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Abstract 22 

The building sector accounts for 30% of final energy consumption and 28% of global 23 

energy-related carbon dioxide emissions, with space heating and cooling consuming a 24 

large share of total buildings’ energy consumption. Building stock modelling for space 25 

heating and cooling energy prediction provides critical insights on the stock energy 26 

consumption and aid the building retrofit policy-making process with the evaluation of 27 

the energy-saving potential. By combining the physical modelling approach and data-28 

driven approach, a hybrid approach is applicable for modelling the heating and cooling 29 

energy consumption of the building stock, including both residential buildings and non-30 

residential buildings. Within this framework, the Urban Modelling Interface (UMI) tool 31 

has been used for physical modelling to generate heating and cooling energy use 32 

intensity. Then, ten different machine learning models, including Gaussian radial basis 33 

function kernel support vector regression, linear kernel support vector regression, 34 

polynomial kernel support vector regression, random forests, extreme gradient boosting, 35 

ordinary least-squares linear regression, ridge regression, least absolute shrinkage, and 36 

selection operator, elastic net and artificial neural network, have been applied to predict 37 

heating and cooling energy use intensity (EUI). The approach has been demonstrated 38 

using a case study in Chongqing, China. The results show that machine learning models 39 



 

 

can achieve accurate building heating and cooling EUI prediction, with the polynomial 40 

kernel support vector regression showing the best accuracy at the level of a single 41 

building, and the Gaussian radial basis function kernel support vector regression 42 

performing the best at the stock level. Machine learning models generated by proposed 43 

hybrid approach not only provide quickly prediction of building space heating and 44 

cooling energy consumption at the stock level, but also support building retrofit 45 

decision makings by evaluate energy saving potential of various retrofit options. 46 

Keywords: Building energy consumption; Heating and cooling; Building Stock 47 

modelling; Hybrid approach; Machine learning 48 

1. Introduction 49 

Buildings are responsible for 30% of final energy consumption and 28% of global 50 

energy-related carbon dioxide emissions in 2018 according to the International Energy 51 

Agency [1]. Building energy conservation and carbon emission reduction are actively 52 

promoted by governmental authorities by leveraging on legislation and policies, such 53 

as the Energy Performance of Buildings Directive and the Energy Efficiency Directive 54 

in the EU [2] and the 13th Five Year Plan in China [3].  55 

Space heating and cooling through mechanical systems are the primary active methods 56 

to adjust the building indoor thermal conditions but at the expense of a significant 57 

amount of energy. As examples, in residential buildings the space heating and cooling 58 

account for 58% and 41% of urban and rural household energy consumption in China 59 



 

 

[4], 48% of home energy consumption in the United States [5], 70% of domestic energy 60 

consumption in the United Kingdom [6] and 65% of the household energy consumption 61 

in the European Union [7]. In non- residential buildings, the space heating and cooling 62 

account for 34% of commercial building energy consumption in the United States [8], 63 

50%-60% of public building energy consumption in China [9], and 45% of non-64 

domestic premises energy consumption across England and Wales [10]. The high 65 

energy demand for space heating and cooling thus entails massive building energy 66 

conservation and carbon emissions reduction potential if tailored building retrofit 67 

measures are undertaken.  68 

To understand the building stock energy consumption and study various building 69 

retrofit measures, building stock energy modelling - a successor of building energy 70 

modelling – is utilized to expand the study area to a larger scale and offers architects, 71 

urban planners, and policymakers a valid decision support tool [11]. Modelling the 72 

space heating and cooling energy consumption boosts policy-making process by 73 

providing critical insights on the building stock built environment control-related 74 

energy consumption; further, it proves particularly useful to areas in which building 75 

energy consumption statistics is lacking, or detailed building end-use split for space 76 

heating and cooling is not available. Moreover, the space heating and cooling energy 77 

consumption model is also capable of evaluating the energy conservation potential of 78 

various building retrofit measures at the stock level and help with the selection of the 79 

best performing measures. 80 



 

 

This study deployed a hybrid approach to generate data-driven energy prediction model 81 

for large-scale building stock covering both residential building and non-residential 82 

building without existing building energy consumption data. The structure of the paper 83 

is as following: Section 2 includes the related literatures as well as the aims and 84 

objectives of this study. Section 3 presents the methodology applied in this study, which 85 

use hybrid approach to predict building space heating and cooling energy consumption. 86 

Follows by Section 4 demonstrates the proposed hybrid approach using a case study in 87 

Chongqing, China. The discussions and conclusions of the study are covered in Section 88 

5 and Section 6 respectively. 89 

2. Literature review 90 

2.1 Data-driven building energy consumption prediction 91 

The data-driven building energy consumption prediction has been gaining raising 92 

research interest in recent years [12]: it has been widely used to predict building energy 93 

consumption of buildings with different functions, such as residential [13-22], office 94 

[23-29], institutional [30, 31], educational [32, 33] and commercial [34]. However, the 95 

application of the data-driven approach in large scale building stock energy 96 

consumption prediction is rather limited [34-36], this might because the majority of 97 

existing research about data-driven building energy consumption prediction is focused 98 

on residential or non-residential buildings only [12], although building stock usually 99 

consists of a mix of both types of building. Build up a data-driven energy consumption 100 



 

 

prediction framework able to handle buildings of different functions is essential for 101 

extending the application of data-driven approach in large scale building stock.  102 

To the best of our knowledge, there are only a few data-driven building energy 103 

consumption prediction studies considering both residential and non-residential 104 

buildings, such as that of Georgescu, et al. [37] who studied offices, laboratories, 105 

gymnasiums, dormitories, and restaurants. Instead of creating one model able to predict 106 

both the residential and non-residential building's energy demand, they generated an 107 

individual support vector machine model for building energy consumption data from 108 

every building utility meters. Kontokosta and Tull [38] applied linear regression, 109 

random forest, and support vector regression algorithms to predict the energy use of 1.1 110 

million buildings in New York City of various functions, the building energy usage data 111 

used to train the model came from Local Law 84 energy disclosure data. Hawkins, et 112 

al. [39] used the artificial neural network to estimate the energy use in UK university 113 

campus buildings, such as dormitories, laboratories, and offices, by using Display 114 

Energy Certificate (DEC) to develop artificial neural network energy prediction model. 115 

Robinson, et al. [40] developed 11 different machine learning models using the 116 

Commercial Buildings Energy Consumption Survey (CBECS) data to estimate 117 

commercial building energy consumption. The commercial buildings have been studied 118 

including both commercial buildings for a residential purpose like lodging building and 119 

commercial buildings for non-residential purpose like the office building. Similarly, 120 

Cheng [41] also based on the CBECS data to build 10 machine learning models for 121 



 

 

commercial building energy prediction, benchmarking data of New York City and 122 

Chicago has been used for model validation. Abbasabadi, et al. [42] demonstrated an 123 

integrated data-driven framework for urban energy use modelling taking Chicago as a 124 

case study. They tested multiple linear regression, nonlinear regression, classification 125 

and regression trees, random decision forest, k-nearest neighbours and artificial neural 126 

intelligence for operational energy use prediction considering both residential and non-127 

residential buildings. The building energy data used is obtained by merging the Chicago 128 

energy benchmark and Chicago energy usage datasets. Pan and Zhang [43] employed 129 

categorical boosting model, random forest and gradient boosting decision tree in 130 

estimate energy consumption of non-residential and multifamily building, Seattle's 131 

building energy performance data collected by Seattle's Energy Benchmarking Program 132 

is used as main dataset. However, the rich building energy consumption datasets, like 133 

Local Law 84 energy disclosure data, DEC data, CBECS data, Chicago energy 134 

benchmark dataset and Seattle's building energy performance data, are currently 135 

available only for a limited number of cities and countries. The lack of building energy 136 

consumption datasets [44], needed as a training set, impede the use of a data-driven 137 

approach in the large scale building stock [45]. 138 

2.2 Hybrid approach in building stock energy modelling 139 

Top-down and bottom-up methods are generally used to develop building stock models 140 

[46-48]. Top-down methods have embedded the main limitation of lack of technical 141 

detail specifications and are unable to determine the energy consumption of each end-142 



 

 

uses [46-48], while bottom-up methods overcome this shortcoming and are used to 143 

investigate the building energy consumption for heating and cooling in this study. Two 144 

main approaches for bottom-up building stock energy modelling are typically employed 145 

[46, 47, 49]: the physical modelling and the data-driven approach. Physical modelling 146 

relies on thermodynamic laws for detailed energy modelling, it large data and 147 

computational demands stopped it to apply precisely in every building at the stock level 148 

[40]. The data-driven approach “learns” from historical or available datasets for 149 

prediction [12], a large amount of data is essential for model development [50]. 150 

The hybrid approach combines physical modelling and data-driven approaches by using 151 

the output of physical modelling as an input to generate data-driven models [40, 50]. It 152 

has the potential to provide a solution for building energy consumption datasets lacking 153 

by using physical modelling to generate datasets. Therefore, a hybrid approach has been 154 

identified as a more promising method for urban energy modelling [42]. Valovcin, et 155 

al. [51] built multiple linear regressions to adjust energy simulation results to match 156 

the measured energy data in U.S. homes as a part of statistical post-processing 157 

techniques. Similarly, Brøgger, et al. [52], [53] adopted a hybrid approach by using 158 

multiple linear regression to calibrate a physical model of the Danish residential 159 

building stock. Li and Yao [54] compared the performance of linear regression, artificial 160 

neural network and support vector regression in predicting the residential annual space 161 

heating and cooling loads. The annual residential heating and cooling load intensity 162 

database utilized in machine learning models’ training and validation process is 163 



 

 

generated by EnergyPlus simulation of a typical residential household archetype. Ciulla 164 

and D'Amico [55] undertook a parametric simulation of a detailed TRNSYS model and 165 

generated a building energy database representative of non-residential Italian building 166 

stocks. Based on the database, multiple linear regression models are develop to predict 167 

building heating, cooling and comprehensive energy demand. Luo, et al. [56] proposes 168 

a multi-objective prediction framework for building heating, cooling, lighting loads and 169 

BIPV electrical power production. By using building operating and energy data 170 

generated by TRNSYS simulation of a general office building, artificial neural network, 171 

support vector regression and long-short-term-memory neural network based predictive 172 

models are trained and tested. Although adapted a hybrid approach, the aforementioned 173 

five studies focus on the residential building or non-residential building only. Goel, et 174 

al. [57] build random forest regression models based on building stock simulations for 175 

buildings energy efficiency prediction in developing the Asset Score Preview tool, a 176 

rating system tool. In their research, 22 building types embedding both commercial 177 

buildings and mid- to high-rise residential buildings were studied with one regression 178 

model generated per every building type. There is a lack of study using hybrid approach 179 

for energy modelling of both residential building and non-residential building to enable 180 

large-scale building stock energy prediction. 181 

2.3 Aims and objectives 182 

To extend the application of data-driven model to large-scale building stock and to 183 

alleviate the challenges of commonly unavailable building energy consumption data to 184 



 

 

support model generation, a hybrid approach has been employed to develop a data-185 

driven energy prediction model covering both residential and non-residential buildings. 186 

A case study in Chongqing city (China) is used to demonstrate the hybrid energy 187 

prediction approach, the prediction accuracy of ten different machine leaning models is 188 

also compared based on the case study. 189 

3. Methodology 190 

The proposal of a new hybrid approach for building energy stock modelling consists of 191 

5 steps, including the heating and cooling energy consumption estimation, machine 192 

learning models, model generation process, model performance evaluation as well as 193 

the application of selected machine learning model (see Figure 1). 194 

Step 1: Based on building information collected through a field survey and related 195 

building characteristics settings, Urban Modeling Interface (UMI) was used to simulate 196 

the space heating and cooling energy consumption of all single-use buildings within the 197 

study stock.  198 

Step 2: Suitable machine learning models for predicting building space heating and 199 

cooling energy use intensity (EUI) at the individual building level have been 200 

investigated. 201 

Step 3: Generation of the machine learning models through pre-process of the raw 202 

dataset; train with the training and validation set, and test models by apply them to 203 

predict the EUIs of the testing set buildings. 204 



 

 

Step 4: Evaluate the prediction accuracy of the machine learning models at both 205 

individual building and stock levels to compare the machine models’ performance when 206 

considering both residential and non-residential buildings. 207 

Step 5: Based on the further analysis scope, prioritize building level accuracy or stock 208 

level accuracy to select the best performed model. The selected machine learning model 209 

can be applied to building space heating and cooling energy consumption prediction, 210 

as well as building retrofit space heating and cooling energy saving potential evaluation.  211 



 

 

 212 

Figure 1: Framework of the research 213 

The detail implication of those five steps is described in the following sections 3.1 to 214 

3.5.  215 

3.1. Heating and cooling energy consumption estimation 216 

As stated above, the rich building energy consumption datasets are not commonly 217 

available, so the building energy consumption information needed for data-driven 218 



 

 

model development is estimated by using physical models. In this study, the energy 219 

consumption of every studied building is simulated individually by using Urban 220 

Modeling Interface (UMI) [58], a modelling software package that utilizes EnergyPlus  221 

[59] as the simulation core engine. UMI can simulate space heating and cooling energy 222 

use intensity (EUI) for individual buildings at the urban scale in a fast but accurate 223 

manner by using a 'shoeboxer' algorithm [60], which makes it a handy physical 224 

modelling tool to handle a relatively small scale buildings stock. UMI needs 3D 225 

building model of the stock, together with all detailed building characteristics required 226 

by EnergyPlus, such as the building envelope thermal physical characteristics and 227 

HVAC system, at individual building level to simulate building heating and cooling 228 

energy consumption. As detailed building characteristics are essential for UMI 229 

simulation, the UMI simulation setting and running process are both labour intensive 230 

and time-consuming [61], which does limit its applicability to the large scale building 231 

stock.  232 

The heating and cooling energy consumption results from UMI simulation is combined 233 

with the building detailed characteristics to create the machine learning database. The 234 

database is divided into two subsets and utilised in two ways: 1) as training and 235 

validation set to train machine learning models; 2) as testing set to test the performance 236 

of machine learning models and compare their accuracy with UMI simulation. 237 



 

 

3.2. Machine learning models  238 

Five classes of machine learning technique are investigated in this study to predicting 239 

space heating and cooling energy consumption, including support vector regression, 240 

random forest, extreme gradient boosting, linear model and artificial neural network. 241 

Ten different machine learning models are built based on the machine learning database 242 

generated in the previous step. 243 

3.2.1. Support vector machine 244 

Commonly recognized as the best supervised learning algorithms in solving regression, 245 

problems [62], SVMs are increasingly used in building energy analysis [63]. 246 

Introduced by Cortes and Vapnik [64] in 1995, the support vector machine (SVM) was 247 

initially developed in the context of classification. Based on structural risk 248 

minimization inductive principle, SVM aims at minimizing the generalization error 249 

through reducing a summation of empirical risk and a Vapnik Chervonenkis (VC) 250 

dimension term, which generally leads to higher generalization performance in solving 251 

nonlinear problems [62]. Support vector regression (SVR), as an extension of the 252 

support vector classification (SVC), provides a quantitative response to the input 253 

predictor variables [65]. It seeks coefficients to minimise the effect of outliers on the 254 

regression equations; however, only residuals larger in absolute value than some 255 

positive constant(ε) are considered in the loss function [65, 66]. ε-insensitive loss 256 

functions (equation 1) were used to construct the SVR model and ensure robust and 257 



 

 

sparse estimation. Only when the discrepancy between the SVR model predicted 258 

building EUI and simulated building EUI is higher than ε, the absolute difference will 259 

contribute to the loss. 260 

𝐿(y − f(x)) = {
0, 𝑖𝑓 |y − f(x)| ≤ 𝜀;

|y − f(x)| − 𝜀, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (1) 261 

In the case of linear functions f(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 with 𝑤 ∈ X, b ∈  (〈, 〉denotes the 262 

dot product in X), given training data {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} ⊂ 𝑋 × . The goal of SVR 263 

is to find a function f(𝑥) that has at most ε deviation from the obtained targets for all 264 

the training data, and at the same time is as flat as possible. Slack variables 𝜉𝑖 and 𝜉𝑖
∗ 265 

are introduced to guard against outliers and to adopt the soft-margin approach, in case 266 

the convex optimization problem is not always feasible. The optimization problem is 267 

presented in equation 2 [67]. 268 

minimize 
1

2
||𝑤||2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗）𝑛
𝑖=1              (2) 269 

subject to {

𝑦𝑖 − 〈𝑤, 𝑥〉 − 𝑏 ≤ ε + 𝜉𝑖

〈𝑤, 𝑥〉 + 𝑏−𝑦𝑖 ≤ ε + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

 270 

C is a positive constant that measures the trade-off between the flatness of function 271 

f(𝑥) and the amount up to which deviations larger than ε are tolerated. 272 

The abovementioned optimization problem can be solved by constructing a Lagrange 273 

function, the function f(𝑥) can be derived as equation 3 [67], 274 

𝑓(𝑥) = ∑ (𝛼𝑖−𝛼𝑖
∗)𝑛

𝑖=1 〈𝑥𝑖 , 𝑥〉 + 𝑏 (3) 275 

Where, α, α∗are Lagrange multipliers of non-negative real numbers. 276 



 

 

In the case of nonlinear functions, as the relationship between the building 277 

heating/cooling EUI and the selected predictor variables, the predictor variables need 278 

to be pre-processed and map from input space into feature space. The function f(𝑥) is 279 

written as equation 4 [67]: 280 

𝑓(𝑥) = ∑ (𝛼𝑖−𝛼𝑖
∗)𝑛

𝑖=1 𝑘(𝑥𝑖 , 𝑥) + 𝑏 (4) 281 

Three different kernel functions 𝑘〈𝑥𝑖 , 𝑥〉  is used to generate three different SVR 282 

models, including Linear kernel(equation 5) for Linear kernel SVR, Polynomial kernel 283 

(equation 6) for polynomial kernel SVR and Gaussian radial basis function kernel 284 

(equation 7) for Gaussian radial basis function kernel SVR [68]. 285 

𝑘(𝑥𝑖 , 𝑥) = 𝑥𝑖 𝑥 (5) 286 

𝑘(𝑥𝑖 , 𝑥) = (𝑠𝑐𝑎𝑙𝑒 𝑥𝑖 𝑥 + 𝑜𝑓𝑓𝑠𝑒𝑡)𝑑𝑒𝑔𝑟𝑒𝑒 (6) 287 

𝑘(𝑥𝑖 , 𝑥) = exp (−𝜎||𝑥𝑖 − 𝑥||2) (7) 288 

3.2.2. Random forests  289 

Random forests is an ensemble learning approach to supervised learning [69], it can be 290 

used for both classification and regression. Thanks to the advantage of fast training 291 

speed [70], random forests becomes one of the most widely used machine learning 292 

techniques [71]. The random forest for regression is formed by growing trees 293 

depending on a random vector such that the tree predictor takes on numerical values by 294 

average the prediction of every tree [72]. The algorithm for random forest regression is 295 



 

 

as following [73],  296 

1. For b=1 to B: 

 (a) Draw a bootstrap sample Z* of size N from the training data. 

 (b) Grow a random forest tree Tb to the bootstrapped data, by recursively 

repeating the following steps for each terminal node of the tree, until the 

minimum node size Smin is reached. 

  i. Select m variables at random from the p variables. 

  ii. Pick the best variables/split-point among the m variables.  

  iii. Split the node into two daughter nodes. 

2. Output the ensemble of trees{𝑇𝑏}1
𝐵. 

To make a prediction at a new point x: 

𝑓𝑟𝑓
𝐵 (𝑥) =

∑ 𝑇𝑏(𝑥)𝐵
𝑏=1

𝐵
 

Where B is the number of trees. 297 

3.2.3. Extreme gradient boosting 298 

Extreme gradient boosting, commonly referred to as XGBoost, is a scalable machine 299 

learning system for tree boosting [74]. As one of the boosting models, extreme gradient 300 

boosting grow trees sequentially. Starting from building the first tree based on the 301 

training data, then a second tree is created to correct the errors from the first tree. More 302 

trees are added until the model can predict the training set perfectly or the number of 303 

trees reaches the upper limit. Extreme gradient boosting is ‘an optimized distributed 304 

gradient boosting library designed to be highly efficient, flexible and portable’ [75], 305 

and can be used to handle regression, classification, and ranking problems [76]. 306 

Extreme gradient boosting achieved state-of-the-art results in machine learning 307 

competitions [77], and was proved to outperform other ten machine learning models at 308 

commercial building energy consumption prediction [40]. 309 



 

 

Based on data set with n examples and m features D = {(𝑋𝑖 , 𝑦𝑖)} (|D|=n, 𝑋𝑖∈
m, 𝑦𝑖∈310 

), extreme gradient boosting predicts output by using K additive functions, as shown 311 

in equation 8 [74].  312 

𝑦�̂� = ∅(𝑋𝑖) = ∑ 𝑓𝑘(𝑋𝑖)𝐾
𝑘=1 , 𝑓𝑘 ∈, (8) 313 

Each 𝑓𝑘 corresponds to an independent tree structure,  is the space of regression trees. 314 

The regularized objective function presented in equation 9 is optimized in extreme 315 

gradient boosting to learn the set of functions [74], 316 

(∅) = ∑ 𝑙(𝑦�̂�, 𝑦𝑖)𝑖 + ∑ Ω𝑘 (𝑓𝑘) (9) 317 

where Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆||𝜔||2  318 

𝑙 is a differentiable convex loss function that measures the difference between the 319 

prediction 𝑦�̂� and the target 𝑦𝑖, while Ω is model complexity penalization term. T is 320 

the number of leaves in the tree, 𝜔 is the leaf weights. 321 

The more detailed mathematical implication of extreme gradient boosting can be found 322 

in Chen and Guestrin [74] and Chen and He [78]. 323 

3.2.4. Linear models 324 

For linear models, the relationship between the predicted variable and predictors can 325 

directly or indirectly be written according to the following equation 10 [66]. They are 326 

selected for their simplicity, intuitive and ability to provide a baseline performance 327 

measure [55, 79]. 328 



 

 

𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 +  + 𝑏𝑗𝑥𝑖𝑗 + 𝑒𝑖 (10) 329 

where 𝑦𝑖 is the numeric response for the ith sample; 𝑏0 is the estimated intercept; 𝑏𝑗 330 

is the estimated coefficient for the jth predictor variable; 𝑥𝑖𝑗  is the value of the jth 331 

predictor variable for the ith sample; and 𝑒𝑖 is the random error of the linear regression 332 

model. 333 

For ordinary least-squares linear regression, the aim is to minimise the sum-of-squared 334 

errors (SSEols, shown in equation 11) between the observed value and model-predicted 335 

value [66]. 336 

SSE𝑜𝑙𝑠 = ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1  (11) 337 

The 𝑦𝑖 and 𝑦�̂� are the observed value and model-predicted value of the ith sample. 338 

In ridge regression, to pursue smaller mean squared error, a biased model is generated 339 

by adding a penalty to the SSErr [80] as shown in equation 12:  340 

SSE𝑟𝑟 = ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1 + 𝜆 ∑ 𝑏𝑗
2 𝑛

𝑖=1 (12) 341 

For the least absolute shrinkage and selection operator model [81], as the 342 

SSElasso(shown in equation 13) is penalized by the absolute values, the penalty value 𝜆 343 

can reach 0, so the lasso model also conducts feature selection. 344 

SSE𝑙𝑎𝑠𝑠𝑜 = ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1 + 𝜆 ∑ |𝑏𝑗|𝑛
𝑖=1  (13) 345 

The elastic net model combined two types of penalties to enable effective regularization 346 

via the ridge-type penalty with the feature selection quality of the lasso penalty[66]. 347 



 

 

The SSEen is presented in the following equation 14 [82]:  348 

SSE𝑒𝑛 = ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1 + 𝜆1 ∑ 𝑏𝑗
2𝑛

𝑖=1 + 𝜆2 ∑ |𝑏𝑗|𝑛
𝑖=1  (14) 349 

3.2.5. Artificial neural network 350 

With the benefits of high speed, high accuracy, and capability of handling nonlinear 351 

relationships between variables [83], artificial neural network is the most widely 352 

applied artificial intelligence models in the building energy prediction [63]. It mimics 353 

how the brain responds to stimuli from sensory inputs to interpret the relationship 354 

between input and output signals [84]. The neuron is the information-processing unit 355 

of the neural network, the mathematical description of a neuron is shown in equation 356 

15 [85]: 357 

𝑦𝑘 = 𝜑(∑ 𝑤𝑘𝑗𝑥𝑗 + 𝑏𝑘
𝑚
𝑗=1 ) (15) 358 

where, 𝑥1, 𝑥2, … 𝑥𝑚 are the input signals; 𝑤𝑘1, 𝑤𝑘2, … 𝑤𝑘𝑚 are the synaptic weights of 359 

neuron k; 𝑏𝑘 is the bias; 𝜑() is the activation function; and 𝑦𝑘 is the output signal 360 

of the neuron. 361 

3.3. Model generation process 362 

Machine learning models are generated via the process presented in Figure 2. All 363 

predictor variables are centred and scaled as pre-process before model training to avoid 364 

domination from attributes in higher numeric range and improve numerical stability 365 

[24, 66]. After the pre-processing, all the available data are randomly divided into two 366 



 

 

parts, with 25% as the testing set and 75% as the training and validation set (the 367 

residential building and non-residential building ratio remain equal in both datasets), as 368 

the 25/75 split is commonly used in machine learning related studies [54, 86-88]. Then, 369 

all data in the training and validation set is further partitioned into ten equally sized 370 

subsets and undergo the 10-fold cross-validation process. By repeating the process of 371 

using nine subsets as a training set and one subset as the validation set for 10 times, the 372 

tuning parameter(s) of the machine learning models are determined as the one(s) with 373 

the best average performance for the 10 different validation sets. Then, the final model 374 

is generated using all data from the training and validation set and the untouched testing 375 

set is used to evaluate the prediction accuracy of the models.  376 

 377 

Figure 2: Machine learning model generation process 378 



 

 

3.4. Model performance evaluation  379 

All buildings in the testing set are used to evaluate the performance of the machine 380 

learning model in predicting EUI as an unseen dataset. The accuracy of the machine 381 

learning-based model on individual building heating and cooling EUI prediction is 382 

investigated using relative error as per equation 16: 383 

𝛿𝑘 =
𝑦�̂�−𝑦𝑘

𝑦𝑘
×100% (16) 384 

Here δk is the relative error of using ‘machine learning’-based model to predict 385 

heating/cooling EUI of building k against UMI simulations; 386 

𝑦𝑘  is the building heating/cooling EUI for building k from the UMI simulation 387 

generated database; 388 

𝑦�̂�  is the predicted building heating/cooling EUI for building k from the machine 389 

learning model; 390 

The average prediction performance of different machine learning models at the 391 

individual building level is indicted by normalised mean absolute error (NMAE) and 392 

normalised root-mean-square error (NRMSE) for heating and cooling EUI. Their 393 

calculation formulas are presented in equations 17-18.  394 

NMAE =

∑ |𝑦𝑘−𝑦�̂�|𝑛
𝑘=1

𝑛
∑ 𝑦𝑘

𝑛
𝑘=1

𝑛

 (17) 395 

NRMSE =
√

∑ (𝑦𝑘−𝑦�̂�)2𝑛
𝑘=1

𝑛

∑ 𝑦𝑘
𝑛
𝑘=1

𝑛

 (18) 396 



 

 

Where n is the total number of buildings in the testing set. 397 

To evaluate the accuracy of machine learning models on whole stock, residential stock 398 

and non-residential stock level energy prediction, the relative error of gross heating and 399 

cooling energy consumption of all buildings in the testing set, all residential buildings 400 

in the testing set and all non-residential buildings in the testing set are estimated using 401 

equation 19 respectively: 402 

𝛿𝑆𝑡𝑜𝑐𝑘 =
∑ (𝑦�̂�

𝑚
𝑘=1 ×𝐹𝑘)−∑ (𝑦𝑘

𝑚
𝑘=1 ×𝐹𝑘)

∑ (𝑦𝑘
𝑚
𝑘=1 ×𝐹𝑘)

  (19) 403 

Where, δStock is the relative error of using machine learning based models to predict the 404 

gross heating/cooling energy consumption of specific building stock in the testing set; 405 

m is the total number of buildings in the testing set belongs to the specific building 406 

stock; Fk is the total floor area of the building k. 407 

Apart from the prediction accuracy indexes described above, the running time to predict 408 

the heating and cooling EUI of all buildings in the testing set is also tracked and 409 

analysed. 410 

3.5. The application of selected machine learning model 411 

By comparing the prediction accuracy indexes of all ten machine learning models, the 412 

best performed model can be selected based on the further analysis scope. If predicting 413 

the space heating and cooling energy consumption precisely in the building level is 414 

more important, then the building level accuracy indexes should be prioritize. 415 

Otherwise, the best performed model should be select based on the stock level accuracy 416 



 

 

indexes. The selected machine leaning model is applicable to predict building space 417 

heating and cooling energy consumption, evaluate energy saving potential for retrofit 418 

measures as a substitute of building physical simulation.  419 

4. Case study 420 

The case study area is located in Yuzhong District of Chongqing city (China), covering 421 

an area of about 3.4 km2 (see Figure 3). From July 2015 to September 2015, a field 422 

survey was carried out to collect detailed building information for every building within 423 

the study area; collected information included buildings’ geographic location (longitude 424 

and latitude), function, construction age, number of floors, window-to-wall ratio. For 425 

construction age, instead of specific construction completed year, age band was 426 

collected. Including three age bands for residential buildings (pre-2001, 2001-2010 and 427 

post-2010) and four age bands for non-residential buildings (Pre-1990, 1990-2005, 428 

2005-2015 and Post-2015). The construction age are collected for the building 429 

construction information plaque and by asking the owners.  430 

 431 

Figure 3: The case study area (highlighted by a black box) within the Yuzhong district  432 



 

 

The geographic location is used for locating buildings on online maps, then a building 433 

stock 3D model is generated by extrude the footprints by its height. The height of every 434 

building is calculated using the following equation 20, while the window-to-wall ratio 435 

is set according to the filed survey.  436 

D=N×d (20)  437 

Where D is the building height; N is the number of floors the building have; d is the 438 

average floor height, according to standards, it was set as three meters for residential 439 

buildings [89], four meters for offices [90], educational buildings [91, 92], hospitals 440 

[93] and hotels [94], five meters for malls [95]. 441 

4.1. Characteristics of the buildings in the study area 442 

In total, there are 573 buildings located within the case study area. One hundred thirty-443 

one of which are mixed-use multifunction building, while the rest of them are hosting 444 

a single function (including educational buildings, hospital, hotel, mall, office, and 445 

residential buildings). The specific location of each building in the study area is shown 446 

in Figure 4. 447 

 448 

Figure 4: Building location and function  449 



 

 

The total number of single functions buildings is presented in Figure 5, including 334 450 

residential buildings and 108 non-residential buildings. The residential building is 451 

dominating the case study area as it accounted for more than three-quarters of all single-452 

function buildings. The construction age distribution of residential and non-residential 453 

buildings is presented in Figure 6, majority of residential buildings are constructed 454 

before 2001, while more than half of non-residential buildings are constructed during 455 

1990 to 2005. 456 

 457 

Figure 5: The total number of buildings with different functions 458 
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 459 

Figure 6: The construction age distribution of residential and non-residential buildings 460 

In this study, only the 442 single function buildings are studied, due to the difficulty in 461 

getting the real floor area function within mixed-use buildings.  462 

The building's characteristics, including thermo-physical characteristics of the building 463 

envelope, HVAC systems, and internal loads, are set according to the Chinese national 464 

and industrial design standards based on the construction age of the buildings. JGJ 134-465 

2001 [96], and JGJ 134-2010 [97] Standards are utilized to describe the building 466 

characteristics of the residential building of different construction age. GBJ 19-1987 467 

[98], GB 50189-2005 [99] and GB 50189-2015 [100] Standards are used to describe 468 

the characteristics of non-residential buildings. The detailed building characteristics 469 

setting for the residential and non-residential building is set according to Costanzo, et 470 

al. [101], and are shown in Table 1. 471 
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Table 1: Detailed building characteristics of non-residential and residential building [101] 472 

Building function 
Construction 

age 

Building envelope thermal-physical characteristics HVAC system Internal gains 

U-values (W/m2K) 

Infiltrations 

(ACH) 

Fresh 

air 

supply 

(m3/s p) 

Heating/Cooling 

setpoint (°C) 

Heating 

efficiency/Cooling 

EER (-) 

Occupants 

density 

(p/m2) 

Equipment 

density 

(W/m2) 

Lighting 

density 

(W/m2) Walls Roof Slab 

Windows        

(U 

value/SHGC) 

Non-

residential 

building 

Office 

Pre-1990 1.95 1.44 3.79 5.74/0.85 0.25 0.005 20/26 0.55/3.8 0.25 20 11 

1990-2005 1.44 0.97 1.88 5.74/0.85 0.25 0.005 20/26 0.55/3.8 0.25 20 11 

2005-2015 0.95 0.78 0.97 2.67/0.43 0.15 0.008 20/26 0.89/4.1 0.25 20 11 

Post-2015 0.5 0.69 0.7 2.50/0.34 0.15 0.008 20/26 0.9/4.8 0.1 15 9 

Hotel 

Pre-1990 1.95 1.44 3.79 5.74/0.85 0.25 0.008 20/26 0.55/3.8 0.067 20 11 

1990-2005 1.44 0.97 1.88 5.74/0.85 0.25 0.008 20/26 0.55/3.8 0.067 20 11 

2005-2015 0.95 0.78 0.97 2.67/0.43 0.15 0.008 20/26 0.89/4.1 0.067 20 11 

Post-2015 0.5 0.69 0.7 2.50/0.34 0.15 0.008 20/26 0.9/4.8 0.04 15 7 

Mall 

Pre-1990 1.95 1.44 3.79 5.74/0.85 0.25 0.002 20/26 0.55/3.8 0.33 13 12 

1990-2005 1.44 0.97 1.88 5.74/0.85 0.25 0.008 20/26 0.55/3.8 0.33 13 12 

2005-2015 0.95 0.78 0.97 2.67/0.43 0.15 0.005 20/26 0.89/4.1 0.33 13 12 

Post-2015 0.5 0.69 0.7 2.50/0.34 0.15 0.008 20/26 0.9/4.8 0.125 13 10 

Hospital 

Pre-1990 1.95 1.44 3.79 5.74/0.85 0.25 0.004 20/26 0.55/3.8 0.125 20 15 

1990-2005 1.44 0.97 1.88 5.74/0.85 0.25 0.004 20/26 0.55/3.8 0.125 20 15 

2005-2015 0.95 0.78 0.97 2.67/0.43 0.15 0.008 20/26 0.89/4.1 0.125 15 12 

Post-2015 0.5 0.69 0.7 2.50/0.34 0.15 0.008 20/26 0.9/4.8 0.125 15 8 



 

 

Educational 

Pre-1990 1.95 1.44 3.79 5.74/0.85 0.25 0.005 20/26 0.55/3.8 0.25 20 11 

1990-2005 1.44 0.97 1.88 5.74/0.85 0.25 0.005 20/26 0.55/3.8 0.25 20 11 

2005-2015 0.95 0.78 0.97 2.67/0.43 0.15 0.008 20/26 0.89/4.1 0.25 20 11 

Post-2015 0.5 0.69 0.7 2.50/0.34 0.15 0.008 20/26 0.9/4.8 0.17 5 9 

Residential building 

Pre-2001 1.97 1.62 3.74 5.74/0.85 2 0 18/26 1/2.2 0.03 4.3 6 

2001-2010 1.03 1 1.5 2.80/0.48 1 0 18/26 1.9/2.3 0.03 4.3 6 

Post-2010 0.83 0.8 1.31 2.67/0.34 1 0 18/26 1.9/2.3 0.03 4.3 6 

473 



 

 

For non-residential buildings, the HVAC system is supposed to be in use for the whole 474 

year, from 7 AM to 7 PM (12h) every weekday for office and educational buildings; 475 

24h every day for hotel and hospital building; 8 AM-10 PM (14h) every day for the 476 

mall. The HVAC system is available for the heating period (from December 1st to 477 

February 28th) and cooling period (from June 15th to August 31st) only for residential 478 

buildings. The daily residential HVAC usage is assumed based on the study of Hu, et 479 

al. [102], as an hour in the morning (from 7 AM-8 AM) and five hours when returning 480 

home from work (from 6 PM-11 PM) for heating, as well as 6 PM-8 AM (14 hours) 481 

and 1 PM-2 PM (1 hour) for cooling.  482 

4.2. Buildings’ energy consumption 483 

The results of the UMI simulations are presented in Figure 7, heating and cooling EUIs 484 

are available at the individual building level. As shown in Figure 8, heating EUI varies 485 

from 2 kWh/m2 to 122 kWh/m2, while the cooling EUI varies from 6 kWh/m2 to 65 486 

kWh/m2 for all 442 single function buildings studied. The building energy consumption 487 

data is combined with building detailed characteristics to create the database used to 488 

develop machine learning models.  489 



 

 

 490 

Figure 7: The heating (top) and cooling (bottom) EUI of buildings in the study area (the 491 

buildings fill in grey are mixed-use buildings which are not simulated) 492 
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Figure 8: Boxplots of heating and cooling EUIs 495 



 

 

4.3. Predictor variables selection 496 

The building characteristics (listed in Table 2), including building geometry, building 497 

envelope thermal-physical characteristics, building HVAC system and building internal 498 

gains, are considered as main predictor variables as they are the main determinants for 499 

building space heating and cooling energy consumption [103]. Predictor variables of 500 

building geometry, building envelope thermo-physical characteristics, and building 501 

internal gains are considered for both heating and cooling EUI prediction, while the 502 

selection of predictor variables for building HVAC system is different. For heating EUI 503 

prediction, only the fresh air supply, heating temperature setpoint, the heating 504 

efficiency, and heating available proportion are considered, likewise, for cooling EUI 505 

correlation analysis, only the fresh air supply, the cooling COP and cooling available 506 

proportion are considered. The cooling setpoint is excluded from being a predictor 507 

variable because of its constant value of 26 °C for all buildings.  508 

Table 2: Predictor variables for heating and cooling EUI prediction [orange shading 509 

marks those used for heating EUI prediction only; blue shading marks those used for 510 

cooling EUI prediction only; unshaded ones are used for both heating and cooling EUI 511 

prediction] 512 



 

 

Building characteristics Predictor variables 

Building geometry Building height [m] 

Compactness ratio [/] 

Window to wall ratio [/] 

Building envelope thermal-

physical characteristics 

Walls U-value [W/m2K] 

Roof U-value [W/m2K] 

Slab U-value [W/m2K] 

Windows U-value [W/m2K] 

Windows solar heat gain coefficient (SHGC) [/] 

Air infiltrations [ach] 

Building HVAC system Fresh air supply [m3/sp] 

Heating setpoint [°C] 

Heating efficiency [/] 

HVAC available proportion for heating [/] 

Cooling EER [/] 

HVAC available proportion for cooling [/] 

Building internal gains Occupants density [p/m2] 

equipment density [W/m2] 

Lighting density [W/m2] 

The compactness ratio (CR) is an index of building shape, and is calculated as per 513 

following Equation 21 [61]: 514 

CR=S/V  (21)  515 

Where S is the surface area of the building; 516 

V is the enclosed volume of the building. 517 

The HVAC available proportion (AP) for heating and cooling indicated the annual 518 

portion of time when the HVAC system is available for heating and cooling respectively; 519 

they are calculated using Equation 22: 520 

AP=H/8760 (22) 521 

Where H is the total number of hours per annual when heating (or cooling) is available 522 



 

 

from the HVAC system. 523 

4.4. Prediction accuracy analysis 524 

The caret package[104] developed by Max Kuhn for predictive model generating has 525 

been used to perform all the machine learning models under R programming language. 526 

Caret was set to automatically generate 5 values for each tuning parameter, the tuning 527 

parameters combination with the best accuracy in the training and validation set is used 528 

in the final model for prediction accuracy analysis. As the 110 buildings in the testing 529 

set are not used for training of the machine learning models, the prediction accuracy in 530 

the testing set can reasonably represent the prediction accuracy of applying those 531 

machine learning models to other single-function buildings in Chongqing.  532 

The relative error distribution of applying machine-learning models in heating and 533 

cooling EUI for all buildings in the testing set is shown in Figure 9. The machine 534 

learning models give an accurate prediction about building heating and cooling EUI. 535 

The percentage of building within the ±10% relative error varies between 61.8% 536 

(ordinary least-squares linear regression and least absolute shrinkage and selection 537 

operator) to 85.5% (polynomial kernel support vector regression), and from 81.8% 538 

(linear kernel support vector regression) to 91.8% (Gaussian radial basis function kernel 539 

support vector regression) for the heating and cooling cases, respectively. The 540 

percentage of building within the ±20% relative error varies between 80.0% (ridge 541 

regression and elastic net) to 90.9% (polynomial kernel support vector regression) and 542 



 

 

94.5% (linear kernel support vector regression and ordinary least-squares linear 543 

regression) to 98.2% (artificial neural network) for heating and cooling. 544 

 

 

Figure 9: The relative error of the machine learning models in building heating (top) 

and cooling (bottom) EUI prediction (SVR-R: Gaussian radial basis function kernel 

support vector regression; SVR-L: linear kernel support vector regression; SVR-P: 
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polynomial kernel support vector regression; RF: random forests; EGB: extreme 

gradient boosting; OLS: ordinary least-squares linear regression; RR: ridge 

regression; LASSO: least absolute shrinkage and selection operator; EN: elastic net; 

ANN: artificial neural network) 

The NMAE and NRMSE of applying different machine learning models in the testing 545 

set are presented in Table 3. In general, the prediction accuracy for cooling EUI is better 546 

than heating EUI with smaller NMAE and NRMSE. For heating EUI prediction, the 547 

NMAE varies from 7.3% (polynomial kernel SVR) to 17.2% (both ordinary least-548 

squares linear regression and least absolute shrinkage and selection operator model), 549 

the NRMSE varies from 17.3% (polynomial kernel SVR) to 46.2% (extreme gradient 550 

boosting). For cooling EUI prediction, the NMAE varies from 4.3% (polynomial kernel 551 

SVR) to 6.4% (both linear kernel SVR and elastic net), the NRMSE varies from 6.2% 552 

(polynomial kernel SVR) to 13.4% (extreme gradient boosting). The polynomial kernel 553 

SVR has the best accuracy in the individual building level, followed by Gaussian radial 554 

basis function kernel SVR.  555 

Table 3: NMAE and NRMSE results of different machine learning models  556 

Machine learning models Heating EUI Cooling EUI 

NMAE NRMSE NMAE NRMSE 

Gaussian radial basis function kernel SVR 8.4% 19.3% 4.9% 8.8% 

Linear kernel SVR 11.2% 23.9% 6.4% 10.9% 

Polynomial kernel SVR 7.3% 17.3% 4.3% 6.2% 

Random forests 12.0% 40.1% 5.2% 8.9% 

Extreme gradient boosting 13.3% 46.2% 6.0% 13.4% 

Ordinary least-squares linear regression 17.2% 35.7% 6.2% 10.3% 

Ridge regression 15.8% 32.1% 6.3% 9.7% 

Least absolute shrinkage and selection 

operator 
17.2% 35.7% 5.9% 9.3% 

Elastic net 15.8% 32.1% 6.4% 10.1% 

Artificial neural network 13.8% 29.8% 6.1% 8.9% 



 

 

The performance of machine learning models in stock level heating and cooling energy 557 

consumption prediction is presented in Table 4. For the whole stock including both 558 

residential and non-residential building, the relative error for heating and cooling at the 559 

whole stock level are within ±4%, except for heating prediction of artificial neural 560 

network which has a relative error of -9.7%. Heating energy consumption is more likely 561 

to be underestimated, with cooling energy consumption are more likely to be 562 

overestimated. The Gaussian radial basis function kernel SVR performed the best with 563 

a whole stock level relative error of -0.2% and -0.3% respectively for heating and 564 

cooling prediction. Followed by polynomial kernel SVR, with a whole stock level 565 

relative error of 0.3% and 0.5% respectively for heating and cooling prediction. It is 566 

interesting to note that although the artificial neural network has a high relative error 567 

for heating prediction, it performs very well in cooling prediction with a relative error 568 

of only 0.2%. For the residential stock, random forests and extreme gradient boosting 569 

performed the best in heating and cooling prediction respectively, with relative error of 570 

0.6% and 0.1%. For the non-residential stock, linear kernel SVR and polynomial kernel 571 

SVR performed the best in heating and cooling prediction respectively, with relative 572 

error of 2.0% and -1.0%. Meanwhile, all machine learning models studied overestimate 573 

space cooling energy consumption for residential stock while underestimate space 574 

cooling energy consumption for non-residential stock 575 

Table 4: The relative error δStock of different machine learning models at the stock level 576 



 

 

Machine learning 

models 

Whole stock Residential stock Non-residential stock 

Heating Cooling Heating Cooling Heating Cooling 

Gaussian radial 

basis function 

kernel SVR 

-0.2% -0.3% 1.7% 0.6% -6.2% -2.4% 

Linear kernel SVR 1.0% 1.1% 0.7% 2.2% 2.0% -1.7% 

Polynomial kernel 

SVR 
0.3% 0.5% 2.9% 1.1% -7.8% -1.0% 

Random forests -0.6% -0.8% 0.6% 1.0% -4.4% -5.0% 

Extreme gradient 

boosting 
2.4% -1.0% 5.5% 0.1% -7.7% -3.8% 

Ordinary least-

squares linear 

regression 

-3.8% 1.7% -7.6% 3.2% 8.2% -2.1% 

Ridge regression -2.3% 0.5% -5.7% 1.4% 8.8% -1.6% 

Least absolute 

shrinkage and 

selection operator 

-3.8% 0.8% -7.6% 2.0% 8.2% -2.3% 

Elastic net -2.3% 0.6% -5.7% 1.8% 8.8% -2.6% 

Artificial neural 

network 
-9.7% 0.2% -9.0% 0.7% -11.7% -1.2% 

The running time of applying machine learning models in building heating and cooling 577 

EUI prediction is shows in Figure 10, varies from 0.032 seconds for elastic net to 0.769 578 

seconds for extreme gradient boosting. All ten machine learning models studied are 579 

able to predict the heating and cooling EUI of 110 buildings within 1 second, while 580 

using UMI to simulation heating and cooling EUI of one building takes at least 10 581 

seconds. The machine learning models can speed up the building heating and cooling 582 

EUI prediction for more than 1000 times, the swift speed benefits the large scale 583 

building stock energy prediction by greatly reduce the prediction time it takes. The 584 

machine learning models’ running time and UMI simulation time presented above are 585 

based on a ThinkPad personal computer with Intel Core i7-6500U Processor, 8 GB 586 



 

 

RAM, and Windows 10 64-bit operating system. The times may vary when using a 587 

different computer.  588 

 589 

Figure 10: The running time of applying machine learning models in building heating 590 

and cooling EUI prediction of 110 buildings in testing set(SVR-R: Gaussian radial basis 591 

function kernel support vector regression; SVR-L: linear kernel support vector 592 

regression; SVR-P: polynomial kernel support vector regression; RF: random forests; 593 

EGB: extreme gradient boosting; OLS: ordinary least-squares linear regression; RR: 594 

ridge regression; LASSO: least absolute shrinkage and selection operator; EN: elastic 595 

net; ANN: artificial neural network) 596 

4.5. Evaluation of building stock retrofit energy saving potential 597 

This section demonstrates the application of machine learning model in building stock 598 

retrofit energy saving potential evaluation. As Gaussian radial basis function kernel 599 

SVR performed the best at the whole stock level, it is utilized to show the energy saving 600 

potential of upgrading building envelopes for entire stock. Assuming to improve the 601 

building thermo-physical performance by ensure all buildings’ envelope meet the latest 602 

standard. The building envelope thermo-physical characteristics for older buildings, 603 

including pre-2015 non-residential buildings and pre-2010 residential buildings, after 604 
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retrofit are shown in Table 5. 605 

Table 5: Assumed building envelope thermal-physical characteristics after retrofit 606 

Building 

function 

Construction 

age 

Building envelope thermal-physical characteristics 

U-values (W/m2K) 

Infiltrations 

(ACH) 
Walls Roof Slab 

Windows        

(U value/SHGC) 

Non-residential 

building 

Pre-1990 0.5 0.69 0.7 2.50/0.34 0.15 

1990-2005 0.5 0.69 0.7 2.50/0.34 0.15 

2005-2015 0.5 0.69 0.7 2.50/0.34 0.15 

Residential 

building 

Pre-2001 0.83 0.8 1.31 2.67/0.34 1 

2001-2010 0.83 0.8 1.31 2.67/0.34 1 

The gross space heating and cooling energy consumption figures for all the buildings 607 

in the testing set before and after retrofit are shown in Figure 11. By improving the 608 

building envelope, energy consumption reduction is achieved in both space cooling and 609 

space heating, with the latter showing a more substantially decrease. The building 610 

retrofit performance evaluation using Gaussian radial basis function kernel SVR is 611 

straightforward, use the updated U-values and infiltration rates together with other 612 

predictor variables which stay unchanged, a swift estimation of the building space 613 

heating and cooling demand after retrofit can be achieved. Compared to re-run UMI 614 

simulation with updated building envelope thermal-physical characteristics, the 615 

machine learning model is faster and less computation intensive.  616 



 

 

 617 

Figure 11: The gross space heating and cooling energy consumption before and after 618 

retrofit  619 

5. Discussions and limitations 620 

Starting from training and validation set generated by UMI small scale building stock 621 

dynamic simulation, machine learning models are developed via pre-processing and 622 

training. The performances of the machine learning models are tested using the UMI 623 

generated test set, the comparison shows that machine learning models can replace UMI 624 

to predict the heating and cooling energy consumption of single-function buildings in 625 

Chongqing with accuracy. Moreover, their swift running time enables potential large-626 

scale building stock energy consumption prediction. The hybrid approach proposed in 627 

this study provide a way to give an insight view of the space heating and cooling energy 628 

consumption of residential and non-residential building at a large scale building stock. 629 

Which helps the understanding of the current energy used in adjust the building indoor 630 
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thermal conditions. This provides a solid start point for energy conservation related 631 

policy making when the real space heating and cooling energy consumption data is not 632 

available due to reasons like lack of monitoring. As detailed building characteristics are 633 

used as the predictor variables of the machine learning model, the energy-saving 634 

potential of various building retrofit options can be evaluated by the machine learning 635 

model. The identification of the best performed retrofit option can support policy 636 

making about large scale building stock energy conservation. Moreover, machine 637 

learning modelling is easy to use even for people without great knowledge about 638 

building thermal physics, so will also be a handy tool for the general public to evaluate 639 

the retrofit energy-saving potential of various retrofit options.  640 

Although the hybrid approach proposed in this study can predict the building space 641 

heating and cooling energy consumption, the lack of public available building energy 642 

consumption datasets in Chongqing hinders the validation and calibration of the model 643 

to real building energy consumption. The collection of real building energy 644 

consumption data remains as a very important task to understand and bridge the 645 

performance gap between predicted energy use and actual energy use [105]. Moreover, 646 

collecting other building characteristics information, including construction type, 647 

construction material, HVAC system, retrofit history record, etc., is also very important 648 

in give a true building profile and support building energy consumption calibration. 649 

This study also bears the limitation of considering only the single-function buildings, 650 

future works should be carried on to collect detail floor area function information and 651 



 

 

develop data-driven building energy consumption approach for mixed-use buildings. 652 

6. Conclusions 653 

This study investigated the process of utilizing a hybrid approach to predict building 654 

space heating and cooling energy consumption for both residential and non-residential 655 

buildings to support large scale building stock energy modelling. Considering the 656 

commonly building energy data lacking, the hybrid approach has been used to combine 657 

the advantages of both physical modelling and data-driven approaches.  658 

Based on the building energy consumption data generated by UMI physical modelling, 659 

ten different data-driven machine learning models, including Gaussian radial basis 660 

function kernel SVR, linear kernel SVR, polynomial kernel SVR, random forests, 661 

extreme gradient boosting, ordinary least-squares linear regression, ridge regression, 662 

least absolute shrinkage, and selection operator, elastic net and artificial neural network, 663 

have been trained to predict heating and cooling energy use intensity for both residential 664 

buildings and non-residential buildings (containing educational buildings, hospitals, 665 

hotels, malls, and offices). Building characteristics are utilized as predictor variables of 666 

those machine learning models, including geometry characteristics, envelope thermal-667 

physical characteristics, HVAC system characteristics and internal gains characteristics. 668 

With known predictor variables, the machine leaning models are able to predict 669 

building heating and cooling energy use intensity at individual building level. A case 670 

study in Chongqing city (China) has been used to demonstrate the proposed process 671 



 

 

and test the prediction accuracy of machine learning models. The main findings are 672 

summarized as follows: 673 

 Machine learning models can handle both residential and non-residential 674 

building energy consumption prediction using a single model, so there is no 675 

need to generate multiple models according to different building functions.  676 

 Machine learning models can accurately predict building heating and cooling 677 

EUI, with polynomial kernel support vector regression, predicted 85.5% of 678 

building heating EUI within ±10% of relative error and Gaussian radial basis 679 

function kernel support vector regression predicted 91.8% of building cooling 680 

EUI within ±10% of relative error. 681 

 The polynomial kernel SVR has the best accuracy in the individual building 682 

level, with NMAE and NRMSE for heating EUI as 7.3% and 17.3% 683 

respectively; NMAE and NRMSE for cooling EUI as 4.3% and 6.2% 684 

respectively.  685 

 The Gaussian radial basis function kernel SVR performed the best in the whole 686 

stock level, with a relative error of only -0.2% and -0.3% respectively for 687 

heating and cooling prediction. 688 

 Use machine learning models for building heating and cooling energy 689 

consumption prediction is more than 1000 times faster than UMI physical 690 

modelling, their swift speed proved their potential in large-scale building stock 691 



 

 

energy modelling. 692 

By integrating physical modelling with data-driven machine learning techniques, the 693 

hybrid approach for modelling heating and cooling energy consumption of building 694 

stock is no longer rely on the availability of building energy consumption data. 695 

Moreover, it can speed up the process of building stock modelling by decrease the 696 

number of buildings to be physically simulated and dramatically cutting down the 697 

processing time. The generated machine learning model can be applied to quickly 698 

predict building space heating and cooling energy consumption at the stock level, as 699 

well as evaluate energy saving potential of different building stock retrofit options. This 700 

is of great help for building energy conservation related decision makings, it not only 701 

provide an insight view of the current space heating and cooling energy consumption 702 

when the monitored data is not available, but also able to compare various retrofit 703 

measures and select the best one to be implicated in the whole stock. Although the 704 

hybrid approach is only demonstrated in Chongqing in this paper, it can be easily 705 

replicated in other cities and countries.  706 
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