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Abstract
Individuals with autism spectrum disorder (ASD) often exhibit atypical imitation.
However, few studies have identified clear quantitative characteristics of vocal imita-
tion in ASD. This study investigated imitation of speech and song in English-
speaking individuals with and without ASD and its modulation by age. Participants
consisted of 25 autistic children and 19 autistic adults, who were compared to 25 chil-
dren and 19 adults with typical development matched on age, gender, musical train-
ing, and cognitive abilities. The task required participants to imitate speech and song
stimuli with varying pitch and duration patterns. Acoustic analyses of the imitation
performance suggested that individuals with ASD were worse than controls on abso-
lute pitch and duration matching for both speech and song imitation, although they
performed as well as controls on relative pitch and duration matching. Furthermore,
the two groups produced similar numbers of pitch contour, pitch interval-, and time
errors. Across both groups, sung pitch was imitated more accurately than spoken
pitch, whereas spoken duration was imitated more accurately than sung duration.
Children imitated spoken pitch more accurately than adults when it came to speech
stimuli, whereas age showed no significant relationship to song imitation. These
results reveal a vocal imitation deficit across speech and music domains in ASD that
is specific to absolute pitch and duration matching. This finding provides evidence
for shared mechanisms between speech and song imitation, which involves indepen-
dent implementation of relative versus absolute features.

Lay Summary
Individuals with autism spectrum disorder (ASD) often exhibit atypical imitation
of actions and gestures. Characteristics of vocal imitation in ASD remain unclear.
By comparing speech and song imitation, this study shows that individuals with
ASD have a vocal imitative deficit that is specific to absolute pitch and duration
matching, while performing as well as controls on relative pitch and duration
matching, across speech and music domains.
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INTRODUCTION

Imitation is a fundamental skill that emerges early in typ-
ical human development (Meltzoff, 2017). It is essential
for learning of complex constructs, including language

(McEwen et al., 2007; Rose et al., 2009) and social inter-
action (Kuhl, 2007; Masur, 2006; Vivanti &
Hamilton, 2014). In particular, by imitating others or
being imitated, individuals gradually become aware of
the physical world, such as cause-effect relations
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(Meltzoff & Williamson, 2013); the mental states of other
people, such as their intentions and feelings (Meltzoff &
Keith Moore, 1994); and the sounds around them, such
as languages (Charman et al., 2000; Young et al., 2011).

Imitation in individuals with autism spectrum disor-
der (ASD) is often described as atypical (Williams
et al., 2001). Deficits in imitation skills in ASD have been
reported for a variety of tasks, including action imitation,
which involves using body and hands to act (Ham
et al., 2011; Young et al., 2011); object-directed action
imitation where actions involve objects (Cossu
et al., 2012; Vivanti et al., 2014); facial imitation (Bernier
et al., 2007) and vocal imitation (McCann et al., 2007).
Specifically, when individuals with ASD are instructed to
imitate an action or utterance, they imitate with lower
levels of accuracy and do so less frequently than typically
developing (TD) counterparts (Edwards, 2014; Turan &
Okcun Akcamus, 2012; Vivanti & Hamilton, 2014). Imi-
tation deficits in ASD mainly manifest in high fidelity
imitation of form, rather than in emulation of function or
end points (Edwards, 2014). Functional magnetic reso-
nance imaging studies suggest dysfunction of the mirror
neuron system during action imitation in ASD (Yang &
Hofmann, 2016).

Compared with other areas of imitation (e.g., action,
object, and face), research on vocal imitation in ASD is
relatively scarce and has only focused on either the
speech or music domain. Although several studies have
addressed vocal imitation of speech in ASD, results to
date are mixed regarding whether and to what extent
(pitch, duration, and/or the balance between the two)
individuals with ASD are associated with speech imita-
tion deficits. Some differences across studies may be due
to the use of acoustic analyses versus the use of percep-
tual ratings. For instance, based on ratings by speech and
language therapists, children with ASD had impaired
imitation of various prosodic forms, including affect,
intonation, chunking, and focus (McCann et al., 2007;
McCann & Peppé, 2003; Peppé et al., 2007, 2011). By
contrast, acoustic analyses of pitch range showed no dif-
ference across groups for imitation of stress, despite the
fact that ASD participants received lower perceptual rat-
ings of accuracy than TD controls (Paul et al., 2008).
Thus, Van Santen et al. (2010) called attention to the
unreliability and bias of clinicians’ perceptual ratings
(not strictly blind to participants’ diagnostic status) and
advocated the advantages and objectivity of instrumental
methods. However, studies employing acoustic measures
to assess imitation performance also produced divergent
findings, with one study showing a group difference in
duration only but not in mean pitch (Diehl & Paul, 2012)
and other studies reporting both pitch and duration dif-
ferences between groups (Fosnot & Jun, 1999; Hubbard &
Trauner, 2007).

In contrast to speech, music has been seen as an area of
exceptional skills in ASD (Molnar-Szakacs &
Heaton, 2012; Ouimet et al., 2012). However, only one

study has examined music imitation in ASD, and the
results suggested that children with ASD showed compara-
ble or better performance than controls when imitating
pitch, rhythm, and duration of musical tones based on
independent observers’ judgment (Applebaum et al., 1979).
Thus, regarding vocal imitation, ASD seems associated
with atypical speech imitation but normal to superior
music imitation. Given that vocal imitation is crucial for
language acquisition (Kuhl, 2000; Kuhl & Meltzoff, 1996)
and successful imitation requires sensorimotor, cognitive,
and social skills (Fridland & Moore, 2015; Heyes, 2001;
Nguyen & Delvaux, 2015; Over & Carpenter, 2013;
Pagliarini et al., 2020), a potential impairment in vocal imi-
tation may be related to landmark deficits of ASD includ-
ing social and communicative difficulties (American
Psychiatric Association, 2013; Diehl et al., 2015;
McCann & Peppé, 2003). Previous studies have suggested
that musical training benefits speech processing
(Patel, 2011, 2012) and similar acoustic cues are used in
emotional communication in music and speech (Juslin &
Laukka, 2003). In addition, vocal imitation mechanisms
are likely shared between speech and song production in
adults with typical development (Mantell &
Pfordresher, 2013; Wisniewski et al., 2013). Thus, the inti-
mate link between music and speech begs the question as
to whether vocal imitation impairment in ASD is indeed
domain specific, especially when there has only been one
study examining music imitation in ASD (Applebaum
et al., 1979).

The domain specificity or generality of vocal imita-
tion impairment in ASD is particularly relevant to a
longstanding debate about whether speech and music
share the same underlying processing systems (Albouy
et al., 2020; Norman-Haignere et al., 2015; Zatorre &
Gandour, 2008). The modular or domain-specific frame-
work proposes that speech and music may involve dis-
tinct modules or mechanisms that deal with a particular
aspect of the input and its output representation, either
exclusively or more effectively than any other mecha-
nisms (Fodor, 1983, 2001; Peretz, 2009; Peretz
et al., 2015; Peretz & Coltheart, 2003; Peretz &
Zatorre, 2005). While speaking and singing involve multi-
ple processing components, musical abilities depend, in
part, on modular processes such as tonal encoding of
pitch, which is music-specific and independent of spoken
pitch processing (Peretz, 2009; Peretz & Coltheart, 2003).
In contrast to this view, others have suggested that speech
and music systems may not be entirely modular or inde-
pendent (Kunert & Slevc, 2015; Patel, 2013). Rather,
there are shared or domain-general mechanisms underly-
ing the processing of information across both domains
(Koelsch, 2011; Koelsch & Siebel, 2005; Patel, 2008;
Sammler et al., 2009). Numerous studies have provided
evidence in support of either the domain-specific or
domain-general view (Kunert & Slevc, 2015; Peretz
et al., 2015). In addition to comparing music with lan-
guage processing in typical development (Slevc
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et al., 2009; Slevc & Miyake, 2006), neurodevelopmental
disorders such as congenital amusia (Liu et al., 2010,
2013) and ASD (DePriest et al., 2017; Jiang et al., 2015)
could offer special insight into this debate, particularly
regarding whether deficits are only present in one domain
(e.g., music), but not in the other (e.g., speech).

Specifically, as a functional output representation,
vocal imitation of speech and song could inform the
domain-specific versus domain-general debate from a
production perspective (Peretz, 2009). Using matched
speech and song stimuli, Liu et al. (2013) directly com-
pared speech with music imitation in individuals with
and without congenital amusia, a disorder of music
processing (Ayotte et al., 2002). Individuals with congeni-
tal amusia demonstrated impaired pitch and duration
matching of speech and song in terms of both absolute
and relative measures. These findings suggest that vocal
imitation mechanisms are likely shared between speech
and song production even in congenital amusia (Liu
et al., 2013). Although prior findings on vocal imitation
in individuals with ASD seem to favor the domain-
specific model, there have been too few published studies
especially in music imitation in ASD to draw valid con-
clusions to inform the theoretical debate of music and
language processing in this clinical population. Also, no
studies have directly compared imitation abilities in
speech versus music in ASD using matched linguistic and
musical tasks to address the question of whether impaired
speech imitation but spared/enhanced music imitation
would be present in the same sample of participants. Fur-
thermore, the absolute measures on pitch and duration
matching used in Liu et al. (2013) required higher fidelity
imitation than the relative measures. It remains to be
determined whether individuals with ASD would show
worse performance on absolute feature matching than
relative feature matching during vocal imitation, similar
to other areas of imitation in ASD (Edwards, 2014).

Studies of speech imitation in TD children and adults
suggest that speech imitation ability is influenced by age
(Kent & Forner, 1980; Loeb & Allen, 1993; Snow, 1998).
Specifically, young children (aged 4) tended to imitate
speech segments with longer duration and greater vari-
ability than older children (aged 6 and 12) and adults
(Kent & Forner, 1980). While 3- and 4-year-olds showed
more difficulty in imitating rising intonation contours in
questions than falling intonation contours in statements,
5-year-olds were able to imitate both types of contours
(Loeb & Allen, 1993; Snow, 1998). Studies of music imi-
tation have examined pitch matching of tones or melo-
dies in children (Cooper, 1995; Geringer, 1983) and
adults (Amir et al., 2003; Pfordresher & Brown, 2007).
Among children, pitch matching accuracy increases with
age, with fourth-graders (9–10 years old) performing sig-
nificantly better than third-graders (8–9 years old)
(Cooper, 1995). While more than half of fourth-graders
could match pitch within 50 cents (0.5 semitones), pre-
school children (4–5 years old) produced a median

deviation of 2.5 semitones (Geringer, 1983). Results on
tempo matching or rhythm reproduction during music
imitation suggest that, at 6 years, both musicians and
non-musicians were able to reproduce rhythmic patterns
embedded in a string of syllables (Gérard &
Auxiette, 1992; Reifinger, 2006), and rhythmic response
ability increased with age from Grade 1 to Grade 3 stu-
dents (Schleuter & Schleuter, 1985). In addition, adults
outperformed 5- to 7-year-old children on rhythm repeti-
tion, melody repetition, prosody repetition, as well as a
range of other language and music tasks (Cohrdes
et al., 2016). Thus, similar to speech imitation, music imi-
tation ability is also influenced by age in typical develop-
ment. In ASD, the evidence from studies on non-vocal
imitation (e.g., action, object, and face) suggests that,
although imitative abilities increase over time, impair-
ments in imitation continue throughout the lifespan in
ASD (Biscaldi et al., 2014; Vivanti & Hamilton, 2014;
Young et al., 2011). However, how age influences speech
and music imitation in ASD has not been systematically
studied.

In the current study, we examined vocal imitation
abilities in children and adults with and without ASD
using matched speech and song stimuli, addressing three
research questions: (1) Do imitation abilities of individ-
uals with ASD differ from controls in terms of pitch and
duration matching across speech and music domains?
(2) Do individuals with ASD differ from controls with
respect to relative and absolute feature matching in vocal
imitation? (3) Do vocal imitation abilities in ASD and
TD vary with age? Based on previous findings, we
hypothesized that: (1) Participants with ASD would show
impaired pitch and duration imitation in speech but not
in song compared to controls; (2) Participants with ASD
would show poorer performance on absolute feature
matching than on relative feature matching as compared
to controls; and (3) Across both groups, the adult cohort
would perform better than the child cohort overall.

METHOD

Participants

A group of 44 individuals with ASD and 44 matched
controls were recruited via a variety of methods including
email lists, local social media advertisements, and local
experimental participant databases. All were native Brit-
ish English speakers with no speech or hearing problems,
and reported no history of other neurological or psychiat-
ric disorders. Participants in the ASD group had a formal
diagnosis of ASD by clinicians. Participants in the con-
trol group were included using the cut-off scores of
32 (adults), 30 (adolescents) or 76 (children) on the
Autism-Spectrum Quotient (AQ) (Auyeung et al., 2008;
Baron-Cohen et al., 2001, 2006). All participants had
normal hearing in both ears, with pure-tone air
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conduction thresholds of 25 dB HL or better at frequen-
cies of 0.5, 1, 2, and 4 kHz. Participants’ nonverbal IQ
was estimated using the Raven’s Standard Progressive
Matrices Test (Raven et al., 1998), and verbal IQ was
estimated by the Receptive One Word Picture Vocabu-
lary Test IV (ROWPVT-IV) (Martin & Brownell, 2011).
The Corsi block-tapping task was used to assess partici-
pants’ nonverbal short-term memory span (Kessels
et al., 2000), and the forward digit span task was used to
assess verbal short-term memory (Wechsler, 2003). Par-
ticipants were further divided into two age cohorts, chil-
dren (<16) and adults (≥16), based on the age cut-off of
16 years, following the definition of adults in the AQ
(Baron-Cohen et al., 2001). The reason that we used a
two-way rather than a three-way split of age cohorts
(children, adolescents, and adults) was to ensure that
there were enough participants in each cohort. The age
range of the child cohort was between 7.39 and
15.75 years and that of the adult cohort was between
16 and 56.75 years. Children’s music perception skills
were assessed using the Montreal Battery of Evaluation
of Musical Abilities (MBEMA), which consists of five
subtests with 20 trials each measuring the perception of
scale, contour, interval, rhythm and recognition memory
of musical melodies (Peretz et al., 2013). Adults were
assessed using the Montreal Battery of Evaluation of
Amusia (MBEA), which contains six subtests with 30 tri-
als each measuring the perception of scale, contour, inter-
val, rhythm, meter, and recognition memory of musical
melodies (Peretz et al., 2003). All participants also com-
pleted a questionnaire about their musical, language, and
medical background, where they were also asked to
report whether they possess absolute pitch or perfect
pitch, the ability to identify a musical note without a ref-
erence tone (Deutsch, 2013). As can be seen in Table 1,
the ASD and control groups were comparable on all
background measures. The study was approved by the
University of Reading Research Ethics Committee. Writ-
ten informed consent/assent was obtained from the par-
ticipants and/or their parents prior to the experiment.

Stimuli

The target stimuli were 12 sentences either spoken or
sung as statements or questions from Mantell and
Pfordresher (2013), yielding 48 sentences with three to
five syllables each. The speech stimuli were naturally spo-
ken, and the pitch-time trajectory did not correspond to
any diatonic scales. In order to create contour variation
in the sequences, statements were produced with a falling
contour and questions with a rising contour. The song
stimuli comprised pitches from a major diatonic scale
that approximated the global melodic contours of the
speech stimuli. Each sung syllable had a roughly identical
duration so as to invoke a metrical beat, resulting in the
song stimuli being longer than the speech stimuli. Three

versions of the speech/song stimuli were used for different
age and gender groups. The adult male and female ver-
sions were taken from Mantell and Pfordresher (2013)
and used for male/female participants ≥12 years old. For
child participants <12 years old, a child version was cre-
ated by a child (female, 11-year-old, with 5 years of musi-
cal training) imitating the female version but in her own
pitch range (see Figure 1; for more details, see Table S1).

Procedure

The presentation of the target stimuli and the recording
of the imitations were both done using Praat (Boersma &
Weenink, 2001). Participants were seated in a soundproof
booth and presented with four practice trials (with items
different from those in experimental trials: two speech
vs. two song) to familiarize themselves with the task and
the recording environment. Following the practice ses-
sion, participants were presented with each of the
48 speech/song sentences one at a time in a pseudoran-
dom order to ensure that different experimental condi-
tions would alternate in an unpredictable manner and
that long runs of the same condition (possible with true
randomization) would not occur. Participants were
instructed to imitate exactly the pitch and timing patterns
of the sentences to the best of their ability, while their
voices were recorded. Each sentence was played once and
only replayed when participants failed to catch the
words, and not when they wanted to listen to it again so
they could imitate it better.

Data analysis

Recordings were analyzed in Praat using ProsodyPro
(Xu, 2013) to extract the pitch and duration of each sylla-
ble rhyme. The rhyme was defined as the vowel portion of
the syllable plus any final voiced consonant (e.g., car,
book), which was done by the first author (a phonetician).
Octave errors in pitch imitation were corrected, that is,
when imitated pitch was more than 6 semitones (half
octave) apart from the model pitch, the value was adjusted
as 12 – imitated pitch. In total, less than 3% of the data
samples needed to be adjusted and most of these errors
were caused by creaky voices, resulting in decreased fun-
damental frequency, F0 (Johnson, 2011). For accurate
acoustic analysis of the data, we used ProsodyPro to man-
ually add these missed vocal pulse marks for F0 based on
the waveforms and spectrograms, to avoid having errone-
ous outliers misleading imitation results. Trials were not
excluded when participants repeated the sentences slightly
incorrectly but with the correct rhyme, for example,
substituting “he” for “she” or “brought” for “bought.” In
the literature, pitch accuracy in singing and imitation has
been analyzed using a variety of measures, such as using
median F0 (Dalla Bella et al., 2007; Dalla Bella
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et al., 2009; Liu et al., 2013) or mean F0 (Hutchins &
Peretz, 2012) of the vowel or vocalic group to indicate
pitch height of each note/syllable, or calculating mean
absolute pitch error and pitch correlation across the entire
pitch trajectories of the model and imitated sequences
(Mantell & Pfordresher, 2013). For timing accuracy, either
subjective ratings, for example, 0 = “incorrect,”
0.5 = “partly correct,” and 1 = “correct” (Cohrdes
et al., 2016), or objective acoustic analyses, for example,
number of time errors as determined by a 25% time

deviation (Dalla Bella et al., 2007; Dalla Bella et al., 2009;
Liu et al., 2013; Tremblay-Champoux et al., 2010) have
been used. The pros and cons of these different methods
and measures have been discussed (Dalla Bella, 2015).
Since the ability to imitate/produce absolute versus relative
features and pitch versus timing variables can dissociate in
different “phenotypes” of poor singing (Berkowska &
Dalla Bella, 2013; Dalla Bella & Berkowska, 2009), it is
recommended that these dimensions be examined sepa-
rately (Dalla Bella, 2015). Compared to mean F0, median

TABLE 1 Characteristics of the ASD (n = 44) and control groups (n = 44)

Age cohort Background measures ASD Control W p
Rank-biserial
correlation

Children (n = 50) Gender (F:M) 4:21 4:21

Age 11.41 (2.64) 11.17 (2.63) 335 0.67 0.07

Musical training 2.18 (2.71) 1.76 (2.26) 335 0.66 0.07

NVIQ 69.00 (26.14) 79.40 (23.06) 225 0.08 0.28

VIQ 122.12 (15.43) 126.20 (14.96) 273 0.45 0.13

Corsi 5.12 (1.30) 5.60 (1.38) 267.5 0.37 0.14

Digit span 5.48 (1.05) 5.80 (0.91) 246.5 0.18 0.21

Self-reported absolute pitch n = 2 n = 2

Scale 16.64 (2.20) 17.29 (17.29) 232 0.17 0.23

Contour 15.04 (3.41) 16.63 (2.70) 218.5 0.10 0.27

Interval 15.52 (3.38) 16.50 (3.60) 239 0.22 0.20

Rhythm 16.16 (3.38) 17.46 (3.05) 232.5 0.18 0.23

Memory 16.48 (3.08) 17.75 (2.42) 227.5 0.14 0.24

Pitch composite 47.20 (8.11) 50.42 (8.11) 224.5 0.13 0.25

MBEMA global 79.84 (13.63) 85.62 (12.62) 216 0.10 0.28

Adults (n = 38) Gender (F:M) 10:9 10:9

Age 34.51 (13.55) 33.74 (12.73) 184.5 0.92 0.02

Musical training 4.26 (6.40) 5.50 (6.72) 165 0.65 0.09

NVIQ 53.95 (28.07) 47.37 (31.11) 202.5 0.52 0.12

VIQ 110.72 (13.75) 111.53 (14.09) 153 0.59 0.11

Corsi 5.74 (1.45) 6.26 (1.15) 140.5 0.22 0.22

Digit span 7.05 (1.62) 7.00 (1.11) 180 1.00 0.003

Self-reported absolute pitch n = 2

Scale 25.79 (3.41) 26.16 (2.57) 172 0.81 0.05

Contour 25.11 (3.43) 25.53 (2.95) 177.5 0.94 0.02

Interval 24.21 (3.17) 25.53 (2.95) 141 0.25 0.22

Rhythm 26.00 (3.87) 26.63 (2.11) 186.5 0.87 0.03

Meter 22.11 (9.38) 25.26 (6.98) 145.5 0.31 0.19

Memory 27.11 (1.88) 26.42 (2.39) 205.5 0.47 0.14

Pitch composite 75.11 (9.04) 77.21 (6.02) 163.5 0.63 0.09

MBEA global 83.5 (10.5) 86.4 (7.3) 154 0.45 0.15

Note: Musical training: years of musical training; NVIQ: percentile point of Raven’s Standard Progressive Matrices Test; VIQ: standard score of Receptive One Word
Picture Vocabulary Test; Corsi: raw score of nonverbal short-term memory; Digit span: raw score of verbal short-term memory; The child cohort used the MBEMA with
five subtests (Scale, Contour, Interval, Rhythm, and Memory) with 20 trials each, the pitch composite is the sum of the scale, contour, and interval scores, and the
MBEMA global score is the percentage of correct responses out of the total 100 trials; the adult cohort used the MBEA with six subtests (Scale, Contour, Interval,
Rhythm, Meter, Memory) with 30 trials each, the pitch composite is the sum of the scale, contour, and interval scores, and the MBEA global score is the percentage of
correct responses out of the total 180 trials; 2-tailed Mann–Whitney-Wilcoxon Test results were used to compare group difference and effect size was given by the rank
biserial correlation in the Mann–Whitney test.
Abbreviations: ASD, autism spectrum disorder; MBEA, Montreal battery of evaluation of amusia; MBEMA, Montreal battery of evaluation of musical abilities.
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F0 is a preferable measure of pitch height, since it is less
affected by extreme or erroneous variation of F0 due to
creaky voice (Dalla Bella, 2015). In contrast to the whole
trajectory analysis of each sequence (Mantell &
Pfordresher, 2013), measuring the median F0 of each note/
syllable rhyme (or vowel group) makes the calculation of
pitch interval and pitch contour (two critical components
in memory for melodies) between consecutive notes/sylla-
bles possible (Dowling & Fujitani, 1971). Most impor-
tantly, similar to music, there are pitch targets in speech
across tone and intonation languages, such as high, low,
rising, and falling, and they are realized based on linguistic
functions and articulatory constraints (Xu, 2005; Xu &
Prom-on, 2014; Xu & Wang, 2001). With a tonal percep-
tion model, speech prosody can be transcribed using a styl-
ization of pitch levels and movements coupled with
vocalic segments (Mertens, 2004), enabling the compari-
son of spoken and musical rhythm and melody (Patel
et al., 2006). Thus, taking a comparative approach to
studying music and language (Patel et al., 2006) and
balancing the advantages and disadvantages of different
methods (Dalla Bella, 2015), we adapted the following
absolute and relative pitch and time measures from earlier
studies (Dalla Bella et al., 2009; Dalla Bella, Deutsch,
et al., 2007a; Liu et al., 2013, 2016; Tremblay-Champoux

et al., 2010) to compare imitation accuracy between music
and speech in the current study.

The absolute pitch deviation (in cents): Median F0
was extracted from each syllable rhyme and then sub-
tracted from that of their matched model to find the pitch
deviation (in absolute value) for each imitated rhyme.
The deviations were averaged over all syllables/notes in
each utterance/melody, in order to control for the non-
independence of the data points within each utterance/
melody (Mcdonald, 2014). The bigger the value, the less
accurate the imitation in terms of absolute pitch
matching.

The relative pitch deviation (in cents): Pitch interval
was calculated as the absolute difference in median F0
between two consecutive syllables/notes, and then sub-
tracted from their matched model speaker’s pitch interval
(in absolute value). The deviations were averaged over all
intervals in each utterance/melody and the bigger the
value, the less accurate the imitation in terms of relative
pitch matching.

The number of contour errors: Contour errors were
defined as imitated pitch intervals that differed from the
corresponding target pitch intervals in regard to pitch
directions (up, down, or level). Pitch direction was con-
sidered to be up or down if the difference in pitch interval

F I GURE 1 The pitch-time trajectory of the sentence “They went home” under different conditions by child/female/male target speakers
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was higher or lower by 50 cents (100 cents = 1 semitone)
or more; otherwise (the difference was within 50 cents),
the pitch intervals were considered to form a level/flat
pitch direction. The number of contour errors was
summed over each utterance/melody.

The number of pitch interval errors: Pitch interval
errors were defined as imitated pitch intervals that were
larger or smaller than the corresponding target pitch
intervals by 100 cents without considering the pitch direc-
tion. Specifically, imitated and target pitch intervals were
compared using absolute values. The number of pitch
interval errors was summed over each utterance/melody.

The absolute duration difference (in milliseconds):
Duration was extracted from each syllable rhyme and
then subtracted from their matched model speaker’s pro-
duction to find the absolute difference for each rhyme.
The differences were averaged over all rhymes in each
utterance/melody and the larger the value, the less accu-
rate the imitation in terms of absolute duration
matching.

The relative duration difference (in milliseconds):
Interonset interval (IOI) was calculated as the difference
between two consecutive syllables/notes, and then sub-
tracted from their matched model speaker’s IOI
(in absolute value). The differences were averaged over
all IOIs in each utterance/melody and the larger the
value, the less accurate the imitation in terms of relative
duration matching.

The number of time errors: Time errors were defined
as imitated syllables/notes that were more than 25% lon-
ger or shorter than the corresponding target syllables/
notes (Dalla Bella et al., 2007; Dalla Bella et al., 2009;
Prince & Pfordresher, 2012). This measure takes into
account that in Western tonal music, event durations
constitute simple integer ratio relationships, for example,
sixteenth notes (1/4 a beat), eighth notes (1/2 a beat),
quarter notes (1 beat), and so forth, and counting time
errors this way will capture the violation to the time sig-
nature (Drake & Palmer, 2000). Similarly, in stress-timed
languages such as English, speech rhythm can also be
measured in relative terms, making the comparison of
spoken and musical rhythm possible (Patel et al., 2006;
Patel & Daniele, 2003). The number of time errors was
summed over each utterance/melody.

Statistical analyses were conducted using Rstudio
(RStudio Team, 2020). We performed linear mixed
effects analysis using the lme4 (Bates et al., 2015;
Brauer & Curtin, 2018) package with the above-
mentioned pitch and time variables as the dependent var-
iable and Diagnostic Group (effect-coded: Control
vs. ASD), Age cohorts (effect-coded: Child vs. Adult),
and Condition (effect-coded: Speech vs. Music) as well as
all possible interactions as fixed effects. All models were
fit using the maximal random effects structure that con-
verged with two random factors (subject vs. file)
(Barr, 2013; Barr et al., 2013). When the maximal model
failed to converge, the random correlations were removed

first. If the model still failed to converge, the random
effect with the least variance was iteratively removed
until the model converged. Statistical significance of the
fixed effects was estimated using the summary() function
of the lmerTest package (Kuznetsova et al., 2017), which
provided p values for the corresponding t tests. Subse-
quent post-hoc comparisons, if any, were conducted
using the emmeans package (Lenth et al., 2018).

RESULTS

Absolute pitch deviation

Figure 2(a) shows boxplots of the absolute pitch devia-
tions for the ASD and control groups. Results from the
linear mixed-effects model (Table 2) revealed a significant
main effect of Diagnostic Group, as the ASD group (M
(SD) = 156.17(116.08)) produced significantly larger
absolute pitch deviations than did the Control group (M
(SD) = 124.48(97.45)). The main effect of Condition was
also significant, with both groups showing better absolute
pitch matching for the Music condition (M(SD) = 94.03
(84.96)) than for the Speech condition (M(SD) = 186.62
(109.39)). There was also a significant Condition by Age
interaction and Post-hoc analyses with Bonferroni correc-
tion suggested that the child cohorts (M(SD) = 168.46
(98.4)) showed better absolute pitch matching than the
adult cohorts (M(SD) = 210.52(118.23)) in the speech
condition (t(144) = 2.77, p = 0.006), whereas comparable
performance (Child: M(SD) = 104.3(87.68); Adult:
M(SD) = 80.54(79.29)) was observed in the music condi-
tion (t(144) = 1.56, p = 0.12). No other remaining main
effects and interactions were significant.

Additionally, to evaluate the performance of those
participants who self-reported possessing absolute pitch,
we closely inspected the results of these participants
(Table 3). Given that the ASD group showed impaired
imitation of absolute pitch, we took the values from the
control group as the “standard” (M(SD) = 124.48(97.45),
Range: 63.36–298.26) and only two of them performed
better than the average level.

Relative pitch deviation

Figure 2(b) shows boxplots of the relative pitch devia-
tions for the ASD and control groups. Results from the
linear mixed-effects model revealed a significant main
effect of Condition, with both groups showing better rela-
tive pitch matching for the Music condition (M
(SD) = 86.5(67.1)) than for the Speech condition (M
(SD) = 163.43(115.27)). The interaction between Condi-
tion and Age was also significant, and Post-hoc analyses
with Bonferroni correction suggested that the child
cohorts (M(SD) = 148.75(103.56)) showed better relative
pitch matching than the adult cohorts (M(SD) = 182.8
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(126.6)) in the speech condition (t(129) = 2.82,
p = 0.006), while comparable performance (Child:
M(SD) = 90.47(64.14); Adult: M(SD) = 81.27(70.49))
was observed in the music condition (t(129) = 0.76,
p = 0.45). No other remaining main effects and interac-
tions were significant (see Table 2).

Number of contour errors

Figure 2(c) shows boxplots of the number of contour
errors for the ASD and control groups. Results from the
linear mixed-effects model revealed, as shown in Table 2,
a significant main effect of Condition, with both groups
showing fewer contour errors with the Music condition
(M(SD) = 6.49(5.84)) than the Speech condition (M
(SD) = 25.83(8.95)). No other remaining main effects
and interactions were significant.

Number of pitch interval errors

Figure 2(d) shows boxplots of the number of pitch inter-
val errors for the ASD and control groups. As shown in

Table 2, the linear mixed-effects model revealed a signifi-
cant main effect of Condition, as both groups showed
fewer pitch interval errors in the Music condition (M
(SD) = 22.56(13.46)) than in the Speech condition (M
(SD) = 39.28(11.2)). The interaction between Age and
Condition was also significant, although Post-hoc ana-
lyses with Bonferroni correction revealed no significant
difference between the child cohorts and adult cohorts in
either condition (Speech: t(138) = �1.54, p = 0.13;
Music: t(138) = 1.92, p = 0.06). No other remaining
main effects and interactions were significant.

Absolute duration difference

Figure 3(a) shows boxplots of the absolute duration dif-
ferences for the ASD and control groups. The linear
mixed-effects model revealed, as shown in Table 4, a sig-
nificant main effect of Group, as the ASD group (M
(SD) = 57.92(40.09)) produced significantly larger abso-
lute duration differences than did the Control group (M
(SD) = 51.48(32.55)). The main effect of Condition was
also significant, with both groups showing larger absolute
duration differences in the Music condition (M

F I GURE 2 Boxplots of pitch-
related measures for the ASD and
control groups. (a) the absolute
pitch deviation; (b) the relative
pitch deviation; (c) the number of
contour errors; (d) the number of
pitch interval errors (asterisks
represent p-values between
variables with *p < 0.05,
**p < 0.01 and ***p < 0.001).
ASD, autism spectrum disorder
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(SD) = 71.73(41.31)) than in the Speech condition (M
(SD) = 37.67(20.01)). No other remaining main effects
and interactions were significant.

Relative duration difference

Figure 3(b) shows boxplots of the relative duration differ-
ences for the ASD and control groups. The linear mixed-
effects model revealed a significant main effect of Condi-
tion, with both groups showing bigger relative duration
differences in the Music condition (M(SD) = 55.64
(37.05)) than in the Speech condition (M(SD) = 39.75
(27.2)). No other remaining main effects and interactions
were significant (see Table 4).

Number of time errors

Figure 3(c) shows boxplots of the number of time
errors for the ASD and control groups. The linear mixed-

TABLE 2 Results from the linear
mixed-effects models for the pitch-related
measures.

Estimate Std. error df t p

The absolute pitch deviations model

Diagnostic group 15.57 6.44 84.00 2.42 0.02*

Age 4.60 6.44 84.00 0.71 0.48

Condition �48.53 4.16 94.87 �11.67 <0.001***

Group: Age �2.37 6.44 84.00 �0.37 0.71

Group: Condition �0.39 3.80 84.00 �0.10 0.92

Age: Condition �16.49 4.09 94.06 �4.04 <0.001***

Group:Age:Condition �1.41 3.80 84.00 �0.37 0.71

The relative pitch deviations model

Diagnostic group 5.96 5.36 84.00 1.11 0.27

Age 6.30 5.36 84.00 1.17 0.24

Condition �39.97 3.74 67.65 �10.69 <0.001***

Group: Age 3.95 5.36 84.00 0.74 0.46

Group: Condition 2.72 2.90 84.02 0.94 0.35

Age: Condition �10.91 2.90 84.02 �3.76 <0.001***

Group:Age:Condition �2.30 2.90 84.02 �0.79 0.43

The contour errors model

Diagnostic group 0.03 0.03 84.08 1.12 0.27

Age �0.03 0.04 64.06 �0.74 0.46

Condition �0.42 0.04 31.98 �9.63 <0.001***

Group: Age 0.007 0.03 84.08 0.24 0.81

Group: Condition 0.02 0.02 84.17 0.91 0.36

Age: Condition 0.008 0.02 84.18 0.42 0.67

Group:Age:Condition �0.004 0.02 84.17 �0.18 0.86

The pitch interval errors model

Diagnostic group 0.07 0.05 84.03 1.51 0.13

Age �0.01 0.05 84.20 �0.23 0.82

Condition �0.38 0.03 52.38 �11.15 <0.001***

Group: Age 0.02 0.05 84.03 0.37 0.71

Group: Condition 0.04 0.03 83.95 1.76 0.08

Age: Condition �0.10 0.03 57.66 �3.04 0.004**

Group:Age:Condition 0.001 0.03 83.95 0.05 0.96

Note: *p < 0.05, **p < 0.01, and ***p < 0.001.

TABLE 3 The results of absolute pitch deviation for participants
who self-reported possessing absolute pitch

ID Diagnostic group Age cohort
Absolute pitch
deviation

Participant 1 ASD Child 143.33

Participant 2 ASD Child 76.70

Participant 3 ASD Adult 173.24

Participant 4 ASD Adult 156.85

Participant 5 Control Child 78.43

Participant 6 Control Child 180.60

Abbreviation: ASD, autism spectrum disorder.
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effects model revealed a significant main effect of Age, as
the adult cohorts (M(SD) = 28.49(14.97)) produced fewer
time errors than did the child cohorts (M(SD) = 33.19
(12.98)). There was a main effect of Condition, as both
groups made fewer time errors with the Music condition
(M(SD) = 22.39(13.1)) than with the Speech
condition (M(SD) = 39.93(8.26)). No other remaining
main effects and interactions were significant (see
Table 4).

DISCUSSION

The present study investigated imitation of speech and
song in English-speaking individuals with and without
ASD and its modulation by age using absolute and rela-
tive pitch and duration measures. The main results
showed that individuals with ASD were worse than con-
trols on absolute pitch and duration matching, while per-
forming as well as controls on relative pitch and duration
matching in both speech and song imitation. In addition,
the two groups produced similar numbers of pitch con-
tour errors, pitch interval errors, and time errors. Fur-
thermore, like the controls, individuals with ASD

imitated sung pitch more accurately than spoken pitch,
whereas spoken duration was imitated more accurately
than sung duration. Across both groups, children tended
to imitate pitch more accurately than adults when it came
to speech stimuli rather than song stimuli, whereas adults
made fewer time errors than did children in both stimulus
types.

In terms of absolute feature matching during vocal
imitation, we discovered impaired performance in the
ASD group for both pitch and duration across both
speech and song conditions as compared to the control
group. This finding is in line with previous results show-
ing impaired imitation of form in ASD (Edwards, 2014).
A few previous studies also showed impaired pitch and
duration imitation for speech in ASD (Fosnot &
Jun, 1999; Hubbard & Trauner, 2007). However, other
studies indicated that speech imitation deficits in ASD
only manifested in duration (Diehl & Paul, 2012; Paul
et al., 2008). The discrepancy may be related to the differ-
ent methods used to measure imitation performance
across the studies. While we compared group differences
in imitation by measuring how well participants in each
group matched the pitch and duration features of the
model utterances, previous studies ignored the model but

F I GURE 3 Boxplots of
duration-related measures for the
ASD and control groups. (a) the
absolute duration difference;
(b) the relative duration difference;
(c) the number of time errors
(asterisks represent p-values
between variables with *p < 0.05,
**p < 0.01 and ***p < 0.001).
ASD, autism spectrum disorder
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compared the pitch and duration patterns of the pro-
duced utterances across groups (Diehl & Paul, 2012; Paul
et al., 2008). Thus, as in previous vocal imitation studies
(Liu et al., 2013; Mantell & Pfordresher, 2013), we mea-
sured imitation abilities by comparing acoustic parame-
ters between the model and imitated utterances, and the
smaller the difference, the more accurate the imitation.
Using this method, we were able to reveal differences in
absolute feature matching during imitation between
groups. However, previous studies only showed the dif-
ferences in characteristics between the produced utter-
ances of the two groups (Diehl & Paul, 2012; Paul
et al., 2008), thus measuring speech production, rather
than imitation accuracy.

In contrast to the intact musical imitation abilities
reported in a previous study on children with ASD
(Applebaum et al., 1979), our finding demonstrated that
both children and adults with ASD were impaired in
absolute pitch and duration matching for song imitation.
One explanation for this discrepancy may be related to
how the accuracy of imitation was calculated. Specifi-
cally, Applebaum et al. (1979) relied on subjective per-
ceptual ratings of imitation accuracy by two independent
observers, whereas the current study employed objective
acoustic analyses. A second possible explanation relates

to the difference in sample size. While 88 participants
(44 per group) were involved in the present study, only
six individuals participated in Applebaum et al.’s (1979)
study (three per group). Thus, the current results may be
more reliable given the objective acoustic analyses and a
larger sample size.

Despite impaired absolute pitch and duration
matching, individuals with ASD showed comparable per-
formance to controls on relative pitch and duration
matching, as well as on other measures of relative-feature
matching (e.g., number of pitch contour, pitch interval,
and time errors). Our results are consistent with previous
findings on poor singers (Berkowska & Dalla Bella, 2009;
Dalla Bella & Berkowska, 2009). For instance, Dalla
Bella and Berkowska (2009) examined occasional singers’
pitch and duration accuracy in terms of both absolute
and relative features when spontaneously producing well-
known melodies, as well as when imitating these melodies
with a metronome at a slower tempo. They found that
poor singers performed less accurately in the absolute
measures than the relative measures and suggested that
the production of relative and absolute pitch and time
features may be independent in the music domain. Our
results extend those of Dalla Bella and Berkowska (2009),
showing that the dissociation between relative and

TABLE 4 Results from the linear
mixed-effects model for the duration-
related measures.

Estimate Std. error df t p

The absolute duration differences model

Diagnostic group 2.96 1.48 84.01 2.01 0.048*

Age �2.73 1.51 87.62 �1.80 0.07

Condition 17.00 1.46 62.19 11.64 <0.001***

Group: Age �1.94 1.48 84.01 �1.31 0.19

Group: Condition 2.03 1.07 84.00 1.90 0.06

Age: Condition �0.26 1.07 84.00 �0.25 0.81

Group:Age:Condition �0.95 1.07 84.00 �0.89 0.38

The relative duration differences model

Diagnostic group 2.07 1.59 85.63 1.30 0.20

Age �1.36 1.58 84.15 �0.86 0.39

Condition 8.17 1.31 64.56 6.22 <0.001***

Group: Age �2.95 1.57 83.87 �1.88 0.06

Group: Condition 0.28 1.04 78.87 0.27 0.79

Age: Condition 1.62 1.08 80.44 1.50 0.14

Group:Age:Condition �0.93 1.01 83.79 �0.92 0.36

The time errors model

Diagnostic group 0.07 0.04 83.96 1.66 0.10

Age �0.10 0.05 87.60 �2.30 0.02*

Condition �0.39 0.04 48.47 �10.40 <0.001***

Group: Age �0.02 0.04 83.96 �0.53 0.60

Group: Condition 0.05 0.03 84.07 1.97 0.052

Age: Condition �0.04 0.03 57.96 �1.09 0.28

Group:Age:Condition 0.0009 0.03 84.07 0.03 0.97

Note: *p < 0.05, **p < 0.01, and ***p < 0.001.
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absolute pitch and duration matching is also the case for
impaired vocal imitation in ASD and that the dissocia-
tion exists not only in music but also in speech.

However, to the best of our knowledge, no previous
studies in ASD have examined relative versus absolute
feature or relative feature matching alone in either speech
or music imitation in ASD, which makes it difficult to
find evidence to explain why individuals with ASD
showed preserved relative but impaired absolute pitch
and duration matching during vocal imitation. We pro-
pose two possibilities for the divergent results of absolute
versus relative feature matching in ASD below, which
would require further investigations by future studies.
First, one possibility might relate to the differential
requirement for fidelity of imitation between absolute
and relative features. There has been extensive evidence
from non-vocal studies (e.g., action, objects, and face)
suggesting that individuals with ASD manifest impaired
imitation ability in tasks that require high fidelity imita-
tion, such as reproducing precisely both the form and the
end result of a model (Edwards, 2014). However, tasks
requiring lower fidelity, such as emulation that only
requires reproducing the final result/goal without consid-
ering the forms needed to achieve the final goal, generally
fail to observe deficits in the ASD group
(Hamilton, 2008; Edwards, 2014). In our study, the abso-
lute measures required higher fidelity imitation compared
to the relative measures. In particular, absolute measures
examined the exact matching of pitch and duration fea-
tures for each syllable/note, while relative measures
assessed the matching of the relative pitch and timing
relationship between two consecutive syllables/notes.
Thus, our current results indicate for the first time that,
consistent with non-vocal imitation studies
(Hamilton, 2008; Edwards, 2014), individuals with ASD
show impaired vocal imitation ability in tasks requiring
high fidelity (i.e., absolute feature matching), but not in
tasks requiring lower fidelity (i.e., relative feature
matching). Second, it is possible that the imitation mode
(relative vs. absolute) that participants were experiencing
during vocal imitation may account for the dissociation.
Specifically, evidence from perception research in TD
indicates that, as children mature from 3 to 6 years, there
is a general developmental shift from an absolute to a rel-
ative mode in pitch perception (Crozier, 1997; Saffran &
Griepentrog, 2001; Sergeant & Roche, 1973; Takeuchi &
Hulse, 1993). Studies also found that while adults relied
primarily on relative pitch cues, they were able to access
absolute cues under certain conditions (Saffran &
Griepentrog, 2001), and both children and adults demon-
strated absolute memory of familiar melodies
(Levitin, 1994; Schellenberg & Trehub, 2003, 2008). Tak-
ing these findings together, it is possible that different
participants may depend on different perception modes
when imitating speech and song. The reason that the two
groups did not differ significantly in relative pitch and
duration matching may be because participants all

tended to the relative cues. While controls also accessed
absolute cues during the process, participants with ASD
did not or were less capable of doing so. Future studies
are required to test this possibility by examining the rela-
tionship between perception and production during vocal
imitation.

When using acoustically matched speech and song
stimuli testing the same sample of participants, we
observed impairments (i.e., absolute pitch and duration
matching) as well as preserved skills (i.e., relative pitch
and duration matching) in ASD not only in speech but
also in music. Hence, compatible with the findings of
vocal imitation in people with typical development
(Mantell & Pfordresher, 2013) and those with congenital
amusia (Liu et al., 2013), vocal imitation also constitutes
domain-general mechanisms in individuals with ASD.
These findings provide support for using music therapy
to improve speech for those individuals with ASD who
manifest deficits in language (James et al., 2015). In addi-
tion, successful imitation requires sensorimotor, cogni-
tive, and social skills (Fridland & Moore, 2015;
Heyes, 2001; Nguyen & Delvaux, 2015; Over &
Carpenter, 2013; Pagliarini et al., 2020). Thus, the benefit
of music imitation may extend to improving cognitive
and social skills in ASD (Boster et al., 2020).

It has been reported that absolute pitch (AP) ability is
more common among individuals with ASD than in non-
clinical populations (Heaton et al., 1998; Mottron
et al., 1999; Stanutz et al., 2014). However, the present
imitative results were not in line with these findings.
Rather, we found that individuals with ASD showed
impaired absolute pitch and duration matching. While
we did not test our participants’ receptive AP ability in
the current study, we did ask whether they have absolute
pitch (or perfect pitch, the ability to identify a musical
note without a reference tone) in a questionnaire.
According to the self-reports, two children with ASD
(out of 25) and two adults with ASD (out of 19), as well
as two control children (out of 25) possessed
AP. However, they did not perform exceptionally when
imitating absolute pitch, which suggests that receptive
AP may not transfer to expressive AP in imitation. This
finding is consistent with the dual-route model, which
posits that vocal stimuli are processed for motor-relevant
features and conscious, symbolic representations along
two different, independent pathways (Hutchins &
Moreno, 2013). Thus, vocal perception and production
abilities could be uncorrelated, and each can be intact or
impaired without affecting the other (Griffiths, 2008;
Hutchins & Moreno, 2013; Loui, 2015). Notably, our
findings are based on self-reports rather than experimen-
tal testing of AP. Further studies are needed to clarify the
nature of receptive and productive AP in ASD.

Moreover, the current study examined whether
speech and song imitation abilities vary with age in ASD
and controls. Across both groups, adults made fewer time
errors in both speech and song imitation relative to the
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child cohort. Time errors were defined as deviation from
the target duration by 25%, and this is the only measure
where the two age cohorts differed significantly, but not
in other timing matching measures (e.g., absolute and rel-
ative duration matching). These results suggest that while
both children and adults can imitate the duration of
speech and song segments comparably, children may
have greater duration variability than adults when errors
were measured relative to the duration of each segment.
The findings are in agreement with previous research
indicating that there is a developmental decrease in dura-
tion variability (Kent & Forner, 1980; Munson, 2004;
Smith, 1978). Indeed, children possess less refined
neuromotor capabilities than adults (Smith, 1978), and
they are unable to exert adult-like control of speech pro-
duction mechanisms. Hence, children’s output reflects
greater variability of phonetic segments compared to
adults (Kent & Forner, 1980; Koenig et al., 2008;
Munson, 2004; Smith et al., 1996).

Conversely to what was observed in timing matching,
across both groups, children tended to imitate absolute and
relative pitch more accurately than adults when it came to
speech stimuli rather than song stimuli. This result may be
due to children attending to speech pitches more readily
than adults. Speech imitation is based on intentional under-
standing (Over & Gattis, 2010). Individuals thus tend to
imitate the functional goal (e.g., statements with falling
pitch contours vs. questions with rising pitch contours)
rather than copying the exact form of the utterances (Liu
et al., 2010, 2013). In the present study, this tendency
appeared more pronounced in adults than in children.
Indeed, we did not find any differences between the child
and adult cohorts in the pitch contour imitation, as they all
preferred to and were able to imitate the functional goals
(rising vs. falling). However, adults neglected form-related
information in speech more saliently, resulting in poorer
performance than children on exact matching of absolute
and relative pitch. On the other hand, the results could also
mean that children do not make as strong distinctions
between speech and song as adults do. Studies have shown
that, unlike musical communication, speech comprehen-
sion is remarkably robust to lack of detail in pitch variation
(Liu et al., 2015; Patel, 2011; Patel et al., 2010). This is
because the need for pitch precision in speech can be
relaxed by integrating multiple context-based cues (includ-
ing the voice onset time, vowel length, fundamental fre-
quency, and first and second formant patterns) and
knowledge sources (including semantics, syntax,
and pragmatics) (Mattys et al., 2005; Toscano et al., 2010;
Toscano & McMurray, 2010). However, since the integrat-
ing abilities in children are not as mature as adults
(McCreery & Stelmachowicz, 2011; Stelmachowicz
et al., 2000), they may still mainly rely on pitch cues in
speech imitation as they do in music imitation.

Generally speaking, we did not observe the develop-
mental increase in imitative abilities that has been
suggested by previous studies in speech (Kent &

Forner, 1980; Loeb & Allen, 1993; Snow, 1998) and music
(Cohrdes et al., 2016; Cooper, 1995; Geringer, 1983),
except in the duration variability. One explanation for this
discrepancy may be related to differences in age of the par-
ticipants among the studies. The youngest child participant
in the present study was 7.39 years old, whilst several pre-
vious studies examined the development from 3 to 5 years
(Loeb & Allen, 1993; Snow, 1998) or 5–7 years (Cohrdes
et al., 2016). Thus, it is possible that the present task was
too simple to reveal the developmental change for partici-
pants beyond 7 years old, since 5-year-olds were already
able to imitate falling versus rising contours (Loeb &
Allen, 1993; Snow, 1998). In addition, the different group-
ing of age cohorts between studies might also account for
the discrepancy in findings. Specifically, we grouped par-
ticipants below 16 into the child cohort and those above
16 into the adult cohort, and age-related differences were
then examined by comparing these two age cohorts. How-
ever, previous studies compared age-related differences at
year-level (Cooper, 1995; Geringer, 1983; Kent &
Forner, 1980; Loeb & Allen, 1993; Snow, 1998), for exam-
ple, comparing 5 years with 4 years (Loeb & Allen, 1993;
Snow, 1998). Thus, subtle developments over time may be
masked in the present study, given the wide age range
within each age cohort. Across our pre-defined age
cohorts, however, there was no significant age � group
interaction on any of the absolute or relative pitch or dura-
tion measures we examined. This suggests that age (≥16 or
<16 years) influences speech and music imitation similarly
across ASD and TD. Thus, our results on vocal imitation
corroborate previous findings of persistent impairments in
other areas of imitation across the lifespan in ASD
(Biscaldi et al., 2014; Vivanti & Hamilton, 2014; Young
et al., 2011).

Consistent with previous studies (Liu et al., 2013;
Mantell & Pfordresher, 2013; Wisniewski et al., 2013),
both the ASD and control groups imitated song more
accurately than did speech across all pitch-related mea-
sures. Several possibilities may explain this result. First,
the reason for the enhanced pitch imitation in songs may
be because, in order to achieve adequate communication,
a higher degree of pitch precision is required for convey-
ing musical meaning than speech meaning (Patel, 2008,
2011). Indeed, even individuals with congenital amusia
imitated musical pitch better than linguistic pitch, since
music is form-driven and speech is function-driven (Liu
et al., 2013). Studies of intonation imitation among TD
adults also suggest that English speakers tended to imi-
tate the phonological structure (e.g., pitch accent, intona-
tional phrase boundary), rather than the phonetic details
(e.g., pause duration, irregular pitch periods), of intona-
tion (Cole & Shattuck-Hufnagel, 2011). Thus, the worse
pitch matching in speech imitation compared to song imi-
tation may be because people tend to imitate the func-
tional goal, rather than the exact form, of speech
utterances (Liu et al., 2010). Secondly, one may argue
that the slower tempo in songs might have positively
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affected pitch imitation, since singing accuracy improves
considerably when people sing at slower as opposed to
faster tempos (Dalla Bella et al., 2007). However, even
when durations were equated across speech and song
stimuli, the pitch imitation advantage for singing
remained (Mantell & Pfordresher, 2013). Thus, the
enhanced sung pitch imitation cannot simply be attrib-
uted to differences in the rate of speech versus song stim-
uli in the present study.

Interestingly, our results on duration matching across
speech and song imitation indicate that the effect of
domain is not equivalent across different duration mea-
sures. Whereas both groups achieved better absolute and
relative duration matching in speech than in song, they
made fewer time errors in song than in speech. The fewer
time errors in song than in speech may not necessarily
imply that duration matching during song imitation was
superior to speech imitation for both groups. This is
because the more time errors in speech than in song may
be caused by the higher time precision required in speech.
Specifically, given that our time errors were defined using
deviation from 25% of the target duration and that song
stimuli contained longer target durations than speech
stimuli (see Figure 1), the accuracy requirement was
higher for speech than for song imitation. The results of
more accurate imitation for both absolute and relative
duration in speech than in song are consistent with previ-
ous findings (Albouy et al., 2020; Liu et al., 2013; Man-
tell & Pfordresher, 2013). Overall, both groups tended to
be particularly sensitive to the appropriateness of dura-
tion in speech compared to that in song, and were more
sensitive to pitch in song than in speech, suggesting that
pitch imitation is independent from the imitation of dura-
tion (Dalla Bella et al., 2007; Dalla Bella et al., 2009;
Drake & Palmer, 2000; Mantell & Pfordresher, 2013).

A caveat about the design of the current study is the
stimuli we used for participants to imitate in our experi-
ment. Taken from Mantell and Pfordresher (2013), the
stimuli for the adult male and female versions were pro-
duced in American English with a midland dialect (male
speaker) and an inland North dialect (female speaker).
The child version was created by a child imitating the
female model in British English. Since all our participants
were British English speakers, one may wonder whether
or to what extent the different dialects have affected imi-
tative performance. However, research has shown that
speakers can imitate detailed intonational patterns of a
different variety of their language (D’Imperio
et al., 2014). Similar to controls, individuals with ASD
who have good language abilities can perceive acoustic
differences in dialects as well as use these cues to group
the dialects into the areas they come from (Clopper
et al., 2012). Consistent with these findings, children,
female and male adults with ASD and their TD counter-
parts in our study performed comparably in imitation of
relative pitch and duration, suggesting that different dia-
lects may not have affected imitation performance of our

participants. In addition, impairments of absolute pitch
and duration matching in ASD were observed not only in
the adult cohort but also in the child cohort who imitated
British English. Taken together, while the effect of dialect
is unlikely to have influenced the current results, further
studies are required to examine this specific hypothesis.

CONCLUSION

Using sentences and melodies that shared critical fea-
tures, this study revealed for the first time that vocal imi-
tative skills in individuals with ASD are impaired in
absolute pitch and duration matching but intact in rela-
tive pitch and duration matching across speech and music
domains. From children to adults, vocal imitation
showed an improvement in the number of time errors
across speech and song, but a decrease in pitch imitation
accuracy in the speech condition only. These findings
support the idea that speech and song imitation may
involve shared cognitive and motor mechanisms, which
may have implications for the development of language
in individuals with ASD (Stone & Yoder, 2001).
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