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A B S T R A C T

This paper explores the impacts of decarbonization of heat on demand and subsequently on the generation
capacity required to secure against system adequacy standards. Gas demand is explored as a proxy variable for
modelling the electrification of heating demand in existing housing stock, with a focus on impacts on timescales
of capacity markets (up to four years ahead). The work considers the systemic changes that electrification of
heating could introduce, including biases that could be introduced if legacy modelling approaches continue
to prevail. Covariates from gas and electrical regression models are combined to form a novel, time-collapsed
system model, with demand-weather sensitivities determined using lasso-regularized linear regression. It is
shown, using a Great Britain-based case study with one million domestic heat pump installations per year,
that the sensitivity of electrical system demand to temperature (and subsequently sensitivities to cold/warm
winter seasons) could increase by 50% following four years of heat demand electrification. A central estimate
of 1.75 kW additional peak demand per heat pump is estimated, with variability across three published heat
demand profiles leading to a range of more than 14 GW in the most extreme cases. It is shown that the
legacy approach of scaling historic demand, as compared to the explicit modelling of heat, could lead to
over-procurement of 0.79 GW due to bias in estimates of additional capacity to secure. Failure to address this
issue could lead to £100m overspend on capacity over ten years.
1. Introduction

Capacity markets have become a common framework for providing
security of supply in energy systems without problems of oversupply of
costly peaking capacity or the high economic and political costs of load
shedding. Peak electricity demands are expected to grow significantly
in regions with high levels of gas-fuelled space heating, as heat is
moved onto electrical systems to meet decarbonization targets. These
heat demands have much stronger sensitivities to meteorological and
seasonal factors than historic electrical demand [1,2]. In some countries
this issue is compounded by the replacement of ageing conventional
thermal plant by renewable generation which is highly sensitive to
meteorological conditions [3,4]. The study of system adequacy uses
probabilistic methods, and demand uncertainty can both bias and in-
crease variability in the estimates of capacity to secure; this bias should
therefore be identified and, wherever possible, minimized. In fact, it is
the range of calculated capacity to secure values across scenarios that
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sets the procurement target in some markets [5]. Given the large sums
allocated in the capacity market (£700 million in the most recent GB
capacity auction), even modest reductions in uncertainty could yield
significant dividends in terms of social welfare.

Despite this, the consideration of uncertainty in underlying changes
in demand on system adequacy is seldom considered in detail. The sys-
tem adequacy literature of the past decade has primarily focused on the
determination of capacity value of non-dispatchable plant (e.g., wind
[6], solar PV [7,8], demand-side response [9], or energy storage [10,
11]). These approaches assume a known, well-defined distribution of
demand, with approaches typically scaling historic demand curves to
meet projected forecast peak demand [5], neglecting changes in the dis-
tribution of demand duration curves that may occur due to clean energy
transitions. To address this, a recent review of GB capacity market by
independent academic experts made the formal recommendation that
this issue be explored, noting that ‘The factors affecting the evolution of
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peak behaviour should be analysed ... from the broad perspectives of current
and future technical, society and regulatory evolutions’ [12]. This point
is particularly pertinent given recent annual heat pump installation
targets of 600,000 and one million per year (by the close of this decade)
which have been proposed by the UK government and UK’s Climate
Change Committee, respectively; this will increase demand-weather
sensitivity dramatically [13].

Although there are a range of capacity market designs and time
frames, it is generally the case that the most important timescale for
capacity markets is typically between 𝜏 − 1 delivery for the following
peak season (e.g., 18 months ahead of time for a summer auction to
be delivered in the following winter) through to the 𝜏 − 4 delivery for
the peak season four years ahead [6]. This relatively short timescale
with respect to energy transitions [14,15] means that the practicalities
of capacity procurement via markets (or other means) are not usually
considered by papers that study the decarbonization of heat; works
usually focus on the increase in seasonality or growth of system peak
over several decades. For example, the impacts of increasing heat pump
demand are considered for the year 2050 in [1], estimating that 50%
penetration of heat pumps would result in increases in demand of more
than 20 GW. Similarly, the works [16,17] develop a spatial heat model
which is combined with network models for the GB gas and electric
system, modelling prices and heat demand to 2050. It is estimated that
peak demands could grow by close to 10 GW between 2020 and 2025.
Other works consider the impacts of heat without explicitly considering
the timescale of changes that could occur, such as [18]. It demonstrates
that, if 30% of gas demand is shifted to highly efficient heat pump
load, then electrical peak demands would increase by 25%. The authors
of [19] find that an 80% heat pump demand scenario increases GB
demand by as much as 54 GW in an unmitigated scenario, dropping
to 16 GW under more favourable conditions. In [20], the authors
study four heat transition scenarios, noting that the pathways with
widespread electrification of heat (via heat pumps) leads to particularly
strenuous impacts on electricity systems. All of the aforementioned
works point to electrification of heat causing systemic change, with
significantly increased demand-weather sensitivity as well as base de-
mand. Unfortunately, the disjuncture between the timescales of the
capacity market and these works on long-term energy transitions results
in challenges interpreting possible impacts on capacity procurement.

There are some works that do consider changes in demand up to
five years ahead, although the implications of these works are not
studied in the context of impacts on capacity markets. In [4], the
authors consider a five-year forecast of demand net of renewables, and
(with the scenarios considered) estimate that net demand could drop
by up to 5%; the coefficient of performance (COP) of heat pumps is
shown to be a key parameter that will determine the future impacts
of heat electrification. The authors of [2] consider a similar problem,
estimating changes in demand every five years until 2050. Long-term
peak demand forecasting focuses on the problem of estimating the
demand peak, using data-driven methods [21,22]. These approaches
do not explicitly consider the system margin or the subsequent capacity
required to meet this demand; additionally, it is also usually implicit in
data-driven models that demand growth can be extrapolated, with the
main uncertainties typically in terms of economic growth (and so they
are not appropriate if there is systemic change). In [23], it is shown
that the seasonality of electrified gas (heat) demand leads to 60% faster
peak demand growth than the equivalent electrical energy demand.
However, across reviewed works, it has been identified that there is
a gap in the analysis of impacts of decarbonization of heat on capacity
adequacy over the time frame of capacity markets, despite the key role
that electrical heating is expected to play in achieving net zero.

This paper studies the impact of increasing the weather-dependency
of electricity demand via electrification of space-heating, and how this
will affect capacity markets through changes in capacity to secure. The
paper develops a novel system adequacy model for this purpose which
2

combines hourly demand and renewable generation models with an
explicit space heating profile derived from daily gas demand and heat
pump profiles. This enables the model to capture changes that heat
pumps could have on demand profiles as well as on meteorological
sensitivities. With this model, the impact of one million annual heat
pump installations on a GB case study are considered comprehensively,
with three specific aspects considered.

• Changes in demand-weather sensitivity. The evolution of demand-
weather sensitivities are studied using Lasso-Regularized linear
regression. Weather variables known to correlate with either
gas or electricity demand are studied comprehensively, with the
covariates subsequently derived from climate reanalysis data.

• Bias arising from the legacy Load Duration Curve approach. Models
accounting for heat demand explicitly are compared against the
legacy approach whereby heat demand growth is implied by the
scaling of historic demand. Possible biases introduced by the
legacy implicit approach are quantified.

• Estimating scenario variability in Additional Capacity to Secure. Sce-
nario analysis is used to capture possible changes in variability
of capacity to secure, with meteorological sensitivities and heat
demand profile uncertainties considered.

By considering a detailed system adequacy model with these objectives
in mind, we study not only the effects of heat pumps on demand, but
also how they influence the capacity required to meet security of supply
standards.

The contributions of the work are summarized as follows.

1. A demand model is proposed that explicitly accounts for in-
creased electrical space heating demand at a national level, and
is suitable for consideration within system adequacy studies.
Space heating demand is estimated by assimilation of historical
gas demand data with heat pump usage profiles.

2. The demand model is considered alongside 30 years of historic
climate reanalysis data to create a demand hindcast covering
winters from 1990 to 2020. The model uses Lasso-Regularized
regression to avoid overfitting and exclude uninformative covari-
ates. Net demand across each winter can then be hindcast using
coincident renewable generation.

3. The model of net demand is combined with models of conven-
tional and renewable generation to quantify security of supply
in terms of loss of load expectation and subsequently capacity to
secure for a GB case study. Scenario analysis across heat pump
profiles and coefficients of performance show variability in ca-
pacity to secure greater than all scenarios presently considered
in the most recent GB capacity market auction.

4. It is demonstrated for the first time that significant bias in
capacity to secure could be introduced if models fail to cap-
ture changes in the underlying end-uses of electrical demand.
This is achieved by comparing the explicit space heating model
with conventional approaches that ignore changes in time- and
weather-based dependencies of electrified heating demand.

This paper has the following structure. Firstly, the novel Explicit
heating model is introduced in Section 2, to illustrate how heating
demand can be accounted for in time-collapsed adequacy models in a
natural way. In Section 3, we outline the Lasso-based linear regression
approach, used to consider how heating demand could change the
nature of future demand curves. The specific details of the GB system
model are outlined in Section 4, to introduce the key characteristics of
the subsequent detailed case study. In Section 5, the full case study is
used to study the key impacts of increased sensitivity, bias in capacity
to secure estimates, and increased variability in capacity to secure.

Salient conclusions on the modelling approach are drawn in Section 6.
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Fig. 1. High-level modelling approach. The net demand 𝐷 − 𝑌 is calculated for a
iven year by combining a linear model of historic system electrical and Non Daily
etred (NDM) gas demand 𝐸, 𝐺NDM with coincident renewable generation 𝑌 . This is

combined with dispatchable generation 𝑋, from which Loss of Load Expectation (LOLE)
and Additional Capacity to Secure (ACTS) can be calculated. The NDM gas demand is
used as a proxy for space heating demand.

2. Time-collapsed system adequacy modelling

A energy system is adequate at a given time instant if there is
sufficient generation to meet demand. Power systems are designed
so that if all generation is available then there will always be a
positive margin; however, due to unforced outages at generators and
varying meteorological conditions (in systems with significant amounts
of varying renewables) there is a non-zero probability of a shortfall
occurring.

In this Section, we consider the structure of the full adequacy
modelling approach, as summarized in Fig. 1 (with the exception of
the linear regression approach which is considered in more detail in
Section 3).

2.1. Time-collapsed adequacy model

A time-collapsed (or ‘snapshot’) adequacy model is designed to model
the distribution of the system margin at a randomly selected time
instant during the peak season [24,25]. We propose the use of an
hourly time-collapsed model, where each hour of the day 𝑡 is modelled
separately. The key advantage of this approach is that the impacts
of a range of demand profiles on the whole day can be considered—
this is important as some heat demand profiles peak in the morning
(e.g., [26]). Using this approach, the system margin 𝑍𝑡 for a given hour
𝑡 is given by the linear sum

𝑍𝑡 = 𝑋𝑡 + 𝑌𝑡 −𝐷𝑡 , (1)

where 𝑋𝑡 represents dispatchable generation, 𝑌𝑡 represents renewable
generation, and 𝐷𝑡 represents total system demand. (Each of the vari-
ables of (1) are random variables.) Dispatchable generation 𝑋𝑡 consists
of conventional thermal plant and interconnectors, whilst renewable
generation 𝑌𝑡 is modelled as a combination of onshore wind, offshore
wind, and solar generation. The ‘overall’ margin 𝑍 combines the profile
for the whole day, and as such can be written

𝑍 =
23
∑

𝑡=0
𝐼𝑡𝑍𝑡 , (2)

where 𝐼𝑡 is a binary variable with a value of unity if it is hour 𝑡, and is
zero otherwise.

It is worthwhile stressing the time dependencies in (1). Dispatch-
able generation 𝑋𝑡 is considered to be equally likely to be available
during the whole peak demand period, and so this random variable is
independent of demand and renewables [27]. On the other hand, both
renewable generation 𝑌𝑡 and demand 𝐷𝑡 are dependent on weather,
and so the distribution of net demand 𝐷𝑡 − 𝑌𝑡 must be found by
considering coincident times (i.e., these are both assumed dependent
on the weather of a given time). Once the net demand has been found,
the distribution of the system margin 𝑍𝑡 for each hour 𝑡 can be found by
convolution of the probability distribution functions of the net demand
3

𝐷𝑡 − 𝑌𝑡 and conventional generation 𝑋𝑡.
2.1.1. Evaluating security of supply
The system margin 𝑍 can be used to define a range of risk metrics

to understand the likelihood and severity of shortfalls. The likelihood
is considered using the Loss of Load Expectation (LOLE), having units
of hrs/yr, and is given by

LOLE = E

(𝑛−1
∑

𝑖=0
Pr(𝑍 < 0)

)

, (3)

where 𝑛 is the number of periods in year and E denotes the expectation
operator. The LOLE metric has the advantage of being the target
security standard of many European systems, whilst also being closely
linked to the Loss of Load Probability (LOLP), which is used as an
operational indicator of scarcity by transmission system operators.

The LOLE is subsequently used to determine the Additional Capacity
to Secure (ACTS). For a given security standard of 𝑇LOLE hours per year,
the ACTS is the (perfectly reliable) generation required to bring the
LOLE to that security standard,

𝑍′
𝑡 = 𝑋𝑡 + 𝑌𝑡 −𝐷𝑡 + ACTS s.t. LOLE(𝑍′) = 𝑇LOLE . (4)

where we use LOLE(𝑍) to denote the calculation of LOLE from (3)
using system margin 𝑍′ (as calculated as in (2)).

For example, suppose that the GB security standard is 3 h LOLE
per year, but the generation already committed for the 𝜏 − 4 delivery
year (the 24/25 winter) results in an LOLE of 10 h per year, such that
additional capacity is required. If, say, 1500 MW of perfectly reliable
generation could bring the LOLE to 3 h per year, then the ACTS would
be 1500 MW. Note however that real generators are not perfectly
reliable, and so a de-rating factor must be applied (i.e., more than 1500
MW of real generating capacity would need to be procured).

2.1.2. Definition of peak demand
It is also useful to define the peak demand for a season of 𝑁Wtr.

winter days so that the peak of different demand distributions can be
compared. This work uses the method that is used to define Average
Cold Spell peak demand [28]. This approach resamples winter demands
many times to determine the distribution of peak demands empirically;
the median value of these demand peaks is then selected as the Peak
Demand. This method can be denoted for the time-collapsed model of
this work as

Peak Demand = Median
(

max{𝐷0, 𝐷1, … , 𝐷24𝑁Wtr.−1}
)

, (5)

where the 𝑖th random variable over which the max{} function is
taken, 𝐷𝑖, has the corresponding demand model of that hour’s margin
(e.g., the 6am model is used for 𝐷6, 𝐷30, and so forth).

2.1.3. Impacts of ACTS on capacity markets
The design of an effective capacity market is a challenge from both a

practical and theoretical point of view [29,30]. The GB capacity market
is regarded as a well-designed, modern market [31], although technical
details continue to develop, with annual recommendations from an
independent Panel of Technical Experts [12].

A brief overview of the design of this market is given in [32].
The Target Capacity to Secure is calculated using a range of supply-
and demand-side sensitivities considered around the base case, as well
as system-based sensitivities based on National Grid’s Future Energy
(FE) Scenarios. In total, between 20 and 30 sensitivities are typically
considered. Based on these scenarios, the Least Worst Regret (LWR)
methodology is used to estimate the Target Capacity to Secure from
all scenarios, looking to identify the generating capacity that will have
the smallest regret based on projected costs associated with oversupply
(based on the net Cost of New Entry) and the costs of shortfall. The
latter costs are calculated by the Expected Energy Unserved multiplied
by a monetary estimate of the Value of Lost Load. Cost curves for
each scenario are combined, and the aggregate least worst-regret option
identified.
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Explicitly calculating the LWR Target Capacity to Secure is beyond
the scope of the current work: suffice to say, the Target Capacity to
Secure is almost entirely dependent on only the largest and smallest
estimates of the ACTS [5]. As such, not only is it important that
calculations of ACTS have low bias, but also that the variability in
forecasts for supply and demand are correctly captured. The Range of
Capacity to Secure (RoCS) is therefore considered to evaluate the total
variability across all scenarios, and is defined as

RoCS = max


{ACTS()} − min


{ACTS()} , (6)

where ACTS() denotes the calculation of capacity to secure ACTS
using scenario . For a more detailed critical discussion on the LWR
methodology see [5, Apdx. 7].

2.2. Explicit system model, using non daily metred gas demand 𝐺NDM as a
proxy heat variable

We first consider a system model with electrical demand 𝐷𝑡 which
is explicitly decomposed into underlying electrical demand 𝐸𝑡 and
electrified space heating demand 𝐻𝑡, as

𝐷𝑡 = 𝐸𝑡 +𝐻𝑡 . (7)

Given this disaggregation, we refer to the model (7) (combined with
(1)) as the Explicit system model, as heating demand is accounted for
explicitly within the calculations of system adequacy.

For the purposes of this work, the Explicit model (7) will be consid-
ered the ground truth (for a given heat demand model 𝐻𝑡), to which
alternative approaches will be considered. This is because space heating
demand 𝐻𝑡 has been observed to have a very different demand profile
to that of underlying electrical demand 𝐸𝑡, irrespective of whether
the means of fulfilling that demand is by gas boilers or electric heat
pumps [18,26]. The approach therefore has advantages of being more
closely linked to the systemic changes driven by the electrification of
heat, although a method of estimating the electrical heating demand
𝐻𝑡 is required.

2.2.1. Estimating electric space heating demand
To model heating demand 𝐻𝑡 for the Explicit system model, we

propose that suitably scaled Non Daily Metred (NDM) gas demand
𝐺NDM is used as a proxy variable, in a similar vein to [23,33]. NDM gas
demand is largely comprised of water and space heating demand (cook-
ing using gas is less than 3% of total domestic consumption) [34], and
the customer composition is largely residential and flats/commercial
properties. It does not include large industrial customers (such as gas-
fired power stations), who are instead billed as part of the Daily Metred
class [35].

Following other works, it is assumed that the daily electrified heat-
ing demand follows some electrified heating profile ℎ, and that wa-
er heating demand 𝐺HW is approximately constant throughout the
ear [36]. As such, the (space) heating demand 𝐻 is calculated as an
ffine function of the daily NDM gas demand 𝐺NDM as

𝑡 =
ℎ𝑡𝑛𝐻𝑓Dom

𝑘COP

(

𝐺NDM − 𝐺HW
)

, (8)

here 𝐺HW is the (constant) daily hot water demand for gas, 𝑓Dom is
he fraction of gas demand meeting domestic demands, 𝑘COP a system-
ide coefficient of performance, and 𝑛𝐻 is the number of customers
ith electrified heating demand. In general, a higher COP will lead to
n increased amount of heating that can be considered renewable [37];
t also has the effect of decreasing both average and peak electrified
eat demand 𝐻 .
4

2.3. Implicit system model, using load duration curves

The standard approach for considering the evolution of system
demand is via the use of load duration curves. With this approach,
the estimated peak demand for a given year 𝑘Peak is forecast by some
means. Once this has been determined, the distribution of the total
demand 𝐷 is calculated by linearly scaling the electrical demand 𝐸 as

= 𝑘Peak𝐸 . (9)

The model (9), combined with the system margin (1) we refer to as the
Implicit system model, as changes in heat demand are implied by the
coefficient 𝑘Peak . This approach is therefore used, for example, in the
methodology for modelling demands in the GB Capacity Market [38].
For the purposes of creating Implicit models that are equivalent to
Explicit demands in a meaningful way, 𝑘Peak is chosen so that the Peak
Demands (5) are equal.

The clear advantage of this approach is its conciseness: once suitable
load duration curves 𝐸 have been identified, only the peak demand
coefficient 𝑘Peak for a given year needs to be determined. On the other
hand, it must be assumed that the load duration curve describing the
electrical demand 𝐸 will not change significantly. As mentioned in
Section 2.2, there are good reasons to think that heat demand 𝐻𝑡 has
a different distribution to electrical demand 𝐸𝑡; however, if changes to
electrified heat demand are small, then this Implicit model might be
preferable.

To study explicitly the differences between the models, we consider
the Bias in the estimates of ACTS for a given scenario  to be given by

Bias() = ACTSIm.() − ACTSEx.() , (10)

where the subscripted ACTSEx., ACTSIm. are the calculations of the
ACTS using Explicit model (7) and Implicit model (9), respectively. In
this way, the effect of changes in demand profiles on the ACTS can be
taken into account for models which otherwise are identical according
to their Peak Demand (5).

3. Weather-dependent energy system modelling

A variety of statistical inference procedures, aimed at understanding
the effects of exogenous factors (such as weather) on energy demand,
have been developed by both academia and industry. To ensure that
all possible effects of increased space heating are captured, we consider
the statistical inference methods developed by both the gas system op-
erator, National Grid Gas, and the electricity system operator National
Grid ESO (NGESO).

NGESO estimates the sensitivity of electricity demand to weather
using the Average Cold Spell methodology [28]. This calculates the
sensitivity of unrestricted system demand to weather variables. (Unre-
stricted system demand is defined as the sum of the transmission system
demand with and demand-side response, embedded generation and
interconnector exports all accounted for.) From this, the ‘underlying’,
non-weather sensitive demand can be estimated. The exact weather
variables used are not specified, unfortunately, but by far the most
common weather variable studied in academic literature is temperature
(alongside temporal variables such as day of week) [1–3,21,27,39–42].

National Grid Gas uses the Composite Weather Variable [43] to
quantify the impacts of weather on demand. Unlike the Average Cold
Spell methodology, however, many of the variables used in the Com-
posite Weather Variable are public, and are described in [44]. The
variables include temperature, wind chill, solar irradiance, and in
future could include the effects of precipitation. Combining the ap-
proaches from gas and electrical domains, a total of ten weather-based
covariates are considered, as well as a range of temporal variables (see
Table 1).
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Table 1
Summary of weather variables and covariates used for energy system simulation, each
considered at an hourly resolution. Variables with a bar ̄(⋅) average the variables for
the previous 24 h.

Variable Description

𝑊on , 𝑊off Hourly onshore/offshore wind capacity factors
𝑆, �̄� Solar PV capacity factor
𝑇 , �̄� Population-weighted temperature
𝑊Chill , �̄�Chill Population-weighted wind chill
𝑇Cold , �̄�Cold Population-weighted cold-spell uptick
𝑡Mon − 𝑡Sun Binary variable for weekdays (each of Monday to Sunday)
𝑡Prd,C𝑖 , 𝑡Prd,S𝑖 𝑖th harmonic time component, C/S as cosine/sin terms
𝑡Sunset Sunset time
𝑡Lin Linear time variable
�̂�Out Out-turn peak electrical demand
�̂�Out Out-turn mean winter gas demand

3.1. Converting meteorological reanalysis to weather-based covariates

Accounting for the dependencies of energy systems on weather
requires an approach to convert historic weather measurements into
appropriate covariates. Meteorological reanalyzes are becoming increas-
ingly popular for modelling of weather within the context of energy
systems. These datasets are a gridded reconstruction of past weather
observations, created by combining historic observations with a high-
fidelity numerical model of the earth system, providing a high quality,
comprehensive record of how weather and climate have changed over
multiple decades. In the context of energy systems, the high spatial
resolution allows for the climate of a region or country to be cap-
tured, as well as being freely available for researchers [41,45–47]. In
this work, we develop the methods described in [42,48] for deriving
weather-based covariates from the MERRA-2 reanalysis data [49].

In total, there are six covariates based on meteorological conditions
(and a further four averaged variables), as in Table 1. These parameters
are derived from the raw reanalysis data as follows:

• Hourly onshore and offshore wind capacity factors 𝑊On, 𝑊Off
are constructed by modification of the method from [42], with
the main steps summarized here. The MERRA-2 reanalysis near-
surface wind speeds are extrapolated using a power-law to 58.9 m
and 85.5 m, based on the capacity-weighted mean onshore and
offshore turbine hub heights respectively (from [50]). Onshore
and offshore turbine power curves from [51] are obtained us-
ing [52], with aggregated GB onshore and offshore wind capacity
factors then created by considering wind farm locations from [50]
for the year 2017 (Figs. 2(a), 2(b)). As in [42], this results in
good accuracy compared to out-turn data [53], with Coefficient
of Determination 𝑅2 of 0.95, 0.90 and RMS error of 7.9%, 7.5%
for onshore and offshore wind capacity factors respectively, when
compared against 2018 daily forecast capacity factors.

• Hourly solar capacity factors 𝑆 are modelled using a combina-
tion of surface temperature and incoming surface irradiation, as
described in [42].

• Hourly temperature 𝑇 and cold-weather uptick variables 𝑇Cold
are calculated based on population-weighted 2 m temperatures.
(The latter is used as a proxy for the Cold Weather upturn
of the Composite Weather Variable, and is intended to model
increased demand at cold temperatures.) The cold-weather uptick
is calculated as

𝑇Cold = max{𝑇0 − 𝑇 , 0} , (11)

with a cold spell cut-off temperature 𝑇0 of 3 ◦C, based on [54, pp.
6]. The population weighting of GB is shown in Fig. 2(c).

• Wind chill is calculated by multiplying the population-weighted
5

2-m temperature 𝑇 , with respect to a wind chill temperature 𝑇WC
against a similar population-weighted 2-m wind speed 𝑊Pop, also
with respect to a threshold 𝑊WC

𝑊Chill = max
{

𝑇WC − 𝑇 , 0
}

× max
{

𝑊Pop −𝑊WC, 0
}

. (12)

The wind chill parameters 𝑊WC, 𝑇WC are chosen as −1.5 m∕s
and 16.5 ◦C, which are consistent with regional values reported
in [54, pp. 6].

3.2. Linear regression with lasso regularization

The goal of regression is to determine underlying sensitivity of
a dependent output variable with respect to given input variables
(covariates). Least-squares linear regression typically achieves this goal
by minimizing the square of the residuals, with the Least Square
sensitivities 𝜃L.S. determined as

𝜃L.S. = argmin
𝜃

‖𝑦 − 𝜃𝑇 𝑥‖2 , (13)

for covariates 𝑥 and output 𝑦. Unfortunately, naïve Least Squares (13)
can lead to over-fitting as there is no penalty on the complexity of a
model, risking returning a model with poor predictive performance due
to spurious correlations [55, Ch. 7.2]. Indeed, with the relatively large
number of covariates considered in this work, it was found that the
models showed poor out-of-sample predictive capabilities compared to
within-sample fitted data.

To overcome this issue, we use Lasso Regularization [55, Ch. 3].
In addition to mitigating against over-fitting, Lasso Regularization pro-
vides solutions 𝜃Lasso that are sparse. That is, coefficients corresponding
to covariates which have little or no impact on the output are set to
zero.

This is achieved by adding a regularization term 𝛼‖𝜃‖1 to the Least
Squares cost function (13), with the Lasso estimate of the sensitivities
𝜃Lasso determined as

𝜃Lasso(𝛼) = argmin
𝜃

‖𝑦 − 𝜃𝑇 𝑥‖2 + 𝛼‖𝜃‖1 . (14)

The regularization term penalizes large coefficients, having the effect
of reducing the magnitude of individual entries in 𝜃Lasso, depending
on the value of 𝛼. For 𝛼 → 0, the Lasso estimate tends to the Least
Squares estimate (13), and will therefore tend to over-fit; on the other
hand, for sufficiently large 𝛼, all values in the vector 𝜃Lasso will be
zero, under-fitting in most cases. Between these two extremes will be
an ‘optimal’ value of 𝛼, 𝛼∗, which will maximize the out-of-sample
predictive performance (in this work Coefficient of Determination, 𝑅2,
is used as a scoring function).

The optimal Lasso fit 𝜃∗Lasso is fitted with this value of 𝛼, i.e.,

𝜃∗Lasso = 𝜃Lasso(𝛼∗) . (15)

hus, a method is required to estimate the out-of-sample of predictive
erformance and subsequently determine 𝛼∗.

.2.1. Determining the lasso parameter 𝛼∗ and computational complexity
To determine the out-of-sample predictive performance, and sub-

equently determine an optimal choice of 𝛼, we use 𝑘-fold cross-
validation [55, Ch. 7.10]. The approach can be briefly summarized as
follows:

• 𝑘 cross-validation folds are created from the 𝑘-years of data, with
each fold having one year of data for validation and 𝑘 − 1 years
for training.

• The sensitivity 𝜃Lasso(𝛼) is determined for a range of values of 𝛼
and for each of the 𝑘 cross-validation folds.

• Estimates of the mean and standard error of the prediction score
(𝑅2) are calculated for each value of 𝛼 using the value of 𝑅2

calculated for each of the 𝑘 cross-validation folds.
• The value of 𝛼∗ is chosen for which the mean prediction score is

within one standard error of the maximum value of the prediction
score 𝑅2.
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Fig. 2. The onshore and offshore wind locations (a, b) and the population weights (c) for Great Britain, used for converting raw reanalysis weather data into wind capacity factors
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able 2
ummary of GB system case study data sources.
Variable Description Reference/data

𝑋 Dispatchable generation [58–61]
𝐸 Unrestricted electrical system demand [62–65]
𝐺NDM NDM gas demand [66]
𝐺HW Hot water gas demand [34,36]
ℎ Electrified heat demand profiles [20,26,67]
𝑘COP System-wide heat pump COP [20,68]
𝑛𝐻 Fraction of houses converted to space heating [69]
𝑓Dom Domestic fraction of NDM gas demand [66,70]

• Finally, 𝜃∗Lasso is calculated from (15) (using data from all 𝑘
winters).

Although there is no closed-form solution to (15), the computa-
ional complexity of the Lasso is typically the same as ordinary Least
quares [55, Ch. 3]. The scikit-learn package [56] is used for all
egression calculations.

. GB case study system modelling

In this section we discuss how the energy data sources of Table 2
re used to build and validate a generally representative model of the
B system. The GB system is chosen for study as it has had a capacity
arket functioning for several years, and because it has a very high

raction of its domestic space heating demand met currently met by
atural gas [57].

.1. Growth in underlying demand and generation

The peak demand season for both electrical and gas systems in
orthwest Europe occurs during the winter months from November to
arch. Following prior works, we study of the 20 weeks of the year

ollowing the first Sunday of November, with the exception of the two
eeks surrounding Christmas (these two weeks have low demand and

o the likelihood of shortfall is negligible) [27,71].
The underlying electrical demand 𝐸 is assumed to remain steady at

9/20 levels, following industry five-year forecasts [58]. To consider a
apid but credible increase in heat pumps in a system on top of this,
s could be considered at some point on a pathway to net-zero, we
onsider a rate of one million domestic installations per year [69].

Conventional generators are represented by a two-state model, using
orced-outage rates from [60, Table 1], with reported availabilities
etween 81% and 97% for these technologies. The forecast of total
nstalled capacity of each class of generation technology is taken from
he five-year forecast [58]; following previous works, these total values
re then disaggregated into individual generating units based on unit
izes taken from National Grid’s 2013 ‘Gone Green’ scenario [23]. The
istribution of interconnector flows are modelled with a uniform dis-
ribution. Specifically, imports are assumed to equally likely between
6

a

igh and low capacity factors of the individual interconnected countries
eported by NGESO [72], with flows assumed independent.

With these models for interconnectors and conventional genera-
ors, the probability density of the dispatchable generation 𝑋 can
e determined via convolution of all individual generators and inter-
onnectors [23]. Boxplots of the distribution of the resulting random
ariable 𝑋 are shown in Fig. 3(c) for each delivery year. The median
f the generation 𝑋 for 19/20 (discounting embedded generation) is
4.6 GW, compared to the previously procured capacity of 52.4 GW
or 20/21 as reported in capacity market reports, and is therefore
onsidered reasonably representative of the GB system.

.1.1. Estimating historic system demand
The estimation of total demand is challenging due increasing lev-

ls of embedded generation [65] and customer demand management
CDM—colloquially referred to as ‘triad avoidance’, and results in
p to 2.5 GW of demand-side response) [63]. Embedded generation
epresents a range of technologies, both dispatchable (such as small
iesel generation) or renewable wind and solar generators. Addition-
lly, NGESO keeps reserves to cover the loss-of-largest-infeed, which at
resent has a value of 1.32 GW [64] (this effectively increases demand
y the same amount).

The unrestricted system demand 𝐸 is therefore determined as the
um of Transmission System Demand [62]; estimated embedded wind
nd solar generation output [62]; estimates of remaining embedded
eneration [65] (assuming an availability of 90%); and, estimates of
ustomer demand management (provided by NGESO). The latter is
ssumed to run at 100% from 5 to 6 pm and at 40% at 4pm/7pm.
ollating all data, peak demands (without weather correction) match
GESO estimates of weather-corrected peak to within 2 GW from
4/15 through to 19/20 winters with mean absolute error of 1.05
W. The closeness of estimates gives confidence that the demand
odel 𝐸, like the generation model 𝑋, is also broadly representative

f the GB system. The subsequent distribution of the demand 𝐷 of
he system (assuming zero heat demand, 𝐻 = 0) is represented in
ig. 3(a) for each hour of the day, with the corresponding net demand
− 𝑌 plotted in Fig. 3(b). These figures show that there is significant

dditional uncertainty caused by renewable generation. For example,
he difference in the evening peak between the 10% and 1-in-10 year
et demand 𝐷−𝑌 quantiles are double the equivalent quantiles for the
emand 𝐷.

.2. Heat pump load profiles and system-wide coefficient of performance

The heat pump load profile ℎ will have a large impact on results,
s heat demand 𝐻 at each hour is linearly related to this profile (8).
herefore, three heat pump profiles are considered as system-wide
ensitivities, taken from literature using [52], and then normalized and
ompared in Fig. 4. The first of these we define as our central profile ,

nd is taken as the cold-weather weekday profile of Love et al. [26], and
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i
h

Fig. 3. The system has a peak demand (a) close to 60 GW, with the variability of net demand (b) much greater due to variable renewable generation. (Plotted in (a), (b) are
10%–90% deciles, as well as the 1-in-10 year quantiles, based on a 30 year hindcast of demand and renewables.) As thermal plant retirements increase, the dispatchable generation
𝑋 (c) reduces. Boxplots show the 0.1, 5, 25, 50, 75, 95, and 99.9% quantiles.
Fig. 4. The three heat pump profiles used for sensitivity analysis. The central profile
 is from Love et al. [26]; the flat profile  is from Eyre at al [20]; and the peaking
profile  of Sansom is from [67].

is based on measured data from several hundred UK-based heat pumps.
Secondly, we consider the flat profile  , as considered by Eyre et al.
n [20] (such a profile has been reported as the de-facto standard for
eat demand in [1]). Finally, we compare this against the profile  of

Sansom, as described in [67], from hereon referred to as the ‘peaking’
profile. It is noted in [67] that  has been very influential in policy,
even though it has a peak higher than other estimates of half-hourly
heat demand.

The system-wide coefficient of performance 𝑘COP is also subject
to considerable uncertainty. In [20], the authors estimate the value
of the COP for air-source heat pumps could increase from 2.0 up to
3.0 from 2010 through to 2050, similarly increasing from 2.5 to 4.0
for ground-source heat pumps, although the authors assume the COP
at peak to be 0.8 times lower than this (due to colder temperatures
during peak demands). Similarly, in [68], the authors estimate seasonal
performance factors (equivalent to the COP definition used in this
work) of 1.5–2.1 for air-source heat pumps and 2.0–2.8 for ground-
source heat pumps; again, during cold weather the performance of
these systems will likely be lower than these values. To capture the
range of values and possible improvements in building stock during
any refitting, we therefore consider a COP range from 1.5 to 2.8, with
a central estimate of 2.0. This central estimate reflects the fact that, in
systems such as GB, air-source heat pumps are likely to be taken up in
much greater numbers than ground-source heat pumps. Systems with
larger numbers of ground-source heat pumps, would likely be closer
to higher value of the COP. If a system is known the have improved
building stock or heat pump technologies compared to the systems
described in [20,68], then this uncertainty range could be updated
7

accordingly.
The fraction of NDM gas demand used by domestic customers 𝑓Dom
is 79% [66,70]. It is assumed that hot water heating demand 𝐺HW is
evenly spread through the year [36] and that commercial and domestic
properties have a similar use of hot water. Under these assumptions,
the mean hourly gas demand for hot water is 9.9 GW throughout the
year [34].

5. Results

The aim of this work is to consider how electrification of heat could
impact on capacity markets through changes in Additional Capacity to
Secure. In Section 5.1, we first demonstrate the Lasso Regularization
approach (as described in Section 3.2), before considering how the
meteorological sensitivity could evolve for 𝜏 − 4 delivery in the 24/25
winter. Based on this model, in Section 5.2 we then consider how bias
could be introduced in estimates of ACTS by Implicit modelling, even
when the equivalent Explicit model has identical peak demand levels.
Finally, in Section 5.3, the variability in the estimates of ACTS are
considered across a range of scenarios.

5.1. Net demand regression with meteorological variables

We first illustrate the Lasso Regularization approach outlined in
Section 3.2, considering fitting the linear model for the system demand
at 6pm for 𝜏 − 0 (the 20/21 winter, with no heat pump demand).
Fig. 5 outlines the approach: a model is fit for each of the five training
datasets (each with one contiguous winter used as a hold-out validation
set); from this, the mean and standard error of the Coefficient of
Determination from the hold-out validation data are calculated. The
optimal value 𝛼∗ is selected as the value that is within one standard
error of the maximum mean coefficient of determination from that
hold-out scoring. Each vertical line indicates the value of 1∕𝛼 for which
the coefficients of a given covariate becomes non-zero, from which it
can be observed that there are many coefficients which are estimated
to have a value of zero.

Using this approach for all hours, the Coefficient of Determination
𝑅2 with the optimal Lasso parameter 𝛼∗ varies between 0.73 and 0.94;
it is above 0.87 for all hours periods between 6 am and 9 pm. The
mean value of 𝑅2 for each of these hours is above 0.8 using the out-of-
sample validation data. This performs very favourably compared to the
least squares model—although the mean Coefficient of Determination
throughout the day was reduced by 5%, the least squares modelling
over-fit dramatically at most times, with all but a single time period
having a Coefficient of Determination lower than −8 using the out-
of-sample validation data. If the 24 models of each of the hours
are combined, the overall coefficient of determination 𝑅2 is 0.978
with sample standard deviation of all combined residuals of 1.02 GW

(1.69%), indicating good performance.
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Fig. 5. Linear regression approach, using Lasso Regularization with 5-fold cross-validation. As the regularization weight decreases (so that 1∕𝛼 increases), the number of non-zero
coefficients increases, as indicated by the vertical lines. The optimal value of 𝛼, 𝛼∗, is chosen at the point at which the mean coefficient of determination 𝑅2 is within one standard
error of the highest mean value of 𝑅2.
5.1.1. Meteorological sensitivity from explicit and implicit models
To consider more clearly how the system has evolved after 4 years

of heat demand growth, we now compare the Explicit heat model (7)
and Implicit heat model (9) using the central heat pump profile  with
a COP of 2.0. The Implicit model requires the zero-heat demand model
of 𝜏 − 0 (the 20/21 winter) to be scaled by 14.0% so that the Peak
Demand matches the Explicit model (as described in Section 2.3), and
so all coefficients have increased by the same amount compared to that
model. In contrast, the coefficients of the Explicit model have changed
in more subtle ways to match the shape of the electrical-plus-heat
demand model.

Firstly, we consider the five sensitivity coefficient values with the
largest mean absolute value across the day, as plotted in Fig. 6. (The
covariates have been normalized to have zero mean and unit variance,
and so a comparison in this way is meaningful.) It can be observed
that sensitivities change significantly through the day—for example,
mean 24-hour solar irradiance �̄� is related to the demand, but with
the highest sensitivities after 11am (even extending to the hours after
dark).

A clear result is the change in sensitivity coefficients with respect
to temperatures 𝑇 , �̄� . The sensitivity coefficient corresponding to mean
daily temperature �̄� has increased sharply around 7am in the Explicit
model, as compared to the value obtained by uniform scaling using
the Implicit model. This sharp increase is caused by the morning peak
seen in the central heat pump profile , which has a peak around this
time (Fig. 4). There is also a noticeable reduction in the sensitivity of
demand to weekends 𝑡Sat , 𝑡Sun as well using the Explicit model.

The mean during the afternoon peak (1600–1900) and number of
non-zero of each of the sensitivity coefficients (across all 24 h), as
calculated for the 𝜏 − 4 year 24/25, are also compared for the Implicit
and Explicit models in Table 3. The mean temperature sensitivity
(across the instantaneous and 24 h mean values 𝑇 , �̄� ) has increased by
54% in the Explicit model, at a rate of more than three times that of the
Implicit model. It can also be observed that, of the additional covariates
selected from the Composite Weather Variable, the 24-hour wind chill
�̄�Chill is most influential, with the corresponding model coefficient
more than quadrupling from 0.042 to a value of 0.205 during the peak
hours.

Interestingly, there is not enough correlation between many of the
other weather-based covariates and demand to yield a non-zero re-
sponse. This is potentially due to the scope of the modelling considered
here as compared to the industry models from which they are derived:
we have only considered the coldest months, where approaches such
as the Composite Weather Variable are designed to model year-round
weather sensitivities. For example, covariates such as the cold-spell
uptick 𝑇Cold could account for the fact that demand-temperature sen-
sitivities are known to be different in winter and summer in the GB
8

system [73].
Fig. 6. A comparison between the Explicit and Implicit heat demand growth model
using COP of 2.0 and the central HP profile  for 𝜏−4 delivery. The five covariates with
the largest mean absolute value are ordered according to that mean value. The mean
temperature sensitivity (calculated as the mean of the sum of coefficients associated
with temperature variables 𝑇 , �̄� ) increases by 54% with the Explicit model to 2.4 GW
per unit of normalized temperature. In comparison, the mean temperature sensitivity
only increases by 14.0% with the Implicit heat demand model to 1.8 GW per unit of
normalized temperature.

5.2. Bias in ACTS calculations from implicit heat demand modelling

Having compared the sensitivities of the Implicit and Explicit mod-
els, we now consider how the ACTS capacity changes for each of these
models through to 𝜏−4 delivery. Table 4 reports the Additional Capacity
to Secure for each of the five years to 𝜏 − 4 for the central heat pump
profile  and COP of 2.0. Whilst the underlying electrical demand 𝐸
does not change, the generation fleet 𝑋 does, particularly from 𝜏 − 3
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Table 3
Comparison of Explicit (7) and Implicit (9) models for 𝜏 − 4 delivery (24/25).
Despite the models having the same peak demands, the coefficients differ as the
Explicit model is fit using gas demand as a proxy for heat, where the Implicit model
only scales existing load duration curves. Reported are the mean of the regression
coefficients during the system peak (1600–1900 h); numbers in parenthesis indicate
the number of non-zero coefficients across the whole day.

Vrbl. Explicit Implicit Vrbl. Explicit Implicit

𝑡Sat 1.78 (24) 2.03 (24) 𝑡Tue 0.0486 (7) 0.0748 (8)
𝑡Sun 1.62 (24) 1.74 (24) 𝑡Prd,C2 0.0428 (9) 0.0177 (7)
�̄� 1.48 (24) 1.01 (24) 𝑡Prd,S3 0.0178 (2) 0.039 (2)
𝑇 1.02 (24) 0.846 (21) 𝑡Mon 0.013 (10) 0.0293 (14)
�̄� 0.724 (24) 0.711 (21) �̄�Cold 0.00895 (5) 0 (1)
𝑡Fri 0.456 (10) 0.608 (12) 𝑊on 0.00091 (5) 0.0106 (9)
𝑡Lin 0.377 (10) 0.495 (14) 𝑇Cold 0 (9) 0 (5)
𝑡Sunset 0.34 (5) 0.473 (15) 𝑊Chill 0 (0) 0 (0)
𝑡Prd,C1 0.283 (22) 0.154 (13) 𝑆 0 (5) 0 (5)
�̂�Out 0.269 (11) 0.294 (12) 𝑊off 0 (7) 0.0404 (22)
�̄�Chill 0.205 (10) 0.0419 (3) 𝑡Prd,S1 0 (0) 0 (0)
𝑡Prd,S2 0.0553 (3) 0.144 (2) 𝑡Thu 0 (9) 0 (4)
𝑡Prd,C3 0.0527 (1) 0.0739 (1) �̂�Out 0 (0) 0 (0)

Table 4
Comparison of Additional Capacity to Secure, comparing the Explicit model (1), (7)
against the Implicit model (1), (9), using the central heat pump profile  and a COP
f 2.0.
Delivery year Explicit ACTS, GW Implicit ACTS, GW

𝜏−0 (20/21) −4.36 −4.36
𝜏−1 (21/22) −3.75 −3.54
𝜏−2 (22/23) −2.02 −1.6
𝜏−3 (23/24) 2.02 2.62
𝜏−4 (24/25) 6.26 7.05

Table 5
Comparison of the Explicit and Implicit ACTS for 𝜏 − 4 delivery (24/25) and corre-
sponding Bias (10) for each of the three heat pump profiles, assuming a system COP
of 2.0.

Profile ℎ Explicit ACTS, GW Implicit ACTS, GW Bias, GW

 (Love et al.) 6.26 7.05 0.79
 (Eyre et al.) 5.43 6.14 0.71
 (Sansom) 12.82 15.15 2.33

to 𝜏 − 4, as there is significant levels of decommissioning of legacy
plant expected during this period (Fig. 3(c)). It can be seen that as
the level of electrical heat demand 𝐻 increases, ACTS calculated by
Explicit and Implicit system models drifts apart, with increasing over-
procurement Bias (10). By delivery at the 𝜏 − 4 time period, the Bias is
such that 0.79 GW additional ACTS is required for the Implicit model
as compared to the Explicit model. By comparison, the Demand Curves
used in the GB capacity market 𝜏 − 1 and 𝜏 − 4 auctions have had a
width of 2 GW or less for the past two years [74]. This Bias could lead
to systematic over-investment—if at 𝜏 − 1 there is a consistent over-
procurement of 0.21 GW over 10 years at the net Cost of New Entry of
£49m per GW-yr [74], this equates to an over-spend of £103m.

A similar result is found for the other two heat pump profiles,
as given in Table 5. The ACTS is biased by 0.71 GW for the flat
profile  , a similar amount to the central profile . The peak profile 
hows an even larger change of more than 2.3 GW, but that is perhaps
nsurprising giving the extreme evening peak in the evening of that
rofile (Fig. 4).

To consider why this bias is introduced, we plot the load duration
urve (LDC) of the demand 𝐷 of the Explicit model for 𝜏 − 4 in Fig. 7,
ith three different Implicit models fit. This first is a model to fit the
nce-per-year peak demand (as in (5)); the other two models fit the
ne-in-twenty-year median peak demand, and the eighteen-per-year
edian peak demand (i.e., the weekly median peak demand). As the
xplicit and Implicit models have difference distributions, this results in
9

ifferent demand profiles 𝐷, and subsequently different levels of Bias.
Fig. 7. Comparison between the load duration curves of the 𝜏 − 4 Explicit model (7)
using central HP profile  and COP of 2.0, in comparison to the equivalent Implicit
models (9), matching the eighteen-per-year, once-per-year and one-in-twenty median
Peak Demands. The median demand is several GW higher for the Implicit models—it
is only at high demand levels that the distribution of the Implicit models become close
to that of the Explicit models (inset).

Table 6
Changes in Additional Capacity to Secure (in GW) for 𝜏−4 delivery (24/25), comparing
capacity requirements for the long-term climate against warm (13/14) and cold (10/11)
years. The model with heat pumps (HPs) is the Explicit model.

Model 1990–2019
climate ACTS

Warm weather (13/14) Cold weather (10/11)

ACTS Change ACTS Change

No HPs −0.72 −2.61 −1.89 1.01 1.73
With HPs 6.26 3.23 −3.03 9.01 2.75

It can be seen that the value of demand 𝐷 at 50% duration is greater in
the Implicit than Explicit models. This implies that the rate of increase
of the Peak Demand of 𝐷 is greater than that of the median demand of
𝐷—the Implicit scaling coefficient 𝑘Peak must over-compensate for the
ncreased Peak Demand, so overshoots the quantiles lower down the
DC.

.3. Sensitivity analysis: Varying heat profiles and system coefficient of
erformance

As mentioned previously, sensitivity analysis is an integral part of
esource adequacy planning and capacity markets, as there are many
ncertainties for which it is difficult to assign probabilities accurately.
n this final section we consider how the variability of ACTS capacity
hanges, considering first increased meteorological uncertainty (from
ncreased demand-weather sensitivity) and secondly in uncertainty to
eat pump profiles ℎ and system-wide coefficient of performance 𝑘COP.
he goal is to compare the additional variability compared to existing
ariations considered by industry, and put into perspective the bias
bserved in the previous section.

.3.1. Meteorological sensitivity at 𝜏 − 4 delivery
To consider clearly how the meteorological sensitivity has changed,

he first result we consider is how the 𝜏 − 4 delivery compares for
models with and without heat pumps. Results are given in Table 6
for the central profile  and COP of 2.0. It is found that the ACTS
increases from −0.72 (i.e., a small level of oversupply) to under-supply
of 6.26 GW, an increase in ACTS of 7.0 GW. This implies an increase in
demand of 1.75 kW per heat pump at peak. This is remarkably close to
the 1.7 kW per heat pump estimated by [26] and well within the range
of 1.2 to 2.6 kW reported in [19].

Of particular interest for this work, however, is how changing
the winter conditions changes the ACTS compared to the use of a
long-term average. The 10/11 and 13/14 winters are chosen first for

investigation as these have been identified in prior works as being of
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Fig. 8. Changes in ACTS, comparing values if all years have the same weather against the 30-year climate, calculated for the 𝜏 − 4 delivery (24/25). The addition of heat pumps
leads to an increased range of ACTS with respect to the long-term winter climate, due to increased weather sensitivity; although, it is clear that the mean temperature anomaly
only partially explains the change in ACTS of individual winters.
particular importance for the determination of peaking capacity in the
GB system [41]. These winters have mean hourly temperatures 𝑇 of
7.98 ◦C, 10.13 ◦C (the long-term mean and standard deviation of 𝑇 are
9.46 ◦C, 3.4 ◦C, respectively); the mean offshore capacity factors 𝑊Off
are 0.39 and 0.55 (with long-term mean and standard deviation of 0.51,
0.28 respectively). The results shows an almost-symmetric change in
the required capacity factor close to 1.8 GW for those particular years
with no heat pumps (Table 6). As the system meteorological sensitivity
increases with heat pump numbers, however, the width of spread for
those anomalous years has increased by almost 50%, subsequently
covering the range from −3.03 to 2.75 GW.

Furthermore, Fig. 8 plots the changes in ACTS for all winters, again
comparing the model with and without heat pumps. In this figure,
the colour of the points indicates the value of the mean temperature
anomaly for that winter. From this figure, it is first observed that 10/11
and 13/14 winters are close to the extremes for the ACTS spread at 𝜏−4
delivery, as expected. The use of several decades of climate data allows
for a much deeper understanding of the variability of these estimates,
and allows for the severity of individual winters to be compared.

It is interesting to note from this figure, however, that it is not
only the mean temperature that determines the change in ACTS—the
Pearson correlation coefficient between the mean temperature anomaly
and the change in ACTS is 𝑟 = −0.55. For example, the 17/18 winter is
cooler than the long-term average but requires less generating capacity
than the long-term climate, as the very cold temperatures from that
winter do not occur at points of high net demand. This is also possible
to observe in winters such as 06/07 and 12/13—whilst these are
the extreme years in terms of mean temperature anomaly, they do
not lead the greatest changes in ACTS. As both wind generation and
heat pump demand increases, the sensitivity of the system to wind
(through renewables) and temperature (through demand) will continue
to evolve, and so the meteorological conditions of greatest importance
to explain power system variability will also continue to change.

5.3.2. Impacts of changing system performance factors
The ACTS for each combination of heat pump profile ℎ and co-

efficient of performance 𝑘COP is now considered. Fig. 9 plots these
sensitivities against Weather and Modelling sensitivities, as well as
against the range of scenarios and sensitivities considered within the GB
capacity market [72]. Weather sensitivities are based on the cold/warm
winters of 10/11 and 13/14 (as in Section 5.3.1), whilst the Modelling
uncertainties represent the ACTS based on the five cross-validation
models (i.e., five models fit with the optimal 𝛼∗ in (15), but with
the data of one winter not included). NGESO’s FE scenarios consider
a range of supply and demand pathways up to 2050, whilst ECR
Sensitivities consists of (amongst others) over- and under-delivery of
the capacity market, unusually cold or warm weather, and over/under
estimation of nominal peak demands.

The Explicit modelling uncertainty around 𝜏 − 1 delivery has a
RoCS of 4.7 GW, increasing to 14.5 GW for 𝜏 − 4. In comparison,
10
Fig. 9. Sensitivity analysis for 𝜏 − 1 and 𝜏 − 4 cases, comparing the Explicit model’s
range of ACTS calculated over a range of scenarios and sensitivities with the equivalent
from NGESO’s most recent electricity capacity market reports. Uncertainties in Weather
and Modelling for Explicit modelling are considered for the central HP profile  with
COP of 2.0.

the current industry (NGESO) sensitivities and scenarios for 𝜏 − 1 and
𝜏 − 4 remain roughly equivalent in their Range of Capacity to Secure,
with total RoCS of 6.6 GW and 6.7 GW respectively. In other words,
the uncertainty due to the addition of one million heat pumps per
year, given the three heat pump profiles ,  ,  , and COPs from 1.5
to 2.8 is more than double that of all sensitivities considered in the
capacity market report for 2020, even without considering variations in
actual installed number of installed heat pumps 𝑛𝐻 . This huge range in
possible outcomes for high penetrations of heat pumps has been noted
before [19], although to our knowledge has not been identified as an
issue in the context of capacity markets.

The unrestricted profile  of Sansom is considered pessimistic [67],
with a peak demand much greater than the other profiles. In the worst
case (with system COP of 1.5), four million heat pumps would each
add 4.6 kW to the peak. In terms of peak heat demand per dwelling,
this is not unreasonable—measured data analysed in [67] shows a heat
demand peak of 8 kW per dwelling at the coldest temperatures, and so
the value calculated in this work would correspond to an equivalent
COP of 1.7. However, heat pumps tend to have very different load
profiles to gas boilers, as equivalent devices of the same volume and
footprint are much lower power, generally resulting in much flatter
profiles.

Nevertheless, even with the unrestricted profile  excluded, the
uncertainty in peak demand increase using only profiles ,  shows
a Range of Capacity to Secure of 5.05 GW, 75% of the 𝜏−4 uncertainty
of NGESO (again, even without considering variation in the number
of actual heat pumps installed or heat pump DSR). These numbers are
comparable with white-box modelling estimates such as [19], which
(by consideration only of the reported range of possible peak demands
of heat pumps of between 1.2 kW and 2.6 kW) would show a range
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of 5.1 GW with four million heat pumps. If this uncertainty is added
to the existing variability in industry forecasts (as the FE scenario only
consider very low levels of annual heat pump installations), the RoCS
would increase to more than 10 GW.

5.3.3. Discussion: Bias, variability and impacts on social welfare
To close this section, we briefly compare bias and variability from

sensitivities and scenarios in the context of the capacity market. Where
possible, bias should clearly be eliminated: if we consistently over-
or under-estimate the true capacity to secure, then in the long-run
consumers will pay for unnecessary capacity (the Cost of New Entry in
the GB capacity market is £49m per GW-yr [72]). Changes in demand-
weather sensitivity lead to uncertainty that is largely irreducible, and
so it is sensible to ensure this sort of risk can be communicated to
the market. Whilst uncertainties around the number of heat pumps
installed will likely remain, uncertainties pertaining to future heat
demand curves could be diminished significantly.

Given this conclusion, system operators need to continuously review
the most extreme scenarios, as well as understanding estimates of pos-
sible bias in their analysis. For example, if the peaking profile  could
onfidently be rejected, then this would deliver immediate benefits, as
he target capacity to secure can be reduced to more modest levels.
imilarly, if a system operator considers the Explicit heat model as
he most accurate modelling approach, then using this model would
liminate Bias (as well as any potential of perceived bias), thereby
roviding both accurate results and modelling transparency.

. Conclusions

This paper considered the impacts of electrification of heat on
ystem adequacy, with a particular focus on the changes to the Addi-
ional Capacity to Secure driven by both scenario and meteorological
ncertainties. The addition of one million heat pumps annually to the
B system is considered as a case study, which has a very large impact
n the capacity required to reach system security standards.

In particular, it is shown that demand-weather sensitivities could
ncrease by 50% for 𝜏 − 4 delivery, with similar increase in the Range
f Capacity to Secure required when net demand is conditioned on
ndividual weather years. The proposed Explicit heat demand model
as advantages in terms of transparency, with the heterogeneous dif-
erences between space heating and electrical demand growth clearly
emarcated. By utilizing Lasso-Regularized linear regression methods,
wide range of weather-based covariates can be studied without the

roblems of over-fitting that occur using the standard Least-Squares
pproach.

It is shown that failure to disaggregate demand separately into heat
nd electrical demands leads to a bias of 0.79 GW in capacity to secure
hen compared to results determined using the legacy approach of

inearly scaling load duration curves. Over the course of 10 years, it
s demonstrated this could result in over-procurement of more than
100m. Uncertainty due to heat pump demand could be greater than all
urrently considered scenarios that NGESO considers, although further
esearch to narrow this uncertainty could prove fruitful. Reducing
his uncertainty, in-turn, would lead to benefits in terms of reducing
asteful over-procurement of peaking capacity, although this needs to
e done conservatively to ameliorate dangers of costly lost load.

There are many ways in which the electrification of heating de-
and can impact energy system security. Amongst others, interactions
ith large-scale energy storage introduces time coupling which adds

omplexities (whether from standalone electrical, thermal, or electric
ehicle storage). Increased interconnection between regions which each
ave high levels of space heating could increase further challenges
round coincidence of peaks between markets which had previously
een considered largely independent. It is concluded that modelling
apid electrification of heat in such interconnected systems will require
ulti-region, time-sequential modelling for the accurate determination

f capacity requirements.
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