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Brain activity is composed of oscillatory and broadband arrhythmic components;

however, there is more focus on oscillatory sensorimotor rhythms to study movement,

but temporal dynamics of broadband arrhythmic electroencephalography (EEG) remain

unexplored. We have previously demonstrated that broadband arrhythmic EEG contains

both short- and long-range temporal correlations that change significantly during

movement. In this study, we build upon our previous work to gain a deeper understanding

of these changes in the long-range temporal correlation (LRTC) in broadband EEG and

contrast them with the well-known LRTC in alpha oscillation amplitude typically found in

the literature. We investigate and validate changes in LRTCs during five different types of

movements and motor imagery tasks using two independent EEG datasets recorded

with two different paradigms—our finger tapping dataset with single self-initiated

asynchronous finger taps and publicly available EEG dataset containing cued continuous

movement and motor imagery of fists and feet. We quantified instantaneous changes

in broadband LRTCs by detrended fluctuation analysis on single trial 2 s EEG sliding

windows. The broadband LRTC increased significantly (p < 0.05) during all motor tasks

as compared to the resting state. In contrast, the alpha oscillation LRTC, which had

to be computed on longer stitched EEG segments, decreased significantly (p < 0.05)

consistently with the literature. This suggests the complementarity of underlying fast

and slow neuronal scale-free dynamics during movement and motor imagery. The single

trial broadband LRTC gave high average binary classification accuracy in the range of

70.54± 10.03% to 76.07± 6.40% for all motor execution and imagery tasks and hence

can be used in brain–computer interface (BCI). Thus, we demonstrate generalizability,

robustness, and reproducibility of novel motor neural correlate, the single trial broadband

LRTC, during different motor execution and imagery tasks in single asynchronous and

cued continuous motor-BCI paradigms and its contrasting behavior with LRTC in alpha

oscillation amplitude.

Keywords: movement execution, motor imagery, electroencephalography (EEG), long-range temporal correlation

(LRTC), broadband EEG, brain-computer interface (BCI), movement classification
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1. INTRODUCTION

The brain activity is composed of various complex processes
that undergo changes during different tasks and brain functions.
Spontaneous electroencephalography (EEG) contains rhythmic
oscillatory components such as delta, theta, alpha, and beta
oscillations in narrow frequency bands, and arrhythmic scale-
free broadband component without a characteristic timescale
or frequency that leads to a typical 1/f EEG spectrum (He,
2014). Additionally, EEG also contains event-related potentials
that are one-off non-oscillatory and non-rhythmic responses to
sensory, cognitive, ormotor events. During voluntarymovement,
distinct changes occur in all the above three components of EEG.
In the rhythmic sensorimotor oscillatory component of EEG,
we observe the well-known event-related (de)synchronization
(ERD/S), which quantifies increase or decrease, respectively, in
band power of narrowband sensorimotor oscillations during a
motor task with reference to its baseline (Pfurtscheller and Lopes
Da Silva, 1999; Yuan and He, 2014; He et al., 2015). In the
event-related potential component of EEG in response to amotor
task, we observe non-oscillatory non-rhythmic movement-
related cortical potentials (MRCP), which are characterized by
an increase in slow negative potentials (Shibasaki and Hallett,
2006; Bai et al., 2011). Changes in the arrhythmic broadband
component of EEG during motor task, however, are not
investigated in the literature.

Rhythmic narrowband oscillatory processes and arrhythmic

broadband processes co-exist in EEG, where rhythmic
oscillations appear as distinct peaks (e.g., alpha peak around

10 Hz) on the arrhythmic broadband 1/f EEG spectrum
(illustrated in Wairagkar et al., 2019). However, there is more
focus on studying rhythmic oscillatory components of EEG.

The broadband arrhythmic process was previously considered
as background noise in brain activity. However, recent reports
suggest that the broadband activity has physiological and
functional relevance (He, 2014), its dynamics change with task
demand and cognitive state, and it has also been associated
with the excitation/inhibition balance of the neuronal
populations (Chaudhary et al., 2017; Haller et al., 2018).
This has rekindled the interest to investigate the broadband
EEG during motor tasks. Widely used complementary neural

correlates of ERD/S and MRCP do not describe the dynamical
changes in the temporal dependencies in the broadband
arrhythmic EEG. Hence, we propose that changes in the
broadband scale-free arrhythmic component in EEG can reveal
yet another complementary neural correlate of voluntary
movement (Wairagkar et al., 2019).

We previously studied the temporal dynamics of broadband
EEG and found that its autocorrelation decayed slower
during movement intention and execution than in the resting
state (Wairagkar et al., 2018). We modeled these broadband
autocorrelation dynamics on single trial EEG using the
autoregressive fractionally integrated moving average (ARFIMA)
model, which led to the discovery that broadband EEG contains
coexisting short-range and long-range temporal correlations.
These short-range and long-range temporal correlations changed
significantly during voluntary movement and can be used

together as novel neural correlates of movement (Wairagkar
et al., 2019). Several studies have approximated short-range
correlations using autoregressive models to estimate movement
correlates from EEG (Schlögl et al., 2005; D’Croz-Baron et al.,
2012; Wang et al., 2018). However, there is limited literature
on long-range temporal correlations (LRTC) in broadband
EEG (Hou et al., 2017; Lombardi et al., 2020), and there are
no other studies investigating long-range temporal dynamics of
single trial broadband EEG during motor tasks. Hence, in this
study, building upon our previous work, we delve deeper to
investigate changes in broadband LRTC during movement and
compare it with the well-known alpha oscillation LRTC.

Neural activity has been reported to produce long-range
interactions leading to power-law scaling, suggesting that these
neuronal processes are similar across different scales (Kello
et al., 2010; Berthouze and Farmer, 2012; Heiney et al.,
2021). The power-law scaling is observed in several cases
of neuronal recordings such as neuronal firings (Hu et al.,
2013), neuronal avalanches (Benayoun et al., 2010; Palva et al.,
2013), intracranial recordings such as local field potentials
(Benayoun et al., 2010), and electrocorticography (Chaudhary
et al., 2017), and non-invasive scalp recordings of EEG and
magnetoencephalography (Nikulin and Brismar, 2005; Benayoun
et al., 2010; Kwok et al., 2019; Jannesari et al., 2020) in both
oscillatory and non-oscillatory processes. In the surface-level
brain activity such as EEG and magnetoencephalography, the
power-law scaling is observed in the form of the 1/f power
spectrum of non-oscillatory or arrhythmic scale-free neuronal
activity. Spontaneous oscillatory neuronal processes also show
LRTC in their amplitude envelope fluctuations (Linkenkaer-
Hansen et al., 2001; Nikulin and Brismar, 2005; Berthouze
et al., 2010; Hardstone et al., 2012). LRTCs are the result
of power-law decay of the autocorrelation of neural activity.
The LRTCs have been observed in the alpha, beta, theta
oscillation amplitude envelopes (Berthouze et al., 2010), alpha
oscillation phase (Botcharova et al., 2014), broadband phase
synchrony (Kitzbichler et al., 2009), avalanches (Benayoun et al.,
2010; Palva et al., 2013), and energy profile (Parish et al., 2004;
Benayoun et al., 2010). It is commonly postulated in the literature
that the power-law behavior and LRTCs occur because the brain
operates at criticality (Poil et al., 2012; Massobrio et al., 2015),
thus optimizing information storage capacity (Kitzbichler et al.,
2009) and enabling quick adaptation to the cognitive processing
demands (Ezaki et al., 2020; Ouyang et al., 2020; Zimmern, 2020).
In the absence of long-range temporal correlations, correlations
on shorter timescales lead to reduction in the ability to integrate
information (for example, during certain stages of sleep; Meisel
et al., 2017).

In EEG, LRTCs have been traditionally identified in the
amplitude envelope fluctuations of narrow frequency bands
corresponding to different brain oscillations (Linkenkaer-Hansen
et al., 2001; Nikulin and Brismar, 2005). LRTCs have also
been observed in the sensorimotor oscillations (Linkenkaer-
Hansen et al., 2004; Botcharova et al., 2015). LRTCs in the
alpha amplitude envelope fluctuations decrease due to the
disruption caused in the long-memory process by an external
stimulus (Linkenkaer-Hansen et al., 2004; Botcharova et al.,
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2014; Zhigalov et al., 2016). Neurological conditions also affect
LRTCs (Parish et al., 2004; Ros et al., 2014, 2016). The LRTCs
can be modulated using neurofeedback where these correlations
increase because of the closed-loop stimulus (Ros et al., 2014,
2016; Zhigalov et al., 2016). The scale-free dynamics are also
identified in behavioral data (Palva et al., 2013). LRTCs in
neuronal activity and movement patterns are correlated (Hu
et al., 2004, 2013), and neural scale-free dynamics can predict
the performance of motor tasks (Samek et al., 2016). There are
very few studies in the literature that consider broadband LRTC
such as the ones by Hou et al. (2017) that found attenuation
in broadband LRTC during depression and by Lombardi
et al. (2020) that characterized LRTC in the resting-state
broadband EEG using neuronal avalanches. However, there
have been no previous external studies investigating LRTCs in
broadband arrhythmic EEG during different motor tasks and
their relationship with alpha oscillatory LRTC, which is the focus
of this study.

LRTCs are typically characterized in the amplitude envelope
fluctuations of oscillations in brain activity. These oscillations
are typically extracted using Fourier-based spectral methods.
Cole and Voytek (2018) showed that the brain rhythms
are non-stationary and not strictly restricted to pre-selected
narrow sinusoidal frequency bands; therefore, restricting to a
narrowband analysis can disregard important features present in
the entire power spectrum. Hence, the LRTCs computed from
narrow frequency band amplitude envelope fluctuations may not
give complete information present in these brain rhythms, and
there is a need for assessing LRTCs in the broadband arrhythmic
brain activity as well.

The LRTC in EEG can be characterized by its scaling
exponent computed from the spectral domain by estimating
the slope of 1/f power spectrum on a log-log scale and
computed from the temporal domain by fitting the power-
law directly to the autocorrelation, both of which are often
difficult to achieve in practice (Rangarajan and Ding, 2000;
Delignieres et al., 2006). Hence, LRTCs are most preferably
characterized in the temporal domain using Hurst exponent,
which shows a consistent relationship with scaling exponents
from autocorrelation and 1/f spectrum for a stationary time
series (Rangarajan and Ding, 2000). A Hurst exponent between
0.5 and 1 indicates the presence of LRTC (Hardstone et al., 2012).
The detrended fluctuation analysis (DFA) (Peng et al., 1995)
is the most common method for estimating Hurst exponent
in a non-stationary signal, which is computed from the slope
of fluctuations in the signal at different timescales. The power
spectrum analysis is not suitable for reliably identifying LRTC in a
non-stationary time series (Linkenkaer-Hansen et al., 2001). The
DFA is used for estimating Hurst exponent from EEG because it
facilitates the detection of LRTC embedded in a non-stationary
time series by avoiding artifactual dependencies caused by non-
stationarity and trends (Peng et al., 1995; Kantelhardt et al.,
2001; Linkenkaer-Hansen et al., 2001; Delignieres et al., 2006;
Hardstone et al., 2012).

LRTC is considered an invariant property of brain dynamics
spanning several time scales (Delignieres et al., 2006) and hence
is not computed as a function of time. LRTC is traditionally

estimated on an amplitude envelope of narrowband EEG
oscillations, which requires long EEG segments (Linkenkaer-
Hansen et al., 2001). With this approach, we cannot observe
the ongoing instantaneous changes in LRTC. Detecting short
movement from LRTC requires evaluating the changes in the
dynamics of the LRTC continuously as a function of time.
Berthouze and Farmer (2012) have previously captured the
changes in LRTCs using a Kalman filter, but the timescales over
which LRTCs were observed were still several seconds long.
Here, we investigate the instantaneous changes occurring in the
LRTCs using shorter timescales to study the fast brain dynamics
during different motor tasks such that it can be applied in brain–
computer interface (BCI). Continuous characterization of LRTC
on short broadband EEG windows using BCI-style processing
pipeline can enable detecting movement on a single-trial basis
without the need of choosing participant-specific parameters.
Our previous work (Wairagkar et al., 2019) has established
the presence of LRTC during finger tap voluntary movement.
Consistently, we obtained high classification accuracies to detect
finger tap intention using broadband LRTC-related indices. In
this study, we expand this investigation to explore the changes
in the broadband LRTC in different types of movement and
motor imagery with paradigms that are commonly used in
BCI. To our knowledge, LRTCs in the broadband have not
been observed before during motor imagery. Our analysis
will help in understanding the functional role the broadband
arrhythmic brain activity plays in motor command generation
and motor imagery.

The aims of this paper are (1) to build upon our previous
work to investigate further the dynamics of LRTC in single trial
broadband EEG during five different types of motor tasks with
different experimental paradigms including single asynchronous
finger tap, and continuous fist and feet movement and motor
imagery from two independent EEG datasets, validate broadband
LRTC rigorously and demonstrate its generalizability, robustness,
and reproducibility; (2) to compare and contrast the broadband
LRTC with LRTC in the alpha oscillation amplitude envelope
commonly observed in the literature during corresponding
motor tasks to identify contrast in the dynamics of coexisting
oscillatory and arrhythmic scale-free processes; (3) to classify
movement intention, execution, and motor imagery from resting
state by using broadband LRTC independently on a single-trial
basis as a novel feature for applications in BCI.

2. METHODS

2.1. EEG Datasets and Participants
The first dataset is our voluntary single finger tap EEG
dataset (available from Wairagkar, 2017) that we recorded from
14 healthy participants (8 female, age 26 ± 4 years, 12 right-
handed). Ethical approval for the EEG experiment was obtained
from the ethics committee of the University of Reading, UK.
Informed written consent was obtained from all participants.

The second dataset is a publicly available EEG Motor
Movement/Imagery Dataset (EEGMMI) (Schalk et al., 2004)
from PhysioNet (Goldberger et al., 2000). This dataset is used
to validate our novel broadband LRTC neural correlate and to
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widen its scope by extrapolating its utility for broader use in
different types of motor tasks. EEGMMI dataset comprises EEG
recorded from 109 participants for four different types of motor
tasks: (1) right and left fist continuous opening and closing,
(2) motor imagery of right and left fist continuous opening
and closing, (3) both feet continuous movement and both fists
continuous opening and closing, and (4) motor imagery of both
feet continuous movement and both fists continuous opening
and closing.

Our EEG dataset has self-initiated asynchronous single finger
tap in contrast to the EEGMMI dataset, which has cued
continuous fist and feet movement and imagery. Thus, these
datasets cover complementary paradigms and motor tasks to
assess the robustness and reproducibility of our broadband LRTC
neural correlate for broader applications.

2.2. Experimental Paradigm and
Pre-processing
Our finger tap EEG dataset was recorded for a self-initiated single
asynchronous index finger tapping task. A text instruction was
shown on the screen placed 1 m from the participant to perform
a right finger tap, left finger tap, or resting state (no tap) within
a following 10 s window asynchronously at any random time
(see Figure 1A). Participants were specifically asked not to react
immediately to the instruction to avoid cue effect. The timing of
the initiation of the movement was entirely participant’s decision.
Forty trials per condition were recorded with the sampling
frequency of 1,024 Hz and were downsampled to 128 Hz. The
exact onset of finger tap was recorded using a microcontroller
device and was co-registered with the EEG. Further details of the
finger tap dataset are given in Wairagkar (2017).

The EEGMMI dataset recorded four cued motor tasks
described in the previous section, including continuous fist and
feet movement execution and motor imagery. Each trial started
with a resting state of 4 s followed by a cue to perform continuous

movement/imagery for 4 s (left/right arrows for respective fists,
up arrow for both fists together, and down arrow for both feet
together) as shown in Figure 1B. A 1 min baseline EEG with
eyes open is included in the dataset, which we segmented and
used as neutral state trials for further processing. There were
around 22 trials for each of the four motor tasks per participant
recorded with the sampling frequency of 160 Hz, which were
downsampled to 128 Hz.

The same artifacts removal and pre-processing pipeline
was used for both datasets. Artifacts were removed with
independent component analysis (Jung et al., 2000) using
EEGLAB toolbox (Makeig et al., 1997; Delorme and Makeig,
2004) before trial segmentation. EEG was bandpass filtered
between 0.5 and 45 Hz using a fourth-order zero-phase non-
causal Butterworth filter to avoid phase distortions. We extracted
6 s EEG trials (−3 to +3 s of movement onset) from our finger
tap dataset and 7 s EEG trials (−3 to +4 s of motor cue) from
the EEGMMI dataset from the channels C3, Cz, and C4 over
motor cortex according to the 10–20 international system. These
channels were selected for the study because of their locations
on sensorimotor area responsible for hand and feet movement
and imagery (Resniak et al., 2020). These trials were divided into
2 s sliding Hanning windows shifted by 100 ms. Each feature at
time t was causally obtained on a window from t − 2 s to t s. All
the analysis was done offline in MATLAB (The MathWorks, Inc.,
Natick, MA, USA).

2.3. Detrended Fluctuation Analysis to
Identify LRTC in EEG
We hypothesized that the LRTCs in the broadband EEG change
during movement intention and execution. We quantified
the broadband LRTC using Hurst exponent computed using
DFA (Peng et al., 1995). The DFA analysis calculates root mean
square (RMS) fluctuations of integrated and detrended time
series at different timescales as follows:

FIGURE 1 | Structure of a single electroencephalography (EEG) trial in our finger tapping dataset and EEG Motor Movement/Imagery Dataset (EEGMMI) dataset. (A)

Trial structure for single self-initiated asynchronous finger tap. Participants were given a window of 10 s to perform a single tap any time, or if it was a resting state

task, they were asked to remain still with eyes open without thinking of movement. (B) Trial structure for four cued EEGMMI tasks, including continuous movement or

motor imagery for 4 s of single or both fists and both feet.
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1. The time series x of length N is integrated according to
Equation (1) where k = 1, ...,N and y is the integrated time
series.

y(k) =

k
∑

i=1

x(i)− x̄ (1)

2. The integrated time series y is then divided into N/n non-
overlapping boxes of length n, where n is individual timescales
at which we want to compute fluctuations. The box sizes have
an impact on the DFA scaling exponent and are usually chosen
between n = [10,N/4] (Delignieres et al., 2006; Botcharova
et al., 2013) to get good estimate of RMS fluctuations at
each scale with [N/10, 4] number of boxes. We used 25 box
sizes between n = [10,N/4] equidistant on log2 scale as our
number of samples was a power of 2.

3. At each scale n, for every non-overlapping segment of y of
length n, trend is obtained by least square linear fit. The yn is
concatenation of trends at a scale n for all the N/n boxes and
the RMS fluctuations are computed according to Equation (2).

F(n) =

√

√

√

√

1

N

N
∑

i=1

(y(i)− yn(i))2 (2)

4. A log–log plot of fluctuations at each timescale n (log2F(n) vs.
log2n) was plotted and DFA scaling exponent was obtained by
calculating the slope of the linear fit to this plot.

Since N is not divisible by n for each box size, fluctuations
were obtained from performing the above analysis from forward
and backward direction (Kantelhardt et al., 2001) of each EEG
window and then averaging them at each timescale. When
the log–log DFA plot is linear, the DFA scaling exponent
or Hurst exponent indicates power-law in fluctuations at
different timescales.

2.3.1. LRTC Using DFA in Broadband EEG and Alpha

Oscillation Amplitude Fluctuations During Different

Motor Tasks
We studied the changes in LRTC in the broadband EEG,
and compared and contrasted them with the LRTC in the
alpha oscillation amplitude envelope during movement, which
is typically assessed in the literature (Linkenkaer-Hansen et al.,
2004). We investigated changes in the broadband LRTC and
alpha envelope LRTC during different types of motor execution
and imagery from the finger tap and EEGMMI datasets using
the same analysis pipeline as described in the next sections.
For clarity, throughout the paper, we use HBB to indicate DFA
scaling exponent or Hurst exponent in the broadband andHalpha

to indicate Hurst exponent in the amplitude envelope of the
alpha oscillations.

2.4. Broadband LRTC in Single Trials
During Different Motor Tasks
We performed DFA on each 2 s sliding broadband (0.5–45
Hz) EEG window shifted by 100 ms to obtain continuous
changes in the LRTC (Hurst exponent HBB) throughout the

trial during different motor tasks. The Hanning window was
applied to each 2 s window to avoid edge effects. Note that 256
samples were available for performing DFA on a 2 s window.
Delignieres et al. (2006) have shown that the DFA method
can accurately estimate Hurst exponent in short time series.
Our range of timescales ([10,N/4] samples, i.e., [78 ms 0.5
s]) is within the range suggested by Li et al. (2018) [max(k +

2, Fs/Fmax),min(N/4, Fs/Fmin)] where k = 1 (linear detrending
in DFA) for filtered data between Fmin(0.5 Hz) and Fmax (45
Hz). We used an exponential smoothing filter to smooth theHBB

in consecutive windows in single trials to avoid noisy estimates
of HBB. We rigorously validated the scaling exponents HBB

and the presence of LRTC in broadband using the procedure
described below.

2.4.1. Validation of Broadband LRTC
We validated our results to confirm that the obtained broadband
LRTCs were not artifactual. The autocorrelation of a time series
decays exponentially if it has short-range dependence and slower
than exponential if it has long-range dependence (Botcharova,
2014). A specific case of long-range dependence is LRTC, where
the autocorrelation decays according to the power-law that is
identified using the Hurst exponent. Hence, to identify LRTC,
we must validate the Hurst exponent obtained using DFA. We
systematically validated the LRTC in three stages as follows.

2.4.1.1. Identification of Significant Correlations in

Broadband EEG Using Surrogate Test
We first identified whether significant temporal correlations
are present in the broadband 2 s EEG windows, and their
DFA exponents HBB are significantly different from the DFA
exponents of white noise obtained by randomly shuffling samples
from the same EEGwindows using the surrogate test as suggested
in Delignieres et al. (2006) and Hausdorff et al. (1995).

2.4.1.2. Determination of Long-Range vs. Short-Range

Dependence in the Broadband EEG
After establishing significant correlations in broadband EEG,
we identified whether these correlations are short-range or
long-range dependence by comparing the fit of corresponding
ARMA(p, q) and ARFIMA(p, d, q) models to each 2 s EEG
windows (Wairagkar et al., 2019) using Akaike’s information
criterion (AIC) (Wagenmakers et al., 2004; Delignieres et al.,
2006; Clauset et al., 2009). We first estimated the orders p and q
of ARFIMA and ARMA independently by comparing models of
orders p=1...10 and q = 0 [this range was selected by observing the
autocorrelation function and partial autocorrelation function of
the EEG (Wairagkar et al., 2019) using AIC]. The ARMA model
was estimated using the functions provided by the Econometrics
toolbox in MATLAB (https://www.mathworks.com/help/econ/).
For estimating ARFIMA, we first fractionally differentiated our
EEG window with d = HBB − 0.5 and then fitted ARMA(p, q) to
it. Then, for each 2 s EEGwindow of each trial of each participant,
AIC was computed to compare ARMA and ARFIMA models of
estimated orders. Percentage of total 2 s EEG that showed better
fit to ARFIMA model (indicating long-range dependence) than
ARMA (indicating short-range dependence) was computed.
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2.4.1.3. Identification of LRTC by Validation of Broadband

DFA Scaling ExponentHBB Using Maximum Likelihood DFA
After establishing the long-range dependence, we then narrowed
down the type of long-range dependence. If the fluctuations
in log–log DFA plot at different timescales follow a linear
relationship, then this regularity can be captured by the least
squared fit, and the slope of this linear fit represents a well-
defined power-law scaling exponent (Botcharova et al., 2013,
2015). We used the maximum likelihood DFA (ML-DFA;
Botcharova et al., 2013, 2015) method to show that the linear fit
is the best fitting model to the log–log DFA fluctuation plot.

The DFA scaling exponents are valid if the linear model
fitted best to the log–log DFA fluctuation plot (Botcharova et al.,
2014). First, we assessed the quality of the linear fit using R2

measure (Linkenkaer-Hansen et al., 2001). Identifying the power-
law is inherently difficult (Clauset et al., 2009). Frequently used
R2 measure is insensitive (Botcharova et al., 2013) because it
may yield high values even for a non-linear relationship in
the data (Clauset et al., 2009); therefore, it is not sufficient to
assess the quality of the linear fit. Hence, we used the ML-
DFA (Botcharova et al., 2013, 2015) to compare the fits of
different models.

We fitted polynomials of order 1–5, an exponential function,
a logarithmic function, and a root function as suggested
in Botcharova et al. (2013) to the log–log DFA fluctuations and
compared them using AIC and Bayesian information criterion
(BIC). If the resulting best-fitting model is linear, then we
interpret it as an indicator of potential power-law and LRTC.

2.5. LRTC in Alpha Envelope and
Broadband Stitched EEG During Different
Motor Tasks
Traditionally, LRTCs are found in alpha amplitude
fluctuations (Linkenkaer-Hansen et al., 2001, 2004; Nikulin
and Brismar, 2005; Zhigalov et al., 2016). Since the alpha
amplitude has a low frequency, LRTC cannot be computed
reliably in short timescales within 2 s windows and require
longer timescales. We bandpass filtered each EEG trial between 8
and 13 Hz and segmented it in 2 s sliding windows, then obtained
their amplitude envelope by computing the analytic signal using
Hilbert transform. We then stitched the corresponding EEG
envelope windows from all the trials for each participant to
obtain longer EEG segments. For our finger tap dataset with 40
trials per participant, the individual stitched EEG segment was
80 s, and for the EEGMMI dataset with 22 trials per participant,
the individual stitched EEG segment was 44 s. Stitching of
the data with the same properties does not affect DFA scaling
exponent (Hu et al., 2001; Chen et al., 2002; Botcharova et al.,
2015). We assume that the corresponding EEG windows from all
time-locked trials at each time point during the motor task have
same properties, thus ensuring that the stitching will not affect
the DFA exponent. We selected the timescales between [2, 20 s]
corresponding to approximately box sizes of [28, 211] samples
for the finger tap dataset and between [2, 8 s] corresponding to
box sizes of [28, 210] for EEGMMI dataset for performing DFA.
Then we applied the DFA analysis to obtain scaling exponents

Halpha and validated them using ML-DFA. We also computed
DFA exponents on the broadband EEG to verify our single-trial
broadband LRTC results.

2.6. Classification of Single-Trial
Broadband LRTC to Detect Movement and
Motor Imagery
We used DFA exponents HBB from channels C3, Cz, and C4 as
three features of single trial broadband LRTC to continuously
classify motor task vs. resting state throughout the course of EEG
trial using single windows for binary classification of single finger
tap and continuous fist movement, feet movement, fist motor
imagery, and feet motor imagery from the two datasets.

For our single finger tap dataset, the HBB feature vectors of
each participant were classified into right tap vs. resting state
and left tap vs. resting state independently using binary linear
discriminant analysis (LDA) classifier. A separate LDA classifier
was trained for each sliding windowwith the feature vectors from
corresponding windows in all the movement trials and the same
number of feature vectors randomly chosen from the resting state
trials of that participant. Each LDA had 40 data samples with
three features for each class. A 10 × 10 fold cross-validation was
used to obtain the classification accuracies and F1 scores at the
time points given by the 2 s sliding windows. The 95% confidence
level for binary classification (tap or rest) was obtained
from the binomial distribution with n = number of EEG
trials and p = 0.05.

For the EEGMMI dataset, to perform binary classification
of each movement/imagery task vs. resting state, we again
used the LDA classifier with the single trial HBB from C3,
Cz, and C4 as features. Since there were not enough trials
of each condition per participant (22 trials) to train the
classifier for each participant individually as above, we used
the leave-one-participant-out cross-validation to train the LDA
classifier. Leave-one-participant-out scheme gives participant-
independent classifier performance on unseen data and is
commonly used by several EEG and BCI studies such as Kwon
and Im (2021) and Wu et al. (2018). Thus, for each of the
participants, a separate LDA classifier was trained for each sliding
window as above with the feature vectors from corresponding
windows from all the trials from the remaining 108 participants.
The classification accuracies and F1 scores were computed along
with a 95% confidence level using the binomial distribution.

2.6.1. Statistical Analysis
We used parametric t-test and non-parametric Mann–
Whitney U-test for identifying the statistical significance
of normally distributed data and data without normal
distribution, respectively, throughout this paper. We
determined the normality of the data using the one-sample
Kolmogorov–Smirnov test.

3. RESULTS

We have identified the temporal dynamics of long-range
dependencies in broadband EEG during different types of
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movements and motor imagery with different paradigms and
compared them with the corresponding temporal dynamics
of alpha oscillation amplitude envelope fluctuations in the
following sections.

3.1. Changes in the Broadband LRTC in
Single Trials During Different Motor Tasks
The time evolution of the grand average HBB obtained on a
single trial basis in C3, Cz, and C4 are shown in Figure 2 for
14 participants’ right and left self-initiated asynchronous single
finger tap (Figure 2A, for individual participants LRTC, see
Supplementary Figure 1) and 109 participants’ cued continuous
tasks of right and left fist open-close movement (Figure 2B), both
feet and fist open-close movement (Figure 2C), motor imagery of
right and left fist open-close (Figure 2D), and motor imagery of
both feet and fist open-close (Figure 2E). A clear increase in HBB

is seen during all motor tasks.
For the finger tap dataset, theHBB increased duringmovement

intention and execution of right and left index finger single tap
and restored to its baseline level afterwards. For the EEGMMI
dataset, the HBB also increased during movement and imagery
shortly after the cue and then restored to its baseline levels
before the continuous motor task was over (the continuous
motor task in this dataset lasted from 0 to 4 s). There was no
such increase in the HBB during the resting state in both the
datasets. The HBB during the motor task and resting state was
between 0.5 and 1, indicating the presence of power-law decay
and LRTC in the autocorrelation of broadband EEG (Berthouze
and Farmer, 2012). The long-range temporal correlations in
the EEG became stronger during voluntary movement and
motor imagery.

The solid vertical line at 0 smarks the onset of the self-initiated
asynchronous single finger-tap in Figure 2A, and it marks the
start of cue for the continuous motor task that lasts for the
next 4 s in the EEGMMI dataset in Figures 2B–E. The two
vertical dotted gray lines show the period between which HBB

for motor tasks colored traces is significantly different from the
resting state (black) (p < 0.05, Mann–Whitney U-test, n = total
number of trials in all participants of each dataset). The peaks
of HBB in the individual trials were not time-locked or aligned.
Since the EEGMMI dataset had more participants, the standard
deviation of HBB is also larger, as indicated by the shaded area.
There is no visible difference in the grand average LRTCs of
different tasks in the EEGMMI database. Being able to compute
the DFA exponent on a single-trial basis that shows significant
changes during a range of motor execution and imagery tasks
with different paradigms can allow its use as a feature for motor-
based BCIs. In the case of self-initiated voluntary movements,
LRTCs can also predict movement before its onset, as seen from
finger tap LRTCs in Figure 2A.

Before validating broadband LRTC, we validated raw EEG by
computing spectrograms (see Supplementary Figure 2). A clear
attenuation of alpha band power around 10 Hz was observed,
which indicates the presence of ERD. Thus, the presence of ERD,
a commonly used correlated of movement validates EEG data by
confirming that it contains motor-related information. Details of

the relationship between ERD and broadband LRTC are given
in Wairagkar et al. (2019).

3.1.1. Validation of Broadband LRTC

3.1.1.1. Identification of Significant Correlations in

Broadband EEG Using Surrogate Test
The surrogate test confirmed that HBB in 2 s EEG windows
were significantly different from the DFA exponents of randomly
shuffled samples from the same EEG windows (p = 0, Mann–
Whitney U-test, n = individual windows in all the participants).
The scaling exponents of the shuffled data were close to 0.5, as
shown in Supplementary Figure 3, confirming the presence of
white noise with no correlations. Thus, there were significant
correlations present in the broadband 2 s EEG.

3.1.1.2. Determination of Long-Range vs. Short-Range

Dependence in the Broadband EEG
The comparison of ARMA for short-range dependence and
ARFIMA for long-range dependence using AIC resulted in the
selection of the ARFIMAmodel by AIC for about 80% of the total
2 s EEG windows compared. Hence, the ARFIMA model was a
better fit for the short broadband EEG windows confirming that
the long-range dependence was indeed present.

3.1.1.3. Identification of LRTC by Validation of Broadband

DFA Scaling ExponentHBB Using Maximum Likelihood DFA
The average R2 measure for all the EEG windows of all the
participants in all the channels was 0.96 ± 0.02 (mean ± SD),
indicating that the regression line of the DFA fluctuation plot is
a close fit. The ML-DFA method resulted in the selection of the
linear model for 80% of the times in all the windows across all
the trials, channels, and participants during all the conditions.
In the remaining cases, a quadratic polynomial was chosen. We
attribute this to the noise induced in computing the root mean
square DFA fluctuations at the larger timescales due to short EEG
segments. The distribution of the coefficient of the linear term
in the linear model and the quadratic model was the same when
these respective models were selected as best fitting. In the case
where the quadratic model was chosen, the ratio of the coefficient
of the quadratic term to that of the linear term was small (0.02),
showing a significantly smaller contribution of the quadratic term
than the linear term (p < 0.05, two-tailed t-Test, n =individual
windows in all the participants) and hence we did not discard
these EEG windows. All these factors led us to conclude that
the log–log DFA fluctuation plots were linear and the HBB was
indeed valid.

3.2. Changes in LRTC in Alpha Envelope
and Broadband Stitched EEG During
Different Motor Tasks
We obtained LRTC on longer stitched EEG segments in both
broadband and alpha oscillation amplitude envelope during
different motor execution and imagery tasks from both datasets.
We then compared the changes in the broadband LRTC and
alpha amplitude envelope LRTC in the following sections.
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FIGURE 2 | The time evolution of grand average detrended fluctuation analysis (DFA) scaling exponents of broadband electroencephalography (EEG) (HBB) in C3, Cz,

and C4 during different movement and motor imagery tasks. The progression of the grand average of mean HBB of all participants during (A) single asynchronous

right (red) and left (blue) finger tap and resting state (black), (B) continuous right (magenta) and left (cyan) fist open-close movement, (C) continuous both feet (orange)

and both fist (green) open-close movement, (D) motor imagery of continuous right (dashed magenta) and left (dashed cyan) fist open-close, (E) motor imagery of

continuous both feet (dashed orange) and both fist (dashed green) open-close. Shaded areas show the standard deviation. Solid vertical line at 0 s marks finger tap

onset in (A) and motor task cue in (B–E). Dotted gray vertical lines show the period in which HBB of motor task trials is significantly different (p < 0.05, Mann–Whitney

U-test) from that of resting state trials. The HBB shows clear increase during all motor tasks.
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3.2.1. Changes in Alpha Envelope LRTC (Halpha)

Using Stitched EEG
The time evolution of the grand average alpha envelope
LRTCs in Figure 3 shows that Halpha values decreased
significantly (p < 0.05, Mann–Whitney U-test, n = number of
participants) during all the motor execution consistently with
the literature (Linkenkaer-Hansen et al., 2004) and during all
motor imagery tasks as well. The decrease in alpha envelope
LRTC is in contrast to the increase in the broadband LRTC
of the same motor tasks (Figure 2), indicating that different
long-range dependent processes coexist during a motor task. The
decrease in the alpha envelope LRTC was observed in the single
asynchronous finger tap task from our finger tapping dataset
(Figure 3A) and in cued continuous tasks of right and left fist
open-close movement (Figure 3B), both feet and fist open-close
movement (Figure 3C), motor imagery of right and left fist
open-close (Figure 3D), and motor imagery of both feet and fist
open-close (Figure 3E) from the EEGMMI dataset. The decrease
in Halpha is prominent in C3 and C4. We validated these DFA
exponents from stitched EEG, which ranged between 0.5 and
1 using ML-DFA, and confirmed the presence of LRTCs in the
fluctuations of the alpha amplitude envelope of stitched EEG.

3.2.2. Verification of Changes in Broadband LRTC

(HBB) During Movement Using Stitched EEG
The progression of the broadband LRTC (HBB) of stitched EEG
shown in Figures 4A–E also shows that the scaling exponents
increase significantly during different motor execution and
imagery tasks from our finger tap dataset and EEGMMI dataset
(p < 0.05, Mann–Whitney U-test, n =number of participants).
This is consistent with the changes in the single trial broadband
EEG from Figure 2. The HBB values are similar for both 2
s windows and stitched EEG and are in the range of 0.5–1.
The scaling exponents of the stitched EEG were also validated
using ML-DFA. The linear model was selected by AIC and BIC
individually for 96% times of all the stitched EEG segments in all
the windows of all the three channels in all the participants and
all conditions. This confirmed the validity of theHBB estimates on
single 2 s windows and the presence of LRTC in the broadband
EEG. ML-DFA results showed that the quadratic model was
previously incorrectly selected in the single-trial DFA because
of the noise in the estimation of RMS fluctuations at higher
timescales due to short EEG segments.

3.2.3. Correlation Between Broadband LRTC (HBB)

and Alpha Envelope LRTC (Halpha)
The broadband LRTC and alpha envelope LRTC show changes
in opposite directions during all the motor tasks. The broadband
LRTCs increased (Figures 2, 4), while the alpha envelope LRTCs
decreased (Figure 3) during same motor tasks. The increase in
broadband LRTC and the decrease in the corresponding alpha
envelop LRTC are inversely correlated and temporally co-evolve
during a motor task. However, in the resting state, broadband
and alpha envelope LRTC are uncorrelated. This distinction in
the behavior of the two LRTC dynamics during movement and
in the resting state is shown in Supplementary Figure 4 by the
scatter plot between HBB and Halpha of stitched EEG during right

and left finger tap and resting state, and their corresponding
correlation coefficients.

3.2.4. Timescales of Broadband LRTCs and Alpha

Envelope LRTCs
Figure 5A shows the grand average broadband DFA plots, and
Figure 5B shows the grand average alpha envelope DFA plots.
The broadband DFA fluctuations are linear (and thus the scaling
exponent HBB is valid) in the log–log plot on the shorter
timescales < 28, while the alpha envelope DFA fluctuations
are linear only on the longer timescales > 28. The maximum
timescale of < 28 corresponds to 2 s on which the broadband
DFA fluctuations are linear (i.e., the maximum possible box size
can be 2 s for broadband DFA if sufficiently long EEG segment
is available), however, the slope of the DFA fluctuations remains
the same on shorter timescales and thus broadband DFA scaling
exponent HBB can be accurately estimated from shorter EEG
segments. This shows that broadband LRTCs are present on
the shorter timescales capturing faster changes in the dynamics
and alpha envelope LRTCs are present on the longer timescales
representing slower changes in the dynamics. Though both the
LRTCs show change in dynamics during different motor tasks,
broadband LRTCs can be used to identify these change almost
instantly as opposed to the alpha envelope LRTCs, which require
longer EEG segments for detection.

3.3. Classification Accuracies of
Single-Trial Broadband LRTC to Detect
Movement and Motor Imagery
Table 1 shows the grand average of peak binary classification
accuracies of different motor tasks vs. resting state and their F1
scores. Maximum classification accuracy of 76.07 ± 6.4% was
obtained for finger tap. Classification accuracies for different
motor execution and imagery tasks from the EEGMMI dataset
were similar to that of the finger tapping dataset. Peak
classification accuracy for single finger tap was obtained around
1 s after the movement onset, which corresponds to the EEG
window from −1 to +1 s, and peak classification accuracies
were obtained around the same time for motor execution and
imagery tasks from the EEGMMI database as well. This time
of peak accuracies corresponds to the time of the maximum
difference between a motor task and resting state HBB, which
was also approximately at 1–1.5 s (see Figure 2). However, all
classification accuracies crossed the significance threshold (p <

0.05) of chance level earlier than this. In the case of a self-
initiated asynchronous single finger tap, the time of movement
intention was recorded as the time at which the classification
accuracy crosses the significance threshold. We observed that
finger tap movement can be predicted on average 0.5 s before
its actual onset using the LRTCs in broadband EEG over
shorter timescales.

4. DISCUSSION

The temporal dynamics of broadband EEG during voluntary
movement remainmostly unexplored in the literature as opposed
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FIGURE 3 | The time evolution of grand average detrended fluctuation analysis (DFA) scaling exponents in the envelope of alpha oscillations of stitched

electroencephalography (EEG) (Halpha) in C3, Cz, and C4 during different movement and motor imagery tasks. The progression of the grand average of alpha

oscillation amplitude envelope DFA scaling exponent Halpha of all participants during (A) single asynchronous right (red) and left (blue) finger tap and resting state

(black), (B) continuous right (magenta) and left (cyan) fist open-close movement, (C) continuous both feet (orange) and both fist (green) open-close movement, (D)

motor imagery of continuous right (dashed magenta) and left (dashed cyan) fist open-close, (E) motor imagery of continuous both feet (dashed orange) and both fist

(dashed green) open-close. Shaded areas show the standard deviation. Solid vertical line at 0 s marks finger tap onset in (A) and motor task cue in (B–E). Dotted gray

vertical lines show the period in which Halpha of motor task trials is significantly different (p < 0.05, Mann–Whitney U-test) from that of resting state trials. The Halpha

shows clear decrease during all motor tasks.
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FIGURE 4 | The time evolution of grand average detrended fluctuation analysis (DFA) scaling exponents in broadband stitched electroencephalography (EEG) (HBB) in

C3, Cz, and C4 during different movement and motor imagery tasks. The progression of the grand average of broadband DFA scaling exponent HBB from stitched

EEG segments of all participants during (A) single asynchronous right (red) and left (blue) finger tap and resting state (black), (B) continuous right (magenta) and left

(cyan) fist open-close movement, (C) continuous both feet (orange) and both fist (green) open-close movement, (D) motor imagery of continuous right (dashed

magenta) and left (dashed cyan) fist open-close, (E) motor imagery of continuous both feet (dashed orange) and both fist (dashed green) open-close. Shaded areas

show the standard deviation. Solid vertical line at 0 s marks finger tap onset in (A) and motor task cue in (B–E). Dotted gray vertical lines show the period in which

HBB of motor task trials is significantly different (p < 0.05, Mann–Whitney U-test) from that of resting state trials. The HBB shows clear increase during all motor tasks.
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FIGURE 5 | The grand average detrended fluctuation analysis (DFA) plots for stitched broadband electroencephalography (EEG) and alpha amplitude fluctuations

during movement in C3, Cz, and C4. (A) The grand average DFA plots for stitched broadband EEG during right tap (red), left tap (blue), and resting state (black) for all

the participants. This EEG segment is extracted from −1 to +1 s of the movement onset. The Hurst exponents HBB obtained from the slope of the fitted line to the

DFA plots are shown. (B) The grand average DFA plots for stitched alpha amplitude fluctuations Halpha. The broadband DFA exponents are valid over shorter scales as

there is a crossover point at 8 (i.e., log2 of 256 samples) and the alpha envelope DFA exponents are valid over longer timescales. With sampling frequency of 128 Hz,

smallest DFA box size of 10 samples (log210 = 3.32) correspond to 78 ms, crossover point at 256 samples (log2256 = 8) correspond to 2 s, and largest DFA box size

of 2,241 samples (log22241 = 11.13) correspond to 17.5 s.

TABLE 1 | The grand average of peak linear discriminant analysis (LDA)

classification accuracies for different motor tasks vs. resting state of all the

participants using single trial broadband long-range temporal correlation (LRTC)

scaling exponents from C3, Cz, and C4 as features.

Average

classification

accuracy (%)

F1 score

Right finger tap vs. neutral 76.07 (6.40) 0.76 (0.06)

Left finger tap vs. neutral 75.69 (6.77) 0.75 (0.07)

Right fist open-close vs. neutral 73.00 (8.84) 0.79 (0.08)

Left fist open-close vs. neutral 72.24 (8.50) 0.79 (0.08)

Both feet movement vs. neutral 74.41 (9.67) 0.80 (0.08)

Both fist open-close vs. neutral 73.26 (9.09) 0.80 (0.08)

Right fist imagery vs. neutral 70.54 (10.03) 0.77 (0.09)

Left fist imagery vs. neutral 72.60 (9.08) 0.79 (0.08)

Both feet imagery vs. neutral 71.51 (9.87) 0.78 (0.09)

Both fist imagery vs. neutral 73.18 (10.18) 0.80 (0.09)

Standard deviations are given in brackets. All values are significantly above chance level

(p < 0.05).

to the commonly studied narrow band oscillatory ERD/S (Yuan
and He, 2014) or slow potentials of MRCP (Bai et al., 2011;
Ibáñez et al., 2014). In our previous work, we have shown

that EEG is composed of coexisting broadband short- and
long-range temporal correlations, which we modeled with
ARFIMA, and both these processes show significant changes

during finger tap movement intention and execution (Wairagkar
et al., 2019). Building upon our previous work, to deepen

our understanding of LRTCs during different motor tasks, we

investigated the nature of changes in LRTCs further in broadband
and alpha envelope EEG in this study and made the following

novel contributions: (1) We demonstrated wider applications

of broadband LRTC with consistent changes over different
motor tasks by using two independent datasets comprising a
total of 123 participants with five different motor execution
and imagery tasks recorded using two different experimental
paradigms (asynchronous single finger tap and cued continuous
movements), thus enhancing its usability. (2) We systematically
validated the presence of single trial broadband LRTC on short
timescales. This ubiquitous presence of broadband LRTC in
different motor tasks suggests existence of potential power-law
dynamics in the temporal broadband brain activity as well.
(3) We observed contrasting behavior of LRTC dynamics in
broadband and alpha envelope. Broadband LRTCs increased
during motor tasks (Figure 2). In contrast, LRTCs in the narrow
band alpha oscillation envelop decreased in corresponding
tasks (Figure 3), consistent with the literature (Botcharova
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et al., 2015). Thus, two distinct fast and slow LRTC processes
coexist in arrhythmic broadband EEG and oscillatory alpha
wave envelop, respectively. (4) For the first time, we showed
LRTC dynamics (of broadband EEG and alpha envelope) during
motor imagery, which has never been studied before. (5) Single
trial broadband LRTC can be used independently as a neural
correlate of different motor execution and imagery tasks for
robust classification.

We systematically validated LRTCs in the short 2 s broadband
EEG windows by establishing first that there is a significant
correlation in the EEG using surrogate test (Hausdorff et al.,
1995), then identifying the nature of these correlations as long-
range dependence using ARFIMA modeling (Wagenmakers
et al., 2004; Torre et al., 2007; Wairagkar et al., 2019) and
finally showing that these long-range dependencies are in
fact LRTCs (power-law decay of autocorrelation) using ML-
DFA (Botcharova et al., 2013). Clauset et al. (2009) discuss that
identifying power-law is a difficult problem and linearity on the
log-log plot is a necessary but not sufficient condition; the best
approach for identifying the power-law is by comparing different
models and determining whether the power-law is the best fitting
model (which we implemented with ML-DFA). Here, we accept
the assumption that the linear trend of the DFA fluctuations at
different scales is an indicator of the power-law according to
several studies in EEG (Linkenkaer-Hansen et al., 2001; Nikulin
and Brismar, 2005; Botcharova et al., 2014). Thus, we rigorously
validate the presence of LRTCs in broadband EEG in line with
this suggested approach. The broadband EEG, which is non-
oscillatory and arrhythmic and hence scale-free and stochastic,
coexists with oscillatory processes in the brain (He, 2014). Hence,
we can obtain a good estimate of the Hurst exponent (HBB,
Figure 2) using short segment (2 s) of broadband EEG with 256
samples (Delignieres et al., 2006), which we also verified using
the longer stitched EEG segments (Figure 4). Thus, our results
prove the presence of this scale-free property of the broadband
EEG over small timescales (from 78 ms up to 2 s; Figure 5).

According to Kantelhardt (2009), the power-law is valid if it
exists for at least one order of magnitude, which we obtain in the
stitched broadband EEG (78ms–2 s). The LRTC in the single-trial
2 s broadband EEG was present over a short range of 78 ms–0.5 s.
The analysis of stitched broadband EEG allowed us to extrapolate
that these LRTC dynamics hold up to 2 s (Figure 5). The range
of 78 ms–0.5 s for single trials falls within the recommended
range for the DFA plot of filtered data by Li et al. (2018) to avoid
the effects of filtering on DFA. The study by Hu et al. (2013)
also found LRTCs in the neuronal firing in a similar range of
timescales as ours, which helps in confirming that LRTCs exist
in the shorter timescales in the neuronal activity.

Broadband LRTC was present only in shorter timescales
irrespective of the length of the EEG, and it did not extend over
longer timescales (Figure 5A). The stitched HBB DFA plots in
Figure 5A show that there is a crossover at 2 s (28). This suggests
that the broadband activity may be multifractal (Kantelhardt
et al., 2002), in which a single power-law is valid in the range
of 78 ms–2 s, beyond which there may be a different scale-
free trend with a different scaling exponent. The investigation
of multifractality in broadband EEG, which is often modeled

by stochastic processes, will be an interesting future avenue as
we have shown in our previous work that arrhythmic EEG can
be modeled by stochastic ARFIMA (Wairagkar et al., 2019);
however, it is beyond the scope of this paper since we do
not observe these longer timescales in single short 2 s EEG
windows, which are essential for application in BCI. Single trial
EEG analysis not only plays an important role in BCI but also
in cognitive neuroscience to study the ongoing instantaneous
changes in temporal dynamics during memory task (Ratcliff
et al., 2016), cognitive functions (Debener et al., 2006), and
voluntary responses (Yamanaka and Yamamoto, 2010). Single
trial broadband LRTC could have potential applications in
studying instantaneous dynamics of other cognitive tasks as well.

The range of timescales over which HBB is valid is especially
interesting because it enabled monitoring of the instantaneous
modulations in the broadband LRTC, facilitating the detection
of movements and motor imagery in single trials. These LRTCs
over short timescales characterize long-memory of the faster
processes as opposed to longer timescales that contain the long-
memory of slower brain processes. In the case of a motor
task, the brain must switch between different cortical areas and
modulate the neuronal activity selectively to produce dynamic
movement; stronger LRTCsmay provide favorable conditions for
this (Samek et al., 2016). This might be one of the reasons for the
increase in broadband LRTCs during a motor task. We infer that
the broadband activity may be multifractal and more dynamic
with changes happening over shorter timescales. Multifractality
was also observed by Hu et al. (2013) in neuronal firing during a
movement task. Consistent with our results, they also observed
that the LRTCs increased during the reaching movement in
neuronal firings, which correlated with the movement trajectory,
and the LRTC was reset at the beginning of the next movement.
There may be several different mechanisms giving rise to the
power-law dynamics (Stumpf and Porter, 2012) in brain activity.
Further investigation is needed to identify the mechanisms
and causes for the increase in the broadband LRTC during
motor tasks.

Since ERD is the most common measure of identifying
movement from EEG in literature, the question arises about
the relationship between ERD and our proposed broadband
LRTC. Linkenkaer-Hansen et al. (2001) have specified that
the power spectrum and LRTC are not equivalent. We have
shown in Wairagkar et al. (2019) that ERD and broadband
LRTC are indeed complementary processes and provide different
information about a motor task. Removing the broadband LRTC
from EEG by fractional differencing does not affect the ERD
output, and removing ERD from EEG by filtering out the ERD
frequency band does not affect the broadband LRTC. Becker et al.
(2018) reported that the increase in power of alpha oscillations
in the spontaneous activity caused a decrease in the long-range
dependence in the lower frequencies (<5 Hz) of EEG. Extending
their finding to a wider range of broadband frequencies in
EEG, we also obtained this inverse relationship between alpha
power (which decreases leading to ERD (Pfurtscheller and Lopes
Da Silva, 1999) and broadband LRTC, which increased during
different motor tasks. However, Becker et al. (2018) concluded
the existence of this causality merely by identifying the lag at
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which the maximum correlation between the alpha power and
LRTCs in < 5 Hz band occurs, which may not be sufficient
to establish causality. Moreover, such a causal relationship does
not exist in the case of wider broadband LRTC (0.5–45 Hz),
which we have shown in our previous work (Wairagkar et al.,
2019).

The LRTCs in the EEG are usually detected in the amplitude
fluctuations of the narrow band oscillations (Linkenkaer-Hansen
et al., 2001; Nikulin and Brismar, 2005; Zhigalov et al., 2015).
Such LRTCs of alpha oscillations decrease due to a sensorimotor
stimulus or task (Linkenkaer-Hansen et al., 2004). We have
also observed the same effect on LRTCs in the amplitude
fluctuations of the alpha oscillations obtained from the stitched
EEG windows (see Figure 4). Computing LRTCs in the alpha
oscillation amplitude requires a longer EEG segment. Thus,
LRTC analysis of alpha amplitude faces limitations on observing
fast LRTC changes and their continuous assessment in single
trials during a short event such as movement, unlike broadband
EEG, which renders alpha envelop LRTCs inappropriate for use
in BCI. The continuous monitoring of the ongoing changes in
broadband LRTC achieved using 2 s sliding windows gives an
additional dimension of movement-related information.

All motor tasks caused modulations in the broadband
and oscillatory LRTC dynamics, but in opposite directions
and over different timescales. The HBB and Halpha obtained
from stitched EEG are uncorrelated during the resting state,
and there is a switch in their behavior during movement
when they become coupled and inversely correlated (with
a strong average correlation coefficient of −0.8 as shown
in Supplementary Figure 4). In the resting state, HBB

has a lower variance, and Halpha has a broader range of
observed values. Hence, the alpha amplitude and broadband
LRTCs reflect distinct processes occurring during voluntary
movement, capturing the slow processes on the macroscopic
level and complementary fast processes on the microscopic
level, respectively.

Both finger tapping and EEGMMI datasets showed a similar
buildup of broadband LRTC (and a corresponding decrease of
alpha envelope LRTC); however, the LRTC peak was narrow
in case EEGMMI dataset with cued continuous movement
and imagery and the increase in broadband LRTC (and the
corresponding decrease in alpha envelope LRTC) started around
0.5 s after the cue (see Figures 4B–E). This could be because of
some evoked response to a cue or because of delayed reaction
time for movement or imagery initiation by participants in
response to the cue. ERD was also delayed by about 0.5 s after
the onset of cue in all the motor tasks from this dataset (see
Supplementary Figures 2B–E). In the finger tapping dataset, this
increase in broadband LRTC starts before the onset of single
finger movement (see Figure 4A) because it is also capturing
movement intention for initiating the finger tap movement
voluntarily. Same effect was observed in ERD of finger tapping
dataset where ERD started before the onset of finger tap (see
Supplementary Figure 2A). In the EEGMMI dataset continuous
motor tasks, the broadband LRTC restores to its baseline level
before the continuous motor execution or imagery ends at 4
s. No such return to baseline level is observed in the ERD of

this dataset (see Supplementary Figures 2B–E). This could be
another indicator that broadband LRTC captures information
about movement intention and initiation and differs from the
information content of ERD.

We have shown that we can reliably detect different
motor execution and imagery tasks using LRTC from 2 s
single broadband EEG segments independently with average
classification accuracies in the range of 70.54 ± 10.03% to
76.07 ± 6.40% (Table 1). We were also able to predict the
single finger tap movement 0.5 s before its onset, which
also had the highest classification accuracy of 76.07 ± 6.4%.
Slightly lower classification accuracies for continuous fist and
feet motor execution and imagery from the EEGMMI dataset
can be attributed to the leave-one-participant-out LDA classifier
training scheme as for each participant, the classifier was trained
with the data from the remaining participants, whereas, for finger
tapping dataset, the classifier was trained for each participant
using their own data with 10 x 10 fold cross-validation. The
classification accuracies using broadband LRTC are comparable
to the accuracies obtained in the BCI literature (Ibáñez
et al., 2014; Lew et al., 2014; Lopez-Larraz et al., 2014; Xu
et al., 2014; Padfield et al., 2019; Zhang et al., 2021). Thus,
broadband LRTCs can be used as features independently for
application in BCI. In our previous work (Wairagkar et al.,
2019), we showed that combining short-range and long-range
temporal correlation features increases classification accuracy,
thus broadband LRTC being a novel complementary process
can be used in combination with motor-related features to
obtain high classification accuracies for motor execution or
imagery-based BCI. Though we used an offline analysis in
this paper, the DFA analysis is done on a single trial basis
with movement detected every 100 ms based on the 2 s EEG
segment and can be easily adapted for online BCI. The successful
application of broadband LRTCs as features for offline BCI
serves as a robust method of validation of their dynamical
changes occurring during motor tasks. Having broadband
LRTC as an additional neural correlate with the capability of
detecting movement may also be useful in the cases where
individuals are unable to operate BCIs with common ERD and
MRCP features.

5. CONCLUSIONS

We demonstrated by deeper investigation and rigorous
validation of changes in the single trial broadband LRTC over
short timescales that it is a robust neural correlate of movement,
expanding our previous understanding. Broadband LRTC
showed consistent changes and is hence generalizable over
different motor tasks such as the finger, fist, and feet movements
and motor imagery with different experimental paradigms
including single self-initiated asynchronous movement and
cued continuous motor execution and imagery. We proved
the validity and reproducibility of broadband LRTC on short
timescales on single trial 2 s EEG segments by applying it
to two independent (our own and external) EEG datasets
recorded from a total of 123 participants. LRTCs in the
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broadband EEG increased significantly (p < 0.05) during
motor tasks (Figures 2, 4). In contrast, LRTCs in the alpha
oscillation amplitude envelope (which we could only observe
by stitching the EEG windows together) decreased during
motor tasks (Figure 3). Thus, there are complementary fast
processes from the scale-free broadband arrhythmic neuronal
activity and slow processes from oscillatory neuronal activity
coexisting and contributing to voluntary movement tasks. We
also identified for the first time, changes in LRTC dynamics
during motor imagery which has not been explored before in
the literature.

The broadband LRTC has proved to be a novel neural
correlate that can be used independently to detect different
types of movement or imagery vs. resting state every 100 ms
on a single trial basis with the classification accuracy in the
range of 70.54 ± 10.03% to 76.07 ± 6.40%. It can also predict
a single voluntary asynchronous finger tap 0.5 s before its
onset. Hence, the broadband LRTC provides a new stream
of movement-related information for application in BCI with
different paradigms, including single or continuous movement
and motor imagery.
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