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ABSTRACT

Providing efficient and accurate parameterizations for model reduction is a key goal in many areas of science and technology. Here, we
present a strong link between data-driven and theoretical approaches to achieving this goal. Formal perturbation expansions of the Koopman
operator allow us to derive general stochastic parameterizations of weakly coupled dynamical systems. Such parameterizations yield a set
of stochastic integrodifferential equations with explicit noise and memory kernel formulas to describe the effects of unresolved variables.
We show that the perturbation expansions involved need not be truncated when the coupling is additive. The unwieldy integrodifferential
equations can be recast as a simpler multilevel Markovian model, and we establish an intuitive connection with a generalized Langevin
equation. This connection helps setting up a parallelism between the top-down, equation-based methodology herein and the well-established
empirical model reduction (EMR) methodology that has been shown to provide efficient dynamical closures to partially observed systems.
Hence, our findings, on the one hand, support the physical basis and robustness of the EMR methodology and, on the other hand, illustrate
the practical relevance of the perturbative expansion used for deriving the parameterizations.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0039496

Parameterizations aim to reduce the complexity of high-
dimensional dynamical systems. Here, a theory-based and a data-
driven approach for the parameterization of coupled systems are
compared, showing that both yield the same stochastic multilevel
structure. The results provide very strong support to the use of
empirical methods in model reduction and clarify the practical
relevance of the proposed theoretical framework.

I. INTRODUCTION AND MOTIVATION

Multiscale systems are typically characterized by the presence
of significant variability over a large range of spatial and temporal
scales. This multiscale character is due to a combination of the

following factors: the nature of the external forcings; the inhomo-
geneity of the properties of the system’s various components; the
complexity of the coupling mechanisms between the components;
and the variety of instabilities, dissipative processes, and feedback
acting at different scales. In many cases, both the theoretical under-
standing of such systems and the formulation of numerical models
for simulating their properties are based on focusing upon a reduced
range of large spatial and long temporal scales of interest, and upon
devising an efficient way to effectively capture the impact of the
faster dynamical processes acting predominantly in the neglected
smaller spatial scales.24,64

Given a high-dimensional dynamical system, we are thus inter-
ested in reformulating it in such a way that only the variables of
interest are resolved. A first guess would be to ignore altogether
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the unresolved variables and consider uniquely the filtered evo-
lution laws valid for the targeted range of scales. However, this
is well known to be inadequate, because nonlinearity guarantees
that the unresolved variables have an impact on the resolved ones,
in terms of both the detailed dynamics and its statistical proper-
ties. Therefore, the problem of constructing accurate and efficient
reduced-order models—or, equivalently, of defining the coarse-
grained dynamics—is an essential and fundamental aspect of study-
ing multiscale systems, both theoretically and through numerical
simulations.

For the sake of concreteness, let us consider the case of climate
science. It is well-nigh impossible, therefore, given our current scien-
tific knowledge and our available or even foreseeable technological
capabilities, to create a numerical model able to directly simulate
the climate system in all details for all the relevant timescales, which
span a range of over 15 orders of magnitude.30,32,66 Hence, one
has to focus on a specific range of scales through suitably devel-
oped, approximate evolution equations that provide the basis for
the numerical modeling. Such equations are derived from the fun-
damental laws of climate dynamics through systematic asymptotic
expansions that are based on imposing an approximate balance
between the forces acting on geophysical flows. These balance rela-
tions lead to removing small-scale, fast processes that are assumed
to play a minor role at the scales of interest by filtering out the
corresponding waves.38,42,80

In climate science, parameterization schemes have been tradi-
tionally formulated in such a way that one expresses the net impact
on the scales of interest of processes occurring within the unresolved
scales via deterministic functions of the resolved variables, as in the
pioneering work on the parameterization of convective processes
by Arakawa and Schubert.2 More recently, it has been recognized,
mostly on empirical grounds, that parameterizations should involve
stochastic and non-Markovian components.4,28,62 Machine learning
methods have been proposed as the next frontier of data-driven
parameterizations,29,61,68,84,92 able to deliver a new generation of Earth
system models;73 see, though, the caveats discussed by Refs. 26
and 39.

A. The projection operator formalism of Mori and
Zwanzig

Let us reformulate the problem of constructing parameteriza-
tions as a projection of the dynamics onto the set of resolved vari-
ables. By working at the level of observables, Mori60 and Zwanzig90

showed that the evolution laws for the projected dynamics incor-
porate a deterministic term that would be obtained by neglect-
ing altogether the impact of the unresolved variables, to which
a stochastic and a non-Markovian correction had to be added.
Chorin et al.20,21 played an important role in developing further these
ideas and applying them to several important problems. We briefly
recapitulate below the Mori–Zwanzig projection operator approach.

Formally, let 8 denote a generic observable defined on a state
space viewed as the product of two finite-dimensional spaces X ×
Y , with variables x ∈ X and y ∈ Y being the resolved and unre-
solved variables, respectively. Next, let us define P to be a projector
onto functions depending only on the target variables in X , with the

complementary projector on the unresolved variables being defined
by Q = Id − P.

Given a smooth flow ψt on X × Y , we consider its action on
smooth observables8 = 8(x, y) defined by

Ut8(x, y) = 8(ψt(x, y)), (x, y) ∈ X × Y , t ≥ 0. (1.1)

The operator Ut is the Koopman operator and the family {Ut}t≥0 of
Koopman operators indexed by time forms a semigroup; see Sec. II
for further details. The Koopman operator describes how functions
on the phase space change under the action of the flow; its time
evolution obeys the following equation:

∂t (Ut8) = L (Ut8) . (1.2)

The linear operator L gives the instantaneous rate of change of 8
under the action of the flow ψt. Representing Ut formally as the
exponential of L, Ut = etL, is both useful and fully justified by oper-
ator semigroup theory.65 With this representation, L satisfies the
following identities:

∂t (Ut8) = LetL8

= etLL8

= etL (P + Q)L8 (1.3a)

= etLPL8+ etQLQL8+
∫ t

0

e(t−s)LPLesQLQL8ds,

(1.3b)

where we have employed the Dyson identity23,25 to obtain Eq. (1.3b),
as will be discussed in Sec. II A. The first term in Eq. (1.3b) is the
contribution of the resolved variables x alone to the instantaneous
rate of change of 8. The second term models the fluctuating effects
of the unresolved y-variable by itself, while the third and last term
represents, via an integral, the time-delayed influence upon x of its
interactions with y.

This formal calculation suggests that any closed model for the
x variables should incorporate a fluctuating term to account for the
y contributions and a memory or integral term for the y–x inter-
actions. Unfortunately, the Mori–Zwanzig equation (1.3b)—also
known as the generalized Langevin equation (GLE)43,63—does not
provide explicit analytic formulas to determine each of the three
summands in the right-hand side (RHS) of Eq. (1.3b). Hence, we
need efficient ways to approximate such an equation.

In the limit of perfect timescale separation between the x- and
y variables, the non-Markovian term drops out and the fluctuating
term can be represented as a—possibly multiplicative—white-noise
term, thus recovering the basic results obtained via homogeniza-
tion theory;34,58,64 see the classical derivation by Hasselmann93 of this
result in the context of climate dynamics. When no such separa-
tion exists, however, one has to resort to finding an integral kernel
beyond the abstract formulation of Eq. (1.3b); see, for instance, the
theoretical ansatz based on perturbation expansion presented in
Refs. 88 and 89 and discussed later in the paper, and Refs. 43 and 83
for concrete applications.

In parallel with the theoretical approaches to approximate the
Mori–Zwanzig equation (1.3b), data-driven methods have been pro-
posed to model fluctuations and memory effects arising as a result of
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projecting a large state space onto (much) smaller subspaces. To this
end, the work in Ref. 43 provides a rigorous connection between
the Mori–Zwanzig equation (1.3b) and multilevel regression mod-
els that were initially introduced for climatological purposes in
Ref. 48. More recently, the authors in Ref. 51 proposed Nonlinear
Auto-Regressive Moving Average with eXogenous input (NAR-
MAX) models as a data-driven methodology that is comparable with
the Mori–Zwanzig formalism and applied such models to the deter-
ministic Kuramoto-Sivashinsky equation and to a stochastic Burgers
equation; see also Gupta and Lermusiaux.92 The complementarity
of theory-based and data-driven model reduction methods in the
absence of timescale separation is very well documented in Ref. 51
as well. A highly complementary recent contribution is aimed at
finding a common thread between data-driven methods and the
Mori–Zwanzig theoretical framework.52

Efforts at using ingeniously selected basis functions as a step-
ping stone in data-driven methods for model reduction, effective
simulation with partial data, and even prediction are multiple
and flourishing. Thus, the eigenvalues and eigenfunctions of the
Koopman and transfer operators have been used to capture the
modes of variability of the underlying flow, regardless of the latter
being deterministic or stochastic; see, respectively, Refs. 3 and 19.
Dynamic mode decomposition (DMD)72 allows one to reconstruct
from observations the eigenvectors and eigenvalues of the Koop-
man operator for observables of interest even in high-dimensional
dynamical systems.59,69 The latter approach is complementary to
the one presented herein because we shall use the eigenvectors of
the Koopman operator to build the projected dynamics for the
observables of interest, which can then be rewritten as a multilevel
Markovian stochastic model.

Examples of other types of selection of dynamically interest-
ing and effective bases are multichannel singular-spectrum analysis
(MSSA)1,5,31 and data-adaptive harmonic decomposition (DAH-
MSLM).10,44 Both methodologies have been used extensively and
successfully in the simulation, as well as the prediction, of complex
phenomena.31,41,44

Our main theoretical result, Theorem 2.1, establishes how such
spectral elements determine in turn the constitutive elements of
data-driven non-Markovian closure of partially observed complex
systems, when rewritten as a multilevel Markovian stochastic model.
This theorem highlights, in particular, new bridges with Koopman
modes and the DMD,59,69,72 as well with other kinds of projections
onto spectral bases.10,31,37,47,67,78 A more thorough discussion of the
complementary approaches involved is beyond the scope of this
paper.

B. This paper

Many approaches to constructing theoretically rigorous
parameterizations have been devised. These can be broadly divided
into top-down and data-driven approaches: Top-down approaches
aim at deriving the parameterizations by applying suitable approx-
imations to the equations describing the dynamics of the whole
systems, for instance,35,57,83,86,88,89 while data-driven parameteriza-
tions are built by constructing a statistical-dynamical model of the
impact of unresolved scales on the scales of interest. In fact, par-
tial observations of a time-evolving system can be used to deduce

the fluctuating and delayed effects of the unobserved processes, as
shown in Refs. 43, 45, 48, and 85.

In this paper, we will discuss and compare the properties of
the Wouters–Lucarini (WL) top-down parameterization83,88,89 and
of the empirical model reduction (EMR) data-driven parameteri-
zation.43,45,46,48,49 We will also see when and how the integrodiffer-
ential equation occurring in the WL parameterization can be recast
into a set of Markovian stochastic differential equations (SDEs).
In other words, we investigate the quasi-Markovianity of the latter
parameterization.63

The two aforementioned methodologies are conceptually and
practically distinct, even though the ultimate goal of both is
to provide a computationally practical approximation for the
Mori–Zwanzig or GLE integrodifferential equation. In other words,
both approaches—top-down and data-driven—provide fluctuations
in the form of stochastic noise and memory effects determined by
an integral kernel. On the one hand, the WL approach assumes
prior knowledge about the decoupled hidden dynamics but no infor-
mation about the statistical properties of the coupled system. The
empirical approach, on the other hand, samples the observed vari-
ables evolving according to the latter. The structure of the multilevel
stochastic models (MSMs) that generalize EMRs43 allows one, more-
over, to derive explicit formulas for the fluctuating and memory cor-
rection terms that parameterize the influence of hidden processes.

The overall goal of this paper is to provide a conceptual and
analytical link between these two approaches, aiming, on the one
hand, to buttress the practical relevance of the WL perturbative
approach and, on the other hand, to provide further insight into the
well-documented robustness of the EMR method. Moreover, we will
clarify how multilevel systems arise from both the top-down (WL)
and the bottom-up (EMR) approaches. The paper explores the com-
plete set of boxes and explains all the arrows in Fig. 1. The diagram
in the figure shows that, starting from the top box, one can arrive at
a memory equation, like (1.3b), via top-down or bottom-up methods,
as indicated by the left and right sequence of arrows, respectively.

The paper is structured as follows. Section II revisits the deriva-
tion of the WL parameterization method by applying the Dyson
expansion to the Koopman operator associated with two weakly
coupled dynamical systems. We show that such an expansion need
not be truncated for additively coupled models and consider more
general coupling laws than those in Ref. 89.

Furthermore, we study the problem of finding Markovian rep-
resentations of the memory equation in the WL approach based on
the spectral decomposition of the Koopman semigroup. Specifically,
Theorem 2.1 shows, in the case of a scalar observable, how to recast
the stochastic integrodifferential equation arising in the WL param-
eterization as a multilevel Markovian stochastic system involving
explicitly the spectral elements of the (uncoupled) Koopman oper-
ator, and we point out in Remark 2.5 how such a Markovianization
extends to the multidimensional setting. Section III provides new
insights into the Markovian representation adopted in the MSM
framework; these insights help one to determine, in particular, the
number of levels required for EMR to converge.

Section IV presents a comparison of the data-driven and
top-down parameterization approaches using a simple concep-
tual stochastic climate model. Finally, we discuss the conclusions
obtained from this investigation in Sec. V.
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Appendixes are included in order to avoid diverting the atten-
tion of the reader from the main message of the paper. Appendix A
provides the proof of the key Theorem 2.1. Appendix B briefly revis-
its the spectral decomposition of correlation functions and provides
a criterion to quantify the loss of the semigroup property that is
useful in identifying non-Markovian effects. Appendix C discusses
the stochastic Itô integration of the elementary form of an MSM.
Appendix D shows how EMR approaches can capture the dynam-
ical properties of partially observed systems; in it, we consider a
simple climate model, obtained by coupling the Lorenz atmospheric
model54 (L84) and the Lorenz convection model53 (L63).

II. REVISITING THE WEAK-COUPLING-LIMIT
PARAMETERIZATION

To study dynamical systems in which one can separate the vari-
ables into two groups, with weak coupling between the two, one
often resorts to the so-called parameterizations of the effects of one
group on the other. In the weak-coupling limit, the coupling itself
can be treated as a perturbation of the main dynamics.56,88,89 Granted
such an assumption and some degree of structural stability of the
system, one can apply response theory to derive explicit stochastic
and memory terms to describe the impact of the variables we want
to neglect on the variables of interest, in the Mori–Zwanzig spirit.
Note that, to do so, no assumption on timescale separation between
the two groups of variables is necessary. This point is particularly
relevant in fields like climate sciences, where no clear timescale sep-
aration is observed so that asymptotic expansions of the kind used
in homogenization theory are of limited utility.

A. Deriving the WL approximation for the
Mori–Zwanzig formalism

Here, using a perturbative approach, we review the derivation
of the parameterization presented in Refs. 56, 88, and 89. Formally,

FIG. 1. Schematic view of the two complementary approaches studied in this
paper. The arrows on the left-hand side indicate top-down, perturbative parame-
terizations; on the right, they refer to bottom-up, empirical parameterizations.

we want to couple two dynamical systems generated independently
by two vector fields F : X ⊆ Rd1 −→ X and G : Y ⊆ Rd2 −→ Y

with possibly d1 6= d2 and typically d1 � d2. We study a broad class
of systems of the form

ẋ(t) = F(x(t))+ εCx
x (x(t)) : Cx

y

(

y(t)
)

, (2.1a)

ẏ(t) = G(y(t))+ εCy
x (x(t)) : Cy

y

(

y(t)
)

. (2.1b)

The operation indicated by the colon x : y denotes the Hadamard
product that multiplies vectors or matrices component-wise. Here,
four new vector fields have been introduced to model the coupling
law, namely, Cx

x : X −→ X , C
y
x : X −→ Y , Cx

y : Y −→ X , and

C
y
y : Y −→ Y .

The real parameter ε controls the strength of the coupling
between the two groups of variables, x(t) and y(t), so that the x
and y variables are uncoupled for ε = 0. We assume that the vector
fields F and G, as well as the coupling laws in Eqs. (2.1a) and (2.1b),
are such that the system (2.1) possesses a global attractor. Further-
more, we assume throughout this article that this global attractor
supports an physical invariant probability measure µ that describes
the distribution of trajectories onto the global attractor.

The WL parameterization views the coupling as an ε-pertur-
bation of the otherwise independent x- and y-processes, with x being
the observed and y being the hidden variables. One next assumes
that the impacts of perturbations applied to these processes can be
addressed using response theory70,71 so that response formulas can
be used to derive an effective equation for the x variables.

Taking the Mori–Zwanzig60,90 point of view, we wish to cal-
culate the evolution of observables that depend on the observed
variables x alone, 8 = 8(x(t)). The idea, following Ref. 89, is to
perform a perturbative expansion of the differential operator L

governing the evolution of8(x(t)) under the action of the flow asso-
ciated with Eq. (2.1). Denoting by u(x, y, t) the time evolution of a
smooth observable8 in C∞(X × Y), the first step of this Dyson-like
operator expansion reads as follows:

∂tu = Lu = (L0 + εL1)u. (2.2)

Here, L0 and L1 account for the advective effects of the uncoupled
and coupling terms, respectively, that compose the RHS of Eq. (2.1),
namely,

L0 =
[

F(x)
G(y)

]

·
[

∇x

∇y

]

, (2.3a)

L1 =
[

Cx
x (x) : Cx

y

(

y
)

Cx
x (x) : Cx

y

(

y
)

]

·
[

∇x

∇y

]

, (2.3b)

in Eq. (2.3), ∇x and ∇y denote the vector differential operators with
respect to the variables x and y.

Recalling Eq. (1.2), the solution operator of Eq. (2.2) is the
Koopman operator. Formally, its dual acts on densities and it is
the so-called transfer operator.3,50 Equation (2.2) is thus a transport
equation, where the physical quantity or observable is advected by
the vector field on the RHS of Eq. (2.1).

Note that the operator formalism presented here in the deter-
ministic dynamical systems setting—and the associated semigroup
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theory—extends to Markov diffusion processes driven by a stochas-
tic forcing.19 In the latter case, the transport equation (2.2) becomes
the so-called backward Kolmogorov equation that describes the
evolution of the expected value of observables. Loosely speaking,
the corresponding extension amounts to adding a Laplacian-like
operator to the advection operator L.19,63 See Ref. 36 for the appro-
priate context in testing the applicability of response theory to the
independent x and y processes, when ε = 0.

More precisely, one associates with the solution u(x, y, t) of
Eq. (2.2) unfolding from an observable 8 = 8(x, y) at time t = 0,
a family of linear Koopman operators indexed by time {Ut}t≥0 such
that u(x, y, t) = Ut8(x, y), for any t ≥ 0 and (x, y) in X × Y . These
operators are defined—as mentioned already in connection with
introducing the GLE (1.3b)—as exponentials of the operator L, i.e.,
Ut = etL. This notation is formal as the operator L is unbounded;
it is, however, usable as {Ut}t≥0 satisfies the semigroup property,
i.e., Ut+s = UtUs, t, s ≥ 0, as for a standard exponential. Over the
appropriate function space [Such a space can be chosen, for instance,
as Dp = {8 ∈ L

p
µ(X × Y) | A8 = limt→0 t−1(Ut8−8) exists} for

some p ∈ [1, ∞], with µ denoting a relevant invariant measure
of the system (2.1) supported by the global attractor, while the
limit is taken in the sense of strong convergence.25] of observables
8, this family actually forms a strongly continuous contracting
semigroup.25

The action of the flow on an observable 8 becomes thus more
transparent thanks to the operator Ut, according to the equation

Ut8(x0, y0) = etL8(x0, y0) = 8(x(t; x0), y(t; y0)), (2.4)

where (x(t; x0), y(t; y0)) denotes the system’s solution at time t ema-
nating from the initial state (x0, y0) at time t = 0. In what follows,
we omit the subscript 0 in (x0, y0) but still take it as an initial state.

The semigroup {Ut}t≥0 is known as the Koopman semigroup
and for each t, Ut is Koopman operator mentioned above; see also
Ref. 43, Sec. 4. When the coupling parameter ε in system (2.1) is
small, one can use formal perturbation expansions of the Koopman
semigroup to better isolate and assess the coupling effects at the level
of observables. To do so, we follow here the perturbation expansion
first introduced by Freeman J. Dyson in the context of quantum
electrodynamics23 and later formulated rigorously in mathematical
terms in Ref. 33. Formally, this expansion reads as follows:

Ut8(x, y) = etL8(x, y)

= etL0+tεL18(x, y) (2.5a)

= etL08(x, y)+ ε

∫ t

0

esLL1e
(t−s)L08(x, y)ds (2.5b)

= etL08(x, y)+ ε

∫ t

0

e(t−s)L0L1e
sL8(x, y)ds, (2.5c)

and it yields the following expansion of the Koopman operator in ε:

Ut8(x, y) = etL08(x, y)+ ε

∫ t

0

e(t−s)L0L1e
sL08(x, y)ds + O

(

ε2
)

.

(2.6)

This identity shows that the evolution of a generic observable can be
described as an ε-perturbation of its decoupled evolution according
to L0. We note that these expansions are purely formal and, in par-
ticular, it is not clear in which sense this expansion might converge.
For a bounded perturbation operator L1, it would be straightfor-
ward to prove boundedness of the resulting perturbed semigroup.
However, L1 here is a differential linear operator, for which direct
estimates are more laborious. Leaving aside the functional analysis
framework that would make such an expansion rigorously conver-
gent, we shall use nevertheless the expansion (2.6) throughout this
article.

The objective now is, using this operator expansion, to derive
an effective reduced-order model for the evolution of the x-variable
without having to resolve the y-process. We start observing the sys-
tem at t = 0, but assume that it has already attained a steady state.
Since we are only concerned with observables depending solely on
the x variables, we formulate now an evolution equation for such
observables. To do so, we consider first the Liouville equation for
a generic y-independent observable 8, this is, 8(x, y) = 8(x), for
every x and y.

For such an observable, at the time we start observing the
coupled system, Eq. (2.2) reduces to

∂t (Ut8) |t=0 =
[

F(x)+ εCx
x (x) : Cx

y

(

y
)
]

· ∇x8, (2.7)

where · denotes an inner product in X . Equation (2.7) illustrates the
trivial fact that the time evolution in Eq. (2.1) of an x-dependent
physical quantity is also affected by the y variables.

Following Refs. 88 and 89, the decoupled equations are
assumed to have been evolving for some time prior to the coupling.
Hence, we have to formally parameterize the evolution of the Cx

y

(

y
)

-
contribution to the vector field which is, ultimately, a vector-valued
observable.

We do so by introducing an extended version of the Koopman
operators that act on vectors component-wise, rather than just on
real-valued observables. Consider v : X × Y −→ Rd, for some pos-
itive integer d, and define the action of the Koopman operator etL

on v as

[

etLv(x, y)
]

i
= etL

[

v(x, y)
]

i
(2.8)

for every i = 1, . . . , d. The definition (2.8) will allow us to use the
semigroup notation for observables of possibly different dimen-
sions, all of which take their inputs in the phase space X × Y .
Ultimately, this is a component-wise evaluation of our extended
Koopman operator family, and its generator can be obtained anal-
ogously. As mentioned above, we have to model the effects of the
coupling vector field Cx

y(y), whose state at time t = 0 is the product
of the evolution from time −t to 0. We then have, with the dynamics
starting at time −t and initial state (x0, y0),

Cx
y

(

y
)

= etLCx
y

(

y0, −t
)

= etLCx
y

(

y0

)

. (2.9)
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Now, by using the perturbative expansions in Eqs. (2.5b)–(2.6),
we obtain

Cx
y

(

y
)

= etLCx
y

(

y0

)

= etL0+tεL1Cx
y

(

y0

)

(2.10a)

= etL0Cx
y

(

y0

)

+ ε

∫ t

0

esLL1e
(t−s)L0Cx

y

(

y0

)

ds (2.10b)

= etL0Cx
y

(

y0

)

+ ε

∫ t

0

e(t−s)L0L1e
sLCx

y

(

y0

)

ds (2.10c)

= etL0Cx
y

(

y0

)

+ ε

∫ t

0

e(t−s)L0L1e
sL0Cx

y

(

y0

)

ds + O
(

ε2
)

.

(2.10d)

Plugging the identity in Eq. (2.10c) into Eq. (2.7), we find the
following expression:

∂t (Ut8) |t=0 =
[

F(x)+ εCx
x (x) :

{

etL0Cx
y

(

y0

)

+ ε

∫ t

0

esLL1e
(t−s)L0Cx

y

(

y0

)

ds
}
]

· ∇x8. (2.11)

This equation is an exact reformulation of the problem induced
by Eq. (2.7). This reformulation demonstrates that memory effects
enter at second order in powers of the coupling parameter. Notice,
though, that even if Eq. (2.11) reduces the dimensionality of the
problem from d1 + d2 to d1, it does not constitute an approximation
for the evolution of 8 as an observable of x alone, since it depends
on the evolution of the y variables in the coupled regime by means
of the action of esL onto L1.

Therefore, we need to perform a further approximation by
considering Eq. (2.10d) instead, which leads to

∂t (Ut8) |t=0 '
[

F(x)+ εCx
x (x) :

{

etL0Cx
y

(

y0

)

+ ε

∫ t

0

e(t−s)L0L1e
sL0Cx

y

(

y0

)

ds
}
]

· ∇x8, (2.12)

where the terms of order ε3 have been dropped. Equation (2.12) is
our equivalent of the Dyson approximation in quantum electrody-
namics; it approximates the evolution of the x variables with no need
for the evolution of the y variables in the coupled regime.

This result amounts to saying that—by observing only the
statistical properties of the decoupled dynamics of the y-process,
obtained with ε = 0—one can construct a Markovian contribution

Cx
x (x) :

{

etL0Cx
y

(

y0

)
}

,

and a non-Markovian contribution

Cx
x (x) :

{ ∫ t

0

e(t−s)L0L1e
sL0Cx

y

(

y0

)

ds
}

,

to the dynamics of the x variables that is able to describe the impact
of the coupling.

Expanding the kernel K̃ of the memory contribution, we get

K̃(t, s, x0, y0) : = e(t−s)L0L1e
sL0Cx

y

(

y0

)

(2.13a)

= e(t−s)L0

([

Cx
x(x0) : Cx

y(y0)

]

· ∇x

+
[

Cy
x(x0) : Cy

y(y0)

]

· ∇y

)

esL0Cx
y

(

y0

)

(2.13b)

=
[

e(t−s)L0

(

Cy
x(x0) : Cy

y(y0)

)]

· ∇ye
sL0Cx

y

(

y0

)

.

(2.13c)

Note that the leading-order Koopman operator esL0 models the evo-
lution of the observables in the uncoupled regime. Since there is
no prior knowledge on initializing the coupled system at time −t,
the initial state y0 in the hidden variables should be drawn from an
ensemble, according to a probability density function. At this stage,
there is freedom in the choice of such a prior. However, since we are
assuming that the coupled system was initialized at time −t, it is nat-
ural to draw y0 according to the invariant measure ν associated with
the dynamical system generated by the vector field G from Eq. (2.1).

We wish to sample initial conditions from the coupled steady
state, but do not assume any prior knowledge of the coupled statis-
tics. As discussed in Refs. 88 and 89, we can take advantage of
response theory to address this situation. Indeed, for any sufficiently
smooth observable9 , we have

〈9〉ε = 〈9〉ε=0 +
∞
∑

k=1

εkδk[9],

where 〈9〉ε is the expectation value of 9 in the coupled system
(2.1), 〈9〉ε=0 is the expectation value of 9 according to the statis-
tics generated by the uncoupled y process obtained by setting ε = 0
in Eq. (2.1b), and εkδk[9] is the kth-order response. In what follows,
we remove the subscripts for the averages when ε = 0. Therefore, we
have that the expected value of the coupling function reads as

〈

Cx
y

〉

ε
=
〈

Cx
y

〉

+
∞
∑

k=1

εkδk[C
x
y]. (2.14)

Likewise, we can calculate the average of such function at time t,

〈

etL0Cx
y

〉

ε
=
〈

etL0Cx
y

〉

+
∞
∑

k=1

εkδk[e
tL0Cx

y]. (2.15)

Now, by letting η̃(t, y0) = etL0Cx
y(y0), we find that in order for the

approximate statistics to agree up to second order in ε with the
exact one, we only need to impose the following conditions upon
the first two moments of the parameterized noisy fluctuations (see
also Ref. 88):

〈

η̃(t, y0)
〉

=
∫

ν
(

dy0

)

Cx
y

(

y0

)

, (2.16a)

〈

η̃(t, y0)η̃
>(0, y0)

〉

=
∫

ν(dy0)e
tL0Cx

y

(

y0

)
(

Cx
y

(

y0

)
)>

, (2.16b)

where (·)> stands for the transpose of a vector or a matrix. It fol-
lows that any stochastic noise η(t) that satisfies the two conditions
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above will be suitable for parameterizing the fluctuations in the
y-dynamics tied to the lack of knowledge in the initial state. Each
of the entries in the correlation matrix given by Eq. (2.16b) is the
correlation function between the components of the vector field Cx

y

and these will become explicit provided a suitable spectral decom-
position is at hand. Such a decomposition will be provided later in
Sec. II C, although the reader is referred at this point to Appendix B
for clarity.

In the memory term, though, we neglect ε-corrections to its
statistics since memory effects are of order ε2 already. Thus, we have

by averaging the kernel K̃(t, s, x0, y0) in Eq. (2.13b) with respect to
the y variables,

K(t, s, x) : =
∫

ν(dy0)

[

e(t−s)L0

(

Cy
x(x0) : Cy

y(y0)

)]

· ∇ye
sL0Cx

y

(

y0

)

(2.17a)

=
∫

ν(dy0)

[

e(t−s)L0 Cy
x(x0) : e(t−s)L0Cy

y(y0)

]

· ∇ye
sL0Cx

y

(

y0

)

(2.17b)

=
∫

ν(dy0)

[

Cy
x(x(t − s)) : e(t−s)L0 Cy

y(y0)

]

· ∇ye
sL0Cx

y

(

y0

)

. (2.17c)

This way, the memory kernel only depends on the x variables.
Hence, we find a self-consistent evolution of the x variables, subject
to the influence of unobserved variables y, in the form of a stochastic
integrodifferential equation (SIDE) resembling the GLE (1.3b),

ẋ(t) = F(x)+ εCx
x (x) : η(t)+ ε2Cx

x(x) ·
∫ t

0

K(t, s, x)ds, (2.18)

where η(t) is a stochastic forcing that agrees with the mean and
correlation properties stated in Eq. (2.16).

We emphasize that the solution x(t) of the original system of
ordinary differential equations (2.1) does not satisfy Eq. (2.18): it
is just the proposed reduced-order model for the x variables. The
closure provided by expressing the corrections in the second and
third term on the RHS of Eq. (2.18) as functions of x alone is typically
called a parameterization of the effect of the unobserved y variables
in the climate sciences.32

Note that there is considerable freedom in choosing the noise,
since we only require agreement up to the second moment. How-
ever, a direct consequence of this weak-coupling parameterization
is that realizations of the noise can be produced by directly integrat-
ing the decoupled hidden variables or by representing it using simple
autoregressive models.82 We are assuming here that the uncoupled
dynamics leads to a noisy signal; this can be achieved either by the
presence of stochastic forcing in the hidden variables82,87 or by their
uncoupled dynamics being chaotic.83

To summarize, the weak-coupling limit allows one to develop
a parameterization of the hidden variables for a system of coupled
equations where no separation of timescales is assumed. More-
over, this approach provides explicit approximate expressions for
the deterministic, stochastic, and non-Markovian terms in the
Mori–Zwanzig formalism of Eq. (1.3b).

There are two sources of error in the parameterization pro-
posed in Eq. (2.18). First, the truncation performed in the Dyson
expansion neglects higher-order effects, which are weighted by the
third power of the coupling parameter ε. Second, averaging over
the statistics of the uncoupled dynamics can also introduce errors.
Furthermore, the nature of the stochastic correction is not fully
determined except for its lagged correlation.

The perturbation operator approach taken here is analogous to
that of Ref. 89, who only considered the independent or additive-
coupling cases; the latter is expanded upon in Sec. II B. Here, though,
we generalize further the parameterization formulas that can be
obtained via perturbative expansion of linear operators. In fact, the
present approach can also be extended to weakly coupled systems of
the form

ẋ(t) = F(x(t))+ εCx
(

y(t)
)

, (2.19a)

ẏ(t) = G(y(t))+ εCy
(

x(t), y(t)
)

, (2.19b)

where Cy encodes interactions that need not be separable between
the x and y variables in the hidden layer of the model. Note that
the full parameterization of arbitrary couplings was discussed by the
two authors of Ref. 89 in the previous work,88 in which they used a
response-theoretic approach.

B. The additive-coupling case

The approximate Dyson expansion given in Eq. (2.12) is exact
in the case of additive coupling. Such systems take the form

ẋ(t) = F(x(t))+ εCx
(

y(t)
)

, (2.20a)

ẏ(t) = G(y(t))+ εCy (x(t)). (2.20b)

Indeed, letting Cy(x, y) = Cy(x) in Eq. (2.19b) and using Eq. (2.10b)
allow us to avoid the truncation of the Dyson expansion and yield
the following expression for the memory term:

K̃(t, s, x, y0) = esLL1e
(t−s)L0 Cx

(

y0

)

(2.21a)

= esL
(

Cx(y0) · ∇x + Cy(x) · ∇y

)

e(t−s)L0 Cx
(

y0

)

(2.21b)

= esL (Cy(x)) · ∇ye
(t−s)L0 Cx

(

y0

)

, (2.21c)

which is exact. Next, taking averages with respect to ν, we obtain

K(t, s, x) =
∫

ν(dy0)e
sLCy(x) · ∇ye

(t−s)L0 Cx
(

y0

)

. (2.22)

Hence, the parameterization in this additive-coupling case is exact,
as no terms proportional to εk, k ≥ 3 are present. The only assump-
tion made is that the statistics in the y variables have reached a steady
state according to the unperturbed system. Finally, the full SIDE in
this case takes the form

ẋ(t) = F(x)+ εη(t)+ ε2

∫ t

0

K(t, s, x)ds, (2.23)

where the stochastic process η has the mean and correlation prop-
erties given by Eq. (2.16). This equation is, thus, exactly the one
obtained in Ref. 89.
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Memory effects represented by integral terms seem unavoid-
able unless the memory kernels vanish quickly with respect to time.
Infinite timescale separation between the two sets of variables leads,
though, to the vanishing of the associated integral expressions.64

Here, we are not assuming no such property in the coupled dynami-
cal system under study; see Eqs. (2.1) and (2.20). On the other hand,
reduced phase spaces can help explain the statistics of the dynamical
system without resorting to delayed effects that entail the integrals
in Eqs. (2.18) and (2.23). Following Ref. 19, we briefly review in
Appendix B a criterion based on Koopman operators—and, more
generally, Markov operators—that enables one to decide whether
memory effects can help explain the dynamics and statistics in
reduced phase spaces.

C. Markovian representation through leading
Koopman eigenfunctions

In the context of Langevin dynamics, there are known condi-
tions on memory kernels that allow one to recast certain stochastic
integrodifferential equations into a Markovian SDE by means of
extended variables; see Ref. 63, Sec. 8.2. The stochastic processes
that allow such a procedure are called quasi-Markovian.63 (Such
a Markovianization procedure is actually not limited to stochastic
processes and it relies on the same type of ideas in other contexts;
see Refs. 7, 9, 22, and 43, Sec. 1.3.)

This Markovianization theory can be formulated in the set-
ting of near-equilibrium statistical mechanics, where one uses
fluctuation-dissipation-like relations that link the decay properties
of the memory kernel and the decorrelation rates of the fluctua-
tions. Here, we follow the approach in Ref. 63 but without making
any assumptions on the Hamiltonian behavior of the y variables. We
need, though, to make assumptions on the spectral properties of the
generator of the y-dynamics, as explained below.

We define the generator L
y
0 of the Koopman semigroup associ-

ated with the y-dynamics by

L
y
08(y) = G(y) · ∇8(y), (2.24)

for every real-valued observable 8 ∈ C∞ (Rd2
)

and we denote the

associated Koopman operator at time t by Ut = eL
y
0t; the subscript

y has been dropped from the ∇ operator herewith, for notational
clarity. Recall that the spectrum of such operators provides useful
insights into the statistical properties of the system; this topic is
beyond the scope of the present paper but it is treated in detail in
Ref. 19.

It suffices to show below that the spectrum of Ut allows one to
characterize the constitutive ingredients of the WL parameterization
(2.18) and (2.23), subject to natural assumptions. Even though we
have clarified in Eq. (2.8) how the Koopman operator acts on vector-
valued observables of any dimension, we restrict now its action
for simplicity to scalar real-valued observables, as in Eq. (2.24).
In this case, along the lines of the methodology of dynamic mode
decomposition,59,69,72 we can (formally) decompose the operator as

eL
y
0t =

N
∑

j=1

etλj5j + R(t), (2.25)

where {λj}N
j=1

are the eigenvalues that form the point spectrum of L
y
0

and 5j is the spectral projector onto the eigenspace spanned by the
eigenfunctionψj. Here, R(t) is the residual operator associated with
the essential spectrum of L

y
0 and its norm is controlled by a decaying

exponential. We assume furthermore that the spectrum of L
y
0 lies

in the complex left half-plane and that, in particular, Reλj ≤ 0 for
any j.

Such a spectral decomposition and its properties can be rigor-
ously justified for a broad class of differential equations perturbed
by small noise disturbances; see Ref. 19, Theorem 1 and Appendix
A.5. Based on these rigorous results, we assume, roughly speaking,
that these properties survive in a certain small-noise limit and con-
centrate here on vector fields y given by G in (2.24) for which a
decomposition such as (2.25) holds and a spectral gap does exist in
the appropriate functional space.

In the following lines, we examine the expression of the mem-
ory kernel K appearing in Eq. (2.23) using the eigendecomposition
proposed in Eq. (2.25). In particular, we study such an integral
kernel K component-wise,

[K(t, s, x)]i = Cy(x(s)) ·
〈

∇
N
∑

j=1

eλj(t−s)αi,jψj(y)

〉

+ R(t − s)[Cx]i

(2.26)

≈ Cy(x(s)) ·
〈

∇
N
∑

j=1

eλj(t−s)αi,jψj(y)

〉

(2.27)

= Cy(x(s)) ·
N
∑

j=1

eλj(t−s)αi,j

〈

∇ψj(y)
〉

, (2.28)

for i = 1, . . . , d1, where

αi,j =
〈

ψ∗
j , [Cx]i

〉

=
∫

ν(dy)ψ∗
j (y)[C

x(y)]i,

and we have neglected the contribution coming from the essen-
tial spectrum. The (·)∗ superscript is used to denote the dual
eigenfunction.

This decomposition highlights the fact that the leading eigen-
values of the operator governing the evolution of observables in the
uncoupled y-dynamics set the timescale for the memory kernel. Fur-
thermore, this spectral approximation implies that the correlation
functions of the noise have the same decay properties, as will become
apparent later in the proof of Theorem 2.1. It follows that the cor-
respondence between the noise and integral timescales allows us
to recast the SIDE in the WL equation (2.23) into a fully Marko-
vian version with linearly driven hidden variables that are forced by
the observed variables through a functional dependence that can be
nonlinear. More exactly, we have the following theorem.

Theorem 2.1: Consider the system (2.20) where Eq. (2.20a) is,
instead, a scalar equation for a real-valued variable x(t). Let ν be the
physical invariant measure associated with the equation

ẏ = G(y), (2.29)

i.e., with the flow determined by the vector field G in system (2.20),
for ε = 0. Moreover, let L

y
0 be the (uncoupled) Koopman operator

associated with (2.29) as defined in Eq. (2.24).
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The point spectrum ofL
y
0 is assumed to be constituted of N simple

eigenvalues, whose corresponding eigenpairs
{

(λj,ψj), j = 1, . . . , N
}

are ordered as follows: 0 ≥ Reλj ≥ Reλj+1 and λj = λj+1 when
Imλj > 0, for j in {1, . . . , N}.

We assume that Cx in (2.20) lies in the span
{

ψj, j = 1, . . . , N
}

and has ν-mean zero.
Then, the WL equation (2.23) associated with system (2.20)

admits a Markovianization of the form

ẋ(t) = F(x(t))+ ε3 · Z(t), (2.30a)

dZ(t) = (εR(x(t))+ DZ(t)) dt +6dWt, (2.30b)

where 3 and Z(t) lie in CN for every t, while the inner product
3 · Z(t) is real. Here, R is mapping R into CN, Wt is a (real-valued)
N-dimensional Wiener process with covariance matrix 6, and D is
an N × N matrix with complex entries, as specified below.

More precisely,

3 =
[

α
1/2
1 β

1/2
1 , . . . ,α

1/2
N β

1/2
N

]>
, (2.31)

where

αj =
〈

ψ∗
j , Cx

〉

=
∫

ν(dy)ψ∗
j (y)C

x(y), (2.32a)

βj =
〈

Cx,ψj

〉

=
∫

ν(dy)Cx(y)ψj(y). (2.32b)

The CN-valued mapping R is defined as

R (x) =
(

Cy(x) ·
α

1/2
1

β
1/2
1

〈

∇ψ1(y)
〉

, . . . , Cy(x) ·
α

1/2
N

β
1/2
N

〈

∇ψN(y)
〉

)

,

(2.33)

where Cy is defined in (2.20b), and 〈·〉 denotes averaging with respect
to the invariant measure ν.

Finally, D = diag (λ1, . . . , λN) and the covariance matrix 6 is
given by

6 = (− (D + D∗))
1/2 H, (2.34)

where H is an N × N matrix whose entries are defined as follows: If λj

is real, then Hj,j = 1, and if λj = λj+1, then

Hj,j = 1,

Hj+1,j+1 = 0,

Hj+1,j = 1,

(2.35)

while all other entries are zero.
The full proof appears in Appendix A.
Remark 2.1: Note that the Koopman operator of interest here

is the one associated with the y-subspace Y ⊆ Rd2 and not with
the entire (x, y)-space X × Y ⊆ Rd1+d2 . Other techniques, like the
DMD mentioned in Sec. I A, aim at extracting the modes of variabil-
ity of the full system by means of studying the Koopman operator
in the entire phase space through suitably defined observables. To
this end, the latter methods employ projections of observables onto
the eigenfunctions of the Koopman operator to obtain the so-called

Koopman modes, which are susceptible of capturing the underly-
ing dynamics. Notice that in Theorem 2.1, instead, we are using the
Koopman eigenfunctions to identify the closure model, while pro-
jections only come into play in the definition of the coefficients αj

and βj; see Eqs. (2.32a) and (2.32b), respectively.
Remark 2.2:

(i) Assumptions on F, R, and 3 that ensure that (2.30) possesses
a global random attractor—and thus a stable asymptotic behav-
ior in the pullback sense—appear in Ref. 43, Theorem 3.1 and
Corollary 3.2.

(ii) Note that Theorem 2.1 can be viewed as a generalization of other
Markovianization results for GLEs that appeared in the litera-
ture; see Ref. 63. For instance, the scalar GLE in R reduces to

ẋ = F(x(t))−
∫ t

0

K(t − s)x(s)ds + η(t), (2.36)

where λ is in Rn, M is a positive definite n × n matrix, and
K(t − s) =

(

eM(t−s)λ
)

· λ determines the autocorrelation of the
process η(t). In this setting, Eq. (2.36) is equivalent to the
following SDE:

ẋ = F(x(t))+ λ · z,

dz = (xλ− Mz)dt +6dWt,
(2.37)

with66∗ = M + M∗. Theorem 2.1 allows for nonlinear depen-
dence on x in the z-equation, and thus for memory kernels that
are more complicated than in (2.36). Such a generalization is
of practical importance since the process z can then have a more
complex correlation dependence on the observed variable x than
the one afforded by linear memory terms.

Remark 2.3: When L
y
0 is self-adjoint—in a suitable Hilbert

space, as outlined in Appendix B, i.e., when L
y
0 = L

y∗
0 —the eigen-

values are real and the eigenvectors are mutually orthogonal. Self-
adjointness thus implies that there are no oscillations in the corre-
lation functions of the noise or, equivalently, peaks in their power
spectrum. With respect to Theorem 2.1, the matrix H in this case
would be the identity, since the eigenvalues and eigenfunctions are
real and the Itô solutions of (2.30b) are, hence, real as well.

Remark 2.4: The resulting system given by Eq. (2.30) is now
fully Markovian and the only sources of error with respect to the
original SIDE (2.18) lie (i) in the effects of the essential spectrum,
which are neglected herein, and (ii) the assumptions about the
coupling terms. Neglecting the essential spectrum is only valid for
Koopman operators with a point spectrum capable of capturing the
correlations in the decoupled y-system; the latter might only hold in
the case of Markovian diffusion processes and not for deterministic
ones. Also, the assumption that the coupling functions project solely
on the point spectrum might not hold in general.

From a practical perspective, though, a suitable choice of dom-
inant eigendirections can reduce the number of extra dimensions
needed to integrate the system. Such a suitable choice boils down to
neglecting particular eigendirections and this can be done according
to two handy criteria,

(i) The weight determined by the αj and βj coefficients defined in
Eqs. (2.32a) and (2.32b) is small and
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(ii) The eigenvalues λj of L
y
0 satisfy Reλj0 � λ†, for some

j0 ∈ {1, . . . , N}, in which case eλj0
t decays rapidly as t grows; here

λ† < 0 and |λ†| is some characteristic inverse time for the deter-
ministic system F. In addition, if αj0 > αj for j = 1, . . . , N and
j 6= j0, both the memory and the noise correlations die out fast.
Hence, one can neglect the integral terms and perform a fully
Markovian parameterization, which is possible in the presence
of white noise.

Remark 2.5: Theorem 2.1 is stated for x scalar for the sake of
simplicity, but this result extends to the d1-dimensional Eq. (2.20)
for the (observed) variables x. In this remark, we sketch the main
elements that permit such a generalization.

Aside from the obvious generalization of the assumptions in
Theorem 2.1 to a multidimensional setting, the main hypothesis
consists of assuming that the now vector-valued coupling function
Cx in Eq. (2.20) has components {[Cx]i : i = 1, . . . , d1} that project
onto the N simple eigenspaces of the decoupled Koopman operator
introduced in Eq. (2.24). In this case, the construction of a multi-
level Markovianization like Eq. (2.30) can be done in the following
fashion:

ẋ(t) = F(x(t))+ ε3Z(t), (2.38a)

dZ(t) = (εR(x(t))+ DZ(t)) dt + SdWt. (2.38b)

Here Wt is a d1N-dimensional Wiener process, Z(t) is a d1N-
dimensional vector, 3 is a matrix of size d1 × d1N, R : Rd1

−→ Cd1N, and D and S are d1N × d1N block-diagonal matrices
given by

D =






D1

. . .

DN




 and S =






61

. . .

6N




 , (2.39)

where Dj and 6j are d1 × d1 diagonal matrices with every (non-

zero) element being equal to λj or
√

−2Reλj, respectively. More
importantly, the vectors Z(t) and R(x) are split into N column vec-
tors zj(t) and rj(x) of length d1 with j in {1, . . . , N}. This way,

Z(t) =
[

z>
1 (t), . . . , z

>
N(t)

]>
and R(x) =

[

r>
1 (t), . . . , r

>
N(t)

]>
.

Therefore, Eq. (2.38) can be written as

ẋ(t) = F(x(t))+ ε3Z(t), (2.40a)

dz1(t) = (εr1(x(t))+ D1z1(t)) dt +61dW(1)
t , (2.40b)

...

dzN(t) = (εrN(x(t))+ DNzN(t)) dt +6NdW(N)
t , (2.40c)

where W
(j)
t is a d1-dimensional Wiener process. The vectors rj(x) are

given by

rj(x) =
[

Cy(x) · γ1,j

〈

∇ψ1(y)
〉

, . . . , Cy(x) · γd1 ,j

〈

∇ψ1(y)
〉]>

, (2.41)

where γi,j are defined in terms of the parameters (αj,βj) introduced
in Eqs. (2.32a) and (2.32b), respectively. Here, we do not give the
explicit expression of 3, but its role is to provide suitable weights,

in the spirit of Eq. (2.31), to the levels in Eq. (2.40) so that (a) the
correlation functions match those of the coupling function Cx in the
uncoupled regime and (b) the resulting term3Z(t) is real.

The system equation (2.40) has the general structure one would
obtain if the coupling function Cx projected along all the eigendi-
rections in the point spectrum. This might not be true in general,
but the drift matrix D can be rearranged so that only the rele-
vant modes of variability are modeled—following criteria (i) and
(ii), as formulated in Remark 2.4—and still afford a reduction of
the number of levels N. Notice that the Nth level variables zN

described by Eq. (2.40c) decorrelate the fastest, the rest, since their
exponential decorrelation rate is given by |ReλN| ≥ |Reλj|, for all
j = 1, . . . , N − 1.

The advantages of the Markovian system of Eqs. (2.30)
and (2.40) over the original WL equation (2.23) are twofold.
First, we identify situations in which the WL equation can be
Markovianized by introducing extended, hidden variables. This idea
was already introduced in a preliminary application of the WL
parameterization,87 in which the authors resorted to a Markovian
system to perform their simulations. In fact, one of their examples is
studied in the present framework; see Sec. II D.

Second, memory equations contain nonlocal terms that are
cumbersome and computationally expensive to integrate, as well as
requiring much larger storage for the full history of the system’s
variables. The efficient Markovianization of evolution equations
with memory terms is an active field of research in diverse areas
of mathematics and the applied sciences; these areas include the
study of bifurcations of delay differential equations,8,11 the reduc-
tion of stochastic partial differential equations to stochastic invariant
manifolds,14,15 and material sciences,22 among many others.

D. Preliminary example

As seen earlier in Theorem 2.1, if the coupling function is reso-
nant with the Koopman operator associated with the y-dynamics,
one can identify the dominant exponential rates of decay of the
memory term and the characteristic decorrelation time of the noise.
As a consequence, one can Markovianize the parameterization and
greatly facilitate the numerical integrations involved.

To illustrate the above statement, we revisit here the prelimi-
nary application of the WL parameterization in the context of multi-
scale triads.87 In that work, the authors implemented the parameter-
ization for a collection of three-dimensional models that do exhibit
time scale separation and compare the corresponding outputs to
those obtained via homogenization. The results are encouraging,
since the parameterizations in Ref. 87 were obtained only from the
decoupled hidden dynamics, in the lines of the present paper as well;
see derivation of Eq. (2.18).

One of the first multiscale triads studied in Ref. 87 is the
following:

ẋ(t) = εB(0)y1y2, (2.42a)

ẏ1(t) = εB(1)xy2 − γ1y1 + σ1dW(1)
t , (2.42b)

ẏ2(t) = εB(2)xy1 − γ2y2 + σ2dW(2)
t . (2.42c)
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Here, we require that
∑

j B(j) = 0, dW(1)
t and dW(2)

t are scalar Brow-

nian increments, and the parameter ε indicates both the timescale
separation and the coupling strength. Notice that when the system
is decoupled, i.e., when ε = 0, the fast dynamics evolve according to
an Ornstein-Uhlenbeck (OU) process whose steady-state statistics
are governed by Gaussian distributions with explicit mean and vari-
ance (see, e.g., Ref. 63). Hence, by virtue of the previous formulas or
by following Ref. 87, the WL parameterization yields the following
scalar SIDE:

ẋ(t) = εη(t)+ ε2

∫ t

0

K(s, x(t − s))ds, (2.43)

here,

〈η(t)〉 = 0, (2.44a)

〈η(t + s)η(s)〉 =
(

B(0)
)2

e−(γ1+γ2)t
σ 2

1

2γ1

σ 2
2

2γ2

, (2.44b)

K(s, x) =
[

x
x

]

·
〈[

B(1)y2

B(2)y1

]

: ∇yy1(s)y2(s)

〉

, (2.44c)

where the angular brackets refer to the ensemble averages accord-
ing to the already mentioned Gaussian distributions arising from the
decoupled model. Expanding these averages, Eq. (2.44c) leads to

K(s, x) = xe−(γ1+γ2)
〈

B(1)y2
2 + B(2)y2

1

〉

(2.45a)

= xB(0)e−(γ1+γ2)s

(

B(1)
σ 2

2

2γ2

+ B(2)
σ 2

1

2γ1

)

. (2.45b)

The timescales are indicated by the exponents in the formulas
above and they are the same for the noise and the memory kernel.
This equality suggests the possibility of Markovianizing the memory
equation into the following two-dimensional system:

ż1(t) = εB(0)z2, (2.46a)

ż2(t) = −(γ1 + γ2)z2 +
σ1σ2

2γ1γ2

{2(γ1 + γ2)}1/2dWt

+ ε

(

B(1)
σ 2

2

2γ2

+ B(2)
σ 2

1

2γ1

)

z1. (2.46b)

Clearly, performing a numerical integration of this system is easier
than for a memory equation like Eq. (2.43).

The results of Sec. II C allow us to carry out the dimension
reduction of the multiscale triad by analyzing the spectral properties
of the Koopman operator associated with the decoupled y-dynamics.
Since the y variables evolve stochastically, the Koopman operator
becomes the backward-Kolmogorov equation, which governs the
evolution of the expectation values of the observables. Thus, for
a generic observable 9 in the y phase space, the evolution of its

expectation value is given by

∂t9(y1, y2) = L
y
09(y1, y2)

=
[

−γ1y1

−γ2y2

]

· ∇9(y1, y2)

+ σ 2
1 ∂

2
y1
9(y1, y2)+ σ 2

2 ∂
2
y2
9(y1, y2). (2.47)

Now, let 9(y1, y2) = y1y2 be the coupling function of the triad
system (2.42), for which we find that

L
y
09(y1, y2) = −(γ1 + γ2)9(y1, y2). (2.48)

The above equation is an eigenvalue problem, showing that this
particular 9 is an eigenfunction of the Koopman operator associ-
ated with the eigenvalue e−(γ1+γ2). This is no surprise since y1 and
y2 are, respectively, the Hermite polynomial eigenfunctions of the
backward-Kolmogorov equation of the scalar OU process.79 Hence,
the product y1y2 is also an eigenfunction of the same equation for
the joint process. Therefore, we can immediately re-Markovianize
the parameterization according to Eqs. (2.30), where D = γ1 + γ2

and

R(x(t)) =
(

B(1)
σ 2

2

2γ2

+ B(2)
σ 2

1

2γ1

)

x(t). (2.49)

III. MULTILEVEL STOCHASTIC MODELS AND
EMPIRICAL MODEL REDUCTION (EMR)

A. Multilevel stochastic models (MSMs)

MSMs are a general class of SDEs that were introduced in
Ref. 43 and are, by their layered structure, susceptible to provide
a good approximation of the GLE (1.3b) formulated by Mori and
Zwanzig when a high-dimensional system is partially observed; see
Ref. 43, Proposition 3.3 and Sec. 5. The MSM framework allows
one to provide such approximations that are accompanied by use-
ful dynamical properties, such as the existence of random attractors
(Theorem 3.1 in Ref. 43). The conditions on the high-dimensional
system’s coupling interactions between the resolved and hidden
variables are also well understood (Corollary 3.2 in Ref. 43). (More-
over, random attractors with fractal structures that survive highly
degenerate noise17—a situation that might occur when approximat-
ing deterministic chaotic dynamics by stochastic pathwise dynam-
ics—can still be present in MSMs; see Ref. 43, Sec. 7.)

As discussed in Ref. 43, MSMs arise in a variety of data-driven
protocols for model reduction that typically use successive regres-
sions from partial observations; see Sec. III B. The general form of
an MSM is given by Ref. 43, Eq. (MSM); we only use herein its most
basic version, which has the following structure:

dx(t) =
(

F(x(t))+ ε5y(t)
)

dt, (3.1a)

dy(t) =
(

εCx(t)− Dy(t)
)

dt +6dWt. (3.1b)

Here, the observed vector variable x(t) lies in Rd1 and, for ε = 0,
the hidden variables y(t) ∈ Rd2 evolve in time independently. Oth-
erwise, the dynamics of the x variables is linearly coupled to that of
the y variables, which act upon (3.1a) as a stochastic forcing, via the
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canonical projection 5 : Rd2 −→ Rd1 , while Wt in (3.1b) is a d1-
dimensional Wiener process. Clearly, Eq. (3.1) is closely related to
Eq. (2.38) discussed above.

The matrix C in Rd2×d1 models the feedback of the x-process
onto the y variables. In the case of C ≡ 0, y would evolve according
to an OU process with drift matrix D and covariance matrix 66∗.
For the sake of simplicity, we restrict ourselves to the case d1 = d2

so that the projection5 reduces to the identity.
The more general MSM with nonlinear coupling considered in

Ref. 43 was shown to be equivalent to a SIDE with explicit expres-
sions for the memory kernels and stochastic forcing being obtained;
see Ref. 43, Proposition 3.3. The noise term there results from suc-
cessive convolutions of the homogeneous solutions of the lower
levels of the system with an OU process. In particular, using the Itô
stochastic calculus, one readily obtains a SIDE that is equivalent to
an MSM; see Ref. 43, Sec. 3.2 and Appendix C.

We show next that the same SIDE can actually be obtained by
using the operator formalism presented in Sec. II. One might object
that an MSM is a stochastic system, due to the presence of white
noise in the hidden layer, whereas the theory presented above applies
to deterministic dynamics. However, as clarified below, the operator
formalism applies equally well to the MSM case.

In fact, given a smooth, C∞ observable

8 : Rd1 × Rd2 → R, (x, y) 7→ 8(x, y), (3.2)

its expected value along a stochastic trajectory Xt = (x(t), y(t))>

solving Eq. (3.1), namely, E(8(Xt)), defines a Markov semigroup
Pt by

Pt8 = E(8(Xt)), (3.3)

which solves the backward Kolmogorov equation19 associated with
Eq. (3.1),

∂t (Pt8) =
[

F(x)+ εy
εCx − Dy

]

· ∇Pt8+
1

2

[

0
66∗∇2

y Pt8

]

, (3.4)

the only difference with respect to the transport equation (2.2) lies
in the presence of a second-order differential operator induced by
the white noise.

We introduce the operators

L0 =
[

F(x)
−Dy

]

· ∇ +
[

0
66∗∇2

y

]

, (3.5a)

L1 =
[

y
Cx

]

· ∇ , (3.5b)

which play a role that is analogous to their deterministic relatives in
Eq. (2.3) of Sec. II. Again, the operatorL1 is viewed as a perturbation
to the operator L0 due to the coupling.

If one considers observables 8 = 8(x), Eq. (3.4) becomes at
time t = 0,

∂t (Pt8) |t=0 =
[

F(x)+ εy
]

· ∇x8, (3.6)

and we apply now, as in Sec. II, the Dyson perturbative expan-
sion. By virtue of the formula (2.18), the parameterization leads to a

reduced equation of the form

ẋ(t) = F(x(t))+ εη(t)+ ε2

∫ t

0

K(s, x(t − s))ds, (3.7)

where the hidden variables in the decoupled regime are governed
by an OU process with invariant measure µy. The properties of the
stochastic noise η(t) are given by

〈

η(t)η>(0)
〉

=
∫

dµy(y0)e
tL0y0y

>
0 (3.8a)

=
∫

dµy(y0)E
(

y(t)|y0

) (

E
(

y(0)|y0

))>
(3.8b)

=
∫

dµy(y0)e
−tDy0y

>
0 (3.8c)

=
∫

dµy(y0)e
−tDy0y

>
0 = e−tD66∗, (3.8d)

where y is a function analogous to the coupling function Cx
y in Sec. II

and the initial condition y0 is assumed to be normally distributed
with zero mean and variance66∗. The memory kernel is given by

K(s, x(t − s)) =
∫

dµy(y0)Cx(t − s) · ∇y0E
(

y(s)|y0

)

(3.9a)

=
∫

dµy(y0)Cx(t − s) · ∇y0e−sDy0 (3.9b)

= Cx(t − s) · e−sD (3.9c)

= e−sDCx(t − s). (3.9d)

Using the intermediate steps above, the explicit parameterization
finally becomes

ẋ(t) = F(x(t))+ εη(t)+ ε2

∫ t

0

e−sDCx(t − s)ds. (3.10)

The integrodifferential equation above is the same as Eq. (C2)
one obtains using the Itô integration described in Appendix C. This
similarity of results occurs because we are considering the case of
additive coupling, and the Dyson expansion can be truncated after
the memory term proportional to ε2, cf. Sec. II B.

B. Empirical model reduction (EMR)

As discussed in Secs. I and II, and illustrated in Fig. 1, the evo-
lution of the resolved variables is forced by fluctuating terms and the
effects of the previous state of the system. It is desirable, therefore,
to construct a full model of the system even when only capable to
partially observe it. The EMR methodology43,45,48,49 aims at achieving
this goal; we discuss it below in the broader context of MSMs. Note
that EMR provides a solution for the dynamical closure of partially
observed systems and thus it differs from the methodology recently
proposed in Ref. 6, which requires one to fully observe the system
for the data-driven discovery of its underlying equations to work.

Having a set of reduced d1-dimensional observations {xi :
i = 1, . . . , n} every dt time units, one seeks to regress the tenden-
cies {dxi : i = 1, . . . , n} of the data onto a quadratic function of the
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form

F(x) = f + b · x + Q(x), (3.11)

where b in Rd1×d1 describes dissipative processes and Q is a
quadratic form describing self-interaction between the x variables.
The ith component of the quadratic form is given by

[Q]i = x>Aix, (3.12)

where Ai in Rd1×d1 . The function F is expected to approximate the
vector field driving the dynamics in the absence of hidden external
influences. Of course, performing regressions yields an error called
residual {yi : i = 1, . . . , n}. Hence, the evolution of the x variables
satisfies the equation

dx

dt
= F(x)+ y. (3.13)

At this point, one can study the properties of the residual time
series {yi}n

i=1 and construct a model able to reproduce its main sta-
tistical features. However, we know that if it is possible to sample
all the variables of the dynamical system of interest, one expects
that the residuals are explained by the errors committed exclusively
in the regression algorithm. If some sort of subsampling is done,
whether spatial or temporal, the residuals are also due to the delayed
influence of unresolved processes that are involved in the coupling.

Allowing for the main level variables x to be linearly coupled
with the residual y, we are creating a model that is able to incorporate
memory effects as well. Hence, for each component i of x, we have

d[x]i

dt
= [f]i + b

(0)
i · x + x>Aix + [y(0)]i, (3.14a)

d[y(0)]i

dt
= b

(1)
i · [x, r(0)] + [y(1)]i, (3.14b)

d[y(1)]i

dt
= b

(2)
i · [x, r(0), r(1)] + [y(2)]i, (3.14c)

... (3.14d)

d[y(l)]i

dt
= b

(l+1)
i · [x, r(0), r(1), . . . , r(l)] + [y(l+1)]i, (3.14e)

where we have introduced new matrices b(j) ∈ Rd1×(j+2)d1 that model
the linear coupling. The residual at the last level [y(l+1)]i is assumed
to obey the Wiener process for which the correlation matrix is
obtained from the last residual time series. The choice of stochas-
tic process in the last step can only be done if the decorrelation of
[y(l+1)]i is sufficiently fast according to the timescale set by dt. This
motivates the problem of choosing the optimal number l of levels.

Several criteria have been established to determine the optimal
number of levels l. The basic idea is that the resulting (l + 1)-
residual in Eq. (3.14e) should be well approximated by Gaussian
white noise.43,49 One has, therefore, to test whether the residual vari-
ables decorrelate at lag dt and whether the lag-0 covariance matrix is
invariant in the last levels.

Therefore, regression on the tendency of the optimal level y(l)

should yield

y(l+1) − y(l) ' −y(l) + γ (l), (3.15)

where γ (l) is the residual of the previous regression and is approx-
imately equal to y(l+1). Hence, γ (l) would become a lagged version
of y(l+1). Subject to this assumption, it is possible to estimate the
optimal value of the coefficient of determination R2,

R2 = 1 −
∑

k γ
2
l

∑

k

(

y(l+1) − y(l)
)2

' 1 −
∑

l y
(l+1)2

∑

l y
(l+1)2 + y(l)

2
' 0.5.

(3.16)

This means that, when the amount of unexplained variance of the
last regression is 50%, one has reached the optimal number of levels.
It is worth stressing that the empirical model (3.14) has the struc-
ture (3.1) of an MSM, as discussed in Ref. 43. It can, therewith, be
integrated to transform it into an integrodifferential equation with
explicit formulas for the fluctuating noise and memory kernel, cf.
Ref. 43, Proposition 3.3; see also Sec. III A for such a transformation
from another perspective.

Finally, note that the aforementioned stopping criterion for
EMR—namely, R2 ' 0.5, see Ref. 43, Appendix A—is based on
decorrelation times and it is also present in the multilevel WL
equation (2.40). We noted, in fact, in Remark 2.5 of Sec. II C that the
last level modeled by Eq. (2.40c) decorrelates the fastest with respect
to the rest. Ultimately, making these points amounts to saying that
a low number of levels is expected to arise in the EMR method, pro-
vided most of the eigenvalues λj in Theorem 2.1 are located far away
from the imaginary axis, except for a very few of them. Conversely,
if the Koopman eigenvalues cluster near the imaginary axis or do
not exhibit a spectral gap located at a, suitably defined, small nega-
tive real part, many levels are expected to be needed to capture the
hidden dynamics; see again Remark 2.5.

IV. NUMERICAL EXPERIMENTS

In Secs. II and III, we have shown that both the WL top-down
approach and the EMR data-driven method yield a set of multilevel
equations for the variables of interest in a multi-scale system. In par-
ticular, both approaches give explicit formulas for the fluctuation
term and memory kernel in the GLE (1.3b) of the Mori–Zwanzig
formalism. Furthermore, their Markovian representation share that
the hidden layers are linearly driven with a white noise background
[see Eqs. (2.38) and (3.1)]. We now compare the two approaches to
model reduction in a simple, conceptual stochastic climate model.

Since the modeling of geophysical flows is the primary motiva-
tion for this research, we consider a set of SDEs proposed in Ref. 27
among others as a physically consistent climate “toy” model. In such
a model, the main x variables are slow and weakly coupled to the
fast y variables. The latter correspond to weather fluctuations and
carry, in fact, most of the system’s variance. The model’s governing
equations are

dx1 =
{

−x2 (L12 + a1x1 + a2x2)− d1x1 + F1

+ ε
(

L13y1 + c134y1y2

)}

dt, (4.1a)
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dx2 =
{

x1 (L21 + a1x1 + a2x2)− d2x2 + F2 + εL24y2

}

dt, (4.1b)

dy1 =
{

ε
(

−L13x1 + c341y2x1

)

+ F3 −
γ1

h
y1

}

dt +
σ1√

h
dW(1)

t ,

(4.1c)

dy2 =
{

−ε
(

L24x2 + c413y1x2

)

+ F4 −
γ2

h
y2

}

dt +
σ2√

h
dW(2)

t ,

(4.1d)

where W(1)
t and W(2)

t are two independent Wiener processes.
These equations describe the evolution of four real variables

x = (x1, x2) and y = (y1, y2); their timescale separation is deter-
mined by the parameter h and the coupling strength is controlled
by ε. The parameter values used herein are c134 = c341 = 0.25,
c413 = −0.5, L12 = L21 = 1, L24 = −L13 = 1, a1 = −a2 = 1,
d1 = 0.2, d2 = 0.1, F1 = −0.25, F2 = F3 = F4 = 0, γ1 = 2, γ2 = 1,
and σ1 = σ2 = 1. The timescale separation and the coupling
strength are h = 0.1 and ε = 0.5, respectively.

A. WL approximation

Notice that the hidden variables evolve according to a decou-
pled OU process. Taking advantage of this fact, we calculate the
weak-coupling–limit parameterization of the model, according to
the formulas presented in Sec. II for the separable coupling functions
given by

Cx(x, y) = Cx
y(y) =

[

L13y1 + c134y1y2,
L24y2

]

, (4.2a)

Cy(x, y) = Cy
x(x) : Cx

y(y) =
[

−L13x1 + c341y2x1

−L24x2 + c413y1x2

]

. (4.2b)

The coupling function Cx in the slow equation (4.2a) is indepen-
dent of the x variables, indicating that the noise correction can be
additively incorporated and implemented by examining the decou-
pled hidden process. Note that the functional form of Cy implies

that the WL parameterization cannot be exact in ε, as noted in
Eqs. (2.11) and (2.12). This indicates that the WL reduced model will
not only introduce an error in averaging over the decoupled steady
state, but also that the Dyson expansion Eq. (2.5) has to be truncated
at ε3, rather than merely at ε2 where no memory effects would be
included.

According to the WL parameterization discussed in Sec. II, the
fluctuation terms correspond to the decoupled evolution of the cou-
pling function Cx

y, concretely as in Eq. (2.16). This allows to directly
compute the correlation function,

〈

Cx
y(y)C

x
y(y(t))

>
〉

=
[

L2
13e

−(γ1/h)t
σ 2

1
2γ1

+ c2
134e

−(γ1+γ2)t/h
σ 2

1 σ
2
2

2γ1γ2
0

0 L2
24e

−(γ2/h)t

]

. (4.3)

From Eq. (4.3), we deduce that the noise covariance matrix for the
given parameter values is given by

〈

Cx
y(y)C

x
y(y)

>
〉

=
[

0.2578 · · · 0
0 0.5

]

. (4.4)

The memory kernel K, which is a vector of two components
(κ1, κ2)

>, is given by

K(s, x) =
[

κ1(s, x)
κ2(s, x)

]

=
〈

Cy(x, y) · ∇yC
x(x(s), y(s))

〉

, (4.5)

here the brackets 〈·〉 indicate the averages for the uncoupled equilib-
rium in the y variables, which happen to be a set of independent OU
processes. Explicitly,

FIG. 2. Two-dimensional probability density functions (PDFs) of the stochastic model (4.1) in the (x1, x2) plane, as obtained with (a) the full integration; (b) an integration
of the EMR model; and (c) the WL parameterization. The timescale separation parameter used is h = 0.1. The PDFs shown here and in Fig. 5 were obtained by using the
Matlab R2019a kernel smoothing function ksdensity.
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FIG. 3. PDFs of (a) the x1 variable and (b) the x2 variable. The separation parameter is h = 0.1, and the colors used for each method are indicated by the legends inside
the panels.

κ1(s, x) =
〈(

−L13x1 + c341y2x1

)

∂y1

(

L13y1(s)+ c134y1(s)y2(s)
)〉

(4.6a)

−
〈(

L24x2 + c413y1x2

)

∂y2

(

L13y1(s)+ c134y1(s)y2(s)
)〉

(4.6b)

= −L2
13e

−(γ1/h)sx1 + c341c134e
−(γ1+γ2)s/h

σ 2
2

2γ2

x1

+ c134c341e
−(γ1+γ2)s/h

σ 2
1

2γ1

x1, (4.6c)

κ2(s, x) =
〈(

−L13x1 + c341y2x1

)

∂y1

(

L24y2(s)
)〉

−
〈

L24x2∂y2

(

L24y2(s)
)〉

(4.6d)

= −L2
24e

−(γ2/h)sx2. (4.6e)

The reduced-order model obtained herewith does give explicit
formulas for the evaluation of the stochastic noise and the mem-
ory kernel, independently of the timescale separation h, although
these formulas are rather complicated. Still, the scheme remains the
same when changing parameter values, so it is flexible in studying
different scenarios.

FIG. 4. Autocorrelation functions for the four variables x1, x2, y1, y2 obtained (a) from the full model; and (b) the comparison of the corresponding results for x1, x2 with the
full model, the EMR model, and the WL parameterization. See the legend for the choice of lines; h = 0.1.
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TABLE I. Empirically estimated EMR model coefficients at the first level, Eq. (3.14a),

for h= 0.1. First column gives the coefficients for the constant forcing f(0), the second

and third columns indicate the linear component of the vector field b(0), and the last

three columns determine the quadratic form A.

f x1 x2 x2
1 x1x2 x2

2

−0.314 04 −0.509 54 −0.065 313 0 −1.009 2 0.997 04
−0.153 56 0.123 53 0.219 79 1.0092 −0.997 04 0

B. EMR model and results

1. Basic EMR algorithm implementation

Regarding the data-driven EMR protocol, we integrated the
full model with a time step of d`t = 10−3 time units for a dura-
tion of T` = 104 time units in order to learn the model parameters.
Then, a separate run was performed in order to examine the ability
of the inferred model to reproduce the general statistical features.
This time, the EMR system was integrated together with the full
model using a time step of dτ t = 10−2 time units for a total of
Tτ = 105 time units. The equations were solved using a fourth-order
Runge–Kutta and a Euler–Maruyama method for the deterministic
and stochastic components, respectively.

By sampling every time step, we learned an EMR model
whose coefficients were explicitly found. The convergence criterion
R2 ' 0.5 was attained by adding two extra levels, for a total of
three. The convergence was not affected by changes in the timescale
separation parameter—namely, h = 0.1 and h = 1 in the case at
hand. Probably, the value of h was not that important here because of
the low dimensionality and stochastic nature of the hidden process.
However, convergence is likely to be altered in more complicated
models, as illustrated in Appendix D.

The climatologies of the slow x variables are obtained using
data from the full model, the EMR model, and the WL parameter-
ization. The two-dimensional probability density functions (PDFs)
of the stochastic model (4.1) in the (x1, x2) plane are shown in Fig. 2.
These PDFs were calculated by employing the Matlab R2019a ker-
nel smoothing function ksdensity. Their respective marginals are
shown in Fig. 3. The agreement between the two methodologies
when approximating the clearly non-Gaussian density arising from
the full model is clearly excellent.

The timescale separation between the x variables and the y
variables is clearly depicted in the left panel of Fig. 4, where the
fast variables decorrelate almost instantly compared to the slow

TABLE II. Empirically estimated EMR model coefficients at the second level,

Eq. (3.14b), for h= 0.1. First column gives the coefficients for the constant forcing

f(1), the next two columns indicate the linear coupling to the main level (i.e., the first

two columns of b(1)), and the last two columns determine the linear drift for the second

level (i.e., the last two columns of b(1)).

f(1) x1 x2 r(1)1 r(1)2

0 −5.6397 × 10−4 −6.9382 × 10−05 −20.282 3 0.016 165
0 −1.648 × 10−4 −4.72 × 10−4 0.086 621 −10.042 6

TABLE III. Empirically estimated EMR model coefficients at the first level, for h= 1.

f x1 x2 x2
1 x1x2 x2

2

−0.311 81 −0.339 −0.429 44 0 −0.934 39 0.979 58
−0.169 25 0.468 33 0.175 13 0.934 39 −0.979 58 0

ones. The approximation of these autocorrelation functions is also
obtained using the EMR and WL methods.

In general, cf. Ref. 48, the regressions performed in the main
level (3.14a) of the EMR model allow one to effectively reconstruct
the coefficients of a weakly coupled model; see Appendix D. The
EMR methodology, though, only allows for linear coupling between
the slow x’s and the fast y’s. The nonlinear coupling between the
slow and fast variables in system (4.1) compromises the estimation
of the main model parameters in Eq. (3.14a) so that we cannot expect
to recover the original, full model’s behavior given by (4.1). The
EMR model coefficients at the first and second levels are as shown
in Tables I and II, respectively.

As discussed in Sec. III B, the EMR has the structure of an MSM
and it can be recast into an integrodifferential equation. If one only
considers the first added level, the EMR can be readily integrated
giving the following equation for the evolution of the slow variables
x = (x1, x2):

ẋ(t) = F(x(t))+ e−Dty(0)+
∫ t

0

e−D(t−s)6dWs

+
∫ t

0

e−D(t−s)Cx(s)ds. (4.7)

Here, Ws is an independent two-dimensional Wiener process and

D =
[

−19.9982 2.1122 × 10−3

−0.775 28 −10.116

]

,

C =
[

−5 × 10−3 −5 × 10−4

−1 × 10−3 −5 × 10−3

]

, (4.8a)

6 =
[

0.2626 −0.0014
−0.0014 0.5013

]

. (4.8b)

First thing to note is that the matrix C has a small norm and, by
virtue of Eq. (4.7), it means that memory effects are going to be
very small. On the other hand, the eigenvalues of the matrix D are
λ1 ' −20, λ2 ' −10, which are approximatelly the drift coefficients
of the uncoupled OU process driving the y variables. This indicates
that the exponential kernel is damping the effects of the x vari-
ables in past times rather quickly. Moreover, the covariance matrix

TABLE IV. Empirically estimated EMR model coefficients at the second level, for

h= 1.

f(1) x1 x2 r(1)1 r(1)2

0 −3.9452e-3 −1.5027e-4 −2.100 1 0.016 509
0 −5.0312e-4 −3.79e-3 0.054 861 −1.121 4
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FIG. 5. Two-dimensional smoothed PDFs of the stochastic model (4.1), but with a timescale separation of h = 1. Panels (a)–(c) are calculated by integrating the full model,
the EMR model, and WL approximation, respectively, as in Fig. 2.

6 corresponds to that obtained by integrating the y-dynamics
independently, according to Eq. (4.4).

Regarding the WL approximation, we stress that the y variables
are no longer present, after taking the averages in its construction.
The memory kernel K in this case differs from the matrix D above,
although its dominant terms correspond to its eigenvalues. Note
that, if L13 = 0, the coupling function Cx

y would project entirely onto
the eigenfunction of the OU process associated with the eigenvalue
−(γ1 + γ2). The same statement would hold for c134 = 0, where in
this case Cx

y projects onto the eigenfunctions associated with the
eigenvalue −γ1.

2. Reduced time scale separation

The parameter h controls the timescale separation in the evo-
lution of the x and y variables. Here, we set h = 1 so that this
separation is reduced by an order of magnitude as illustrated by the

autocorrelation functions in Fig. 7. The question to be addressed in
this subsection is the effect of such a reduction in the WL and EMR
parameterizations and their respective performance.

In the WL parameterization, there is no need to sample the
dynamics in order to construct it, since the formulas of Sec. II are
explicit and do not depend on h. In the case of model (4.1), the
covariance matrix and time correlations of the WL noise correction
are thus given by Eq. (4.3) with no reference to h. The memory term,
though, is expected to change as the kernel K will decay more slowly
by a factor of 10. Therefore, memory effects are more important, as
expected.

The EMR approach, on the other hand, requires a new learn-
ing phase for this value of h = 1. We used the same numerical
integration parameters d`t = 10−3 and T` = 104 time units as for
the previous case. In the first level regression, one observes that
the coefficient values listed in Table III are essentially the same
from those estimated in the previous case, for h = 0.1, and listed

FIG. 6. PDFs of (a) the x1 variable and (b) the x2 variable, for a timescale separation of h = 1; compare with Fig. 3.
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FIG. 7. Autocorrelation functions for the four variables x1, x2, y1, y2 obtained (a) from the full model; and (b) the comparison of the corresponding results for x1, x2 with the
full model, the EMR model, and the WL parameterization. See the legend for the choice of lines; h = 1.

in Table I, as well as being even more distant from the original ones
in the table’s first row. The second level coefficients, for h = 1, are
shown in Table IV.

The covariance matrix 6 of the noise correction is indicated
in Eqs. (4.9a) and (4.9b) and it agrees fairly well with the previous
values, for h = 0.1, as given in Eq. (4.8b). The matrix C indicates
that the strength of the memory effects also has a magnitude that
is of the same order as that in the previous case of h = 0.1, which
is rather surprising, given the factor of 10 in timescale separation
h; compare Eqs. (4.8a) and (4.9a). This observation tells us that
the loss of Markovianity might be intrinsic to the nature of the
coupling rather than being due to the time scale separation, even
though, in the limit case of infinite scale separation, memory effects

will dissapear entirely. The memory kernel, as determined by D,
scales almost exactly with the timescale separation and it is expected
to change depending on how the coupling functions project onto
the eigenspaces of the underlying Orstein–Uhlenbeck process, as
discussed more generally earlier in Theorem 2.1.

The performance of both parameterization techniques is sum-
marized in Figs. 5–7. These figures are the exact counterparts of
Figs. 2–4 for the reduced timescale separation h = 1. First, we note
from Fig. 7(a) that for h = 1 there is indeed no strict timescale sep-
aration, as indicated by the autocorrelation functions obtained from
the full model. Second, consideration of Figs. 5(a)–5(c), 6(a), 6(b),
and 7(b) shows that neither the WL nor the EMR approach seems to
be affected by the timescale reduction

FIG. 8. Autocorrelation functions for the two x variables obtained from the full model in the spectral reconstruction using the Koopman operator: (a) h = 0.1 and (b) h = 1.
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D =
[

−2.1001 0.016 509
0.054 861 −1.1214

]

, C =
[

−4 × 10−3 −1 × 10−4

−6 × 10−4 −4 × 10−3

]

,

(4.9a)

6 =
[

0.2618 0.0011
0.0011 0.4554

]

. (4.9b)

C. Memory effects

We would like to end this results section by analyzing the role
of the memory effects when performing a reduction of the highly
idealized model given by Eq. (4.1). For this purpose, we apply the
criterion (B4) discussed in the corresponding Appendix B. We thus
spectrally approximate the autocorrelation functions of the variables
x1 and x2 using Eq. (B4) with the Koopman operator Tτ estimated
using Ulam’s method with a transition time of τ = 0.5 time units
for the case where h = 0.1 and τ = 1 time unit for h = 1.

The difference between the two τ -values is due to the fact that
we expect the coarse-grained phase space to be sensitive to the sys-
tem’s variability. Hence, if the timescale separation is large, a shorter
transition time is required in order to capture the influence of the
hidden processes. In fact, a range of transition times was tested in
the case of h = 1 to find that the optimal value was τ = 1. It follows
that the methodology is robust in showing the effects of memory in
the projected phase space.

We clearly observe in Fig. 8 that the correlation functions can
be accurately reconstructed in the case of large timescale separation
h = 0.1 [Fig. 8(a)] but not so for h = 1 [Fig. 8(b)]. This indicates,
naturally, that memory effects are negligible in the first case and
relevant in the second case.

V. CONCLUSIONS

To formulate accurate and efficient parameterizations for mul-
tiscale processes is a crucial challenge in many areas of science
and technology for one of the two reasons: either the numerical
simulation of all scales active in a given system is computation-
ally unfeasible or there is a mismatch between the model resolution
and the granularity and homogeneity of the observations, as in the
case in geophysical flows and in the climate system. Moreover, the
construction of parameterizations is instrumental to help under-
stand the nature of nonlinear fluxes across scales and the physical
processes responsible for cascades, instabilities, and feedbacks.

There are two main approaches for constructing parameteriza-
tions: top-down, by deriving the parameterizations directly from the
evolution equations governing the system through the use of suitable
approximations; and data-driven, in which the parameterizations
are constructed through suitable optimization procedures, which are
first tuned in a training phase and then actually used in the predic-
tion phase. Both approaches aim to derive the effective dynamics
for the variables of interest: formally, this is achieved by applying
the Mori–Zwanzig projection operator60,90 to the full dynamics. The
result of doing so is to describe the impact of the hidden variables by
formulating a generalized Langevin equation (GLE) (1.3b) for the
variables of interest that includes a deterministic, a stochastic, and a
non-Markovian component.

Top-down and data-driven approaches are conceptually com-
plementary and have different practical advantages and disadvan-
tages. In this paper, we have shown the fundamental equivalence
between a top-down and a data-driven approach that have been for-
mulated and applied in the recent literature. This equivalence was
illustrated schematically in Fig. 1.

We first revisited in Sec. II the WL parameterization of Refs. 88
and 89, which relies on an assumption of weak coupling between
the hidden and observed variables and have extended the previous
results by considering more general coupling classes. We have also
shown that the perturbative expansion that yields the WL param-
eterization is exact when the coupling between the hidden and
resolved variables is additive.

The Dyson formalism (2.12) appears to be essential for com-
puting the effects of the hidden processes on the dynamics of the
observed variables, when working at the level of the system’s observ-
ables. This methodology is explicit in the sense that no information
about the actual coupled process is needed, because the formal
computations are performed by considering the limit in which no
coupling is present. Other advantages of this approach are that it
can be implemented without the need for any hypothesis on the
timescale separation between the hidden variables and the observed
ones and that it is also scale adaptive.83

We addressed systematically the problem of re-Markovianizing
the WL memory equation, which was first pointed out in Ref. 87
and discussed further in Sec. II D. In this example, a system (2.42)
with one observed and two hidden variables that yielded a scalar
WL parameterization was re-Markovianized to a Markovian sys-
tem with just two scalar differential equations. Throughout Sec. II,
we provided a broader framework for re-Markovianization. This
framework was presented for a scalar equation in Theorem 2.1
and described for higher dimensional systems in Remark 2.5.
The required assumptions for this treatment boil down to certain
spectral properties of the Koopman operator for the hidden
variables.

The multilevel structure of the re-Markovianization obtained
in Sec. II motivated the comparison with multilayer stochastic
models (MSMs) in Sec. III. Such MSMs arise naturally in data-
driven reduction methods and they had been shown in Ref. 43 to
approximate the GLE predicted by Mori60 and Zwanzig.91

We showed in Sec. III A that a seemless application of the WL
parameterization solves the MSM of Eq. (3.1) and coincides with
its Itô integration, cf. Ref. 43. Note that an MSM can be obtained
from partial observations of the coupled system, which amounts to
the special case of the data-driven empirical model reduction (EMR)
methodology.43,45,46,48,49

The EMR methodology was revisited here in Sec. III B and it
is, in principle, dual to the WL parameterization, in the sense that
only partial observations of the coupled system are required, without
the need for knowing the actual equations of motion. Comparing
the multilevel structure of Eq. (2.40) with that of Eq. (3.14) suggests
that the Koopman eigenvalues λj highlighted in Theorem 2.1 may
help provide insights into the number of levels needed for EMR to
converge. This practical role of the λj’s deserves, therewith, a more
careful examination in further work.

Additionally, we considered in Sec. IV a conceptual climate
model to which we applied both of the methodologies revisited
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herein. Since both the MSM and the WL parameterization yield
a memory equation that involves integrals and stochastic noise,
we were able to compare their structure, as well as their statistical
outputs. We found that both methodologies produced equivalent
numerical results and that the memory kernel and noise predicted
in the WL parameterization agreed with what was found using the
data-driven EMR approach.

Concluding, our viewpoint is complementary to the dynamic
mode decomposition59,69,72 as it uses the basis of eigenvectors of
the Koopman operator to construct the projected—in the sense of
Mori–Zwanzig—dynamics of the observables of interest, which is
then recast in the Markovian form using the multilevel Markovian
model framework, where the number of levels corresponds to the
number of eigenvectors of the Koopman operators one considers
in the reconstruction of the dynamics. In a nutshell, our findings
support, on the one hand, the physical basis and robustness of the
EMR methodology and, on the other hand, illustrate the practical
relevance of the WL perturbative expansion used for deriving the
parameterizations.
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APPENDIX A: PROOF OF THEOREM 2.1

Proof. The aim is to show that under the assumptions of this
theorem—which require that the coupling function Cx : R −→ R

projects entirely onto span
{

ψj, j = 1, . . . , N
}

—the memory and
noise terms of the WL equation (2.23) are obtained from the term
ε3 · Z(t) in Eq. (2.30a), after integration of Eq. (2.30b).

Step 1. In this step, we expand the memory term and the
lag correlations of the noise in the WL equation (2.23) in terms
of the leading eigenelements of the uncoupled Koopman operator
L

y
0. These expansions will serve us in Step 2 to compare the noise

and memory terms of the WL equation with those produced after
integration of Eq. (2.30b).

Let the λj be sorted as in the hypotheses of the theorem.
Hence, to distinguish real and complex conjugate eigenvalues and
for notational convenience, we introduce the set of indices Ir and I+
defined as

Ir = {j ∈ {1, . . . , N} : λj is real}, (A1a)

I+ = {j ∈ {1, . . . , N} : Imλj > 0}. (A1b)

An immediate consequence that is used several times throughout
the proof is that the sum of the eigenvalues is real and may be split
as follows:

N
∑

j=1

λj =
∑

j∈Ir

λj +
∑

j∈I+

λj +
∑

j∈I+

λj =
N
∑

j=1

Reλj ∈ R. (A2)

As previously stated, we expand the mean and correlation functions
of the scalar noise term η in WL equation (2.23) in terms of the
eigenpairs. The mean is zero by assumption, but the autocorrelation
function can be expanded as follows, based on Eq. (B2):

〈η(t)η(0)〉 = CCx ,Cx(t) =
N
∑

j=1

eλjtαjβj, (A3)

herein, αj and βj are as defined in (2.32a) and (2.32b), respectively.
The expansion of the correlation function in Eq. (A3) is a finite sum
by virtue of the assumption that Cx lies in span

{

ψj, j = 1, . . . , N
}

and therefore there is no contribution from the essential spectrum.
Regarding the complex scalars αj and βj defined in (2.32a)

and (2.32b), it follows that for each j such that λj = λj+1, we get

αj = αj+1 and βj = βj+1. Indeed,

αj =
∫

ν(dy)ψ∗
j (y)C

x(y) =
∫

ν(dy)ψ∗
j (y)C

x(y) (A4a)

=
∫

ν(dy)ψ∗
j+1(y)C

x(y) = αj+1, (A4b)

in which we have exploited the fact that ψj = ψj+1 when λj is
complex and j in {1, . . . , N}.

The same proof can be repeated for βj. Such a conjugacy rela-
tion also holds for the gradients of the eigenfunctions ∇ψj, for those

j in {1 . . . , N} such that λj = λj+1. This is observed by the following
equality:

∇ψj(y) = ∇ψj+1(y) = ∇ψj+1(y), (A5)

since ∇ is a differential operator that only involves here differentia-
tion with respect to a real variable.
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Exploiting (A5), the memory kernel K then expands as [recall-
ing that R(t) = 0]

K(t, s, x) = Cy(x(s)) ·
〈

∇
N
∑

j=1

eλj(t−s)αjψj(y)

〉

= Cy(x(s)) ·
∑

j∈Ir

eλj(t−s)αj

〈

∇ψj(y)
〉

+ Cy(x(s))

·
∑

j∈I+

eλj(t−s)αj

〈

∇ψj(y)
〉

+ Cy(x(s)) ·
∑

j∈I+

eλj(t−s)αj

〈

∇ψj(y)
〉

, (A6)

which leads to

K(t, s, x) = Cy(x(s)) ·
N
∑

j=1

Re
(

eλj(t−s)αj

〈

∇ψj(y)
〉)

. (A7)

Note that to go from (A6) to (A7), we have made use of the
aforementioned conjugacy relations that led to a real-valued mem-
ory kernel at the end. With (A3) and (A7) at hand, the noise and
memory terms in the WL equation (2.23) are thus characterized
in terms of the leading eigenelements of the uncoupled Koopman
operator L

y
0.

Step 2. The second step consists of analyzing the noise and
memory terms produced by integration of Eq. (2.30b) and to com-
pare these terms with those of the WL equation.

Performing an Itô integration of Eq. (2.30b) leads to

Z(t) = eDtZ(0)+
∫ t

0

eD(t−s)6dWs

︸ ︷︷ ︸

noise term

+ε
∫ t

0

eD(t−s)R(x(s))ds

︸ ︷︷ ︸

memory term

, (A8)

where (for simplicity) we have assumed that the initial condition
distributes normally with mean zero and variance equal to the iden-
tity matrix, and the function R : R −→ CN is as defined in (2.33).
The noise and memory contributions of Z(t) are as indicated by the
brackets in (A8).

Let us denote the noisy component of Eq. (A8) as q(t) in RN.
Then, it is clear that q has zero mean and the lag cross correlations
read as

E
(

q(t)q>(0)
)

= eDt =






eλ1t

. . .

eλNt




 . (A9)

Let 3 be defined as in (2.31) and let us calculate the mean
and lag correlations of the one-dimensional stochastic process3 · q,
aimed at approximating η in the WL equation. First, note that3 · q
is a zero-mean Gaussian process, with lag correlations given by

E
((

3 · q(t)
) (

3 · q(0)
))

=
(

eDt3
)

·3. (A10a)

Now, expanding
(

eDt3
)

·3 in (A10a) shows that we recover the
right-hand side (RHS) of (A3).

However, the noise term η in the WL equation is a real-valued
stochastic process, and we are dealing with complex scalars, so there-
fore we still have to show that3 · q(t) is real for every t in R. To do

so, let us denote by w> = [w1, . . . , wN] any arbitrary row vector in
RN. In other words, w is an arbitrary column vector with real entries.

Consider the following inner product:

3 · eDt6w = 3 · eDt






√
−2Reλ1

. . . √
−ReλN




Hw (A11a)

= 3 ·






eλ1t
√

−2Reλ1

. . .

eλ2t
√

−2ReλN




Hw.

(A11b)

By construction of the matrix H in Eqs. (2.34) and (2.35), the
product Hw is given component-wise, for j = 2, . . . , N, as

[Hw]j =
{

wj if j ∈ Ir or, j ∈ I+,

wj−1 if λj = λj−1,
(A12)

while [Hw]1 = w1. This implies, in particular, that [Hw]j = [Hw]j+1

whenever λj = λj+1. As a consequence, we get

3 · eDt6w =
∑

j∈Ir

α
1/2
j β

1/2
j eλjt

√

−2λjwj +
∑

j∈I+

α
1/2
j β

1/2
j eλjt

√

−2Reλjwj

+
∑

j∈I+

α
1/2
j β

1/2
j eλjt

√

−2Reλjwj, (A13)

which shows that3 · eDt6 is a real-valued quantity, and thus for any
realization of the N-dimensional Wiener process Wt, the product
3 · eD(t−s)6dWs is real, and hence3 · q(t) is also real for every t.

Finally, we are left with showing that the memory kernel K
of the WL equation coincides with that of the memory term in
Eq. (A8), when multiplied by the vector 3. To do so, we exploit
the expansion (A7) of K for this comparison, namely, using the
expression of R in (2.33), we observe that

3 ·
∫ t

0

eD(t−s)R(x(s))ds = Cy(x(s)) ·
∑

j∈Ir

eλj(t−s)αj

〈

∇ψj(y)
〉

+ Cy(x(s)) ·
∑

j∈I+

eλj(t−s)αj

〈

∇ψj(y)
〉

+ Cy(x(s)) ·
∑

j∈I+

eλj(t−s)αj

〈

∇ψj(y)
〉

= Cy(x(s)) ·
N
∑

j=1

Re
(

eλj(t−s)αj

〈

∇ψj(y)
〉)

,

(A14)

which indeed coincides with the expression of K, as desired. The
proof is complete. �

APPENDIX B: SEMIGROUP PROPERTY OF THE
PROJECTED KOOPMAN OPERATOR FAMILY

It was shown in Ref. 16, Theorem A, that projection onto a
reduced state space is closely related with a coarse graining of the
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(full) probability transitions on the original system’s attractor, while
Theorem 2 in Ref. 19 dealt recently with the impact of such a projec-
tion in terms of reduction of the Koopman semigroup. In Ref. 19, the
authors proposed a criterion based on the spectral theory of Markov
semigroups to ascertain whether the reduced state space associated
with a given projection can fully explain the statistics of the desired
variables. This approach provides potential insights into the need
for modeling non-Markovian effects by inspecting the loss of the
semigroup property, as explained below.

Moreover, it follows from Ref. 19 that the analysis of correlation
functions is not only of physical interest but also of methodolog-
ical utility. Correlation functions can be defined by means of the
Koopman operator or, dually, by means of the transfer operator’s
providing the solution of the Liouville equation.

Let µ denote an ergodic invariant measure of the system and
takes two observables 81 and 82 in the space L2

µ of zero-mean
functions that are square-integrable with respect to µ. Assume fur-
thermore that the spectrum of the operator L in L2

µ is a pure
point spectrum, given by the eigenvalues {λj}∞

j=1
and their associated

eigenfunctions {ψj}∞
j=1

, where the eigenvalues are ordered by their

decreasing real parts.
Then, the correlation function C81 ,82(t) between the functions

81 and82 is given by

C81 ,82(t) =
∫

81 · etL82dµ =
∫

etL∗
81 ·82dµ, (B1)

and it can be expanded, formally, as

C81 ,82(t) =
∞
∑

j=1

eλjt
〈

81,ψj

〉

µ

〈

ψ∗
j ,82

〉

µ
. (B2)

The dual operators in (B1) and the adjoint eigenvectors in (B2) are
indicated by the superscript (·)∗, while 〈·, ·〉µ denotes the inner prod-
uct. We refer to Corollary 1 in Ref. 19 for a proof of (B2) in the
context of Markov semigroups. The proof actually applies to the
case of the Koopman semigroups considered here as long as the
Koopman semigroup Ut defined by (2.4) is a strongly continuous
semigroup in L2

µ. The RHS of Eq. (B2) consists of a linear com-
bination of exponential terms whose coefficients are calculated by
projecting 81 and 82 onto the corresponding eigenspaces. These
coefficients weight each exponential function and they can become
exceedingly large if the Koopman operator deviates very much from
normality.77 Note also that the set of eigenvalues λj’s play a key role
in defining the response of the system to perturbations.55,75

The interactions between the resolved and hidden variables
that are modeled by the Dyson expansion of the Koopman oper-
ator in Sec. I A may introduce memory effects into the closed,
reduced model for the x variables, as given by Eqs. (2.18)–(2.22).
In certain situations, such memory effects can be neglected, even in
the absence of exact slaving relationships between the resolved and
hidden variables.13 But the loss of slaving relationships requires, in
general, an explicit representation of memory effects12 to achieve an
efficient model reduction.

Furthermore, it was shown in Refs. 16 and 19 that the reduc-
tion of the Koopman semigroup to observables that act only on
the reduced state space leads, in most circumstances, to a family

of operators that, while Markovian, no longer satisfy the semi-
group property. One might then ask to which extent this loss of
the semigroup property arising from the reduction, and the related
emergence of memory effects, is crucial for providing a faithful
reduced model of the observed variables.

When considering reduced state spaces obtained by projection,
along with observables 81 and 82 defined on them, Theorem 2 in
Ref. 19 shows the existence of a family of Markov operators {Tt}t≥0

that satisfies
∫

81 · Tt82dµx =
∫ t

0

[81 ◦ πx] · eLt[82 ◦ πx]dµ

= C(81◦πx ,82◦πx)(t), (B3)

for every t ≥ 0, where πx is the canonical projection onto the
reduced subspace and µx is the disintegrated or sample measure
associated with πx; see Ref. 19, Remark 3. However, due to the pro-
jection, the semigroup property is lost, namely, TsTt 6= Tt+s for some
t, s.

Following the reasoning given above, one can establish a crite-
rion for the need to model a memory contribution when performing
the model reduction. Formally, if there exist τ > 0 and T ∈ N such
that for every t ∈ {kτ ∈ R : 0 ≤ k ≤ T}, we have

C(81◦πx ,82◦πx)(t) =
∫

81 · Tt82dµ =
∫

81 · (Tτ )k82dµ, (B4)

and one can say that the semigroup is preserved, to some extent,
depending on how large T can be in Eq. (B4). Other such criteria
are available in the context of mutually dual Koopman and trans-
fer operators. Thus, Tantet et al.76 had already considered empirical
ways of quantifying the loss of the semigroup property in reduced
dimensions.

The interpretation of τ comes from the practical implementa-
tion of the methodology and it is usually referred to as the transition
time. Indeed, numerically, the approximation of such Markov oper-
ators is done by Ulam’s method, by projecting them onto a finite
basis, typically using the characteristic functions of certain domains
of phase space. Then, the transitions between domains—after an
adequate transition time τ—are counted to obtain matrix estimates
of the operator Tτ acting on the reduced phase space. Hence, one
seeks a suitably small, or large,75 transition time to obtain the best
candidate for applying Eq. (B4), see also Ref. 19, Sec. 3.3. Thus,
Eq. (B4) can be implemented in practice this way in order to (poten-
tially) reconstruct correlation functions on the whole phase space.
A very simple illustration of such a transfer operator calculation is
given in Ref. 81.

APPENDIX C: ITÔ INTEGRATION OF THE MSM

In the main text, we proposed a solution of the MSM given
by Eq. (3.1) using the Dyson expansion for the linear operators
involved in the backward Kolmogorov equation—advection acting
on functions. Therefore, we substituted nonlinear ordinary differ-
ential equations for a partial differential equation, for the sake of
having linear operators in hand. The same solution can be attained
by direct integration of the MSM in the form (3.1). We convolute,
in the Itô sense, Eq. (3.1b) to find an explicit solution for y(t) when
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d1 = d2,

y(t) = e−Dty(0)+
∫ t

0

e−D(t−s)6dWs + ε

∫ t

0

e−D(t−s)Cx(s)ds, (C1)

here, y(0) indicates an initial state that can be assumed to be dis-
tributed in a prescribed way. For more general, nonlinear MSMs
considered there, see Ref. 43, Proposition 3.3.

By substituting the expression (C1) into Eq. (3.1a), we find an
exact expression for the evolution of x(t),

ẋ(t) = F(x(t))+ εe−Dty(0)+ ε

∫ t

0

e−D(t−s)6dWs

+ ε2

∫ t

0

e−D(t−s)Cx(s)ds, (C2)

in which the memory effects in the fourth term are of second order
in ε. Note that the ε-order terms arise from a noise realization in the
decoupled regime, whereas the memory term is exclusive due to the
coupling of the main variables with the hidden ones. Hence, the only
degree of freedom left is the distribution of the initial states y(0).

APPENDIX D: THE COUPLED L84–L63 SYSTEM

The EMR methodology’s ability to capture the statistics of low-
dimensional dynamical systems was illustrated in Ref. 48, where the
authors considered the L63 system53 as a test case in which the phase
space can be fully sampled. Moreover, provided that the integration
time step is short enough, the parameters of the underlying model
can be fully captured with a high degree of confidence.

Here, we repeat the analysis of Ref. 48 to illustrate the effective-
ness of EMR in capturing statistical and dynamical properties in an
extended system. The model we consider is the result of coupling

the X = (X, Y, Z) variables of the L84 system54 with the x = (x, y, z)
variables of the L63 system,53 namely,

Ẋ = −Y2 − Z2 − aX + a(F0 + hx), (D1a)

Ẏ = XY − bXZ − Y + G, (D1b)

Ż = XZ + bXY − Z, (D1c)

ẋ = τ s(y − x), (D1d)

ẏ = τ(ρx − y − xz), (D1e)

ż = τ(xy − βz), (D1f)

the parameter values are a = 0.25, b = 4, F0 = 8, G = 1, and
s = 10, ρ = 28,β = 8/3, respectively. The parameter h measures
the strength of the coupling, while τ scales the rate of change in
the L63 system and, therewith, the timescale ratio between the two
subsystems.

This system is a skew-product, in the sense of Ref. 74, since
the coupling is one-way only, with the L63 system driving the L84
dynamics. Hence, one has—as noted in Ref. 82—a fully Markovian
parameterization of the L63 variables. Furthermore, the correla-
tion function that defines the stochastic noise η(t) can be further
expanded and simplified, with respect to Eq. (2.16). One can, in fact,
write explicitly

C(η(0), η(t)) = 〈(x(0), 0, 0) · (x(t), 0, 0)〉 , (D2)

where the angular brackets 〈·〉 indicate averages with respect to the
physical measure associated with the L63 system. Since L84 does not

FIG. 9. Trajectories of the L84–L63 model in the three-dimensional (X , Y , Z) phase space of the L84 model, for h = 0.25 and 200 time units: (a) for the full L84–L63 model
governed by Eq. (D1) (blue) and (b) for the EMR model (red).

Chaos 31, 053116 (2021); doi: 10.1063/5.0039496 31, 053116-23

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 10. Smoothed PDFs of the L84–L63 variables (a) X , (b) Y , and (c) Z with a coupling strength of h = 0.25. The blue curve corresponds to the full model and the red
curve corresponds to the EMR model. These PDFs and those in Fig. 13 were obtained by using the Matlab R2019a kernel smoothing function ksdensity.

FIG. 11. Autocorrelation functions (ACFs) of the L84–L63 variables (a) X , (b) Y , and (c) Z for a coupling strength of h = 0.25.

FIG. 12. Example trajectories of the L84–L63 model on the (X , Y , Z) domain with a coupling strength of h = 0.025 integrated for 200 time units. Subfigure (a) corresponds
to the full model (D1) (blue) and subfigure (b) refers to the EMR model (red).
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FIG. 13. Smoothed PDFs of the L84–L63 variables (a) X , (b) Y , and (c) Z, with a coupling strength of h = 0.025. The blue curve corresponds to the full model and the red
curve corresponds to the EMR model.

FIG. 14. ACFs of the L84–L63 variables (a) X , (b) Y , and (c) Z for h = 0.025. The blue curve corresponds to the full model and the red curve corresponds to the EMR
model.

FIG. 15. Leading eigenvalues of the discretized Koopman operator in the L84 model’s phase space. The blue open circles correspond to the data obtained by integrating
the full model’s Eq. (D1) and the red × symbols correspond to the EMR model.
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FIG. 16. Determination coefficients R2 of the EMR method as a function of the number ` of levels. (a) h = 0.25; (b) h = 0.025; and (d) h = 0.25 but with the L63 model
including additive noise. Panels (a,b,d) all have the timescale separation τ = 5, while in panel (c) h = 0.25 and τ = 2.

feed back into L63, the evolution of x(t) only obeys the dynamics of
L63, and thus the decorrelation of the noise scales with τ .

In most of the numerical experiments, the timescale separation
between the two systems is τ = 5. The relevance of this timescale

parameter was investigated in the previous work.82 Here, we focus

on the effects of the coupling strength h, and we shall study the

cases of h = 0.25 and 0.025. Partial observations only will be used

in these experiments, by sampling the three-dimensional outputs of

the L84 system. Then, the observed tendencies are regressed and

sequentially layered following the EMR approach, as explained in
Sec. III.

1. EMR outputs

The L84–L63 model is integrated for 730 time units that cor-
respond in L84 to 10 natural years, with a time step of 5 × 10−3

time units; two separate runs are made for the coupling strengths
h = 0.25 and h = 0.025. These two full-model runs are used to train
the corresponding EMR model versions, both of which use only the
slow X variables and eliminate the fast x variables. Then, two sepa-
rate full-model simulations are run, for testing purposes, over 7–300
time units, and the EMR model’s output is compared with it, for the
two parameter values. Below we show the main statistical outputs of
the EMR methodology compared to the two reference integrations
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FIG. 17. Time-series of the L84 variables (X , Y , Z) over 10 time units: (a) h = 0.25 and (b) 0.025.

TABLE V. Means of the EMR coefficients of the L84–L63 model, estimated from an ensemble of 50 runs over 10 time units for h= 0.25.

EMR 1 x y z x2 xy y2 xz yz z2

fX 1.949 −0.352 −0.002 −0.104 −0.015 0.01 0.052 −0.946 −0.001 −0.921
fY 0.999 0.001 −1.001 0.002 0 1.001 −4.003 0 0 0
fZ 0.002 −0.003 −0.002 −1.001 0.001 4.003 1.001 0 0 0

TABLE VI. Standard deviations of the EMR coefficients of the L84–L63 model, estimated from an ensemble of 50 runs over 10 time units for h= 0.25.

EMR 1 x y z x2 xy y2 xz yz z2

fX 0.543 1.005 0.246 0.291 0.428 0.152 0.188 0.104 0.076 0.099
fY 0.001 0.002 0 0.001 0.001 0 0 0 0 0
fZ 0.001 0.002 0.001 0.001 0.001 0.001 0 0 0 0

TABLE VII. Means of the EMR coefficients of the L84–L63 model, estimated from an ensemble of 50 runs over 10 time units for h= 0.025.

EMR 1 x y z x2 xy y2 xz yz z2

fX 2.006 −0.253 −0.001 −0.003 −0.004 0 0.001 −1.002 0.001 −1.003
fY 1 0 −1.001 0.002 0 1.001 −4.003 0 0 0
fZ 0.001 −0.002 −0.002 −1.001 0.001 4.003 1.001 0 0 0

TABLE VIII. Standard deviations of the EMR coefficients of the L84–L63 model, estimated from an ensemble of 50 runs over 10 time units for h= 0.025.

EMR 1 x y z x2 xy y2 xz yz z2

fX 0.034 0.063 0.019 0.021 0.026 0.01 0.014 0.007 0.008 0.006
fY 0.001 0.002 0 0.001 0.001 0 0 0 0 0
fZ 0.001 0.002 0.001 0.001 0.001 0.001 0 0 0 0

Chaos 31, 053116 (2021); doi: 10.1063/5.0039496 31, 053116-27

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

of the full model. The results for the two separate h-values are shown
in Figs. 9–11 and 12–14, respectively.

The region of phase space explored by the EMR model clearly
coincides with the one visited by the full model, as seen in Figs. 9
and 12, and the relative occupancies within this region—as indicated
by the smoothed PDFs shown in Figs. 10 and 13, respectively—agree
very well. The timescales are also well captured, as indicated by the
good approximation of the autocorrelation functions, cf. Figs. 11
and 14.

Notice that, while the original L84–L63 system is purely deter-
ministic, the EMR model includes white noise acting on the hidden
layers of the learned model. This fact could suggest that a smoothing
of the invariant measure is inevitable and that the EMR methodol-
ogy may not be able to capture fractal geometries in phase space,
since the EMR model does not satisfy the Hörmander’s hypoellip-
ticity condition.18,40 The numerical evidence in Figs. 9 and 12, how-
ever, illustrates a strikingly good approximation of the full model’s
attractor, including its very fine, and presumably fractal, structure.

Actually, Theorem 3.1 and Corollary 3.2 in Ref. 43 provided
sufficient conditions for the existence of a random attractor for a
broad class of MSMs that are not subject to a non-degeneracy con-
dition of Hörmander type. In other words, one can have an MSM
that possesses a random attractor and is thus dynamically quite
stable, while exhibiting in a forward sense an invariant measure of
the associated Fokker–Planck equation that is singular with respect
to the Lebesgue measure. This mathematically rigorous result helps
explain what is observed numerically not only in the present paper
for the EMR of the L84–L63 model, but also in the case of the EMR
model of the Lotka–Volterra example in Ref. 43, Fig. 7.

Ulam’s method was used on the projection of the full (X, x)
phase space onto the X subspace to approximate the spectrum of the
Koopman operator, since it can provide further information on the
characteristics of the time series, beyond PDFs and correlation func-
tions. The observed spectra (red × symbols) using a coarse partition
of phase space into 512 nonintersecting boxes showed good agree-
ment with the spectra based on the full model (blue open circles); see
Fig. 15. This agreement confirms further that, at this level of coarse
graining, the EMR model captures well the characteristics of the full
model’s solutions.

2. Convergence

Convergence in the EMR approach is determined by the
“whiteness” of the last-level residual, as explained in Sec. III B; see
Eq. (3.16) and discussion thereof. In Fig. 16, we plotted the mean
of the determination coefficients R2 for the three X variables and
we show that its convergence in the EMR approach depends only
mildly on the coupling parameter h. Indeed, for h = 0.25 we observe
in panel (a) that around 18 levels are necessary before achieving the
optimal level, whereas for weaker coupling with h = 0.025 conver-
gence is attained in panel (b) already with 15 levels, as one might
expect.

Furthermore, as already pointed out in Ref. 43, Sec. 7, on a
different example, the results in Fig. 16(c) illustrate that a smaller
timescale separation τ can require a higher number of levels for
EMR to attain convergence: in the case at hand, around 25 levels are
needed. For completeness, Fig. 16(d) shows that including additive

white noise in the L63 system can, in fact, accelerate the convergence
of the method, with convergence achieved at ` = 7.

3. Model coefficients

We show here that the EMR model coefficients can be effi-
ciently approximated when phase space subsampling is carried out.
Here, regressions are performed over 50 short time series of 10
time units each, with a time step of 5 × 10−3, as in Section 1 of
Appendix D. The reason for taking this sample length here is that 10
time units is visually enough for the slow variable X to go through a
cycle, as illustrated in Fig. 17, for both h = 0.25 and 0.025.

The estimated coefficients and their standard deviations using
the EMR regressions are listed in Tables V and VI for h = 0.25 and
in Tables VII and VIII for h = 0.025. The tables show the coeffi-
cients of the linear and quadratic forms at the first level in the EMR
regressions: see Eq. (3.14a).

As expected, a stronger coupling of h = 0.25 leads to greater
uncertainty in the estimation, as indicated by the corresponding
standard error. For the fairly complex and chaotic system at hand,
we note that no memory effects are artificially introduced in the
regressions at the second level. Indeed, we found that the coupling of
the main level with the subsequent ones was 0 to the fourth decimal
place.
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