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A B S T R A C T   

Climate and land-cover change will directly impact future species distributions, leading to range expansions, 
contractions and local extinctions. However, assessments of future range shifts rarely account for the capacity of 
the landscape matrix to facilitate species dispersals. Here, we assessed future range shifts for a suite of critically 
endangered plants in Madagascar. We quantified habitat connectivity using a least cost path model that captured 
the potential of species to disperse within fragmented landscapes. Next, we constructed three scenarios repre
senting landscapes impacted by climate-only, climate and land-cover change, as well as habitat connectivity. We 
modelled species distributions using a hierarchical Bayesian framework and measured future range shifts using 
three spatial indices: net-change, range distance and elevation change. Our results show that the median range 
shift due to contractions increased by 25% under the climate-only scenario compared with the connectivity 
scenario. Habitat connectivity is predicted to limit range shifts due to contractions, while increasing shifts due to 
expansions for many of the endangered and critically endangered plants on Madagascar. However, at least one- 
third of critically endangered and 50% of endangered plants are expected to experience range contractions and 
upslope displacement under all scenarios, suggesting that even with habitat connectivity the range of some 
species may still contract. Despite that finding, our study suggests that including connectivity in range shift 
models is crucial for developing a relevant connectivity conservation plan, since future climate or climate and 
land-cover change models do not adequately represent species’ potential to reach safe sites.   

1. Introduction 

Climate and land-cover change (LCC) is likely to impact plant habi
tats leading to range contraction, expansion, upward or downward 
displacements and, in some places, local extinctions (Kuhn et al., 2016). 
For most plants, it is predicted that if average global temperatures were 
to rise above 3 ◦C then more than one-half of their current habitats 
would be lost (Warren et al., 2018). Tropical regions are most likely to 
be severely impacted since future climates in the tropics may create 
novel environments and possibly facilitate range shifts (Rumpf et al., 
2019). For instance, Colwell et al. (2008) determined that tropical 
lowland biotas may face net habitat loss and elevational range changes 
due to climate change in Costa Rica. Tropical landscapes are also 
characterised by increasing rates of species range fragmentation due to 

LCC, which reduces the size of habitable environments (e.g. forest), 
threatens critical dispersal pathways and alters species composition 
(Şekercioğlu et al., 2015). Therefore, when predicting future range shifts 
it is important to consider active processes (such as habitat fragmenta
tion) and their impact on natural landscapes to determine biological 
responses to environmental change (Opdam and Wascher, 2004; Record 
et al., 2018). Considering multiple environmental factors, such as 
dispersal rates or habitat connectivity may reveal micro-scale patterns 
that contradict global trends (Zellweger et al., 2019). Measures of con
nectivity are important as they add an extra layer of realism to range 
shift predictions and help to determine how localised climate and LCC 
affect future plant distributions (Corlett and Westcott, 2013). 

Plants are unlikely to rapidly evolve the physiological tolerances 
required to adapt to anthropogenic climate change (Walter et al., 2013) 
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and those in the tropics are arguably already adapted to the warmest and 
wettest parts of their distribution (Laurance et al., 2011). Many species 
will depend on their dispersal capabilities to survive environmental 
change (Corlett and Westcott, 2013). Previous assessments of range 
shifts assume no or restricted dispersal when predicting future plant 
distributions (Walck et al., 2011), despite suggestions that dispersal 
syndromes (e.g., anemochory and zoochory), as well as landscape con
nectivity influence past and current range distributions (Seidler and 
Plotkin, 2006). Species distribution models (SDMs) can be used to esti
mate species’ potential range shift in response to different environ
mental factors (Rosenblad et al., 2019). The challenge has always been 
how to effectively incorporate variables from multiple spatial and- 
temporal scales within niche-based SDMs (McGarigal et al., 2016). 

Process-based distribution models (e.g., hierarchical Bayesian 
models) may be more robust than niche-based models when using non- 
climate variables due to the ease of integrating data across multi-scales 
and quantifying uncertainties (Zurell et al., 2016). Niche-based models 
tend to overpredict species’ extinctions and colonisations (Morin and 
Thuiller, 2009); while measures of uncertainties could inspire confi
dence in predictions of process-based models (Boakes et al., 2018). 
Redding et al. (2017) show that spatial Bayesian modelling is more 
effective than non-spatial approaches (e.g., boosted regression trees) 
when using geographically restricted data. Conducting similar assess
ments based on Bayesian modelling is particularly important for Sub- 
Saharan Africa (SSA), especially when forest loss and measures of 
fragmentation are integrated to predicted range shifts (Kreyling et al., 
2010). Despite widespread application of SDMs, there is still a lack of 
ecological assessments that incorporate active processes to explain the 
complex interactions between species and their environment (Record 
et al., 2018). Constructing range shift models that include a proxy for 
dispersal pathways, and are able to measure the capacity for landscapes 
to facilitate movements (i.e. through habitat connectivity) is likely to 
result in more reliable predictions of species’ response to environmental 
change (Elith et al., 2010). Some studies showed that habitat connec
tivity is effective for future migration of plants and animals in North 
America (Coops et al., 2016; Huang et al., 2020). To our knowledge, 
there are no similar studies that assess the impact of habitat connectivity 
for future plant distributions in SSA. 

In this study, we use a hierarchical Bayesian model to investigate 
range shift predictions under scenarios with and without habitat con
nectivity in Madagascar. We determine the impact of habitat connec
tivity on predictions of range shift using 87 endangered and critically 
endangered plants. We implement this assessment in Madagascar – a 
biodiversity hotspot with high levels of endemism and few range shift 
studies. Madagascar’s plant diversity is expected to be adversely 
impacted, mainly due to climate and LCC (Brown et al., 2015), range 
contraction and expansion to some of its endemic species (Hong-Wa and 
Arroyo, 2012) and extinctions to more than half the species in the genera 
Coleeae (Good et al., 2006). To investigate how future climate and LCC 
influences plant range shifts, we consider three scenarios and focus on 
three measures of range shift. First, we consider a climate-only scenario 
that assumes a ‘business as usual’ trend in future temperatures and 
precipitation. This scenario mimics the most common approach used in 
previous studies and assumes a simplified future natural world that is 
unaffected by other environmental variables in 2050. Next, we examine 
a combined climate and LCC scenario. Finally, we use a connectivity 
scenario to capture species’ ability to move through the landscape by 
including a measure of least cost path between natural habitats. 

We test the hypothesis that habitat connectivity will limit range 
contractions and facilitate range expansions compared with a climate- 
only scenario (null model) by assessing the following research 
questions:.  

i. How will habitat connectivity affect future range expansion and 
contraction for plants in the tropics?  

ii. How will habitat connectivity affect upslope and downslope 
range displacements?  

iii. To what extent will range shifts under climate land-cover change 
and connectivity scenarios differ? and  

iv. Which geographic locations are more sensitive to predictions of 
expansion and contraction under different scenarios? 

We expect range shift due to contractions to be minimal in the 
connectivity scenario compared with scenarios without connectivity 
(Feeley and Silman, 2010). We also expect range expansion and upslope 
displacement to be dominant under the connectivity scenario and that 
range shift will vary under all scenarios due to the influence of envi
ronmental change (Kubisch et al., 2013). We expect range shifts due to 
contractions to predominately occur in lowland regions (Colwell et al., 
2008). Our assessment of range shift aligns with ongoing conservation 
efforts in the region – for instance, existing partnerships led by the 
Intergovernmental Platform on Biodiversity and Ecosystem Services 
(IPBES) aims to connect evidence-driven policies with biodiversity 
conservation and could benefit from quantitative measures of the po
tential changes to plant habitats. We also anticipate that the predicted 
outcomes of range shifts from this study would form the basis for con
nectivity conservation planning across the region. 

2. Materials and methods 

2.1. Study area 

Madagascar covers an area of approximately 585,000 km2 and is 
inhabited by more than 10,000 endemic plant species (Callmander et al., 
2011). Twenty-six percent of its endemic plant genera are closely 
related, 22% have floristic links with Africa, 9.1% with SE Asia and 6.2% 
with India (Bevill and Louda, 1999). Despite the high floral diversity, 
most species are threatened by high rates of deforestation, degradation, 
habitat fragmentation and biodiversity loss (Vieilledent et al., 2018; 
Yesuf et al., 2019). The remaining large and intact vegetation formations 
on the island are grouped into eight categories: lowland evergreen moist 
forest, medium altitude moist evergreen forest, moist semi-deciduous 
forest, sclerophyllous woodland, dry deciduous forest, riparian forest 
and littoral forest (Gautiert et al., 2018). Other natural vegetation types 
include montane grassland, marshland and montane ericoid thicket; 
while these are not forested areas, they are equally inhabited by many 
endemic plant species. 

2.2. Occurrence records and species selection 

All plant species included in this assessment are endemic to 
Madagascar and their occurrence records sourced from the Global 
Biodiversity and Information Facility (GBIF) portal (https://doi.org/ 
10.15468/dl.n9k471). Only georeferenced species and those classified 
either as endangered, critically endangered or vulnerable under the 
International Union for the Conservation of Nature (IUCN) Red List 
(IUCN, 2017) were selected. To reduce dense sampling in the observa
tions, spatial thinning was applied resulting in each species having one 
occurrence per pixel (~1 km2) (Elith et al., 2010). This resolution also 
represents the pixel sizes of the bioclimatic variables. Additionally, only 
species with a minimum of 10 occurrence records were selected. In total, 
87 species passed the thinning threshold resulting in a total of 2266 
presence locations (Appendix A and Table A.1). 

2.3. Environmental variables 

2.3.1. Climate data 
For the current and future climate scenarios we selected annual mean 

temperature, annual precipitation, maximum temperature of the 
warmest month, minimum temperature of the coldest month, mean 
temperature of warmest quarter, mean temperature of coldest quarter, 
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precipitation of the wettest month and precipitation of the driest month 
(Table A.2). These eight bioclimatic variables are a subset of 19 avail
able from Worldclim (Fick and Hijmans, 2017), and were chosen 
because they are considered to have high ecological significance for 
plant survival, and they capture seasonal variations and weather ex
tremes to which plants may have to adapt in the future (Davis et al., 
2012; Kuhn et al., 2016). Bayesian process-based models are robust to 
the effects of collinearity (Golding and Purse, 2016; Stuber et al., 2017) 
and do not suffer from the effects of highly correlated covariates that 
often affect semi-parametric models (e.g., generalised additive models). 
The future climate data were obtained from the Met Office Hadley 
Centre’s coupled Hadley Global Environment Model 2 – Earth System 
(HadGEM-ES) climate model used for the IPCC climate projections 
(Martin et al., 2011). We used the low and high emission scenarios for 
the Representative Concentration Pathways (RCP8.5 and RCP2.6). The 
high emission scenario, predicts future climate conditions defined by no 
changes in policy to guide practices and development resulting in an 
average global warming of 1.5–2 ◦C by 2050 (IPCC, 2018). Recent global 
warming rates indicate an increase of approximately 0.89 ◦C in average 
surface temperature (IPCC, 2014), which suggests that a high emission 
scenario is more likely by mid-century. As a result, we focus on the 
business as usual, high emissions climate scenario and provide the 
alternative outcome under low emission (RCP2.6) in Appendix D 
(Figs. D.1 – D.5). 

2.3.2. Current and future land-cover change 
Landsat TM, ETM and OLI imagery were collected for three dates: 

1994, 2002 and 2014 with a spatial resolution of 30 m (https://glovis.us 
gs.gov/). Individual image scenes were radiometrically corrected and 
then mosaicked with contiguous scenes to produce island-wide data for 
each date. Afterwards the images were classified into different land- 
cover categories namely: forest, exposed surface, cultivated land and 
vegetation matrix (includes secondary forest, grasslands and shrubland). 
Subsequently, change detection analysis was implemented to derive two 
interval datasets representing changes in land-cover categories from 
1994 to 2002 (first interval) and 2002–2014 (second interval). The 
second interval represented the most recent LCC dataset and the basis 
for predicting LCC to 2050. We also determined the user, producer and 
overall accuracies for the past and recent land-cover datasets (Appendix 
B, Tables B.1, B.2). 

The future LCC dataset was produced using the land change modeler 
in IDRISI TerrSet software. The land change modeler is suitable for 
ecological modelling because it achieves higher allocation and config
uration accuracies compared with other spatial explicit models such as 
GEOMOD (Pickard et al., 2017). Land-cover category transitions to the 
future (i.e. 2050) were based on second interval change analysis, and 
include category gains, losses and persistence. The prediction began by 
developing a transition probability sub-model that accounted for the 
elevation, and pixel-specific deforestation and forest degradation sizes 
as drivers of change. The transition probabilities were used to determine 
pixel suitability before allocating pixels to different land-cover cate
gories using a multi-layer perceptron approach (Atkinson and Tatnall, 
1997). 

2.3.3. Habitat connectivity: deriving the least cost path model 
The current LCC dataset was used as input for calculating the least 

cost path (Eq. 1), and to create a layer of connectivity using the GIS 
Linkage Mapper tool (McRae and Kavanagh, 2011). In this study habitat 
connectivity is defined by least cost paths and captures species’ ability to 
move through the landscape matrix. Landscape maps classifying vege
tation formations into either core (i.e. forest areas) or non-core areas (i. 
e. exposed surface, cultivated land, vegetation matrix), as well as into 
their spatial configuration were produced using Morphological Spatial 
Pattern Analysis (MSPA) (Vogt et al., 2007). Core areas were on average 
> 100 ha in size and had a minimum distance of 100 m to edge areas. 
These datasets were produced independently for each vegetation 

formation (i.e. lowland evergreen moist forest, medium altitude moist 
evergreen forest, moist semi-deciduous forest, sclerophyllous woodland, 
dry deciduous forest and littoral forest). Vegetation formations consist of 
both forest and non-forest land-cover types. It should be pointed out that 
vegetation formations have been referred to as ‘eco-regions’ by other 
authors (e.g., Moat and Smith (2007); however, for this study we use the 
former to remain consistent with more recent publications (Gautiert 
et al., 2018). Dispersal potentials between core areas were estimated 
using a cost allocation function and varied according to the resistance 
between core areas. The resistance surface was developed by assigning 
thresholds to land-cover categories (Table A.3). With this approach, 
connected natural features (e.g., forests) are considered enablers of 
dispersals under environmental change following Gurrutxaga et al. 
(2011). Therefore, we assume that core areas separated by low resis
tance pixels correspond to areas with higher probability for species 
dispersals thereby supporting range shifts. Subsequently, the minimum 
cost-weighted distance between core pairs was calculated and mapped 
to create a network of connections in the different vegetation formations 
(Eq. (1)). To reduce computation time, least cost paths were mapped up 
to a maximum distance of 5 km, which is greater than recent estimates of 
dispersal distance from common dispersers (e.g., Lemurs) in Malagasy 
forests (Razafindratsima et al., 2014). Large mammals are common 
dispersers of seeds in Madagascar, but a combination of fragmentation 
and loss of natural habitats due to deforestation also limits dispersal 
distances to a few hundred metres (Albert-Daviaud et al., 2018; Bodin 
et al., 2006). Our assumption is that least cost paths are a proxy for 
seeds’ ability to establish in safe sites and for plants to maintain viable 
populations, which guarantees species dispersals due to range shift. 

LCPAB = CWDA +CWDB − LCDAB (1)  

where LCP is the least cost path connecting adjacent habitat areas A and 
B, CWDA is the cost-weighted distance from core A and CWDB is the cost- 
weighted distance from core B and LCDAB is the least cost distance 
accumulated moving along an ideal path connecting the core pair. 

Finally, least cost paths were calculated using the sum of cost- 
weighted distance between connected core areas and measured in kil
ometres (McRae et al., 2012). Least cost paths represent the connection 
between potential suitable habitats (i.e. habitat connectivity). Because 
measures of connectivity were implemented within vegetation forma
tions, we used ordinary kriging interpolation technique to obtain values 
outside these formations and to produce an island-wide layer of con
nectivity (Fig. A.1). This interpolation technique was used because it 
accounts for spatial correlation between sample points and was also 
proposed by Foltête et al. (2012) as a means to facilitate the integration 
of landscape models in SDMs. Kriging interpolation was implemented 
using the 3D-analyst tool in ArcGIS to interpolate data points repre
senting measures of least cost paths, while applying a spherical function 
to progressively decrease the effect of spatial autocorrelation as distance 
between the points increased. 

2.4. Defining the scenarios 

Range shift was predicted based on the differential impact of climate, 
LCC and habitat connectivity relative to a baseline scenario. The base
line scenario consists of recent climate and land-cover, while future 
scenarios were defined by adding two environmental variables that 
define active processes on Madagascar (i.e. LCC and habitat connectiv
ity) to determine how they would impact on future species distributions 
(Table 1). Therefore, range shift was quantified under i) climate-only, 
where we assume the landscape can facilitate full dispersal (null 
model), ii) climate and LCC and iii) climate, LCC and habitat connec
tivity (hereafter, connectivity scenario). The main steps used to define 
all scenarios are shown in Fig. A.2. 
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2.5. Species distribution models 

Species distribution models were produced using the ‘hSDM’ pack
age in R programming language v3.2.4 and by performing a binomial 
logistic regression under a hierarchical Bayesian framework (R Core 
Team, 2016; Vieilledent et al., 2014). The hierarchical framework 
allowed presence locations for each species to be integrated with high 
resolution variables (LCC and habitat connectivity). The modelling 
process began by using a neighbourhood matrix of observation locations 
(i.e. presence locations) to ensure that the probability of each pixel 
suitability is dependent on its surrounding pixels (Lichstein et al., 2002). 
Neighbourhoods consisted of adjacent pixels (including diagonals) and 
were used to capture the effect of spatial autocorrelation across all 
variables. Neighbourhood analysis was also used to correct for under- 
sampling and bias in the species occurrence records. This way, the 
probability of assigning low suitability pixels in regions with high suit
ability was minimised. A logit function was then used to modulate the 
influence of input data (presence location and variables) on the proba
bility of occurrence for each species under different scenarios (Appendix 
C). Spatial random effects were specified using an intrinsic autocorre
lation regression term and to determine the variance of the mean of 
posterior distributions. Due to lack of previous knowledge for all species, 
the analysis assumes a normal distribution centred at zero and a fixed 
large variance of 100 (Rasmussen and Williams, 2006). The outputs are 
layers of the posterior distribution showing species-specific probability 
of occurrences as continuous surfaces and ranging from low (0) to high 
(1) probability. We also quantified the associated uncertainties defined 
by the variance of the posteriori distribution. The predicted occurrences 
for all 87 species under all scenarios are provided in the supplementary 
information (Figs. C.1 - C.7). We used the maximum sum of sensitivity 
(true positive rate) and the specificity (true negative rate) threshold 
metrics to transform species-specific probability layers into presence- 
absence maps. These threshold techniques were selected because they 
remain consistent under differing ratios of presence and background 
points (Liu et al., 2016). Presences indicate suitable pixels (i.e. predicted 
range), while absences indicate unsuitable pixel locations under each 
scenario. 

2.6. Quantifying changes in predicted species range 

Three spatial indices were modified from Radinger et al. (2017) and 
Choe et al. (2017) to determine species’ range shift. The first range shift 
metric that was quantified is the net-change index, which measures the 

difference between predicted range gains and losses. Negative net 
change indicates species’ range contractions, while positive net change 
indicates species’ range expansions (Table C.1). The elevation change 
index quantifies the difference between the mean elevation of predicted 
species’ range and the mean elevation of current species’ range 
(Table C.1). Elevation change represents an estimate of upslope or 
downslope range displacements. Range distance index calculates the 
median distance between the centroid of predicted species’ range and 
the edges of current species range (Table C.1). The range distance metric 
explicitly quantifies range shift for all species under different scenarios. 
We used the combination of range expansions, contractions, upslope and 
downslope displacements to quantify range shift under future scenarios 
and different IUCN risk classifications. Two-sample Wilcoxon signed- 
rank tests were used to compare range gain (i.e. range expansion) 
versus range loss (i.e. range contraction) between the future scenarios. 
Similarly, the Wilcoxon signed-rank test was used to compare range 
shifts and range displacements in all scenarios. Generalised linear 
regression model (GLM) was used to determine the influence of selected 
variables (e.g., range size) on contraction and expansion in all scenarios 
and implemented using a binomial distribution in R programming lan
guage. The response variable was based on whether species expanded or 
contracted their ranges, while current range size, dispersal syndromes 
(Table C.6) and the average elevation of current range were used as 
predictors. For each scenario, two iterations of GLM were implemented, 
one without interactions between predictors and the other accounted for 
interactions between range size and dispersal syndromes. We report the 
best performing model (i.e. least AIC score). 

Using the net change index, regions sensitive to range contraction 
and expansion were identified. GIS zonal statistical tool was used to 
determine the number of predicted range contractions and expansions 
that coincide in each pixel (1km2) by summing the total number of 
species under each scenario (ESRI, 2015). We designated pixels where 
more than 50% of the total number of species’ experience contractions 
or expansions as hotspots. However, we expect range changes due to net 
range losses (i.e. contractions) to drive local extinctions in the future 
rather than range expansions (Wiens, 2016). 

3. Results 

3.1. Range shift due to contractions and expansions across risk 
classifications 

Over a third of critically endangered plants experienced range shifts 
due to contractions under all scenarios (Table C.2). The median range 
contractions for critically endangered plants (e.g., Dypsis brevicaulis) 
decreased under climate land-cover change (386 km, Interquartile 
range, IQR = 60) and connectivity (363, IQR = 38) scenarios compared 
with the median range contraction (403 km, IQR = 70) under the 
climate-only scenario (null model) (Fig. 1a). Fifty-five percent of en
dangered plants (e.g., Dypsis utilis) experienced range shift due to 
contraction under climate-only scenario, while 48% experienced range 
shift due to contractions under climate land-cover change and connec
tivity scenarios (Table C.2). The predicted median range contractions for 
endangered plants under climate-only scenarios was 389 km (IQR =
190) and decreased by 82 km and 98 km under connectivity and climate 
land-cover change scenarios (Fig. 1b). Only one vulnerable species’ 
range (Dalbergia baronii) experienced contraction under climate-only 
and climate land-cover change scenarios (Fig. 1c). More than 60% of 
critically endangered plants experienced range expansions in climate 
land-cover change and connectivity scenarios (Table C.2). Median range 
expansions for critically endangered plants were highest (337 km, IQR 
= 151) in the connectivity scenario compared with the climate-only 
(332 km, IQR = 296) and climate land-cover change (297 km, IQR =
160) scenarios (Fig. 1a). Under the climate-only scenario, the median 
range expansions for endangered plants were 263 km (IQR = 186) 
increasing to 283 km (IQR = 160) and 307 km (IQR = 101) under 

Table 1 
Description of scenarios considered in range shift assessment of 87 endangered, 
critically endangered and vulnerable plant species on Madagascar.  

Scenario Description Term used in text 

Current climate and 
current land-cover 
scenario 

Describes current climate and 
land- cover variables Baseline scenario 

High future climate only 
scenario 

Describes future ‘worst case’ 
climatic conditions involving 
global average temperatures 
rising by 1.4 ◦C - 2.6 ◦C 

Climate-only 
scenario 

High future climate and 
land-cover change 
scenario 

Describes future ‘worst-case’ 
climatic conditions including 
average global temperatures 
rising by 1.4 ◦C - 2.6 ◦C and 
future land- cover 

Climate land- 
cover change 
scenario 

High future climate, future 
land-cover + habitat 
connectivity scenario 

Describes future ‘worst-case’ 
climatic conditions including 
average global temperatures 
rising by 1.4 ◦C - 2.6 ◦C, future 
land- cover and habitat 
connectivity 

Connectivity 
scenario  
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climate land-cover change and connectivity scenarios. Over 50% of 
vulnerable plants experienced range expansions under all scenarios 
(Table C.2). There was a significant difference (p ≤ 0.05) between range 
shift due to contractions and expansions among categories (Fig. C.8). 
However, there were no significant differences between IUCN categories 
and scenarios. 

3.2. Comparing range shifts under multiple scenarios 

More range contractions were predicted under the climate-only 
scenario compared with other scenarios (45 contraction and 42 expan
sion; Fig. 2a). For those species predicted to contract under the climate- 

only scenario, the median range shift was 397 km (IQR = 155), while for 
expansions it was 284 km (IQR = 213; Fig. 2a). Fewer range contractions 
were predicted under climate land-cover change scenario with a median 
range shift of 319 km (IQR = 139; Fig. 2b), while the median species’ 
range expanded by 304 km (IQR = 154; Fig. 2b). Predictions for the 
connectivity scenario showed that 40 species would experience range 
shifts due to contractions (median = 317 km, IQR = 162; Fig. 2c), while 
47 species’ range would experience shifts from expansions (median =
309 km, IQR = 107; Fig. 2c). On average, range contractions under the 
climate-only scenario were predicted to be significantly larger than 
contractions under connectivity and future climate land-cover change 
scenarios (Wilcoxon signed-rank test, p ≤ 0.05, Table C.3). This suggests 

Fig. 1. Dot plot showing the median range shift due to contractions and expansions for critically endangered plants (left-panel), endangered plants (middle) and 
vulnerable plants (right-panel) under climate-only, climate land-cover change and connectivity scenarios. Filled circles indicate the median distance and vertical lines 
indicate the interquartile range. 

Fig. 2. Density plots showing the distribution of predicted range shift due to contractions and expansions for 87 plants under the climate-only, climate land-cover 
change and connectivity scenarios (a-c). Red curves indicate predicted contraction and blue curves indicate predicted expansions. Numbers in parentheses (a-c) 
represent the number of species whose range were predicted to either contract or expand in the future. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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that inclusion of variables that account for dispersal potentials tends to 
constrain habitat suitability. There was no significant difference be
tween range contractions and expansions under climate land-cover 
change and connectivity scenarios (Table C.3). Additionally, there is 
no strong evidence that dispersal syndromes or average elevation of 
current range influence contractions and expansions under scenarios 
(Table C.5). These results also suggest that in the future, connectivity 
will influence both range expansion and contraction differentially across 
scenarios (Fig. C.9). 

3.3. Comparing range displacements across risk classifications 

Fifty percent of critically endangered plants experienced upslope 
range displacement under climate land-cover change scenario (median 
= 92 masl; IQR = 145), while 38% and 62% displaced upslope under 
connectivity and climate-only scenarios (Fig. 3a, Table C.2). Under the 
connectivity scenario, 62% of critically endangered plants were pre
dicted to displace downslope (median = − 59 masl; IQR = 135). Only 
38% of critically endangered plants experienced downslope range 
displacement (median = − 371 masl; IQR = 201) under climate-only 
scenario. Similar number of endangered plants experienced upslope 
and downslope range displacements under climate land-cover change 
and connectivity scenarios the median upslope displacement was lower 
(16 masl, IQR = 112) under climate land-cover change scenario, 
increasing to 66 masl (IQR = 223) with connectivity (Fig. 3b). Only one 
vulnerable plant (Dalbergia madagascariensis) was predicted to experi
ence downslope displacement under connectivity and climate land- 
cover change scenarios (Fig. 3c). 

3.4. Comparing range displacements under multiple scenarios 

Irrespective of risk classification, 45 species’ ranges were predicted 
to experience upslope range displacement (median = 47 masl, IQR =
101), while 40 species were predicted to experience downslope 
displacement (median = − 19 masl, IQR = 255, Fig. 4a) in the climate- 
only scenario. Under the climate land-cover change scenario, 44 spe
cies’ ranges were predicted to displace upslope (median = 18 masl, IQR 
= 123), while 41 species’ range were predicted to displace downslope 
(median = − 151 masl, IQR = 346, Fig. 4b). In the connectivity scenario, 
43 species’ range were predicted to displace upslope with a median of 72 
masl (IQR = 261) and 42 species would experience downslope range 
displacement (− 97 masl, IQR = 155, Fig. 4c). For two species, namely, 
Leptolaena pauciflora and Asteropeia amblyocarpa no displacements were 
predicted. 

3.5. Mapping range shift due to contraction and expansion across multiple 
scenarios 

Zones of range contractions were predicted to be more prevalent 
under the climate land-cover change scenario compared with the 
climate-only and connectivity scenarios (Fig. 5, Table C.4). For instance, 
zones with high number of species’ range contractions increased by 
229% with climate and LCC relative to the climate-only scenario 
(Table C.4). Hotspots of range contractions (i.e. locations where more 
than 50% species’ range contract) decreased by 63% under the con
nectivity scenario compared with climate land-cover change scenario, 
highlighting the importance of habitat connectivity on range shift as
sessments. Hotspots of range expansions increased by more than 200% 
under the connectivity scenario relative to the climate-only scenario 
(Table C.4). In all scenarios, range contractions and expansions were 

Fig. 3. Prediction of median elevation change due to upslope and downslope displacement for critically endangered plants (left-panel), endangered plants (middle) 
and vulnerable plants (right-panel) under climate-only, climate land-cover change and connectivity scenarios. Filled circles indicate the median distance and the 
vertical lines indicate the interquartile range. 
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concentrated along the lowland evergreen moist and medium altitude 
moist evergreen forest formations on the East coast. Range expansion 
hotspots were also predicted to emerge in the West and South regions of 
Madagascar. 

4. Discussion 

Our results indicate that LCC and habitat connectivity is expected to 
limit the number of species experiencing range contractions compared 
with the climate-only scenario. Across all IUCN risk categories, the 
median range shift due to expansions were predicted to be higher under 
the connectivity scenario, which aligns with our expectations, as well as 
other studies (Mestre et al., 2017). This is also evidenced in the lower 
median range shifts due to contractions under the connectivity scenario 
(317 km) compared with climate land-cover change (319 km) and 
climate-only (397 km) scenarios (cf. Fig. 2). These results suggest that 
predicting range shift without measures of habitat connectivity and LCC 
neglects key features of the landscape, even when range shifts (due to 
expansions and contractions) are predicted, because there is no 
consideration for whether the landscape can support such movements. 
Our analysis demonstrate that current connectivity pathways are not 
only important for future range expansions but may be pivotal in 
limiting extinction risks that may occur from range contractions. As
sessments of range shifts without habitat connectivity or measures of 
dispersal underestimates species’ potential to reach safe sites. It is also 
possible that some species may adapt to novel environments, especially 
where human-induced forest loss is minimal thereby increasing 
ecological resilience under climate change (Spies et al., 2010). Contrary 
to our expectations, some species’ range contracted under the connec
tivity scenario. This was particularly true for lowland and medium 
altitude moist evergreen forests, suggesting that connectivity may be 
inadequate to prevent hotspots of range contractions emerging in those 
regions. Predictions of multiple range contractions under the connec
tivity scenario should be taken as an indicator for potential biodiversity 
erosion. Although biodiversity redistribution is also a possible outcome, 
that prospect depends on other factors including competition, coloni
sation and extinction rates under environmental change (Corlett and 
Westcott, 2013). Nevertheless, conservation initiatives that aim to in
crease the protected area network and large-scale reforestation pro
grammes on the island may benefit from assessments like ours that 
determine the role of connectivity on future plant distributions. Con
servation planning that is evidence-based and relates to species-specific 
responses to environmental change is more likely to help develop best- 
practice and mitigate the impact of habitat loss . 

4.1. Significance of land-cover and habitat connectivity 

For some species the threat of extinctions may increase without 

habitat connectivity. For instance, habitat connectivity is expected to 
facilitate range expansions for Angraecum setipes, Asteropeia micraster, 
Delonix pumila, Dypsis hovomantsina, Euphorbia elliotii, Euphorbia man
dravioky, Hildegardia ankaranensis and Masoala kona. Under land cover 
change scenario and without connectivity their ranges were predicted to 
contract (Appendix C, Fig. C.9). Suggesting that connectivity may play a 
vital role in enabling plant dispersals to safe sites. Where connectivity is 
absent there could be adverse impact on plants, especially for those 
assessed in this study, because a reasonable proportion (41%) exhibited 
barochory dispersal syndrome (Table C.6). Meaning that there is a lower 
probability for long distance dispersal (more common with ane
mochory) for most of the species considered and a higher probability 
that future dispersals may depend on the structural integrity of land
scape connections (Kubisch et al., 2013). The fact that comparatively 
fewer focal species exhibit zoochory does not rule out the influence of 
primates as dispersal agents but highlights the importance of having 
multiple dispersal agents. Long distance seed dispersals mediated by 
primates are expected to be constrained due to habitat loss and frag
mentation on the island (Albert-Daviaud et al., 2020). Preserving con
nections between habitat is vital, given our prediction that on average 
range shifts for the selected species are expected to be between 300 km 
and 350 km. These predictions are consistent with other assessments of 
range shifts in South America and demonstrate the likelihood of similar 
plant responses to environmental change in both regions (Feeley and 
Rehm, 2012). Some tropical studies suggest that mountaintop species 
are expected to become vulnerable under climate change (Peters et al., 
2019). We find no evidence of this association between species that 
currently occupy high elevation range (i.e. μ > 1000 masl) and con
tractions. For instance, Euphorbia quartziticola (current mean range =
1746 masl) was predicted to experience range expansion under all sce
narios. It should be noted that our results suggest that plant character
istics, such as dispersal syndromes and average elevation of current 
range, have no impact on the capacity for species to contract or expand 
their ranges. Future studies could explore whether plant traits affect 
range shift of Malagasy plants, since there are still knowledge gaps on 
how most tropical lowland species’ trailing and leading edges will 
respond to climate change (Rumpf et al., 2019). 

Despite these gaps, our results indicate that connectivity would 
facilitate range shifts towards higher elevation for the selected plants . 
This is evident in the higher median upslope and downslope displace
ment predicted with connectivity (cf. Fig. 3), which confirm our initial 
expectation that upslope displacements will be higher with connectivity 
and increase the capacity for plants to track upward towards suitable 
climate conditions. There is a high possibility that with upward dis
placements lowland attrition becomes prevalent, although, this may be 
tempered by a high proportion of species range displacing downslope. 
Previous global scale assessments using climate-only variables suggests 
that range shifts along elevation gradient could increase the risks of 

Fig. 4. Density plots showing the predicted downslope and upslope displacement in species’ range under climate-only (a), climate land-cover change (b) and 
connectivity (c) scenarios. Dotted lines indicate the median elevation. Red curves indicate upslope displacement and blue curves indicated downslope displacements. 
Numbers in brackets show the number of species whose ranges were predicted to displace upslope or downslope in future scenarios. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Map showing the proportion of plants predicted to experience range shifts per 1 km2 due to contractions (a, b, c) and expansions (d, e, f) under climate-only, 
climate land-cover change and connectivity scenarios. Range contraction and expansion hotspots were determined from predicted net losses and gains. Grey areas 
indicate pixels with no predictions. 
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extinctions (Chen et al., 2011). The spatial indices used to assess range 
shift in this study do not explicitly determine extinctions, however, ev
idence of range contractions and upslope displacements suggests that 
the risk is very high. 

It is important to note that the measure of habitat connectivity used 
in this study did not account for the effect of common dispersal agents 
(e.g., wind, primates, birds and bats). In tropical regions, these agents 
play a crucial role in the success of species colonisation and/or plant 
community establishments (Carlo and Morales, 2016). Measuring 
species-specific dispersal rates is beyond the scope of this study and 
therefore we used structural connectivity as a proxy for dispersal. Using 
a structural connectivity approach to represent how likely the landscape 
matrix will support range shift under environmental change was an 
attempt to circumvent the lack of species-specific data. Although it is not 
a direct measure of dispersal rates or functional connectivity, we believe 
it is an improvement over models that fail to include any measure of 
connectivity. Furthermore, it is worth noting that the impact of envi
ronmental change on range shifts was implemented using a singular 
SDM, however, we assess range shifts using both high (RCP8.5) and low 
(RCP2.6) climate scenarios. The main results for the low climate emis
sion scenario are provided in Appendix D. 

4.2. Conservation implications 

Our results suggest that connectivity facilitates range expansions and 
limits range contractions compared with a LCC scenario for the most at- 
risk species . We also determine similar influence under a low emission 
scenario. Since the impact of climate change on plant distributions is 
inevitable, any hope of preserving Madagascar’s unique plant diversity 
will depend on the response to LCC and the preservation of habitat 
connectivity. A useful approach could include strategies that target 
limiting range contractions in the Eastern lowlands while facilitating 
range expansions in the Western and Southern dry forests. At the na
tional level, there is no evidence of a connectivity conservation plan, 
despite its successes in other tropical and sub-tropical countries 
including South Africa (Keeley et al., 2019), and progress in regional 
efforts aimed at protecting biodiversity and ecosystem services (Bullock 
et al., 2011). 

To ensure that endangered and critically endangered plants respond 
positively to climate change, conservation strategies should focus on 
maintaining connectivity pathways. Madagascar has invested heavily in 
its protected area network (Mansourian and Dudley, 2008), as well as 
development of corridors connecting protected areas (e.g., Ankeniheny- 
Zahamena Corridor). Forest corridors do not benefit from the same 
governance strategy as the national parks they connect (Rakotoson and 
Razafimahatratra, 2018). By promoting multi-use strategies that allow 
for sustainable extraction of natural resources within corridors, they are 
subjected to increased pressures relative to protected areas that are 
under stricter governance (Ramiadantsoa et al., 2015). Ensuring con
nectivity between existing protected areas and intact forests is an ideal 
strategy to promote resilience to climate and LCC. To aid with this 
approach, we provide a map identifying range contraction and expan
sion hotspots for these endangered and critically endangered plants. The 
outcome of our study can guide long-term conservation strategies for 
many of the threatened plants on Madagascar by prioritising protection 
of species not established within protected areas or corridors. Although 
range contractions hotspots are predicted to dominate eastern forest 
corridors, it is also evident that contractions will be compensated by 
range expansions elsewhere, suggesting that the eastern corridor may be 
a hot-bed for range displacements (i.e. upslope and downslope). Such 
range dynamics across the island requires proactive conservation ac
tions that minimises the threats to IUCN Red Listed species. Some of 
these actions could benefit from our study, especially if extended to a 
wider selection of plants to determine their responses to environmental 
change. More importantly, our study suggests that the use of high res
olution, fine-scale, non-climate data focused on habitat connectivity 

could enable the formulation of conservation management plans that 
mitigate the impact of range contractions for tropical regions. 
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