et al. 2018). 600 

c. Precipitation over ocean and land 601 

Precipitation, both liquid (rainfall) and frozen (snowfall), is spatially very inhomogeneous 602 

and can vary rapidly in places with mechanical lifting such as mountains or coastlines. There 603 

is also significant diurnal variability with the peak of land precipitation occurring in the late 604 

afternoon and early evening, posing high demands on the observation systems.   605 
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Precipitation over land is measured quite well by the dense networks of rain-gauges 606 

operated by many countries. The number of rain-gauges operated around the world is roughly 607 

200,000 (Kidd et al. 2017), many of which have been used to produce global gridded 608 

products (Schneider et al. 2014; Harris et al. 2014). Rain-gauge measurements are influenced 609 

by systematic gauge measuring errors, mainly caused by wind-effects on precipitation, which 610 

is particularly large for snowfall.  The interpolated gridded rain-gauge measurements have 611 

substantial uncertainty and sampling errors over complex terrain or in poorly sampled 612 

regions.  613 

Several countries also operate operational radar networks, e.g., the US, Europe, and Japan 614 

(Zhang et al. 2016a; Makihara 1996; Huuskonen et al. 2014). Various attempts to 615 

homogenize existing networks have failed thus far, as they all have somewhat different 616 

objectives, quality control, and calibration procedures (Saltikoff et al. 2019). Besides, 617 

homogenization is hampered by the extremely large data volumes and limited areal coverage. 618 

The retrieval of precipitation from satellites remains challenging due to the strong 619 

intermittency and variability of precipitation in space and in time, as well as the 620 

fundamentally under-constrained nature of precipitation algorithms. Nonetheless, spaceborne 621 

radars and radiometers have successfully retrieved precipitation over land (Petersen et al. 622 

2016; Hou et al. 2014) but their sampling remains poor, and accumulations have thus focused 623 

on “merged” products constructed with observations from multiple GEO and/or LEO 624 

satellites with or without gauge networks to compensate the drawbacks inherent to individual 625 

observations. Additionally, recent approaches for improving rainfall accumulations from 626 

space have considered the integration with satellite soil moisture products (Massari et al. 627 

2020; Pellarin et al. 2020). Reanalysis datasets that integrate precipitation observations (e.g., 628 

ERA5, NCEP–NCAR) could in principle provide more accurate estimates than pure 629 

observation-based products but are equally affected by limitations in the coverage of ground 630 
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observations, inconsistencies between the assimilated datasets, and errors in numerical 631 

modelling (Tarek et al. 2020). 632 

Despite being observationally constrained, the multitude of daily precipitation datasets 633 

based on rain gauge measurements, remote sensing, and/or reanalyses, have demonstrated a 634 

large disparity in the quasi‐ global land mean of daily precipitation intensity (e.g., (Herold et 635 

al. 2019). Masunaga et al. (2019) showed a contrast in global mean and extreme precipitation 636 

accumulations of satellite-in situ merged products, with stronger differences in their extreme 637 

precipitation. In general, Alexander et al. (2020) have shown that global observation-based 638 

precipitation products have potential for climate scale analyses of extreme precipitation 639 

frequency, duration and intensity. Specifically, reanalysis products tend to be much more 640 

variable than the observation-based products, particularly over the global oceans (Pellet et al. 641 

2019).   642 

Snowfall products are determined much like their rain counterparts but tend to have an 643 

added degree of difficulty associated with them. For radars, snow is less reflective than rain 644 

for the same size particles and since snowfall is often lighter than rainfall, echoes are 645 

generally much weaker. The GPM radar satellite is only able to detect moderate to heavy 646 

snowfall events. CloudSat, while more sensitive, is a nadir staring instrument which limits 647 

sampling to only climatological applications. Its W-band radar, while capable of better 648 

sampling, is still limited in its ability to uniquely convert echoes into meaningful snowfall 649 

rates given the great variability of particle sizes and densities. In mountainous regions, where 650 

snow tends to be most important, radar retrievals are further complicated by clutter from 651 

nearby mountains. The added complication for passive microwave retrievals is the relative 652 

lack of unique scattering signals over already snow-covered ground. The retrieval of 653 

orographic snowfall is challenging as this is typically characterized by copious snowfall with 654 

little or no deep cloud developments that are key to characterize precipitation events from 655 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0316.1.Unauthenticated | Downloaded 05/04/21 12:38 PM UTC



28 

 

passive microwave and infrared observations (Shige and Kummerow 2016; Gonzalez et al. 656 

2019). 657 

d. River discharge 658 

Regular measurements of river water height started long ago, and include well-known 659 

examples such as the annual minimum and maximum water levels of the Nile river for the 660 

years 622–1922 (Whitcher et al. 2002). Today, in situ systems still offer the most accurate 661 

basis for monitoring river discharge (Fekete et al. 2002). The majority of the river flux into 662 

the oceans (~70%) is covered by a set of 472 global gauging stations, of which 327 are freely 663 

available (Looser et al., 2007) but usually shared only with a substantial delay by the national 664 

authorities that control the observations. Consequently, the temporal coverage of the 665 

available data is heterogeneous, with the highest number of stations available for the period 666 

1980-2000.  Because of the incomplete coverage of observations, estimations of total river 667 

discharge into the oceans rely on statistical or model-based extrapolation methods (e.g. 668 

Baumgartner and Reichel 1975; Milliman and Farnsworth 2011; Ghiggi et al. 2019; ) . 669 

Remote sensing provides a valuable additional source of flow data for unmonitored or 670 

infrequently monitored rivers. Discharge can be estimated using particle image velocimetry 671 

and bathymetric LIDAR, though uncertainties in depth, flow speed, and estimated volumetric 672 

flow rates can be large (Huang et al. 2018; Kinzel and Legleiter 2019). Satellite altimetry 673 

coupled with satellite imagery and hydrodynamic modelling also offer adequate solutions 674 

(Kittel 2020), but uncertainties are large for rivers substantially obscured by riparian forest 675 

cover or ice covers and ice jams in winter, causing a seasonal bias with increased 676 

uncertainties in the discharge estimates (Hicks and Beltaos 2008). Finally, short-lived flood 677 

flows in dryland rivers can be difficult to quantify using remote sensing methods.  678 

e. Groundwater recharge and discharge 679 
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Recharge of groundwater occurs by percolating precipitation and surface water, while 680 

losses are due to discharge to continental surface water bodies and to the ocean, evaporation, 681 

and groundwater pumping. Groundwater storage typically responds in a delayed and 682 

smoothed way to precipitation dynamics while actual residence times of groundwater can 683 

vary over several orders of magnitude depending on the climate and hydrogeological 684 

conditions and on its depth below the Earth surface (Foster et al. 2013). Groundwater 685 

recharge occurs at widely varying rates, which can be modulated by human use of the 686 

landscape and land cover change. Groundwater recharge rates may be enhanced by managed 687 

aquifer recharge, which is widely-used globally and is estimated to contribute ~ 10 km3 688 

annually to the global groundwater system (~1% of total groundwater extraction) (Stefan and 689 

Ansems 2018; Dillon et al. 2019).  690 

Groundwater discharge naturally occurs either as submarine groundwater discharge 691 

(SGD) or as groundwater discharge to rivers, lakes and springs. SGD can be divided in three 692 

components: groundwater discharge below sea level (fresh SGD), meteoric groundwater 693 

discharge above sea level near the coast (near-shore terrestrial groundwater discharge; NGD), 694 

and recirculated sea water (Luijendijk et al. 2020). Fresh SGD and NGD combined 695 

correspond to coastal groundwater discharge (CGD) (Luijendijk et al. 2020). Total SGD is 696 

difficult to quantify due to its spatial and temporal variability (Sadat-Noori et al. 2015; 697 

Srinivasamoorthy et al. 2019) and the difficulty to measure it.  Available techniques are water 698 

budgets, hydrogeological modeling, physical measurements, and the use of geochemical 699 

tracers (Srinivasamoorthy et al. 2019). Contrary to river discharge, groundwater discharge is 700 

usually not monitored, and there is no global database of SGD data.  701 

f) Glacier and ice sheet annual turnover 702 
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Annual glacier mass turnover can be measured at individual glaciers by the component or 703 

flux-divergence approach (Bamber and Rivera 2007). However, at regional to global scale 704 

corresponding estimates are only available from modelling studies (Kaser et al. 2010; 705 

Braithwaite and Hughes 2020; Huss and Hock 2015). The annual mass turnover can be 706 

estimated from the mass-balance amplitude, expressed by half the difference between winter 707 

and summer balances. The runoff from snow and glaciers in mountain regions feed rivers and 708 

groundwater, while some is evaporated (Goulden and Bales 2014). In the Arctic and 709 

Antarctic, glaciers often flow directly into the ocean and lose mass through meltwater 710 

discharge and calving of ice (King et al., 2020).  711 

Similarly, the Greenland and Antarctic ice sheets feed large amounts of freshwater to the 712 

ocean (Enderlin et al. 2014; IPCC 2019). Although the fresh water supply from ice sheets to 713 

the ocean is large, observation gaps cause large uncertainties (IPCC 2019). Ice sheet fluxes to 714 

the oceans can be determined from satellite measurements of ice velocities and airborne radar 715 

thickness around the perimeter of the ice sheet, with major error source being the unknown 716 

depths of key outlet glacier systems, especially in East Antarctica. Freshwater flux estimates 717 

based on GRACE or elevation changes from space or airborne laser and radar measurements 718 

are similarly inaccurate due to errors in snowfall and firn compaction estimates, and the 719 

“steady state” ice sheet velocities.  Prior to the satellite era (starting in 1992) the knowledge 720 

of ice sheet mass balance is highly uncertain and strongly dependent on model assumptions 721 

(Slater et al. 2020). 722 

g) Anthropogenic Water Use 723 

 According to the review about the human impact of the global water cycle by (Abbott et 724 

al. 2019)the total human water appropriation is estimated to flux magnitude as large as a 725 

quarter of total land precipitation. Freshwater used for irrigation, livestock, and industrial and 726 
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domestic consumption is primarily extracted from groundwater and surface water bodies and 727 

flows (blue water). Irrigation accounts for approximately 70% of anthropogenic freshwater 728 

withdrawals worldwide (Foley et al. 2011; Shiklomanov 2000). Since 1958, global statistics 729 

on anthropogenic water use have been made available by FAO (FAO 2021). Data are 730 

reported by each country as annual volumes with a usual delay of 2-4 years, are globally 731 

incomplete, and lack standardization across different countries. Data are therefore of limited 732 

use for characterizing water use responses to climate variability at sufficient spatial scale and 733 

temporal resolution. Other national and sub-national surveys may be available (e.g. Deines et 734 

al. 2017), but not only are these datasets uncertain, they are also inadequate because they are 735 

spatially and temporally lumped.  736 

Remote sensing has emerged as a promising means to provide spatially and temporally 737 

explicit estimates of irrigation water volumes, thus overcoming the above-mentioned 738 

limitations. Optical and thermal remote sensing have been used to estimate actual 739 

evaporation, which can be coupled to the water/energy balance allowing to estimate irrigation 740 

volumes (Droogers et al. 2010; van Dijk et al. 2018; Lopez et al. 2020). Because of its direct 741 

relationship with irrigation, soil moisture, globally observed from satellites, is naturally 742 

designed to inform about the amount of water entering the soil (Kumar et al. 2015; Brocca et 743 

al. 2018; Jalilvand et al. 2019; Zaussinger et al. 2019). However, the coarse spatial resolution 744 

(10 to 40 km) of most soil moisture products represents a major constraint for accurate 745 

irrigation retrieval.  746 

Once irrigation volumes are estimated, it would be possible to determine groundwater 747 

abstraction rates (e.g. Lopez et al. 2020). Although gravimetry-based remote sensing can 748 

inform about changes in TWS globally (Voss et al. 2013; Famiglietti 2014), they do not 749 

differentiate between natural and anthropogenic loss, or between the different types of water 750 

use. Besides, they are not suited for the spatial scales required for water resource 751 
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management. For regional groundwater monitoring, multi-spectral and microwave remotely 752 

sensed data together with land surface hydrological models are therefore required. Current 753 

global estimates of agricultural water use are still purely model-based (Siebert and Döll 754 

2010). 755 

A detailed breakdown of anthropogenic water use in cities is not available globally, but 756 

case studies using an urban metabolism approach are available for a few cities (e.g. Sahely et 757 

al. 2003; Kenway et al. 2011).  The best prospects for deriving urban-area specific data are 758 

from global modelling of integrated hydrological and water resources and demand at 759 

sufficient scale to resolve urban areas (e.g. Wada et al. 2014; Luck et al. 2015).  Focus in 760 

these larger-scale models is on blue water use (water use related to irrigation, derived from 761 

groundwater, rivers, and lakes), but green (derived from natural precipitation and soil 762 

moisture) and grey water (water required to assimilate pollution) availability and use in cities 763 

is growing.  New developments in urban climate modelling (Hamdi et al, 2020) and urban 764 

land surface characterization (WUADAPT 2020) at meso- to micro-scale promise much 765 

better characterization of the urban water/energy balance, including some urban climate 766 

models that explicitly address the new developments in sustainable urban water supply (e.g. 767 

Broadbent et al. 2019). 768 

4. Integrating Water Cycle Components at Various Scales 769 

 The recent states and observed changes of the Earth’s water storage compartments are 770 

summarized in Table 1 and Figure 1, while those of the annual fluxes are collected in Table 2 771 

and Figure 2. Even at these coarse scales, uncertainties of many of the components are large. 772 

Integrating a multiplicity of water cycle datasets into a single consistent dataset representative 773 

of the entire water cycle can help to optimize existing water cycle products or identify 774 

deficiencies in current observations.  775 
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a. Integration strategies 776 

Dataset integration requires careful choices regarding the individual products of a single 777 

variable, the combination strategy, and appropriate spatial and temporal resolutions and 778 

domains. All these choices control if and how water cycle closure and consistency is 779 

eventually achieved. Ideally, coherence between water cycle products is already enforced at 780 

the retrieval stage (Popp et al. 2020; Lawford et al. 2004) but this is generally impractical 781 

given the many expert groups working on different water cycle components. Thus, their 782 

coherence is generally assessed a posteriori, either: 783 

 as a diagnostic of satellite product skill to quantify the sources of water imbalance and 784 

the uncertainties of each component (Sheffield et al. 2009; Moreira et al. 2019); 785 

 to optimize the estimation of the components, using water budget closure as a 786 

constraint (Pan and Wood 2006; Munier et al. 2014); 787 

 to estimate missing information in the water cycle, e.g., an unobserved component 788 

(Azarderakhsh et al. 2011; Hirschi and Seneviratne 2017; Pellet et al. 2020) or an 789 

available component at a coarse resolution that requires downscaling (Ning et al. 790 

2014). 791 

The datasets can be combined in four ways: 792 

 No optimization of the water components: Based on a priori knowledge on the quality 793 

of the data, single datasets of each water component are combined without modifying 794 

their values. This type of combination is used to study water cycle linkages or to 795 

diagnose the quality of the individual datasets (Sheffield et al. 2009; Moreira et al. 796 

2019; Rodell et al. 2004).  797 

 Assimilation of the components into surface or hydrological models to ensure budget 798 

closure (Pan and Wood 2006; Pan et al. 2012; Sahoo et al. 2011; Zhang et al. 2018). 799 
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This is a non-trivial task as it requires appropriate a priori bias correction, uncertainty 800 

estimates, and observation operators. Besides, it may impose model structures and 801 

dynamics on the observed variability. 802 

 Statistical optimization between the components to force water budget closure without 803 

the use of a model (Rodell et al. 2015; Pellet et al. 2019; Aires 2014), which also 804 

requires estimates of dataset bias and uncertainties.  805 

 Including energy budget constraints (Thomas et al. 2020; Rodell et al. 2015; Stephens 806 

et al. 2012). 807 

Since not all water cycle components can be sufficiently well observed, their integration 808 

always requires data that are not purely observational, e.g., water vapor divergence from 809 

reanalysis or discharge estimates of ungauged basins estimated from an observation-driven 810 

hydrologic model (Pellet et al. 2019).   811 

b. Water cycle integration across spatial and temporal scales 812 

Water cycle integration can be done over a large range of spatial and temporal domains 813 

(Appendix Table A3). The larger the scales, the lower the uncertainties of the individual inputs 814 

due to the averaging of errors, hence the easier it becomes to close the water budget. Rodell et 815 

al. (2015) made the first attempt to obtain globally consistent water and energy fluxes at a 816 

continental spatial resolution and for the climatological season, using satellite, in situ, and 817 

reanalysis data. The study highlighted the need for a snow measurement mission to better 818 

constrain the cold land hydrology as well as for a satellite mission dedicated to measuring 819 

evaporation to improve water budget closure over tropical areas. A water budget closure study 820 

performed over 341 basins around the world based on reanalysis and river discharge 821 

measurements raised the need of a mission dedicated to moisture convergence monitoring 822 

(Hirschi and Seneviratne 2017) ￼ Even if convergence estimates from reanalysis models are 823 
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still better than any P–E estimates (Trenberth and Fasullo 2013; Munier et al. 2018; Rodell et 824 

al. 2011; Trenberth et al. 2011)￼ revealed that particularly over the tropics E is still too poorly 825 

simulated by land surface models (Sahoo et al. 2011; Munier et al. 2018; Rodell et al. 2011).  826 

Regional water cycle integration studies have covered several parts of the world for various 827 

purposes but with mixed success. For South America, water budget integration has been used 828 

to estimate river discharge in several ungauged sub-basins of the Amazon river (Azarderakhsh 829 

et al. 2011) and to assess continental closure (Moreira et al. 2019). In Africa, it was used to 830 

assess the water balance of the Volta basin (Ferreira and Asiah 2016) and Lake 831 

Victoria (Swenson and Wahr 2009). Mariotti et al. (2002) studied the long-term trends in water 832 

cycle components of the Mediterranean and estimated water flow through the Gibraltar strait, 833 

which was later confirmed by a purely observation-based study (Pellet et al. 2019).  Integrated 834 

water budget approaches were also used to quantify freshwater discharge from the entire pan-835 

Arctic region (Syed et al. 2007; Landerer et al. 2010). For the US it was shown that water 836 

budget closure from remote sensing only was not possible because of large errors in the 837 

individual products (Sheffield et al. 2009; Gao et al. 2012).  Over Canada, a comprehensive 838 

climatology of the joint water and energy budgets was developed for the Mackenzie (Szeto et 839 

al. 2008) and Saskatchewan (Szeto 2007) River basins and later extended to the entire 840 

country (Wang et al. 2014, 2015). Liu et al. (2018) used water cycle integration to assess the 841 

seasonal cycles and trends (1982-2011) of the water budget components over the Tibetan 842 

Plateau while Pellet et al. (2020) reconstructed long term (1980-2015) water storage change 843 

over the main river basins in Southeast Asia and showed the dominant contribution of 844 

precipitation in its interannual variability. 845 

At the pixel level, Zhang et al. (2018) created a 25-year 0.5° resolution CDR at the global 846 

scale, using satellite observations, reanalysis data, and water cycle budget closure optimization. 847 

This CDR fits the need of a comprehensive database to describe the water cycle in a coherent 848 
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way, but still at a coarse spatio-temporal resolution and heavily relying on hydrological 849 

modelling. 850 

c. Example of Global Integration of state-of-the-art Fluxes  851 

Simple assessments at global and annual scales can be used to get a first grasp on the 852 

coherency between datasets. Here, we use a description of the terrestrial water cycle budget 853 

integrated over all continental surfaces, i.e., the change in TWS (dTWS) = terrestrial 854 

precipitation (Pt) – terrestrial evaporation (E) – Discharge (R). R includes both river (Rr) and 855 

groundwater discharge (Rg), which is difficult to estimate directly. But, when assuming that 856 

dTWS equals zero at the annual scale, Rg can be estimated from the state-of-the-art numbers 857 

reported in this study by: 858 

Rg = dTWS + Pt – Et – Rr = 0 + 123,300 – 69,200 – 39,981 = 14,119±9,004 10³ km3 yr-1 859 

The uncertainty estimate is derived by standard error propagation of uncorrelated 860 

gaussian-distributed errors. Despite the very large uncertainty range, it does not cover the 861 

state-of-the-art Rg estimate (0.5 ± 0.3 10³ km3 yr-1;Table 2). Biases in the individual 862 

components directly translate into a biased discharge estimate, while it is difficult to attribute 863 

this imbalance to a specific dataset. Also, uncertainties in each product are crucial to weigh 864 

certain datasets over uncertain ones, and to estimate a posteriori the uncertainty of the final 865 

solution. While combining yearly data at the global scale reduces uncertainties thanks to the 866 

cancelling of errors, and the above representation may be too simplistic, e.g., assuming 867 

dTWS = 0, it does show that we are still far from perfect closure based on observations only, 868 

even at these coarse scales. This becomes increasingly challenging at finer spatial and 869 

temporal scales.  870 

The water budget cannot be accurately closed if one of the components is not observed. 871 

This is even more so the case for the long-term trends (Table 1; Table 2). Global trend 872 
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estimates are still too uncertain for many components, because of too short observation 873 

records or failing intercalibration of sensors over time. Besides, closing trends in the water 874 

cycle components requires a sufficiently long common baseline period, which is currently 875 

lacking for the ECVs that do provide trends based on scientific consensus (Table 1; Table 2). 876 

Yet, various studies assessed trends and their underlying drivers in multiple observations of 877 

individual ECVs, often in combination with trends in reanalysis products, e.g., for 878 

precipitation (Zhang et al. 2007), soil moisture (Preimesberger et al. 2020), land evaporation 879 

(Zhang et al. 2016b), and runoff (Yang et al. 2019). Several recent studies demonstrated 880 

consistency in trends between a selection of water cycle ECVs, mostly between continental 881 

ice melt and sea level rise (Zemp et al. 2019; Shepherd et al. 2020; Raj et al. 2020), but 882 

substantial uncertainty remains for the land water storage components (Cazenave et al. 2018). 883 

5. Synthesis and outlook 884 

Long-term monitoring the Earth's water cycle has made great progress in recent decades, 885 

but many observational gaps still need to be overcome to fully characterize variability in 886 

individual components and allow for a comprehensive and consistent assessment of the water 887 

cycle as a whole. Table 3 and 4 summarize the main challenges per water cycle component 888 

(status and long-term changes (trends) of both, the changes in storage but also changes in 889 

fluxes as available) confronted with the foreseen observational and methodological 890 

developments. Several challenges shared by multiple water cycle components are 891 

summarized in the following. 892 

a. Continuation and expansion of existing observation systems  893 

If at all, trends in water cycle components can only be observed with great uncertainty, 894 

which is mainly due to insufficient length and homogeneity of the observations. Thus, it is of 895 

utmost performance to restore historical satellite and ground data, continue existing 896 
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measurement concepts and harmonize past, current and future observing systems. Even 897 

satellite observing systems with demonstrated skill for a range of variables (e.g., L-band 898 

radiometer observations for soil moisture and vegetation water, gravity observations for 899 

groundwater, ice sheets, and glaciers) have an uncertain future. The joint CEOS/CGMS 900 

working group Climate supports a strategic planning beyond the lifetime of a single mission. 901 

EUMETSAT’s Satellite Application Facilities or the EU- Copernicus programs are already in 902 

line with this paradigm shift.   903 

A major difficulty is the intercalibration of satellite datasets with varying quality and 904 

temporal/spatial characteristics over time. Yet, as shown by this review, satellites alone 905 

cannot solve for the entire balance and coordinated ground monitoring capacities are needed. 906 

Extensive networks of long-term fiducial in situ monitoring networks are fundamental in this 907 

respect, e.g., those federated within the Global Terrestrial Network for Hydrology (GTN-H), 908 

the Global Ocean Observing System (GOOS), and the Global Atmosphere Watch (GAW). 909 

However, their ambition to collect trustworthy observations worldwide is encumbered by 910 

lacking open data policies and the fact that many ground observing networks heavily rely on 911 

scientific project funding, causing observational gaps particularly in the global south. Support 912 

and advocacy for the national hydrological and meteorological services as well as space 913 

agencies to fund, collect, and make available these data must be expanded.  914 

b. New observation systems      915 

Several dedicated scientific satellite missions have been scheduled to fill existing gaps in 916 

water cycle observations, among them SWOT (Morrow et al. 2019), scheduled for launch in 917 

2021. SWOT is expected to revolutionize continental water cycle observability, by allowing 918 

the global characterization of lake and river discharge dynamics in regions with sparse 919 

ground monitoring or restrictive data sharing policies. Apart from the Sentinel satellites 920 
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currently in orbit or already scheduled for launch, the EU-Copernicus program has defined 921 

several High Priority Candidate missions, of which CIMR, CRISTAL and ROSE-L have 922 

particular relevance for improved characterization of various water cycle components, 923 

including snow, ice sheets and shelves, glaciers, and soil moisture. In addition, new EO 924 

observation capabilities need to be developed for ECVs that thus far are hardly characterized, 925 

e.g., ground ice, anthropogenic water use, and groundwater recharge and discharge. Yet, by 926 

nature, these components will heavily rely on ground observations and consequently adequate 927 

ground infrastructure needs to be established, improved, and sustainably supported. In 928 

addition, artificial intelligence and machine learning should become routinely applied for 929 

reduction of retrieval errors and uncertainties of upcoming and existing missions. 930 

c. Integration of ECVs with other components and models  931 

In general, the integration of existing sensors (in situ, remote sensing) and techniques will 932 

close observational gaps. A new ECV total terrestrial water storage (TWS) would provide 933 

more timely and integrative data to directly close the continental water budget of P, E, R and 934 

dTWS (see Section 4). A long-term perspective for gravity observations from space is thus 935 

crucial.  936 

But, no matter how sophisticated the satellites or observing systems are, observation 937 

errors in the individual products will always be present and lead to inconsistencies between 938 

ECVs, hampering a comprehensive assessment of the water cycle. Statistical integration 939 

methods can force consistency between ECVs and optimize individual components, but 940 

require estimates of their uncertainties, which are not trivial to obtain. Also data integration 941 

methods can profit form artificial intelligence and machine learning to reduce uncertainties 942 

and biases (Aires 2018). For instance, Beck et al. (2021) used ancillary data of surface 943 

properties in a Random Forest machine learning framework to explain errors at the pixel level 944 
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while closing the water budget. Such an approach can be trained at basins where sufficient 945 

(most importantly discharge) data are available to close the water budget and then applied to 946 

each location or pixel for which this requirement is not fulfilled. Structural errors (biases) can 947 

be state-dependent (e.g., for anthropogenic water use or discharge), have spatial or seasonal 948 

patterns, and directly translate into an imbalance in the water budget. Higher spatial and 949 

temporal resolutions may reveal important local climate signals, e.g., on extreme events, but 950 

closing the water budget at these scales becomes increasingly challenging. State-of-the-art 951 

closure methods analyze regions at the sub-basin scale, requiring knowledge of the inter-952 

dependency of the sub-basins and the lateral (sub-) surface transport (Azarderakhsh et al. 953 

2011; Pellet et al. 2020). This interdependency of sub-basins can be pushed even further to 954 

the pixel-scale but the spatial resolution of some datasets (e.g., GRACE) is a major limitation. 955 

However, integrating the datasets and imposing the budget closure can actually be a technical 956 

solution to downscale coarse resolution datasets, both spatially and temporally (Ning et al. 957 

2014).  958 

Improving model-data synthesis capabilities and reducing the spread of reanalysis 959 

products on precipitation, evaporation, and discharge is needed for an advanced closure of the 960 

water cycle, in particular at regional to local scales. This can be achieved by consolidating 961 

forcing data and auxiliary datasets, e.g., by using a common land-sea mask (Popp et al. 2020) 962 

or by constraining reanalyses with observations, e.g., satellite-observed ocean salinity (Yu et 963 

al. 2017).  964 

This especially applies to the uncertainty of atmospheric moisture transport, which cannot 965 

be measured directly and is mostly inferred from reanalysis. Different approaches to model 966 

key elements (e.g., terrestrial interception loss) explain for some ECVs the lack of global 967 

closure in the water cycle. It is also concluded that integrated modelling approaches provide 968 
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the best prospect for resolving anthropogenic water use at the necessary scale and temporal 969 

resolution, with accounting and satellite data used for input and validation.  970 

d. Final remarks   971 

Available and clean water resources are one of our biggest challenges globally and are 972 

under pressure due to global change (UNESCO 2020). This requires consistent monitoring 973 

and long-term observation strategies. Water is a connecting element, but it is also the focus of 974 

various competing interests that can lead to serious political conflicts. While observational 975 

needs are currently expressed by the individual communities, the definition of future 976 

observation systems should consider following a more holistic approach and observe water 977 

cycle components as part of their global cycle and assess its variability in conjunction with 978 

the energy and carbon cycles. This should be adopted and implemented by high level 979 

organizations like GCOS, but also by the agendas of the WMO member states as well as of 980 

the WMO research agenda.  981 
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Acronyms used in this study 1001 

Acronym Full Spelling 

Aeolus ESA Satellite mission 

AGB Above-ground biomass 

AMRS-2 Advanced Microwave Scanning Radiometer 2 

ASCAT Advanced Scatterometer 

AVHRR Advanced Very High Resolution Radiometer 

BGB below-ground biomass 

C3S Copernicus Climate Change Service 

CDR Climate Data Record 

CGD Coastal groundwater discharge 

CIMR Copernicus Imaging Microwave Radiometer 

CRISTAL Copernicus Polar Ice and Snow Topography Altimeter 

dS Total terrestrial storage change 

E Evaporation 

ECV Essential Climate Variable 

EOS Earth Observing System 

ESA European Space Agency 

ESA CCI ESA Climate Change Initiative 

CryoVEx CryoSat2 Validation Experiment 

ET Evapotranspiration 

EUMETSAT European Organization for the Exploitation of Meteorological Satellites 

FAO Food and Agriculture Organization 

FTIR Fourier-Transform-Infrarot-Spektrometer 

GAW Global Atmosphere Watch 

GCOS Global Climate Observing System 

GDL groundwater discharge to lakes 

GEO Geostationary Orbit 

GGMN Global Groundwater Monitoring Network 

GMSL Global Mean Sea Level 

GOOS Global Ocean Observing System 

GPCC Global Precipitation Climatology Centre 

GPM Global Precipitation Measurement Satellite 

GPS Global Positioning System 

GRACE Gravity Recovery and Climate Experiment 

GRACE-FO GRACE Follow-On 

GRDC Global Runoff Data Centre 

GRUN global gridded runoff data 

GTN-G Global Terrestrial Network for Glaciers 

GTN-H Global Terrestrial Network for Hydrology 

GTN-P Global Terrestrial Network for Permafrost 

GTN-R Global Terrestrial Network for Rivers 

ICESat Ice, Cloud and land Elevation Satellite 

ICWRGC International Centre for Water Resources and Global Change 

InSAR Interferometry of Synthetic Aperture Radar 

IPCC Intergovernmental Panel on Climate Change 
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JAXA Japan Aerospace Exploration Agency 

LEO Low Earth Orbit 

LIDAR Light Detection and Ranging 

MERRA-2 Modern-Era Retrospective analysis for Research and Applications 

MetOP Meteorological Operational Satellite 

MRMS Sensor Radar Multi 

NGD Near-shore terrestrial groundwater discharge 

JPSS Joint Polar Satellite System 

NSIDC National Snow and Ice Data Center 

P Precipitation 

R All discharge 

RACMO Regional Atmospheric Climate Model 

Rg Groundwater discharge 

rH Relative humidity 

root:shoot ratio below- and above-ground biomass 

ROSE-L L-band Synthetic Aperture Radar) 

Rr River discharge 

SAR Synthetic Aperture Radar 

SGD Submarine groundwater discharge 

SMAP Soil moisture active passive 

SMMR Scanning Multichannel Microwave Radiometer 

SMOS Soil Moisture and Ocean Salinity 

SROCC Special Report on the Ocean and Cryosphere in a Changing Climate 

SSM/I Special Sensor Microwave / Imager 

SST Sea surface temperature 

SWE snow water equivalent 

SWOT Surface Water Ocean Topography 

TCWV Total column water vapor 

TIRS Thermal infrared sensors 

TPW Total Precipitable Water 

TRMM Tropical Rainfall Measuring Mission 

TWS Total terrestrial water storage 

UN United Nations  

UNFCCC United Nations Framework Convention on Climate Change 

VOD Vegetation optical depth 
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SIDEBAR 1882 

Salinity as a proxy for the Ocean Water Cycle 1883 

Ocean salinity has long been regarded as a potential rain gauge of the ocean water cycle 1884 

(Elliott 1974). The cycling of the freshwater between evaporation (E), precipitation (P), and 1885 

runoff (R) acts in concert with ocean circulation and mixing, driving the salinity distribution 1886 

to respond to the balance between E, P, and R. Surface waters are generally saltier in the 1887 

subtropical regions where E exceeds P, and fresher in the tropical and high-latitude regions 1888 

where P and/or R exceeds E (Schmitt 1995).  As the globe warms, the water holding capacity 1889 

of the atmosphere increases so that more moisture is evaporated from the ocean to the 1890 

atmosphere. The increased moisture energizes the moisture transport between regions and 1891 

amplifies the P-E patterns over the ocean. The rate of increase in ocean evaporation is, 1892 

however, less than the rate predicted by the Clausius-Clapeyron equation, because the global 1893 

hydrological cycle is constrained by the surface and atmospheric energy budget (e.g. Held 1894 

and Soden 2006; Hegerl et al. 2015; Allan et al. 2020). Multi-decadal ocean observations 1895 

showed that mean salinity patterns have amplified, leading to a salinification of the 1896 

subtropical ocean and freshening of the tropical and high latitude(e.g. Durack and Wijffels 1897 

2010). The pattern of change in salinity is consistent with the “dry-gets-drier and wet-gets-1898 

wetter” paradigm (Held and Soden 2006), indicating that the oceans hold important insights 1899 

into the long-term variations of the water cycle and the effects of climate change (Yu et al. 1900 

2020). Hence, estimates of the global ocean salt budget change serve as an alternative and 1901 

independent measure to the change of the freshwater budget in the ocean  (Llovel et al. 2019) 1902 

and is particularly appealing in light of large uncertainties in the present estimates of E, P, 1903 

and R. 1904 

The observed rate of the water cycle intensification inferred from in situ salinity 1905 

observations is about 8±5% oC-1 of global mean surface temperature rise over 1950-2000 1906 

(Durack et al. 2012). This rate is in line with theory, but more than twice as large as the rates 1907 

estimated from state-of-the-art climate models. Several modeling studies have suggested that 1908 
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the disparity may reflect the effects of ocean warming on the surface salinity pattern 1909 

amplification in addition to the effects of changing P–E flux arising from the strengthening 1910 

water cycle (Zika et al. 2018). Ocean warming acts to increase near-surface stratification, 1911 

prolonging existing salinity contrasts and causing surface salinity patterns to amplify further. 1912 

Changes in atmospheric circulation patterns alter the locations of the wet and dry portions of 1913 

the atmospheric circulation, which can also dampen the water cycle change signal passed on 1914 

to the ocean (e.g. Allan et al. 2020). Hence, the use of ocean salinity as a proxy for P–E 1915 

should be aware that the processes responsible for the change of ocean salinity may not be as 1916 

straightforward as a simple response to changes in the P– E field. 1917 

Advances in L-band (1.4 GHz) microwave satellite radiometry in the recent decades, 1918 

pioneered by the ESA’s SMOS and NASA’s Aquarius and SMAP missions, have 1919 

demonstrated an unprecedented capability to observe global sea surface salinity from space 1920 

(Vinogradova et al. 2019; Reul et al. 2020). These satellite salinities are complementary to 1921 

the existing in situ systems such as Argo profiling floats, enabling the salinity observing 1922 

capability to reach to a depth of 2000 m. It is hoped that the assimilation of satellite and Argo 1923 

salinities in ocean state estimation and coupled ocean-atmosphere system will lead to 1924 

advances in estimating the freshwater budget over the global ocean through enforcing ocean 1925 

dynamical constraints on the changes of P–E as well as R. 1926 

  1927 
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TABLES 1928 

Table 1 Summary of water cycle storages including trends. All values in 10³ km³ (storage) or 10³ km³ yr-1 1929 

(trends). Glacier and ice sheets ice weight is calculated to volume by ice density, assuming an ice density of 917 kg m–1930 

3 (IPCC AR5). 1931 

Stores Total 

volume 
(10³ km³) 

Uncertaint

y (1 sigma) 

Uncertaint

y (%) 

Source Global 

trends  
(10³ km³ 

yr-1) 

Trend 

uncertaint

y (95% 

confidence 

level: 

Source 
Type of 

Observatio

n 

Water 

stored in 

oceans 

1,335,000.0 13,350 1% ngdc.noaa.g

ov/mgg/glo

bal/etopo1_
ocean_volu

mes.html 

a) 391 

(1957-

2018) 
b) 762 

(1993-

2018)  

c) 539-666 

(GRACE, 

2003-2018) 

 a) +-95  
b) +-169  

a, b)  

Frederikse 

et al. 2020  
c) Blazquez 

et al. 2018 

EO, In situ 

 

Water 
stored in 

lakes  

176.4 26.46 15 Korzoun et 
al. 1978; 

Shiklomano
v and 

Rodda 2004 

not rated Not rated 
 

Not rated 
 

 

EO, In situ 

Water 

stored in d 
reservoirs 

6.4 0.64 10 Shiklomano

v 2008 

not rated Not rated 

 
 

Not rated 

 
 

EO, In situ 

Groundwat

er  

a) 23,400   
b) 22,600  

16,000-

30,000 
(range 

based on 

porosity 
uncertainty; 

Gleeson et 

al., 2016) 

b) 58-133%  a) Oki and 

Kanae, 
2006 
b) Gleeson 

at al., 2016 

c) 145 

(2000-
2008) 

d) 137 

(1960-
2010) 

c) 39 

d) - 

c) Konikow 

2011 
d) de Graaf 

et al. 2016 

Volume 

based on 
global 

lithology 

and 
porosity. 

Trends 

from EO, in 
situ and 

models  

Soil 

moisture 

17  Not rated 

 
 

Not rated 

 

Oki and 

Kanae, 
2006 

Not rated 

 
 

 

Not rated 

 
 

Not rated 

 

Reanalysis 

Water 
stored in 

permafrost 

a) NH; b) 
mountain 

a) 20.8 
b) 0.08 

a) 11.1 
b) 0.017 a) 53% 

b) 21% 

a) Zhang et 
al. 2000  

b) Jones et 

al. 2018 
(mountain) 

Not rated 
 

Not rated 
 

 

Not rated 

 

In situ, 
model 

calculationb

ased on ice 
content 

assumption

s 

Water 
stored in 

glaciers 

158 (around 
year 2000) 

41 26%  Farinotti et 
al. (2019, 

NGEO) 

 -0.3 
(around 

2000) 

0.1 IPCC 
SROCC 

(2019), 

based on 
Zemp et al. 

(2019, 

Nature), 
Wouters et 

al. (2019, 

Frontiers), 
and 

regional 

studies. 
 

EO, In situ 

 

Water 

stored in 
ice sheets 

 29,200  
  

Not rated 

 

Not rated 

 
 

Shepherd et 

al. 2018 
 

 -0.472 
 
(2006-

2015) 

 0.024 
  

 IPCC 

SROCC 
(2019), 

based on 

EO, In situ 
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and ice 

shelves 

d 

Bamber et 

al. 2018 

Water 

stored in 

snow 

 3.7 0.5 

 

3-4% 

(mountains  

~10%) 

Pulliainen 

et al. 2020 

-0.049 (for 

1980-2018. 

±0.049 

(95% 

significance
) 

 

 

Pulliainen 

et al. 2020 

 
 

EO, In situ 

 

Water 

stored in 

vegetation  

2.46 0.82 Not rated 

 

 

This study, 

based on 

Tong et al. 
2020, 

Spawn et al. 

2020, 
Penman et 

al. 2003 

Not rated Not rated 

 

 

Not rated  

 

EO, In situ 

 

Atmospheri

c water 
vapor 

12.7 0.3 2-3% Trenberth et 

al. 2007 

small 

positive 
trend 

Medium 

certainty  

Chen and 

Liu 2016 

EO, In situ, 

Reanalysis 

Table 2 Summary of water cycle fluxes including trends. All values in 10³ km³ yr-1. 1932 

Fluxes ECVs 

involved 

Yearly 

flux  
(10³ km3 

yr-1) 

Uncertaint

y 
(1sigma) 

Uncertaint

y (%) 

Reference Global 

trends 
(10³ km3 

y-2) 

Trend 

uncertaint
y 

reference Type of 

Observati
on 

 

Precipitati
on over 

land 

Precipitati
on 

(a) 123.3 
(b) 116.5  

(a) 5.4  
(b) 5.1 

(a) 4.4% 
(b) 4.4% 

(a) 
Koutsoyia

nnis, et. al 

2020, (b) 
Rodell et 

al. 2015 

Currently 
not 

detectable 

outside of 
noise 

Not rated 
 

 

Not rated 
 

 

EO, In 
situ, 

Reanalysi

s 

Precipitati

on over 

ocean  

Precipitati

on 

(a) 399.4 

(b) 403.5  

(a) 22.0 

(b) 22.1 

(a) 5.5% ( 

5.5% 

(a) 

Koutsoyia

nnis, et. al 
2020, (b) 

Rodell, et 

al., 2015 

Currently 

not 

detectable 
outside of 

noise 

Not rated 

 

 

Not rated 

 

 

EO, In 

situ, 

Reanalysi
s 

 

Land 

evaporatio

n 

Evaporati

on from 

land 

69.2 7.0 10% Miralles 

et al. 

(2016)  

0.29  0.15 Pan et al. 

2020 

EO, In 

situ, 

Reanalysi
s 

 

Evaporati

on over 
ocean 

evaporatio

n  

450.8 31.1 7% Yu et al. 

2017 

0.66 0.20 

 
 

Yu et al. 

2020 

EO, In 

situ, 
Reanalysi

s 

 

Atmosphe

ric 

moisture 
transport 

from 

ocean to 
land 

TCWV 45.8 4.4 9.6% Rodell et 

al. 2015, 

Schneider 
et al. 2017 

 

Not rated  Not rated 

 

 

Not rated 

 

 

Reanalysi

s 

 

River 

discharge 

river 

discharge 

a) 38.5   

b) 39.8  

1.5 ~4%  a) Ghiggi 

et al. 2019 
b) 

Schmied 

et al 2020 

Not rated Not rated 

 
 

Not rated 

 
 

 In situ + 

model 

Groundwa

ter 

discharge 

(fresh) 

Groundwa

ter 

 0.5 0.3 60% Zhou et 

al. 2019 

Currently 

not 

detectable 

outside of 
noise 

Not rated 

 

 

Not rated 

 

 

In situ + 

model 

Groundwa

ter 
recharge 

Groundwa

ter 

13.6 

 

0.9 ~13% Mohan et 

al. 2018 
Not rated 

 

Not rated 

 

Not rated 

 

Model, 

validated 
with in-

situ data 
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Glacier 

turnover  

a) 1961-

1990 

b) 1980-
2012 

Glacier a) 0.436   

b) 0.916 

a) 0.273 

b) 0.273 

 

 

a) 64% 

b) 32% 

a) 

Braithwait

e and 

Hughes 

2020 
b) Huss 

and Hock 

2015 Both 
studies 

estimate 

the flux 
from 

modelling

. Numbers 
are a 

combinati

on of both 
flux and 

change in 

storage. 
Density 

ass. 919 

kg m-3. 

Not rated Not rated 

 

 

Not rated 

 

 

EO, In 

situ, 

Reanalysi

s 

 

Ice sheet 
turnover  

a) West  
Antarctic, 

b) East 

Antarctic, 
c) 

Greenland

ice sheet 

Ice sheet (a+b) -
0.169 
c) -0.303 
(2006-

2015), 

(a+b) -
0.089 
c) -0.287 

(2002-
2011) 

 

(a+b) 
0.021 
c) 0.012 
(2006-

2015), 

(a+b) 
0.029 
c) 0.023 

(2002-
2011) 

 

Not rated 
 

 

IPCC 
2019 

 
 

(a+b) -
0.089 to -

0.169, (c) 
-0.287 to 

–0.303 for 

(2002-
2011) to 

(2006-

2015)  
 

Not rated 
 

 

Not rated 
 

 

EO, In 
situ, 

 
 

Permafros

t water 
turnover 

Permafros

t 

4.3 Not rated 

 
 

Not rated 

 
 

Shikloma

nov et al. 
2021 

 

+0.250 

(1936-
2015) 

Not rated 

 
 

Shikloma

nov et al. 
2021 

 

In situ, 

reanalysis 

ground 
water 

extraction 

a) flux-
based 

method 

b) 
volume-

based 

Anthropo
genic 

water use 

a) 0.20  
b) 0.15  

a) 0.03  
b) 0.04  

Not rated 
 

 

Taylor et 
al. 2013 

Not rated 
 

Not rated 
 

 

Not rated 
 

 

EO, In 
situ, 

Reanalysi

s 
 

Blue 

Water 
Irrigation 

Anthropo

genic 
water use 

2.7 Not rated 

 
 

Not rated 

 
 

FAO 2021  Not rated Not rated 

 

Not rated  National 

reporting 

Domestic 

and 
industrial 

blue water 

use 

Anthropo

genic 
water use 

1.3 Not rated 

 
 

Not rated 

 
 

Flörke et 

al. 2013 

+0.02 Not rated 

 
 

Flörke et 

al. 2013 

Modelling 

 

Table 3 Summary capability demands and outlook of water cycle storages 1933 

Storage 

Observational needs Observational outlook Other (methodological 

developments, 

reanalysis, etc.) 
in situ EO in situ EO 

Oceans Enhance the Argo 

array of profiling 

floats including full-

depth Argo to 
estimate the 

contribution of deep-

ocean warming and 
salinity changes. 

Ensure the 

continuity of 

satellite altimetry 

beyond 2030; 
ensure the 

continuity of 

satellite 
gravimetry and 

surface salinity 

missions   

Establishment of 

a fully global, 

top-to-bottom, 

dynamically 
complete, and 

multidisciplinary 

Argo Program  

Constellation of 

satellite altimetry 

for sea level and 

satellite 
radiometry for sea 

surface salinity. 

The CIMR 
mission concept 

can provide 

continuity for 
satellite salinity 

measurements 

A suite of ocean 

reanalysis products that 

assimilate various in-

situ and EO 
measurements for ocean 

ECVs. 

In the future Argo will 
integrate seamlessly 

with satellite and with 

other in situ elements. 
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Terrestrial Open 

Water (Lakes, 

artificial 

reservoirs, 

wetlands) 

Determine the exact 

quantity of water 

from lakes and 

wetlands that 

contribute to global 
closure of the water 

cycle; more precise 

and more frequent 
updates of 

hypsometry curves 

needed 

Ensure the 

continuity of high-

resolution satellite 

altimetry beyond 

2030 

 SWOT mission 

for 

characterization 

or water table 

depth of smaller 
lakes; Sentinel 1 

and 2 satellites 

will greatly 
complement 

existing series of 

Landsat images 
used for 

hypsometry 

curves 

Focus on a set of 

representative lakes that 

most objectively reflect 

the climatic signal 

Atmospheric 
water vapor 

More in-situ 
measurements are 

needed over oceans 

and in the Southern 
Hemisphere 

Improved satellite-
based 

measurements to 

measure water 
vapor over land 

during cloudy 

conditions, in the 
lower troposphere 

and the boundary 

layer. 
Dedicated mission 

for moisture 
convergence 

monitoring 

Increased 
number of frost 

point hygrometer 

launch sites as 
part of the 

GRUAN 

network. 

CrIS and ATMS 
instruments for 

JPSS-3 and JPSS-

4. IASI-NG, 
METImage, 

MWI, and MWS 

on EPS-SG, 
AMSR-3 on 

GOSAT-GW.  

Reanalysis models must 
be improved to maintain 

water mass balance   

Groundwater Maintain and extend 

in-situ national 
groundwater level 

monitoring networks 

to close observational 
gaps (particularly in 

the Global South) 

and promote data 
sharing among 

countries. 

Higher spatial 

resolution to 
monitor smaller 

aquifers; long-

term observing 
system 

Establishment of 

new national 
groundwater 

monitoring 

programmes. 

Next-generation 

global gravity 
satellite missions 

with increased 

spatial resolution 
planned 

Improved modelling 

and downscaling of 
groundwater variations 

using machine learning     

Soil moisture Expand capabilities 
to underrepresented 

regions (e.g. Africa, 

Southern America) 
and climates that are 

currently poorly 

covered (e.g. 
monsoon, tropic, 

polar);  

clever, dense network 
design to bridge scale 

gaps 

Continuation of 
dedicated L-band 

soil moisture 

missions; 
improved spatial 

resolution 

Establishment of 
fiducial reference 

networks (ESA, 

Copernicus) 

CIMR L-band, 
Tandem-L, Rose 

L, HydroTerra for 

diurnal 
variability, high-

resolution 

products from 
downscaling and 

SAR satellites 

Better retrievals and 
models for dense 

vegetation and organic 

soils 
 

Glaciers Additional multi-

temporal glacier 
inventories every ~20 

years; better spatial 
coverage of glacier 

thickness 

measurements; 
 at least one long-

term mass-balance 

monitoring program 
in every larger 

mountain range 

providing 

glaciological 

variability at seasonal 

to annual time 
resolution 

close geodetic 

gaps in in regions 
where glaciers 

dominate runoff 
during warm/dry 

seasons, e.g. in the 

tropical Andes and 
in Central Asia, 

and in the heavily 

glacierized regions 
dominating the 

glacier 

contribution to 

sea-level rise, i.e. 

Alaska, Arctic 

Canada, Russian 
Arctic, Greenland 

and Antarctica. 

 spaceborne 

altimetry 
(ICESat-2); 

increasing 
availability of 

large-scale high-

resolution DEMs; 
Unlock national 

archives of aerial 

surveys and 
photogrammetric 

processing of 

early optical 

satellite data; 

 

Exploit reconstructions 

from topographic maps 
and geomorphological 

evidence 

Ice sheets and ice 

shelves 

International 

coordinated 
observation flight 

campaigns to 

cover the “missing 
areas” along major 

outlet glaciers, 

Continuation and 

effective 
combination of 

various existing 

satellite programs, 
e.g. ICESat-2, 

CryoSat and future 

Campaigns in 

Greenland and 
Antarctica for 

satellite 

validation. 
Need to close 

observational gap 

ESA Crystal 

mission, 
Copernicus 

CMIR,  

CRISTAL, 
(Copernicus Polar 

Ice and Snow 

Need of more diverse 

atmosphere reanalysis 
products, e.g., snow 

densities, firn 

compactions, snow drift 
and surface conditions, 

to narrow down ice 
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particularly in East 

Antarctica. 

Surface traverse 

campaigns for 

improving firn 
models and englacial 

hydrology, especially 

in Greenland with its 
increasing seasonal 

melt zones 

ESA Crystal 

missions 

 

with unknown 

outlet glacier 

thickness in East 

Antarctica  

Topography 

Altimeter) and 

ROSE-L  

sheet mass change 

models 

Permafrost The main difficulty 

for assessing 
permafrost 

distribution, ice 

content and mass 
changes is that 

permafrost is not 

visible at the surface. 

Still no reliable 

remote sensing 
technique for 

detecting 

permafrost 
Need for a surface 

subsidence 

product 

Spatial 

observational 
gaps have to be 

filled. 

Tentatives are in 

progress within 
the ESA/CCI 

project 

Most urgent need is a 

sustainable and reliable 
funding of monitoring 

networks and the 

database infrastructure, 
ensuring long-term 

availability of 

observational data. 

Snow expand ground-based 

observation networks 

continuation of 

satellite programs 

 CIMR is expected 

to provide SWE 

at improved 
accuracy and 

resolution; SAR 

based approaches 
(e.g., Sentinel-1) 

for mapping snow 

mass and SWE in 
mountain areas  

fusing observations 

from active and passive 

sensors or combining 
them with independent 

reference data 

 1934 

  1935 
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Table 4 Summary capability demands and outlook of water cycle fluxes 1936 

Flux 

Observational needs Observational outlook Other 

methodological 
developments, 

reanalysis, etc. 
in situ EO in situ EO 

Ocean 
evaporation 

near-surface 
observations 

with focus on air 

temperature and 
humidity  

improved satellite 
retrieval algorithms 

for near-surface 

ECVs with focus on 
air temperature and 

humidity  

 

Explore the use of air-sea 
observations from new 

autonomous platforms 

such as saildrones and 
wave gliders; sustained 

and expand existing 

surface buoy network 
 

Continuity of 
microwave imager 

programmes via, 

e.g., EUMETSAT 
(EPS-SG) and 

JAXA (GOSAT-

GW) and NOAA 
JPSS (ATMS) 

Improvement of 
the model 

constraint of the 

ocean E-P 
estimates and the 

model-data 

synthesis 
capability of EO to 

the ocean water 

cycle; 
reconcile large 

spread in 

atmospheric 
reanalysis models 

and satellite 

gridded products  
 

Land 

evaporation 

Novel means to 

measure 

interception loss 
over multiple 

ecosystems 

Missions dedicated 

to measuring 

evaporation to 
improve water 

budget closure over 
tropical, semiarid 

and high-latitude 

areas 

Use of data from new in 

situ networks such as 

SAPFLUXNET 
(http://sapfluxnet.creaf.cat) 

in combination with eddy-
covariance data 

 

New types of EO 

(such as solar 

induced chlorophyll 
fluorescence) and 

new platforms (such 
as CubeSats and 

UAVs) 

 

Ocean 
precipitation 

 Retrieval skills need 
to be improved, to 

address intermittent 

nature and high 
spatial and temporal 

variability of 

precipitation 
 

 Continuity of 
microwave imager 

and sounder 

programmes via, 
e.g., EUMETSAT 

(EPS-SG), JAXA 

(GOSAT-GW) and 
NOAA (JPSS); 

NASA-JAXA 

PMM; improved 
snow retrieval 

capabilities with ICI 

(EUMETSAT, 
EPS-SG), largely 

improved temporal 

sampling with the 
TROPICS mission 

(NASA) 

Integration of 
multiple sensors 

and deriving 

reanalysis products 
will address the 

high spatial and 

temporal 
variability 

Land 
precipitation 

Improve 
timeliness to 

contribute 

precipitation 
data to GPCC 

Improved consistent 
long-term datasets;  

 Same as for ocean 
precipitation 

Integration of 
multiple sensors 

(in situ, remote 

sensing) and 
techniques (rain 

gauges, 

meteorological 
radars, soil 

moisture). 

River 
discharge 

Improve 
timeliness to 

contribute data 

to GTN-R. 

Long-term, 

regular 

measurements 
of upstream 

river discharge 

on finer spatial 
scale 

Increase numbers of 
virtual stations from 

altimetry 

In situ observations are 
globally under thread due 

to reduced field 

observation capabilities 

and priorities. 

SWOT for 
measuring rivers 

wider than 100 

meters. SWOT 

assimilation into 

models to derive 

first globally 
consistent 

information on river 

discharge 
 

 

Data integration 
and assimilation 

methods will be 

used to provide 

information on 

river discharge 

based on different 
sensors and 

observation 

techniques. 

Groundwater 

discharge from 
continents to 

ocean 

Increase number 

and frequency 
of observations 

Better understanding 

of usefulness of EO 
for groundwater 

discharge monitoring 

Advances in geophysical 

tools, which can be 
coupled with hydrological 

flow modeling. 

 Model simulations 

are becoming 
more skillful due 

to increasing 
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of groundwater 

discharge. 

availability of 

high-quality 

hydrologic and 

topographic data 

that feed them. 

Glacier and ice 
sheet turnover 

To understand 
rapid changes in 

ice mass flux 

and ice 
instability the 

observation of 

bottom melting 
is essential. 

 Close coordination as 
diverse as earth rheology 

and geophysics (for heat 

flow modelling), 
glaciology for 

understanding ice 

movements, crevassing 
and calving, meteorology 

for snowfall and firn 

compaction is required. 

Broadband 
observation from 

visual to L-band 

radar active 
measurements, and 

passive microwave 

observations 
sensitive to surface 

melting 

Improved 
estimations of 

glacier mass 

turnover require a 
better integration 

of observations 

into numerical 
models with full 

representation of 

individual glaciers  

Anthropogenic 

water use 

Irrigation 

surveys 

available at sub-
national scale, 

with shorter 

delivery time 
 

 

 Improved spatial 

and temporal 

resolution of 
microwave 

observations for soil 

moisture retrieval. 

 The revisit time will 

improve after 

launch of two new 
Sentinels, i.e. 

Sentinel-1C and 

Sentinel-1D, 
planned for 2022 

and 2023. ESA 

Earth Explorer 
Hydroterra for sub-

daily observations   

Downscaling of 

coarse satellite soil 

moisture to resolve 
elements of 

anthropogenic 

water use; 
integrated 

modelling 

approaches for 
resolving 

anthropogenic 

water use at the 
necessary scale 

and temporal 

resolution, with 
accounting and 

satellite data used 

for input and 
validation. 

 1937 

  1938 
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APPENDIX TABLES 1939 

A1 Summary of (semi-)operational long-term global observing systems and programs of water cycle storages 1940 

Storage 
GCOS ECVs 

involved 
in situ EO 

Oceans sea level, sea 

surface and 

subsurface 
temperature, 

(Suggested as 

possible 
future ECV: 

ocean mass, 

ocean bottom 
pressure) 

GLOSS - Global Sea-Level Observing 

System (gloss-sealevel.org/data/) 

 
International Comprehensive Ocean-

Atmosphere Data Set (ICOADS) 

(rda.ucar.edu/datasets/ds548.0/); 
 

UKMO EN4 subsurface temperature 

and salinity 
(metoffice.gov.uk/hadobs/en4/) 

JPL PODAAC: 

(podaac.jpl.nasa.gov/OceanSurfaceTopography); 

 
ESA CCI Sea Level (climate.esa.int/odp); 

 

ESA CCI Sea Surface Temperature (climate.esa.int/odp); 
 

Copernicus Marine Service (marine.copernicus.eu); 

 
Group for High Resolution Sea Surface Temperature 

(ghrsst.org); 

Lakes and 

reservoirs 

Lakes International Data Centre on 

Hydrology of Lakes and Reservoirs 

(hydrolare.net/) hosts the GTN-L as 

part of GTN-H 

Hydroweb (legos.obs-mip.fr/soa/hydrologie/hydroweb/) as 

part of GTN-H) 

 

ESA CCI Lakes (climate.esa.int/odp) 

Copernicus Global Land Surface (land.copernicus.eu/) 

Atmospheric 

water vapor 

Water Vapor Hadley Centre Integrated Surface 

Database (HadISD) 

(metoffice.gov.uk/hadobs/hadisd/); 
 

International Comprehensive Ocean-

Atmosphere Data Set (ICOADS) 
(rda.ucar.edu/datasets/ds548.0/); 

 

Integrated Surface Database (ISD) of 
the NCEI of NOAA 

(ncdc.noaa.gov/isd/data-access) 

Copernicus Atmosphere Monitoring Service 

(atmosphere.copernicus.eu/) 

 
EUMETSAT CM SAF (cmsaf.eu) 

 

ESA CCI Water Vapour (climate.esa.int/odp) 
 

Remote Sensing Systems (remss.com) 

Groundwater Groundwater Global Groundwater Monitoring 
Network (un-igrac.org/special-

project/ggmn-global-groundwater-

monitoring-network) hosted by 
IGRAC and part of GTN-H 

 none 

Soil 

moisture 

Soil moisture International Soil Moisture network 

and part of GTN-H 

(ismn.geo.tuwien.ac.at/; ismn.earth) 

ESA CCI Soil Moisture (climate.esa.int/odp);  

 

C3S soil moisture (cds.climate.copernicus.eu/); 

Permafrost Permafrost Global Terrestrial Network – 

Permafrost (GTN-P) 

none 

Glaciers Glaciers US National Snow and Ice Data 

Center (nsidc.org) as part of GTN-G 
(gtn-g.org);  

 

World Glacier Monitoring Service 
(wgms.ch) as part of GTN-G (gtn-

g.org); 
 

US National Snow and Ice Data Center (nsidc.org); 

 
World Glacier Monitoring Service (wgms.ch) as part of 

GTN-G (gtn-g.org); 

 
ESA CCI Glaciers (climate.esa.int/odp) 

Ice sheets 

and ice 

shelves 

Ice sheets and 

ice shelves 

National Snow and Ice Data Center 

(nsidc.org)  

 
PROMICE (promice.dk) 

Satellite ECV Inventory by the CEOS/CGMS Working 

Group on Climate (WGClimate) 

(climatemonitoring.info/ecvinventory); 
 

ESA CCI Greenland and Antarctica Ice Sheets 

(climate.esa.int/odp); 
 

C3S ice sheets (cds.climate.copernicus.eu/); 

Snow Snow National Snow and Ice Data Center 

(nsidc.org/); 

 

Global Snow Lab 
(climate.rutgers.edu/snowcover/) 

ESA CCI Snow (climate.esa.int/odp)  

 

Copernicus Global Land Service (land.copernicus.eu) 

 

Living 

biomass 

Above-ground 

biomass 

None ESA Globbiomass (globbiomass.org/); 

ESA CCI Biomass project (climate.esa.int/odp); 

NASA Carbon Monitoring Systems (carbon.nasa.gov/) 
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A2 Summary of (semi-)operational long-term global observation systems and programmes of water cycle fluxes 1941 

Flux 

GCOS 

ECVs 
involved 

in situ EO 

Ocean 

evaporatio
n 

Sea 

surface 
temperatu

re; wind 

speed; air 
temperatu

re; air 

humidity 

GLOSS - Global Sea-Level Observing System (gloss-

sealevel.org/data/); 
 

International Comprehensive Ocean-Atmosphere Data 

Set (ICOADS) (rda.ucar.edu/datasets/ds548.0/) 
 

 

 
 

JPL PODAAC 

(podaac.jpl.nasa.gov/OceanSurfaceTopography
) 

CM SAF 

(10.5676/EUM_SAF_CM/HOAPS/V002) 
 

ESA CCI Sea Level (climate.esa.int/odp); 

 
ESA CCI Sea Surface Temperature 

(climate.esa.int/odp); 

 
SEAFLUX (http://seaflux.org) 

Cross-calibrated multiplatform 

(CCMP)gridded surface vector winds 
(http://www.remss.com) 

 

Copernicus Marine Service 
(marine.copernicus.eu/) 

Land 

evaporatio

n 

Evaporati

on from 

Land 

FLUXNET (fluxnet.ornl.gov) 

SAPFLUXNET (http://sapfluxnet.creaf.cat) 

MOD16 

(ladsweb.modaps.eosdis.nasa.gov/search/order/

2/MOD16A2--6); 
 

Global Land Evaporation Amsterdam Model 
(GLEAM; gleam.eu);  

Ocean 

precipitatio

n 

Precipitat

ion 

OceanRAIN (oceanrain.cen.uni-hamburg.de/) GPCP (psl.noaa.gov); 

PERSIANN (https://data.nodc.noaa.gov/); 

IMERG (gpm.nasa.gov/) 

CM SAF (HOAPS CDRs 
(10.5676/EUM_SAF_CM/HOAPS/V002) 

IPWG at 

http://www.isac.cnr.it/~ipwg/data/datasets.html
.  

land 

precipitatio
n 

Precipitat

ion 

GPCC 

(opendata.dwd.de/climate_environment/GPCC/html/dow
nload_gate.html); 

 

Integrated Surface Database (ISD) of NCEI-NOAA 
(ncdc.noaa.gov/isd/data-access); 

 

Global Historical Climatology Network (GHCN) of 
NCEI-NOAA (ncdc.noaa.gov/data-access/land-based-

station-data/land-base) 

As for ocean precipitation 

 

River 

discharge 

River 

discharge 

WMO Hydrological Observing System 

(wmo.int/pages/prog/hwrp/chy/whos/index.php) 
 

Global Runoff Data Base (GRDC) (portal.grdc.bafg.de/); 
 

The Global River Discharge (RivDIS) Project 

(rivdis.sr.unh.edu)   
 

None 

Groundwat

er 

discharge 

Groundw

ater 

 None None 

Glacier and 

ice sheet 

turnover 

Glaciers; 

Ice sheets 

and ice 
shelves 

None None 

Anthropog

enic use 

 FAO AQUASTAT (fao.org/aquastat/en/databases/) as 

part of GTN-H 

None 

  1942 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0316.1.Unauthenticated | Downloaded 05/04/21 12:38 PM UTC

http://www.gloss-sealevel.org/data/
http://www.gloss-sealevel.org/data/
https://podaac.jpl.nasa.gov/OceanSurfaceTopography
https://podaac.jpl.nasa.gov/OceanSurfaceTopography
http://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002
http://seaflux.org/
http://www.remss.com/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/MOD16A2--6
https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/MOD16A2--6
http://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002
http://www.isac.cnr.it/~ipwg/data/datasets.html
http://www.isac.cnr.it/~ipwg/data/datasets.html
https://www.ncdc.noaa.gov/isd/data-access
https://portal.grdc.bafg.de/


93 

 

A3 Summary of observation-based large-scale water cycle studies. EO means that multiple satellite observations 1943 

are used for the same water component to quantify the uncertainty in these. 1944 

Reference 
Temporal 

resolution 

Spatial 

resolution 

Spatial 

domain 

Temporal 

domain 
Objective Input data Combination method 

Rodell et al. 

2004 

Monthly 1 basin 

Mississippi 

Regional 14 months Estimate 

ET from 
GRACE 

EO, In situ, 

Reanalysis 

No optimization 

Land 

Rodell et al. 

2011 

Monthly 7 basins Global 8 years Estimate 

ET 
uncertainty 

EO, In Situ, 

Reanalysis 

No optimization 

Land 

Azardeakhsh 

et al. 2011 

Monthly Multiple sub-

basins over the 

Amazon 

Regional 4 years Estimate 

river 

discharge & 
spatial 

analysis 

EO, In situ No optimization 

Land 

Hirschi & 
Seneviratne 

2017 

Monthly 341 basins Global 20 years Long-term 
estimation 

of change in 

storage 

In situ, 
Reanalysis 

No optimization 
Land+Atmosphere 

Mariotti et al. 
2002 

Climatology Basin and pixel 
over 

Mediterranean 

Regional 20 years Estimation 
Gibraltar 

strait 

netflow 

EO, In situ, 
Reanalysis 

No optimization 
Ocean+Atmosphere 

Sheffield et 

al. 2009 

Monthly 1 basin 

Mississippi 

Regional 2 years Water 

budget 

imbalance 

EO, In situ No optimization 

Land 

Moreira et al. 

2019 

Monthly Basin and pixel 

over South 

Amer. 

Continental 10 years Water 

budget 

imbalance 

EO, In situ No optimization 

Land 

Rodell et al. 
2015 

Climatologic 
season 

Continental Global 10 years Optimize 
global 

fluxes 

EO, In situ, 
Reanalysis, 

Model 

Optimal interpolation 
Land+Atm.+Ocean 

With energy cycle 

Pan et al. 
2012 

Monthly 32 basins Global 20 years Optimize 
long-term 

fluxes 

EO, In situ, 
Reanalysis, 

Model 

Assimilation Land 

Pellet et al. 

2019 

Monthly Sub-basins 

over 
Mediterranean 

Regional 8 years Optimize 

regional 
water cycle 

EO, In situ, 

Reanalysis 

Optimal interpolation 

Land+Atm.+Ocean 

Munier & 

Aires 2018 

Monthly 9 basins Global 8 years Optimize 

and error 
analysis 

EO, In situ Optimal interpolation 

Land 

Sahoo et al. 

2011 

Monthly 10 basins Global 3 years Optimize 

using 

satellite 
only data 

EO, In situ, 

Model 

Assimilation Land 

Shiklomanov 

et al. 2021 

Seasonal Basins Pan-Arctic 30-50 

years 

Estimate 

change in 
river 

discharge 

In situ  

Zhang et al. 
2018 

Monthly 0.5° Pixel Global 25 years Climate 
data record 

EO, Model Zhang et al. 2016 

  1945 
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FIGURES 1946 

 1947 

 1948 

Figure 1 Observed estimates of global water cycle storages (in 103 km3) and their uncertainties. Sources of 1949 

individual estimates are reported in Table 1. 1950 

 1951 
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 1952 

Figure 2 Observed estimates of annual global water cycle fluxes (in 103 km3) and their trends. Sources of 1953 

individual estimates are reported in Table 2 1954 

 1955 
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