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Summary 

Global vegetation and land-surface models embody interdisciplinary scientific understanding of the 1 

behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental 2 

change on vegetation and the interactions between vegetation and climate. However, systematic 3 

errors and persistently large differences among carbon and water cycle projections by different 4 

models highlight the limitations of current process formulations. In this review, focusing on core 5 

plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived 6 

from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse 7 

representations of plant and vegetation processes. We present case studies that demonstrate how EEO 8 

generate parsimonious representations of core, leaf-level processes that are individually testable and 9 

supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration, 10 

and stomatal behaviour are ripe for implementation in global models. EEO approaches to other 11 

important traits, including the leaf economics spectrum and applications of EEO at the community 12 

level are active research areas. Independently tested modules emerging from EEO studies could 13 

profitably be integrated into modelling frameworks that account for the multiple time scales on which 14 

plants and plant communities adjust to environmental change. 15 

  16 

Key words:  eco-evolutionary optimality, global vegetation model, land-surface model, water and 17 

carbon trade-offs, stomatal behaviour, leaf economics spectrum, acclimation, plant functional 18 

ecology   19 



  

5 
 

I. Introduction  20 

The ability of land ecosystems to deliver societal benefits – including the regulation of climate, the 21 

carbon cycle and water and air quality, and the provisioning of goods including food and fibre – is at 22 

risk because of current rates of global environmental change (Ostberg et al., 2018). Assessing and 23 

mitigating this risk requires the reliable characterization of vegetation processes, including plant 24 

demography, growth and competition as well as physical land-atmosphere interactions, at multiple 25 

spatial and temporal scales. Highly developed, process-based computational models now exist that 26 

operate across scales, simulating photosynthesis and stomatal regulation, carbon allocation, 27 

competition for light, water and nutrients, community assembly, disturbance regimes, interactions of 28 

vegetation with climate and atmospheric composition, and yields of essential products including 29 

crops. The two main (overlapping) categories of current models are dynamic global vegetation 30 

models (DGVMs) and land surface models (LSMs). LSMs are designed for embedding in climate 31 

models and represent “fast” land-atmosphere exchanges explicitly, typically with half-hourly time-32 

steps. Some LSMs treat vegetation composition and structure as static; others simulate vegetation 33 

dynamics as well and are therefore also DGVMs. On the other hand, some “offline” (i.e. not coupled 34 

to a climate model) DGVMs represent fast land-atmosphere exchanges implicitly, using daily time-35 

steps. LSMs – with or without dynamic vegetation – provide the means for Earth System Models 36 

(ESMs) to represent the land-atmosphere interface, including impacts of atmospheric CO2 and 37 

climate change on vegetation and feedbacks from vegetation changes on CO2 and climate. 38 

Process-based global vegetation models, including DGVMs and LSMs without dynamic vegetation, 39 

are based on explicit formulations of a set of processes rather than on observed relationships (in 40 

contrast, for example, with forest yield tables) and they use generic plant types (in contrast, for 41 

example, with most crop models). Process-based vegetation models have been extensively applied 42 

by the climate, integrated assessment and impacts modelling communities to assess the nature and 43 

impacts of projected climate change, including the role of biophysical and biogeochemical feedbacks. 44 

An ensemble of global vegetation models is used in the Global Carbon Project’s annual update on 45 

the state of the carbon cycle (Friedlingstein et al., 2020). Model ensembles are widely used to assess 46 

the role of vegetation in land-atmosphere interactions, such as diagnosing the causes of fluctuations 47 

in the atmospheric CO2 growth rate (Keenan et al., 2016). Vegetation models have also been used to 48 

quantify the magnitude of the positive climate-carbon cycle feedback and the negative CO2 49 

fertilization feedback to climate (e.g. Cox et al., 2013), to investigate the impact of recent climate 50 

change on the hydrological cycle (e.g. Ukkola and Prentice, 2013), and to project the impact of 51 

future climate change on crop production (Inter-Sectoral Impact Model Intercomparison Project, 52 

ISIMIP2b: https://www.isimip.org/protocol/#isimip2b/; Ostberg et al., 2018).  53 
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Modelling vegetation as a fully embedded component of the climate system presents major scientific 54 

and computational challenges (Fisher and Koven, 2020). The many successful applications of 55 

vegetation models have drawn attention away from several known systematic failures, which have 56 

emerged especially when models have tried to reproduce large-scale phenomena encoded in 57 

atmospheric measurements. For example, both ESMs and offline DGVMs failed to reproduce the full 58 

magnitude of the amplification of the high-latitude seasonal cycle of atmospheric CO2 over the past 59 

half-century (Graven et al., 2013; Thomas et al., 2016). DGVMs also failed to reproduce the observed 60 

relationship between the 13C/12C ratio of atmospheric CO2 and global land-atmosphere carbon 61 

exchange (Peters et al., 2018). There are persistent disagreements between models, even about the 62 

sign of the effect of global warming on primary production (Ciais et al., 2013). There are large 63 

uncertainties in the modelled response of vegetation to precipitation changes (Huntzinger et al., 2017) 64 

and little agreement in the simulated response to CO2 and the role of nutrient availability in 65 

modulating this response (Wieder et al., 2015). Large differences in the modelled behaviour of global 66 

vegetation, which have persisted for more than two decades (VEMAP 1995; Friedlingstein et al. 67 

2006), were identified as a serious concern in the Intergovernmental Panel on Climate Change (IPCC) 68 

Fifth Assessment Report (Ciais et al., 2013). Developments since then have not alleviated this 69 

concern (Arora et al., 2020).  70 

These problems suggest a need to re-assess the assumptions and processes included in current 71 

vegetation models, and the modalities by which they are developed. The explosion over the last 20 72 

years in the amount and variety of data available – including plant trait databases, field campaigns, 73 

flux measurements, ecosystem experiments and satellite remote sensing – should greatly facilitate the 74 

process of developing better models. Indeed, meta-analyses of different types of observation have 75 

provided insights into universal patterns which can be used for testing general patterns in simulated 76 

ecosystem responses to various drivers (Wieder et al., 2019). However, finding ways to test 77 

alternative hypotheses using observations will mean moving beyond meta-analysis. Large-scale field 78 

experiments provide under-utilized opportunities for model evaluation (Medlyn et al., 2015), while 79 

controlled-environment experiments are irreplaceable for testing general hypotheses about plant 80 

function. Controlled-environment experiments could, for example, help to resolve current 81 

disagreements about the impact of changes in CO2 or nutrients on photosynthetic traits.  82 

Progress, however, also requires coherent, well-motivated hypotheses to test. Franklin et al. (2020) 83 

highlighted recent developments that hold promise for improving vegetation models by generating 84 

such hypotheses. The concept of eco-evolutionary optimality (EEO) is one of these developments. 85 

EEO invokes the power of natural selection to eliminate uncompetitive trait combinations, and 86 

thereby shape predictable, general patterns in vegetation structure and composition. The term ‘eco-87 
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evolutionary’ expresses the fact that organisms adjust to their environment on both shorter (eco-88 

physiological, days to months) timescales and longer (demographic and evolutionary) timescales.  89 

Community-mean trait values are to some extent an outcome of acclimation by individual plants, but 90 

also of adaptation: environmental filtering ensures that genotypes and species are present only in 91 

environments that fall within their acclimation capacity. The extent to which the observed variability 92 

in plant functional traits is due to phenotypic plasticity (individual acclimation) or to non-plastic 93 

genotypic differentiation and species replacement (Meng et al., 2015; Yang et al, 2018; Dong et al., 94 

2017, 2020) is essential to understand how community function and composition react to rapid 95 

environmental changes. Plastic traits, such as photosynthetic capacity (Togashi et al., 2018a) and the 96 

temperature optimum of photosynthesis (Kumarathunge et al., 2019; Vico et al., 2019), acclimate 97 

quickly (days to weeks) within individual leaves; while other leaf traits, such as leaf mass per area 98 

(LMA), show only partial within-species adjustment to changes along environmental gradients (Dong 99 

et al., 2017, 2020). Hydraulic traits, particularly leaf hydraulics linked to LMA and wood properties 100 

in general, also show limited plasticity. Adaptive changes in the mean abundance of non-plastic traits 101 

can only occur through the slower processes of community dynamics, which depend on demography 102 

and competition among species. 103 

EEO hypotheses are based on identifying trade-offs that organisms are required to make, for example 104 

in land plants between CO2 uptake and water loss, and expressing these mathematically. At the core 105 

of modelling EEO are therefore the mechanistic links between plant functional traits, their 106 

implications for resource demand and acquisition and biogeochemical cycling, and their effect on the 107 

plant’s competitiveness. Process-based vegetation models are suited to resolve these links and thus 108 

provide a useful framework for investigating how EEO shapes global vegetation function and 109 

climate-land feedbacks in the Earth system. EEO hypotheses have shown a notable ability to predict 110 

observed patterns, providing parsimonious explanations of observed traits at the leaf (e.g. Smith et 111 

al., 2019; H. Wang et al., 2020), plant (e.g. Farrior et al., 2013; Lavergne et al., 2020a) and vegetation 112 

(e.g. Franklin et al., 2014; Baskaran et al., 2017) levels. However, there is no recipe to generate a 113 

“correct” EEO criterion. EEO formulations must be assessed against data, like hypotheses in all fields 114 

of science. 115 

Many modelling groups are exploring the use of EEO hypotheses to improve the representation of 116 

specific processes in vegetation models (e.g. Bonan et al., 2014; De Kauwe et al., 2015; Lin et al., 117 

2015; Ali et al., 2016; Xia et al., 2017; Lawrence et al., 2019). In this review, we aim to raise 118 

awareness of the broader potential for a hypothesis-testing approach based on EEO to underpin a 119 

more far-reaching improvement in the robustness and reliability (sensu Prentice et al., 2015) of 120 
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vegetation models. Section II provides a perspective on the shortcomings of current models and 121 

model development practice, informed by our collective experience. Section III introduces case 122 

studies that exemplify how EEO can improve (and often, simplify) formulations of core processes at 123 

the leaf level that are required by both LSMs and DGVMs. Section IV considers the scope for 124 

applying EEO at the whole-plant and plant community levels. Section V deals with limitations of the 125 

EEO concept. Section VI briefly considers the outlook for next-generation vegetation models 126 

incorporating EEO principles.  127 

II. Model development: problems and solutions 128 

The origins and historical development of global vegetation models have been reviewed by Prentice 129 

et al. (2007), Quillet et al. (2010), Prentice & Cowling (2013) and Fisher et al. (2014); this material 130 

will not be revisited here. Current models have much in common. Processes are differentiated by 131 

operational time-steps: canopy-atmosphere energy exchanges and photosynthesis are modelled in 132 

LSMs typically at half-hourly time-steps; phenology, carbon allocation and growth at time-steps of 133 

days to months; and vegetation dynamics and disturbance in DGVMs at time-steps of months to 134 

years. Most models represent plant adaptations to environmental conditions by specifying a limited 135 

set of PFTs, each characterized by a distinct set of attributes. This is problematic because (a) for most 136 

quantitative plant traits, variation is greater within than between PFTs (Kattge et al., 2020), and (b) a 137 

substantial fraction of the observed variation in community-mean trait values along environmental 138 

gradients is linked to acclimation and adaptation within species and PFTs (Siefert et al., 2015). 139 

Furthermore, incorporation of new processes within this framework necessarily implies a 140 

proliferation of new PFTs and the necessity to derive estimates of parameter values for each new 141 

PFT. An alternative approach that has been gaining traction over the past decade has been towards 142 

the simulation of quantitative traits that vary dynamically, mimicking acclimation and/or adaptation 143 

processes (van Bodegom et al., 2012) and more realistically portraying ecosystem carbon uptake 144 

(Verheijen et al., 2015) and the dynamic response of terrestrial ecosystems to climate change 145 

(Reichstein et al., 2014; Sakschewski et al., 2015).  146 

Several problems (see Box 1) however are slowing progress. Some of these may have arisen because 147 

of the general institutional separation of model development from empirical science, and the 148 

accretional nature of much of this development. Some are practical issues about the way model codes 149 

are written, updated and tested. All could be mitigated by adopting different practices (see Box 1). 150 

Several initiatives have promoted systematic data-model comparison (“benchmarking”) of land 151 

models as a partial remedy for these problems (https://www.ilamb.org/; Collier et al., 2018). Some 152 

proposed benchmark data sets – e.g. for upscaled gross primary production (Tramontana et al., 2016) 153 

https://www.ilamb.org/
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and plant litter properties (Pettinari and Chuvieco, 2016) – however are themselves modelled outputs, 154 

which limits their usefulness. Wieder et al. (2019) drew attention to the limitations of benchmarking, 155 

which (we suggest) should be considered as a necessary but by no means sufficient part of model 156 

evaluation. Wieder et al. (2019) described the recent history of a leading LSM, the Community Land 157 

Model (CLM), in particular its evolution from version 4 (a pioneering attempt to include the coupling 158 

of ecosystem carbon and nitrogen cycles, which however greatly underestimated global land carbon 159 

uptake and its sensitivity to climate) to the better-performing version 5. They made a strong case for 160 

the need to use observational and experimental information as an integral part of model development 161 

and improvement. Although experimental and observational studies in this field are often justified by 162 

the need to improve vegetation models, the pathway by which this new knowledge is transferred is 163 

indirect. In principle, experiments could be performed precisely to clarify how individual processes 164 

should be represented in models. This is still far from being standard practice. 165 

A further consequence of the current model development paradigm is the complexity trap (Franklin 166 

et al. 2020). Many recently published model “improvements” are achieved by adding complexity 167 

(Fisher and Koven, 2020), but it is generally understood that this does not equate to increased realism 168 

– particularly as the incorporation of new processes often increases further the number of poorly 169 

known parameters that need to be specified. Moreover, developing models by accretion has inevitably 170 

led to a decline in transparency (Prentice et al., 2015). In other areas of environmental modelling, 171 

including climate modelling, there has been a growing realization that re-examination of basic 172 

processes, reduction of complexity, and increased transparency are all necessary for progress (Held, 173 

2005; Gramelsberger et al., 2020). Vegetation modelling is no exception. 174 

Different Earth subsystems however pose specific challenges. The key challenge for global-scale 175 

modelling of biological systems is to identify principles applicable across diverse and 176 

phylogenetically distinct assemblages (Franklin et al., 2020). EEO could have a key role to play 177 

because it can generate coherent, testable hypotheses about plant and vegetation function that 178 

transcend differences among biomes and floras.  179 

III. Leaf-level and canopy-level optimality 180 

In this section, we summarize a number of case studies that demonstrate where EEO approaches have 181 

provided parsimonious representations of core, leaf-level processes that are individually testable and 182 

supported by evidence. The case studies are presented roughly in descending order of readiness – 183 

from photosynthesis and primary production, where a proof-of-concept for implementation in a LSM 184 

framework exists, to the leaf economics spectrum, which requires a novel approach to account for 185 

how phylogeny and environment co-determine plant traits. 186 



  

10 
 

Photosynthesis and primary production. Nearly all LSMs and DGVMs simulate photosynthesis using 187 

the Farquhar, von Caemmerer and Berry (FvCB) model (Farquhar et al., 1980) or the modification 188 

proposed by Collatz et al. (1991). Implementing the FvCB model in its original form requires three 189 

parameters that are known to vary: the maximum carboxylation rate (Vcmax), which determines the 190 

enzymatic capacity for carbon fixation; the maximum electron-transport rate (Jmax), which determines 191 

the capacity to generate the required reducing power; and the ratio of leaf-internal to ambient CO2 192 

(ci:ca, here denoted as χ), which relates the assimilation rate to stomatal conductance. Improved 193 

understanding of how Vcmax and Jmax vary with environmental conditions should provide a more 194 

rigorous basis for modelling photosynthesis and primary production (Rogers et al., 2017). Light use 195 

efficiency (LUE) models – widely used in remote-sensing applications – simulate primary production 196 

using empirical response functions that modify the assumed proportional relationship between gross 197 

primary production (GPP) and light absorbed by the canopy (Iabs). This approach can limit the 198 

number of parameters to be estimated but severs the link to processes.  199 

The model described in Box 2 predicts a number of related physiological characteristics correctly, 200 

including the global pattern of Vcmax in relation to light, temperature and vapour pressure deficit 201 

(VPD) (Smith et al., 2019), seasonal variations of Vcmax across diverse ecosystems (Jiang et al., 2020), 202 

elevational trends in photosynthetic traits and primary production (Peng et al., 2020), and the response 203 

of Vcmax to atmospheric CO2 (Smith and Keenan, 2020). Specifically, the model predicts a decline in 204 

Vcmax with increasing ambient CO2 (H. Wang et al., 2017), and a steeper increase with decreasing 205 

ambient CO2. Both have been verified experimentally (Figure 1).  206 

Neglecting the adaptive adjustment of Vcmax to growth conditions could result in simulated PFTs 207 

becoming (unrealistically) maladapted to environmental changes, and (if set too low) unrealistically 208 

steep responses of photosynthesis to temperature and ambient CO2. The model for GPP outlined in 209 

Box 2 provides an example of how EEO hypothesis formulation and testing can lead not only to a 210 

more realistic representation of a key process, in the sense of being well supported by observational 211 

and experimental data, but also to a less complex one. Compared to conventional models, the number 212 

of parameters required as input has been dramatically reduced, by two mechanisms. First, the adaptive 213 

adjustment of key quantities (Vcmax, Jmax, and ξ, which determines the response of χ to VPD) 214 

eliminates the need for these to be prescribed. Second, it removes the need to provide lists of 215 

parameter values for PFTs. 216 

This model is not suitable for immediate incorporation into a LSM because it works on multi-day 217 

timesteps (i.e. at the time scale of leaf- and canopy-level acclimation). However, the fast responses 218 

of photosynthesis and stomatal conductance to environmental variations are already well 219 
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characterized (Farquhar et al., 1980; Medlyn et al., 2011). All that is needed, then, is to replace fixed 220 

values of Vcmax and Jmax at a standard temperature (e.g. Vcmax25, Jmax25) and ξ with slowly time-varying 221 

values that follow the EEO criteria. This is straightforward in principle and allows the same model to 222 

reproduce measured daily cycles of GPP in different biomes with unchanged parameter values 223 

(Figure 2; Mengoli et al., 2021). Moreover, whereas adding a new process (acclimation of 224 

photosynthetic parameters) might be expected to increase model complexity, this example shows the 225 

opposite: treating acclimation as an EEO process allows GPP to be represented more parsimoniously 226 

than would otherwise have been possible. 227 

Dark respiration. Leaf mitochondrial respiration supports many metabolic processes, including the 228 

protein turnover required to maintain photosynthetic capacity. Leaf dark respiration (Rdark) is a widely 229 

measured quantity. Its instantaneous temperature response is commonly represented by the Arrhenius 230 

equation (Atkin et al., 2017). Many models assume that Rdark at 25˚C (Rdark25) is proportional to 231 

Vcmax25, treat this as a constant per PFT, and model the temperature-dependence of Rdark and Vcmax 232 

with separate Arrhenius equations. However, there is considerable spatial and temporal variability in 233 

Rdark within PFTs as a function of environmental conditions (Atkin et al., 2015; Smith and Dukes, 234 

2018). In a global analysis, H. Wang et al. (2020) showed that values of Rdark at current growth 235 

temperature are optimized according to the need to ensure that its metabolic functions are coordinated 236 

with Vcmax. This EEO hypothesis predicts that acclimated values of both Rdark and Vcmax increase with 237 

growth temperature – but less steeply than their instantaneous responses to temperature. These 238 

predictions are well supported by data; the conventional modelling approach is not (Figure 3).  239 

Neglecting the acclimation of leaf-level respiration is likely a major source of uncertainty in model 240 

predictions, with serious consequences for the estimation of land carbon uptake especially in warmer 241 

climates (Huntingford et al., 2017). As with photosynthesis, there is no obstacle in principle to 242 

including leaf-level respiratory acclimation in DGVM or LSM frameworks. To do so requires only 243 

that Rdark25 varies along with (slowly varying) Vcmax25 following H. Wang et al.’s (2020) EEO 244 

hypothesis, while the fast environmental responses of Rdark and Vcmax are represented as in current 245 

models (or better, for Rdark, via the universal temperature response reported by Heskel et al., 2016). 246 

Such a scheme has not been implemented yet, as far as we are aware, in any vegetation model. 247 

Stomatal behaviour and transpiration. Plants regulate water and energy exchanges with the 248 

atmosphere by adjustment of stomatal conductance (gs). Most current models represent gs based on 249 

the fast, experimentally observed response to VPD (Damour et al., 2010). More mechanistic models 250 

have been developed (e.g. Sperry et al., 2017), but require new parameters (Drake et al., 2017). EEO 251 

hypotheses, based on the trade-off between maximizing carbon gain and minimizing water loss, 252 
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potentially offer parsimonious solutions. One approach (Medlyn et al., 2011) is based on an 253 

approximate solution to the hypothesis of constant marginal water use efficiency, originally proposed 254 

by Cowan and Farquhar (1977). This solution correctly predicts stomatal responses to changing CO2 255 

and variability across environmental gradients (Medlyn et al., 2011; Medlyn et al., 2013; Lin et al., 256 

2015). It has been included in LSMs (e.g. De Kauwe et al., 2015; Franks et al., 2018; Oliver et al., 257 

2018) and shown to perform as well as the empirical relationships originally used in those models. 258 

These approaches all require calibrating one ‘free’ parameter per PFT in the optimal stomatal 259 

conductance formulation. To achieve a parameter-free formulation, it is possible to re-frame the 260 

Cowan and Farquhar (CF) hypothesis by accounting for soil moisture dynamics in the optimization 261 

problem (Manzoni et al. 2013), but this implies an assumption on how much soil water can be used 262 

by plants.  263 

A different approach (Prentice et al., 2014), used in the model of H. Wang et al. (2017) and 264 

summarized in Box 2, is based on the EEO hypothesis that leaves minimize the sum of the 265 

maintenance costs (per unit assimilation) of transpiration and carboxylation capacities. Carboxylation 266 

costs are envisaged as the respiration required for Rubisco turnover, while transpiration costs are 267 

envisaged as the respiration required to maintain living sapwood. This hypothesis leads to a 268 

mathematical formulation of the fast response of stomata to VPD that is closely related to that of 269 

Medlyn et al. (2011), while also correctly predicting the environmental dependencies of the control 270 

parameter (ξ) on temperature (Lin et al., 2015) and atmospheric pressure (Körner and Diemer, 1987). 271 

Each of these predicted partial dependencies of χ on environmental variables can be observed in stable 272 

carbon isotope ratio (δ13C) measurements on leaves (H. Wang et al., 2017). Lavergne et al. (2020a; 273 

Figure 4) showed they are also present in tree-ring δ13C measurements. By providing time-series, 274 

Lavergne et al. (2020a) showed a (weak) dependency of χ on atmospheric CO2 (Figure 4) that is also 275 

predicted by this EEO hypothesis (Box 2). Apart from the well-known VPD response, none of these 276 

dependencies is reflected in standard LSMs, except crudely, through the assignment of distinct 277 

parameter values to PFTs that occupy different climates. 278 

Further alternative EEO approaches (e.g. Wolf et al., 2016; Anderegg et al., 2018; Eller et al., 2018; 279 

Venturas et al, 2018; Trugman et al., 2019; Deans et al., 2020; Eller et al., 2020; Sabot et al., 2020) 280 

incorporate hydraulic costs, based on the hypothesis that the short-term and long-term costs of 281 

transpiration at low soil water potential contribute to the total cost of maintaining the water transport 282 

pathway. The Wolf et al. (2016) formulation has been shown to be in good agreement with 283 

experimental evidence for changes in stomatal conductance in response to daily and seasonal changes 284 

of environmental conditions, and to perform much better than the CF model in predicting stomatal 285 

responses to dry soils (Anderegg et al., 2018). Y. Wang et al. (2020) found that among eleven EEO-286 
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based stomatal models, the most skilled were those taking into account the cost of stress-induced 287 

hydraulic failure. 288 

The development of EEO hypotheses for stomatal behaviour is a highly active research field. The 289 

hypothesis of Prentice et al. (2014) provided an equation with good predictive power for the responses 290 

of leaf and plant δ13C to the growth environment, but the one “universal” parameter it includes has 291 

been shown to be influenced by soil moisture (Lavergne et al., 2020b) and soil pH (H. Wang et al., 292 

2017; Paillassa et al., 2020). Moreover, the variation of χ on long climatic moisture gradients appears 293 

to be significantly steeper than predicted by that equation (Dong et al., 2020). Allowing variation of 294 

ξ following the EEO criterion of Prentice et al. (2014) would allow stomatal acclimation to changes 295 

in growth temperature (Marchin et al., 2016). This cannot happen in current models, because their 296 

responses to VPD are pre-determined by PFT. However, further research is needed to determine how 297 

soil influences might best be included in models. Solutions are likely to include EEO approaches to 298 

explain the coordination of hydraulic and photosynthetic traits (Brodribb, 2009; Deans et al., 2020; 299 

Joshi et al., 2020), and the influence of soil fertility factors on water and nutrient acquisition costs 300 

(Paillassa et al., 2020). 301 

Isoprene emission. Plant emissions of the volatile organic compound (VOC) isoprene protect 302 

photosynthetic function against damage due to reactive oxygen species (ROS), which are produced 303 

in leaves at high temperatures (Niinemets, 2010; Harrison et al., 2013; Lantz et al., 2019). As a result, 304 

tree species that produce isoprene are competitively favoured under hot and dry conditions (Taylor 305 

et al., 2018). Modelling of plant VOC emissions is important in ESMs, because these reactive 306 

compounds have a significant impact on atmospheric chemistry. Many ESMs rely on a complex 307 

empirical model (Guenther et al., 2006) to predict VOC emissions. More explicitly process-based 308 

models of VOC emission have been devised (e.g. Pacifico et al., 2011) but still require several, poorly 309 

known parameters to be specified.  310 

However, the responses of isoprene emission to light, temperature and CO2 are consistent with a 311 

much simpler relationship: a linear dependency on the leaf’s “energetic status”, which is the 312 

difference between photosynthetic electron transport and the electron requirement to support the 313 

current rate of carbon fixation (Morfopoulos et al., 2013). The coordination between these two rates 314 

is what enables plants to optimise light use efficiency at low levels of irradiance and to dissipate 315 

excess energy as heat at high irradiance. The linear dependency on the energetic status reproduces 316 

the shapes of observed responses of isoprene emission to environment, including its non-linear 317 

response to light (Figure 5); its (otherwise enigmatic) decline with instantaneous increases in ambient 318 

CO2 (Morfopoulos et al., 2013, 2014); and its recovery over time at high CO2 (Sun et al., 2013). 319 
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Without this recovery, isoprene-emitters under high CO2 would lose the thermo-protective benefits 320 

of isoprene emission – an unlikely outcome in evolutionary terms.  321 

The leaf energetic status model has the potential to simplify the representation of VOC emission in 322 

ESMs, while increasing its predictive power for conditions outside those currently observed. 323 

However, a key unanswered question remains, regarding the “base rate” of isoprene emission at the 324 

plant-community level. The current standard approach relies (unsatisfactorily) on a fixed geographic 325 

field of emission capacity. Explicit hypotheses to predict VOC emission capacity remain to be 326 

formulated and tested. 327 

Leaf economics. Leaf mass per unit area (LMA) determines how much leaf area can be produced for 328 

a given total carbon allocation to leaves (Cui et al., 2019). The leaf economics spectrum (Wright et 329 

al., 2004) relates LMA and leaf lifespan (LL) across vascular plant species. This relationship is not 330 

fixed, however, and varies with climate. Kikuzawa (1991) hypothesized that LL maximizes leaf 331 

carbon gain over the lifetime of the leaf, accounting for (amortized) leaf construction costs. This EEO 332 

hypothesis has recently been combined with two others. X. Xu et al. (2017) provided empirical 333 

support for the hypothesis that the leaf ageing rate (a parameter in Kikuzawa’s model) is inversely 334 

proportional to LMA, and directly proportional to Vcmax25; while the coordination hypothesis, 335 

described above, predicts optimal values of Vcmax25. Combining these three EEO hypotheses leads to 336 

a theoretical prediction of the leaf economics spectrum, and how it varies across environments (H. 337 

Wang et al., 2021). For winter-deciduous woody plants where LL is constrained by the length of the 338 

growing season, this theory leads to a prediction of LMA that is consistent with observations along 339 

an elevational and aridity gradient (H. Xu et al., 2020). For evergreen plants it leads to a correct global 340 

prediction of the proportionality between LMA and LL, and how this is modified by growing-season 341 

length and light (H. Wang et al., 2021; Figure 6). A changing climate will inevitably alter the 342 

competitive balance among species with different LMA and LL, in ways that fixed LMA values per 343 

PFT cannot capture.   344 

In addition to affecting leaf lifespan, LMA mechanistically affects stomatal response (Buckley et al., 345 

2015). Increasing LMA reduces the conductivity of the outside-xylem water pathway due to increased 346 

path-length, and therefore causes highly negative water potentials near the stomata. This in turn may 347 

necessitate a greater investment in leaf hydraulics in high-LMA species. Without such investment, 348 

these species would be uncompetitive due to reduced photosynthesis rates. Thus, EEO suggests a 349 

testable linkage between physiological and hydraulic traits. 350 

The EEO basis for the leaf economics spectrum has not been incorporated in any vegetation model, 351 

and its consequences for climate-change impacts are largely uncharted. LMA and LL, as 352 
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structural/morphological traits, differ from the physiological traits discussed above in showing far 353 

less plasticity (or genotypic adaptation) along environmental gradients (Dong et al., 2017, 2020). 354 

Therefore, their representation in models calls for a different treatment, as any change in community-355 

mean LMA and LL will depend more on species replacement (a slower process) than on physiological 356 

adjustment. In addition, whereas the theory summarized above predicts environmentally conditioned 357 

changes in the relationship between LMA and LL, it does not predict anything about their mean 358 

values. Phylogenetic conservatism is helpful here. Starting from the observed global distributions of 359 

these traits, the model of H. Wang et al. (2021) calculates how these intersect with the predicted 360 

optimal LMA-LL relationship. This approach generates probability distributions around the predicted 361 

community-mean values as illustrated in Figure 6. 362 

IV. Beyond the leaf level  363 

Most published applications of EEO concepts in vegetation modelling have focused on leaf-level 364 

physiological processes, facilitated by their phenotypic plasticity and the short timescale of some 365 

leaf-level responses to environmental conditions. The EEO framework however extends naturally to 366 

phenotypic plasticity at the whole-plant level, providing insightful approaches to modelling processes 367 

including phenological timing (Caldararu et al., 2014; Manzoni et al., 2015) and strategy, and carbon 368 

allocation to leaves, stems and roots (e.g. Valentine and Mäkelä, 2012; Kvakić et  al., 2020). We 369 

summarize some cases below. The EEO approach can be extended to non-plastic trait variation if 370 

selection on these traits is not strongly frequency-dependent, i.e. if the fitness of plants does not 371 

depend strongly on the frequency of traits among their conspecifics (Metz et al., 2008). EEO concepts 372 

are particularly powerful for describing trait coordination for example among different plant organs 373 

(Deans et al., 2020): when multiple traits optimally adapt to the environment, environmental variation 374 

leads to covariation between them. Such emergent relationships may provide the basis for modelling 375 

how evolved traits vary with environmental conditions without simulating the underlying 376 

physiological mechanisms (or evolutionary dynamics) through which optimal coordination is 377 

achieved. We briefly consider now the potential application of the EEO framework to modelling 378 

whole-plant processes, competition and ecosystem dynamics. 379 

Carbon allocation. Both field and experimental data show that allocation to roots increases when 380 

nutrient supply is limiting, for example on infertile soils or in cold climates (Poorter et al., 2012; 381 

Reich et al., 2014; Gill and Finzi, 2016). This observation is consistent with the long-established EEO 382 

hypothesis that plants, requiring multiple resources, allocate effort optimally so that no one resource 383 

is limiting to growth (Rastetter and Shaver, 1992; Thomas and Williams, 2014; Rastetter and 384 

Kwiatkowski, 2020). A plant-level allocation model based on this assumption has been used to 385 
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explain the contrasting effects of elevated CO2 on tree growth and nitrogen uptake and their 386 

dependence on soil nitrogen availability (Franklin et al., 2009; Figure 7). An EEO approach to carbon 387 

allocation has been adopted in at least one LSM (Xia et al., 2017). 388 

Soil-plant interactions and mycorrhizae. Carbon exchanges between plants and their symbionts can 389 

also be described using EEO principles. The effects of nutrient limitation are predictable based on 390 

the carbon costs of nitrogen uptake via different symbionts (Terrer et al., 2018), which may in turn 391 

depend predictably on soil nutrient availability (Franklin et al., 2014). The fraction of GPP allocated 392 

to sustain symbionts thus becomes an outcome, rather than being imposed as an additional parameter 393 

(Baskaran et al., 2017). Modelling soil-plant interactions explicitly in terms of the carbon cost of 394 

nitrogen acquisition has a significant impact on modelled primary production (Brzostek et al., 2014) 395 

and has been adopted in at least one LSM (Shi et al., 2016). Dynamically linking plants and microbes 396 

in a terrestrial biosphere model has been shown to improve predicted carbon and nitrogen dynamics 397 

across a gradient of vegetation stands varying in the abundance of trees with distinct (arbuscular and 398 

ectomycorrhizal) types of mycorrhizal interaction (Sulman et al., 2017).  399 

Competition and coexistence. If the fitness of plants is strongly influenced by competition with other 400 

plants in a way that depends on the frequency of their traits, game-theoretic extensions of the EEO 401 

framework such as adaptive dynamics theory (Metz et al., 1992; Dieckmann and Law, 1996) can be 402 

used to predict not only single optimal plant strategies but also coexisting and co-evolving strategies. 403 

Examples include the coexistence of different strategies for coping with water shortage in dry 404 

environments (Lindh et al., 2014), and the complementarity of alternative life-history strategies 405 

generating within-site heterogeneity and corresponding variation in optimal strategies in resource-406 

rich communities (Togashi et al., 2018b). Falster et al. (2017) demonstrated the evolution of realistic 407 

patterns of stable coexistence of tree species in a height-structured competition model related to the 408 

demographic schemes used in DGVMs. Other game-theoretic approaches (e.g. Dybzinski et al., 2015; 409 

Weng et al., 2019) have shown that co-existing strategies can give rise to emergent trait coordination, 410 

which can be compared with empirical observations. This work offers the prospect of a wider field 411 

of application for EEO-based modelling to address the origins and maintenance of species diversity. 412 

V. Outstanding issues 413 

It should be abundantly clear from the discussions above that EEO, despite its utility, is not a “magic 414 

bullet” that can instantly resolve problems in LSM and DGVM development. We suggest instead that 415 

EEO concepts should underpin a research programme in which explicit, quantitative hypotheses play 416 

a central role in data analysis and experimental design, while also providing parsimonious 417 

formulations for modelling. Practitioners of this integrative approach need to be aware of the 418 
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limitations of EEO as well as its strengths. Some of the most important limitations are summarized 419 

below. 420 

Natural selection acts on reproductive fitness, not on plant growth. However, reproductive fitness is 421 

very difficult to measure in plants in the field. EEO hypotheses can be formulated in terms of 422 

vegetative properties but it must be recognized that these are only indirectly linked to fitness. The 423 

underlying assumption is that ineffective or uncompetitive trait combinations will confer low fitness 424 

and be selected against. 425 

It follows from the above that no EEO hypothesis is unique. For every trade-off considered, there are 426 

alternative criteria all of which might appear to be compatible with EEO, but which make different 427 

predictions. (Some examples have been discussed above.) Only empirical tests can determine which, 428 

if any, of a series of alternative EEO hypotheses makes the most realistic predictions.  429 

The limits to optimality are a priori unknown and can only be assessed empirically. Recent EEO 430 

approaches to photosynthetic optimality have made pragmatic choices in the interests of parsimony. 431 

For example, it has been assumed that certain photosynthetic traits can show unlimited variation, 432 

while others – such as the Michaelis constants and specificity of Rubisco, the intrinsic quantum yield 433 

of electron transport, and their temperature dependencies – are treated as constants. These 434 

assumptions are supported by observations but only as an approximation; all these properties do in 435 

fact vary among plants (Ehleringer and Piercy, 1983; Dreyer et al., 2001; Singsaas et al., 2001; 436 

Galmés et al., 2015; Galmés et al., 2016), even if their variation is relatively modest.  437 

Optimality is approached at different rates by different processes. In a realistically time-varying 438 

environment optimality is approached rather than achieved, because the optimum is a moving target 439 

and, indeed, competitive success does not necessarily require the optimum state to be achieved. We 440 

have distinguished the fast (minutes to hours) time scales of enzyme kinetics and stomatal responses 441 

to VPD from the slower time scales of leaf-level physiological acclimation (days to months), carbon 442 

allocation (months to years) and species replacement (years to decades). DGVMs respect these 443 

distinctions. However, the shift from a PFT to a trait basis for modelling necessitates ensuring that 444 

trait shifts dependent on species replacement take place on the appropriate time scale, which can be 445 

different for different traits. Again, empirical tests are important to determine whether the timescales 446 

of acclimation adopted for modelling purposes are realistic.  447 

The problem of absent species. A harder issue related to time scales is how to represent dispersal and 448 

migration (in other words, species replacement when the best-adapted species are not locally present) 449 
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in DGVMs. Although we do not review attempts to do so here, we note that an important test of 450 

existing approaches is whether the rates of migration they predict are consistent with observed rates 451 

of species replacement in response to rapid climate changes in the past (e.g. Harrison and Sanchez 452 

Goñi, 2010). 453 

The importance of experiments. Comprehensive testing of EEO hypotheses cannot rely entirely on 454 

meta-analysis. Data from direct environmental manipulations are not hampered by correlations 455 

between environmental variables and can therefore be used to quantify the timescales of responses 456 

(Kumarathunge et al., 2019). Controlled-environment greenhouse experiments have been used to 457 

determine the rates and mechanisms underlying acclimation of photosynthetic (e.g. Scafaro et al., 458 

2017), hydraulic (e.g. Locke et al., 2013) and leaf-biochemical parameters (e.g. Dongsansuk et al., 459 

2013) to changes in the growth environment. Field experiments can scale individual to ecosystem-460 

level responses, through direct manipulations (e.g. Hoeppner and Dukes, 2012; Hovenden et al., 461 

2019), exclusion experiments (e.g. Inoue et al., 2017; Tomasella et al., 2018) or opportunistic 462 

sampling strategies (e.g. Lusk et al., 2018). The increasing coordination of field experiments, 463 

including experiments to examine the impacts of manipulating nutrient (e.g. NutNet; Borer et al., 464 

2013) or water supplies (e.g. DROUGHT-NET: Knapp et al., 2017), provides opportunities to 465 

evaluate the role of different plant strategies for coping with environmental stresses, and such 466 

networks provide key targets for model evaluation (e.g. Hilton et al., 2019). 467 

Fire and land use. Wildfire is a major cause of vegetation disturbance and many models now 468 

explicitly stimulate the two-way interaction of wildfire regimes with vegetation and climate.  469 

However, the performance of these models is relatively poor beyond the largest-scale geographic 470 

patterns (Forkel et al., 2019; Hantson et al., 2020). This raises the issue of whether there is scope for 471 

EEO concepts to inform research and ultimately improve fire-vegetation models. Plants have, for 472 

example, evolved specific adaptations to different frequencies and intensities of fire (Clarke et al., 473 

2013; Pausas et al., 2016; Pausas, 2019).  Exploring the trade-off between the maintenance cost of 474 

these traits and fire frequency could lead to more mechanistic representations of vegetation-fire 475 

interactions in models and the ability to project the consequences of environmental changes in fire-476 

prone regions better.  477 

The impact of changes in land use on the biophysical properties of the land surface and on 478 

biogeochemical cycling has led to considerable attention being given to developing data sets to 479 

impose land-use history on vegetation models (e.g. Pongratz et al., 2008; Klein Goldewijk et al., 480 

2017) and scenarios for future changes in the land biosphere under direct human intervention 481 

(including agriculture, pastoralism and forestry). Several vegetation models now explicitly simulate 482 
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agricultural PFTs in order to be able to assess the likely impact of future climate changes on 483 

production and the human resource base. Arable crops represent an extreme modification of the 484 

landscape yet, within the constraints that have been imposed by artificial selection, crop growth 485 

conforms to the same principles as all plants and can be modelled with the same EEO-based tools 486 

(Qiao et al., 2020). Further work to explore the EEO approaches to anthropogenic land use would be 487 

useful, both from the perspective of providing more realistic or more parsimonious crop models and 488 

to harmonise modelling approaches for simulating the land biosphere within Earth System models. 489 

VI. Concluding remarks 490 

Vegetation models have shown their usefulness for projecting ecosystem productivity, vegetation 491 

patterns, terrestrial carbon uptake and other ecosystem services in a rapidly changing world. These 492 

projections now feed routinely into global assessments such as those being made by the IPCC, the 493 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services and the 494 

Integrated Research on Disaster Risk project. Thus, they contribute to the evidence base necessary to 495 

assess progress towards the United Nations Sustainable Development Goals (Heck et al., 2018). 496 

However, more reliable models are required to enhance confidence in the plausibility of many of 497 

these projections. The rate of expected global environmental change increases the need for models to 498 

be able to deal with dynamic processes, including plant migration, adaptation, acclimation and land-499 

use change. Global changes are occurring faster than many adaptive processes and are likely to result 500 

in novel environmental conditions; models must therefore be equipped to deal with non-equilibrium 501 

situations and novel conditions outside the range for which they were originally developed and tested. 502 

This can only be achieved by ensuring that they realistically account for acclimation and adaptation 503 

processes and do not entirely rely on statistically determined, historical patterns. However, increased 504 

realism is of little value if it is accompanied by over-parameterization and ever-increasing parameter 505 

uncertainty. We have indicated how EEO theory can provide a means to alleviate these problems by 506 

substantially reducing the number of parameters required that must be specified. As models move 507 

away from PFTs to explicitly representing plant traits, EEO approaches will make it possible to 508 

reduce the dimensionality of the trait-space that needs to be considered. The application of EEO 509 

requires clear formulation of alternative hypotheses, which in turn creates a central role for 510 

observations and experiments to test and compare them.  511 

There is as yet no comprehensive description of plant behaviour in terms of EEO – indeed, as some 512 

of the examples above have shown, the appropriate choice of optimality criteria is an active research 513 

topic in areas such as stomatal behaviour while in other areas, such as disturbance dynamics, EEO 514 

concepts are in their infancy. Moreover, there is no recipe for success. EEO hypotheses must be 515 
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tested, and many will fail. EEO approaches are nonetheless providing robust, parsimonious and well-516 

supported representations of core processes that are represented in all vegetation models, and offer 517 

promise for the development of a new generation of models. 518 
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  1195 

Box 1: How surface land models are developed: some problems and proposed solutions 

Models do not encapsulate a coherent body of theory. Current models represent the accumulation 

of work by successive cohorts of scientists in a specific institution or collaboration. Generally, no 

one has a complete overview of what they contain, or why particular decisions were made in the 

past (Fisher and Koven, 2020). This approach is normal for operational (e.g. national weather or 

air-quality forecast) models, but it inhibits efforts to trace why a model behaves as it does. We 

suggest there is a need for a re-design, in which the core processes are examined one-by-one and 

specific hypotheses about these processes tested against relevant data. Our proposed theory-driven 

approach more closely resembles how quantitative models are used in most other fields of science.  

Lack of clarity about hypotheses. Many aspects of plant and ecosystem function are subject to 

alternative interpretations, and it seems likely that some differences among the results of models 

originate in different hypotheses adopted for one or another process. These hypotheses are seldom 

explicitly stated, however. Although model codes and documentation are now commonly made 

public (a positive development), the models’ complex history can make it hard to discern their 

underlying logic. There is a strong argument for greater clarity, and above all, a re-examination of 

the evidence underlying the representation of each process. 

Unclear testing protocols. New process representations are often assessed by changing one 

component within an existing, complex model and examining the effect on model outputs. Results 

obtained in this way are seldom clear-cut, however, because they are potentially vitiated by errors 

elsewhere in the model. Instead, model components should be tested independently of others. 

Core process representations tend to be conserved. In many vegetation models, representations 

of the core processes of coupled energy, carbon and water exchange have remained unchanged 

since their original formulation. There is, in principle, no reason why new representations of core 

processes should not replace existing ones. However, it is noteworthy that this has not generally 

happened. The “legacy” formulations were likely provisional, and might now be obsolete – yet 

they are seldom isolated and tested, while model “improvement” more often consists of adding 

new processes (Fisher et al. 2014). We propose that model development should be re-focused on 

the critical analysis and evaluation of core process representations, and new processes added only 

if evidence unambiguously shows that they are required. 

Neglect of available observations. Model parameter estimation tends to be ad hoc and is 

frequently based on single values for ‘model’ species that are long outdated. Although there have 

been efforts to use available trait databases for defining PFT-specific parameterisations (e.g. 

Harper et al., 2016), models are still relatively uninformed by the wealth of currently available 

observations. This situation could be remedied by closer integration of data analysis and 

experimental research into model development. 
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 1196 Box 2: Steps towards a parsimonious model for gross primary production 

We summarize here how EEO hypotheses were derived and tested and used to create a parsimonious model for GPP. 

For clarity, we describe a simplified model that assumes Jmax is large. H. Wang et al. (2017) provide the full derivation.  

(1) According to the FvCB model, photosynthesis proceeds at the lesser of two rates: AC, determined by Vcmax, and AJ, 

by light (with a maximum value determined by Jmax). The coordination hypothesis (Field and Mooney, 1986;  Chen 

et al., 1993; Maire et al., 2012; Quebbeman and Ramirez, 2016; H. Wang et al., 2017) states that these rates should 

converge. This is optimal in the sense that resources would be wasted if overcapacity were maintained in one process 

or the other. Thus, the hypothesis predicts that AC ≈ AJ on the time scale of physiological acclimation. This time scale, 

from empirical studies, is on the order of a few weeks. Assuming (as a simplification) that the response of AJ to light 

is linear over the relevant range, then from the FvCB model if  AC = AJ then 

Vcmax (ci – Γ*)/(ci + K)  =  φ0 Iabs (ci – Γ*)/(ci + 2Γ*)      (1) 

where ci is the leaf-internal partial pressure of CO2, φ0 is the intrinsic quantum efficiency of photosynthesis, and Γ* 

and K are parameters (the photorespiratory compensation point and the effective Michaelis-Menten coefficient of 

Rubisco, respectively) whose values, and dependencies on temperature and atmospheric pressure, are well-established 

and relatively invariant across all C3 plants (as also assumed by all global models that rely on the FvCB formulation 

of photosynthesis). Acclimation of Vcmax then ensures that photosynthesis follows the right-hand equation. 

(2) We still need to know ci. This depends only partly on the ambient CO2 (ca). The least-cost hypothesis is a conjecture 

by Wright et al. (2013) that the combined costs (per unit photosynthesis) of maintaining water transport and carbon 

uptake capacities are minimized – as carbon uptake requires water loss, and therefore transport. Prentice et al. (2014) 

reformulated this criterion based on the FvCB model, and proved that there is a value of the ratio ci:ca (denoted χ) that 

minimizes it. (See Dewar et al., 2018 for extensions and alternatives.) The costs of water loss capacity were assumed 

proportional to transpiration, and the costs of carbon uptake capacity to Vcmax. To minimize their sum, their derivatives 

must add up to zero: 

a ∂ (E/A) / ∂χ  + b ∂ (Vcmax/A) / ∂χ  = 0       (2) 

where A is photosynthesis, E is transpiration, and a and b are (as yet) unknown quantities. Vcmax/A can be derived from 

the FvCB model. E/A can be derived from the diffusion equation (for CO2 entering and water exiting the leaf, both 

controlled by stomatal conductance): A  =  gs ca (1 – χ) and E  =  1.6 gs D, hence: 

E/A  =  1.6 D/[ca (1 – χ)]         (3) 

where gs is stomatal conductance (to CO2; conductance to water is 1.6 times larger) and D is the leaf-to-air vapour 

pressure deficit. The solution to equation (2) is: 

χ  =  Γ*/ca + (1 – Γ*/ca) ξ / (ξ + √D)                  (4a) 

with 

ξ  = √{b (K + Γ*)/1.6 a}                   (4b) 

Equation (4) allows us to derive ci, which can be plugged into the right-hand side of equation (1). 

(3) But what is the ratio b/a? In principle a should decline with increasing temperature, as water becomes less viscous. 

So this ratio can be written β/η*, where β is a parameter and η* is the (known) viscosity of water relative to its value 

at 25˚C. H. Wang et al. (2017) used global leaf stable carbon isotope data (a proxy for χ) to estimate a single, universal 

value for β by multiple regression. This is an approximation, of course, but H. Wang et al. (2017) could successfully 

predict the broad global patterns of χ; how it varies with temperature, vapour pressure deficit and elevation; and how 

it varies among plant types, purely as a consequence of their growing in different environments. 

(4) Equation (1) predicts leaf-level photosynthesis. However, making the further assumption that the canopy behaves 

as a “big leaf”, H. Wang et al. (2017) and Stocker et al. (2020) showed that the same equation could be used to predict 

GPP – provided the satellite-observed fractional absorbed photosynthetically active radiation (fAPAR) is used in the 

determination of Iabs. The model is an LUE model: i.e. GPP is proportional to Iabs. But now it is linked explicitly to 

the FvCB model. All of its parameters are independently known, or (like β) can be estimated from data independent 

of GPP. The full implementation (considering finite Jmax) requires one more parameter; but this, too, can be estimated 

from independent data (measurements of the ratio of Jmax to Vcmax). 
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Figure Captions  1197 

Figure 1. Response of photosynthetic capacity (Vcmax) measured in Holcus lanatus (C3 grass) and 1198 

Solanum dulcamara (vine) to CO2, shown in growth-chamber experiments where ambient CO2 and 1199 

phosphorus (P) supply were manipulated (see Supplementary Information for further details). Low-1200 

P and high-P treatments received fertilizer with nitrogen to phosphorus (N:P) ratios of 45:1 and 1:1, 1201 

respectively. The responses of Vcmax to sub-ambient and elevated CO2 are consistent with the 1202 

predictions of the coordination hypothesis as modelled following the eco-evolutionary optimality 1203 

formulations of Wang et al. (2014) (W14) and Smith et al. (2019) (S19). Experimental Vcmax was 1204 

scaled relative to the high-P population average under ambient CO2 growth conditions (450 ppm), 1205 

whereas modelled Vcmax was scaled relative to the single 450 ppm prediction. The response to CO2 is 1206 

significant at the 99% confidence level, as is the response to P supply, but the interaction term is non-1207 

significant indicating that the response to CO2 is the same regardless of P supply. 1208 

Figure 2. Observed (by eddy covariance, grey) and modelled (using the same parameter set, red) half-1209 

hourly gross primary production (GPP) during one week in August 2014 at sites in a tropical (GF-1210 

Guy) and a boreal (FI-Hyy) forest. Grey bands represent the uncertainty in GPP calculated using the 1211 

daytime partitioning method in the FLUXNET2015 dataset (Pastorello et al., 2020). Modelled and 1212 

observed GPP are in units of μmol CO2 m
-2 s-1. Figure redrawn based on analyses in Mengoli et al. 1213 

(2021). 1214 

Figure 3. Field-measured (black lines) (a) leaf dark respiration rates (Rdark) and (b) photosynthetic 1215 

capacities (Vcmax) compared to their modelled responses to growing-season temperature (red solid 1216 

lines) as predicted by the coordination hypothesis (H. Wang et al., 2020). Both Rdark and Vcmax have 1217 

been corrected (using the Arrhenius equation, with ΔH as provided by Bernacchi et al. 2001) from 1218 

the specific measurement temperature to the growing-season average temperature for the site. The 1219 

coordination hypothesis predicts acclimated responses to temperature. The red dashed lines show the 1220 

instantaneous responses to temperature, i.e. the relationship assumed by most models, based on the 1221 

same Arrhenius equation. Data from the GlobResp (Atkin et al., 2015) and LCE (Smith and Dukes, 1222 

2017) data sets. Figure redrawn from analyses presented in H. Wang et al. (2020). 1223 

Figure 4. Trends in the ratio of leaf-internal to ambient CO2 reconstructed from stable carbon isotope 1224 

ratios in tree rings for different sites (coloured lines) and for the whole dataset (black) with respect to 1225 

(a) mean growth temperature, (b) vapour pressure deficit (VPD), (c) atmospheric CO2 and (d) 1226 

elevation, compared to modelled trends (red line) for the whole dataset based on the least-cost 1227 

hypothesis. Figure redrawn from data and model results described in Lavergne et al. (2020a). 1228 
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Figure 5. Observed (a) photosynthesis and (b) isoprene emission at University of Michigan 1229 

Biological Station forest in relation to incident photosynthetic photon flux density (PPFD), compared 1230 

to modelled values (red lines) based on the FvCB model and the hypothesis that isoprene emission is 1231 

related to leaf energetic status (Morfopoulos et al., 2013).  Data are shown for an air temperature 1232 

range of 24.5-25 ̊C to limit impact of temperature on the response to PPFD. The black lines represent 1233 

relationships of GPP and isoprene emission rate to changes in PPFD estimated by Michaelis-Menten 1234 

type functions fitted to the data. The figure is redrawn from Morfopoulis (2014) and the model is 1235 

described in Morfopoulis et al. (2014). 1236 

Figure 6. Observed relationships (black lines) between leaf lifespan and (a) leaf mass per area, (b) 1237 

radiation and (c) growing-season length as a fraction of the year compared to relationships predicted 1238 

(red lines) by the time-averaged maximization of leaf carbon gain through leaf lifespan after 1239 

accounting for construction costs. All values are shown on a log scale. Data from evergreen species 1240 

in the GLOPNET trait database (Wright et al., 2004). Figure redrawn from analyses presented in H. 1241 

Wang et al. (2021). 1242 

Figure 7. Comparison of observed against modelled (a) soil N availability, (b) tree N uptake, and (c) 1243 

net primary production (NPP) under ambient (open symbols) and elevated (dark grey symbols) CO2, 1244 

and with nitrogen fertilization (light grey symbols), at two free-air carbon dioxide enrichment 1245 

experiments: Duke FACE (circles) and ORNL FACE (squares). The plant-level optimality model 1246 

optimizes canopy N, LAI, and fine-root production by maximizing net growth as a proxy for fitness. 1247 

The imposed treatment effects (independent variables) are light-saturated leaf-level photosynthetic 1248 

N-use efficiency and soil N availability (maximal potential N uptake per root C). The r2 is 0.90 for 1249 

NPP, and 0.85 for N uptake (excluding circled outliers). Measured units of soil N in (a) are extractable 1250 

nitrate (0.1 µg g soil–1) in Duke and net N mineralization (20 µg g soil–1 y–1) in ORNL. Figure redrawn 1251 

from data and model results described in Franklin et al. (2009).  1252 
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Figure 1. Response of photosynthetic capacity (Vcmax) measured in Holcus lanatus (C3 grass) and 1253 

Solanum dulcamara (vine) to CO2, shown in growth-chamber experiments where ambient CO2 and 1254 

phosphorus (P) supply were manipulated (H. J. de Boer, unpublished results, see Supplementary 1255 

Information for further details). Low-P and high-P treatments received fertilizer with nitrogen to 1256 

phosphorus (N:P) ratios of 45:1 and 1:1, respectively. The responses of Vcmax to sub-ambient and 1257 

elevated CO2 are consistent with the predictions of the coordination hypothesis as modelled following 1258 

the eco-evolutionary optimality formulations of Wang et al. (2014) (W14) and Smith et al. (2019) 1259 

(S19). Experimental Vcmax was scaled relative to the high-P population average under ambient CO2 1260 

growth conditions (450 ppm), whereas modelled Vcmax was scaled relative to the single 450 ppm 1261 

prediction. The response to CO2 is significant at the 99% confidence level, as is the response to P 1262 

supply, but the interaction term is non-significant indicating that the response to CO2 is the same 1263 

regardless of P supply. 1264 
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Figure 2. Observed (by eddy covariance, grey) and modelled (using the same parameter set, red) half-1270 

hourly gross primary production (GPP) during one week in August 2014 at sites in a tropical (GF-1271 

Guy) and a boreal (FI-Hyy) forest. Grey bands represent the uncertainty in GPP calculated using the 1272 

daytime partitioning method in the FLUXNET2015 dataset (Pastorello et al., 2020). Modelled and 1273 

observed GPP are in units of μmol CO2 m
-2 s-1. Figure redrawn based on analyses in Mengoli et al. 1274 

(2021). 1275 
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Figure 3. Field-measured (black lines) (a) leaf dark respiration rates (Rdark) and (b) photosynthetic 1278 

capacities (Vcmax) compared to their modelled responses to growing-season temperature (red solid 1279 

lines) as predicted by the coordination hypothesis (H. Wang et al., 2020). Both Rdark and Vcmax have 1280 

been corrected (using the Arrhenius equation, with ΔH as provided by Bernacchi et al. 2001) from 1281 

the specific measurement temperature to the growing-season average temperature for the site. The 1282 

coordination hypothesis predicts acclimated responses to temperature. The red dashed lines show the 1283 

instantaneous responses to temperature, i.e. the relationship assumed by most models, based on the 1284 

same Arrhenius equation. Data from the GlobResp (Atkin et al., 2015) and LCE (Smith and Dukes, 1285 

2017) data sets. Figure redrawn from analyses presented in H. Wang et al. (2020). 1286 
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Figure 4. Trends in the ratio of leaf-internal to ambient CO2 reconstructed from stable carbon isotope 1291 

ratios in tree rings for different sites (coloured lines) and for the whole dataset (black) with respect to 1292 

(a) mean growth temperature, (b) vapour pressure deficit (VPD), (c) atmospheric CO2 and (d) 1293 

elevation, compared to modelled trends (red line) for the whole dataset based on the least-cost 1294 

hypothesis. Figure redrawn from data and model results described in Lavergne et al. (2020a). 1295 
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Figure 5. Observed photosynthesis (a) and isoprene emission (b) at University of Michigan 1300 

Biological Station forest in relation to incident photosynthetic photon flux density (PPFD), compared 1301 

to modelled values (red lines) based on the FvCB model and the hypothesis that isoprene emission is 1302 

related to leaf energetic status (Morfopoulos et al., 2013).  Data are shown for an air temperature 1303 

range of 24.5-25 ̊C to limit impact of temperature on the response to PPFD. The black lines represent 1304 

relationships of GPP and isoprene emission rate to changes in PPFD estimated by Michaelis-Menten 1305 

type functions fitted to the data. The figure is redrawn from Morfopoulis (2014) and the model is 1306 

described in Morfopoulis et al. (2014). 1307 
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Figure 6. Observed relationships (black lines) between leaf lifespan and (a) leaf mass per area, (b) 1310 

radiation and (c) growing-season length as a fraction of the year compared to relationships predicted 1311 

(red lines) by the time-averaged maximization of leaf carbon gain through leaf lifespan after 1312 

accounting for construction costs. All values are shown on a log scale. Data from evergreen species 1313 

in the GLOPNET trait database (Wright et al., 2004). Figure redrawn from analyses presented in H. 1314 

Wang et al. (2021). 1315 
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Figure 7. Comparison of observed against modelled (a) soil N availability, (b) tree N uptake, and (c) 1317 

net primary production (NPP) under ambient (open symbols) and elevated (dark grey symbols) CO2, 1318 

and with nitrogen fertilization (light grey symbols), at two free-air carbon dioxide enrichment 1319 

experiments: Duke FACE (circles) and ORNL FACE (squares). The plant-level optimality model 1320 

optimizes canopy N, LAI, and fine-root production by maximizing net growth as a proxy for fitness. 1321 

The imposed treatment effects (independent variables) are light-saturated leaf-level photosynthetic 1322 

N-use efficiency and soil N availability (maximal potential N uptake per root C). The r2 is 0.90 for 1323 

NPP, and 0.85 for N uptake (excluding circled outliers). Measured units of soil N in (a) are extractable 1324 

nitrate (0.1 µg g soil–1) in Duke and net N mineralization (20 µg g soil–1 y–1) in ORNL. Figure redrawn 1325 

from data and model results described in Franklin et al. (2009). 1326 
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