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Abstract

Despite their legal protection status, protected areas (PAs) can benefit from priority ranks when
ongoing threats to their biodiversity and habitats outpace the financial resources available for
their conservation. It is essential to develop methods to prioritize PAs that are not computa-
tionally demanding in order to suit stakeholders in developing countries where technical and
financial resources are limited. We used expert knowledge-derived biodiversity measures to
generate individual and aggregate priority ranks of 98 mostly terrestrial PAs on
Madagascar. The five variables used were state of knowledge (SoK), forest loss, forest loss accel-
eration, PA size and relative species diversity, estimated by using standardized residuals from
negative binomial models of SoK regressed onto species diversity. We compared our aggregate
ranks generated using unweighted averages and principal component analysis (PCA) applied to
each individual variable with those generated via Markov chain (MC) and PageRank algo-
rithms. SoK significantly affected the measure of species diversity and highlighted areas where
more research effort was needed. The unweighted- and PCA-derived ranks were strongly cor-
related, as were the MC and PageRank ranks. However, the former two were weakly correlated
with the latter two. We recommend using these methods simultaneously in order to provide
decision-makers with the flexibility to prioritize those PAs in need of additional research
and conservation efforts.

Introduction

Conservation triage is the process of prioritizing efforts to ensure effective allocation of scarce
resources (e.g., financial, knowledge) in order to maximize conservation returns (Bottrill et al.
2008). Considering that biodiversity conservation is severely underfunded (Echols et al. 2019),
particularly in tropical developing countries (Brooks et al. 2009), there is an urgent need to pri-
oritize efforts to protect areas of high biodiversity and conservation value (Gerber et al. 2018).
The generally accepted strategy for promoting biodiversity conservation is the establishment of
protected areas (PAs) (Kullberg et al. 2019), but their performance is contingent on the amounts
of financial and technical resources allocated to ensure effective management (Barnes et al.
2018). If resources are limited, PAs can be underfunded, understaffed or inefficiently managed
(Le Saout et al. 2013). Ideally, PAs should be established in order to promote biodiversity,
enhance ecosystem services and safeguard features of particular conservation value within land-
scapes (Bertzky et al. 2012). However, they are often established in landscapes with the lowest
opportunity costs (Joppa & Pfaff 2009). Therefore, prioritization of PAs within existing net-
works will be necessary at an international scale given continued and intense human pressure
on protected land (Jones et al. 2018).

Conservation triage generally relies on spatial data in order to identify and quantify biodi-
versity and other features of conservation value across diverse landscapes (Kukkala & Moilanen
2013). It often requires cumbersome pre- and post-data processing and a detailed assessment of
whether its results are relevant for local conditions and the identified conservation goals
(Lehtoméki & Moilanen 2013). Moreover, prioritizing areas within an existing PA network
may be particularly challenging (Alagador et al. 2014). PAs are often discrete units within
heterogeneous and fragmented landscapes surrounded by different types and intensities of land
use that can make spatially explicit and computationally intensive methods challenging
(Margules & Pressey 2000). Conservation triage of existing PAs may thus be hindered by data
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Fig. 1. (a) Vegetation types of the 98 mostly ter-
restrial protected areas (PAs) on Madagascar and
(b) major land cover types on the island (modified
from European Space Agency Climate Change
Initiative (ESA CCI) 2015 global datasets).
Numbers in brackets in panel a denote numbers
of PAs for each type of vegetation. Map projec-
tion: Geographical Coordinate System (GCS)
using the WGS1984 datum.
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limitations on biodiversity and inherent complications associated
with the use of biogeographical spatial data (Brooks et al. 2006).
Consequently, conservationists should employ tools that are not
computationally demanding, particularly in developing countries
with scarce institutional support and technical capacity (Gardner
et al. 2015).

One alternative solution is to employ multivariate methods that
use indicators of pressures and/or threats to habitat conservation
(e.g., rates of habitat loss) in order to help predict the potential of
PAs to maintain continuous and diverse habitats that reduce their
vulnerability to degradation, fragmentation and the loss of rare and
endemic species (Nolte et al. 2013). Understanding the current
state of expert knowledge (SoK) associated with a site’s biodiversity
might be an important first step towards prioritizing existing
PAs (Keppel 2014). The use of expert knowledge in conservation
has been crucial to the elucidation of the distribution and status
(e.g., conservation, endemism) of different taxa (Martin et al.
2018) and their responses to land-use and climate change
(Murray et al. 2009). However, development pressures may hinder
experts’ future ability to study and understand the biodiversity
covered by PAs (Barber et al. 2012). Since relative species diversity
may be dependent on how much we know about a site (Murray
et al. 2009), SoK is an important variable to include in the

prioritization of PAs within an existing network. In fact, using
observed diversity as a criterion for conservation triage without
controlling for SoK can potentially misestimate the total diversity
in PAs (Brown et al. 2018).

The aim of this study is to investigate the performance of site
prioritization techniques that can be used to rank the conserva-
tion priority of PAs established within an existing network. Our
objective is to demonstrate how individual and aggregate priority
ranks of PAs can be produced by simple heuristic techniques
(sensu Gardner et al. 2015) that are not computationally demand-
ing. Our multivariate ranks are intended to provide flexibility to
stakeholders in terms of the allocation of priorities and to be
easily implemented in biodiversity hotspots around the world.
We show that employing different methods and including
SoK in the estimation of species diversity have significant effects
on the ranking of PAs, and we discuss the merits of using
individual- and aggregate-based rankings when prioritizing
PAs for conservation under limited financial and technical
resources. We use five key variables (SoK, forest loss, acceleration
in forest cover loss/gain, PA size and multi-taxon species diver-
sity) and the mostly terrestrial PA network of Madagascar (Fig. 1)
(Goodman et al. 2018) in order to illustrate the applicability of the
method.
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Table 1. Description of the five variables used to build individual and aggregate priority ranks of protected areas. Variables designated as having taxon-specific values
are recorded separately for eight different taxonomic groups at each site. These eight values are combined into a single site-specific value following procedures

described in the ‘Methods’ section.

Variable description Type/unit Range Compilation/computation Taxon-specific values

State of knowledge (based on field surveys and Ordinal 1 (no information) Surveys of Malagasy terrestrial ~ Yes
taxonomic research conducted at each protected to 5 (well known) - see vertebrates by four field
area) Table 2 for details experts

Species diversity - absolute (actual) Species count 0 to 152 Historic and recent biological Yes

or or or survey data

Relative (based on standardized residuals of Residual species -1.00 to 3.82
negative binomial models) count

Forest loss (logged proportional change in forest  Log-transformed -0.704 to 0 log10(2016 area/1996 area) No
cover between 1996 and 2016) ratio

Acceleration in forest cover loss/gain (proportional Log-transformed -0.184 to 0.704 log10((2016 area/2006 No
difference between forest loss of the later period ratio area)/(2006 area/1996 area))
(2006-2016) and the earlier period (1996-2006))

Protected area size (forest area in 2016) Log-transformed 1.51 to 5.54 log;o(forest area) No

area (hectares)

Methods
Study setting

Madagascar is an area of global conservation priority characterized
by high species diversity and heterogeneity (Goodman & Benstead
2004), high rates of floral and faunal endemism (Callmander et al.
2011) and documented vulnerability to habitat change for certain
taxonomic groups (Raxworthy & Nussbaum 2000). Within the ter-
restrial PAs of the island, forest ecosystems make up one of the main
types of natural vegetation with a rich assortment of plants and
animals, including many endemics even at higher taxonomic levels.
The native vegetation of the island is treated in detail elsewhere
(Gautier et al. 2018, Lowry II et al. 2018), with specific reference
to the PA system of Madagascar. Loss of natural forests is the great-
est threat to the terrestrial biodiversity of the island, and the pressure
remains considerable (Vieilledent et al. 2018, Yesuf et al. 2019).
In an effort to address continued habitat loss, Madagascar has
experimented with different PA governance strategies, ranging
from strict to shared governance (Virah-Sawmy et al. 2014).
The country has also invested heavily in broadening its PA network
through the Durban Vision, going from 47 sites to 122 sites
between 2003 and 2015, which increased the total area under
protection (terrestrial and marine) from 1.7 million ha to 7.1 million
ha (Gardner et al. 2018). The main conservation goals of
Madagascar’s PAs have evolved over time (Langrand & Roland
2018). Many PAs were originally established for biodiversity
conservation, scientific research and recreation (International
Union for Conservation of Nature (IUCN) categories Ia, II and
IV). However, there has been a recent shift towards promoting
multiple-use sites that allow sustainable extraction of natural
resources (e.g., construction and fuel wood) in order to encourage
poverty mitigation and community development (IUCN categories
V and VI) (Rakotoson & Razafimahatratra 2018). Therefore, the
current conservation goals for Madagascar’s PA network are diverse,
ranging from conserving biodiversity and maintaining ecosystem
services to promoting the sustainable use of natural resources and
maintaining genetic diversity (Langrand & Roland 2018).

Variables used to rank PAs

The study focused on 98 mostly terrestrial PAs on Madagascar
(Fig. 1) (Goodman et al. 2018). The ranking of PAs was based
on five sets of variables collected at each site (Table 1), as follows:

1. SoK: taxon-specific SOK was assessed by four different experts
for eight vertebrate taxonomic groups (amphibians, reptiles,
birds, tenrecs, rodents, bats, carnivorans and lemurs) at each
of the 98 sites. Over 100 years of field surveys and associated
taxonomic research was conducted between them on Malagasy
terrestrial vertebrates: amphibians and reptiles (APR), birds
(SMG and MJR), tenrecs and rodents (SMG and VS) and bats,
carnivorans and lemurs (SMG). This variable is a measure of
their assessment of the relative level of knowledge for each group
at each site, which includes the degree of local research in the
form of biological inventories and associated taxonomic
research, superimposed on the habitat and elevational complex-
ity of the site. SOK was an ordinal variable ranging from 1
(no information) to 5 (well known) (Table 2).

2. Species diversity: absolute species diversity (number of species)
for each of the eight taxonomic groups was compiled from his-
toric and recent biological survey data available for the 98 sites.
Given the strong dependence of species diversity on SoK across
all taxa, even when controlling for differences in PA size
(Appendix S1.1, available online), we also estimated relative
species diversity within each of the eight taxonomic groups
using standardized residuals from negative binomial models
of species diversity regressed onto SoK (Appendix S1.2) in
order to account for between-site variance in species diversity
within SoK categories. We used the standardized residual
values as measures of relative species diversity for each taxon
across sites when taking SoK values into account.

3. PAsize: forest cover at each site was assessed for 1996, 2006 and
2016 (Goodman et al. 2018). PA size was calculated as the base-
10 logarithm of remaining forest area (in hectares) within each
PA as of 2016. Forest cover was not detected for four PAs (Lac
Alaotra, Ampanangandehibe-Behasina, Ibity and Itremo),
either because the forest parcels were too small or because
no forest was present (e.g., Lac Alaotra is a lake).

4.  Forest loss: forest cover change was calculated as the logarithm
of overall relative change in forest cover between 1996 and
2016 (i.e., the difference in the logged values of forest cover
in 2016 and 1996, or log(2016 area/1996 area)). Positive values
indicate an increase in forest cover, while negative
values indicate a loss (higher-magnitude values indicate a
greater change). While most accurately described as logged
proportional change in forest cover, hereafter this variable
is referred to as ‘forest loss’.
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Table 2. Explanation of the state of knowledge (SoK) classification (modified from table 391 in Brown et al. 2018, pp. 1693-1705). SoK was specified differently for
birds and lemurs (specimens were generally not important for specific identification as these organisms are relatively easy to identify visually) and other land
vertebrates (specimens were often important for specific identification as many of the species can only be identified in hand or based on different

morphological characteristics).

SoK Classification Definition for birds and lemurs

Definition for other land vertebrates

1 No information ~ Zero observations

2 Little Observations from 1 or 2 researchers/visitors per group
information

3 Moderately Observations from 2 or 4 researchers/visitors per group
well known and biological inventory

4 Reasonably Observations from 5+ researchers/visitors per group and
well known a detailed biological inventory

5 Well known Widely visited and presumably few taxa can be added

with additional intensive efforts

No information or specimens

Non-systematic collections or observations available (not
comprehensive)

Systematic collections or observations available and information
notably incomplete

Systematic collections or observations available and information
partially incomplete

Considerable amount of information available based on systematic
collections and observations, and it is presumed that few
taxa can be added with additional intensive efforts

5. Acceleration in forest cover loss/gain: the acceleration in
forest cover change was calculated as the logged proportional
difference between forest cover change of the later period
(2006-2016) and the earlier period (1996-2006) as log((2016
area/2006 area)/(2006 area/1996 area)). Negative values
indicate an increase in forest loss or slowing/reversal of forest
gain, while positive values indicate a slowing or reversal of
forest loss.

The conservation goals of our prioritization scheme, as applied
to the existing terrestrial PA network of Madagascar, were to:
(1) identify priority PAs where knowledge gaps indicate more
research effort is needed in order to understand the local biodiver-
sity given current rates of forest loss; (2) identify priority PAs
where habitat degradation has increased in recent years and are
therefore particularly vulnerable to the loss of unique species in
the near future and in urgent need of conservation intervention;
and (3) identify priority PAs of high species diversity and therefore
of high conservation value.

Combining taxon-specific variables

While some variables had site-specific values that did not differ by
taxon (forest loss, acceleration in forest cover loss/gain and PA
size), others had eight values per site, each associated with a differ-
ent taxon (SoK and species diversity). We used two different
approaches in order to combine information across all eight taxa
into single site-specific values for those variables: either by
estimating the first principal component (PC1) of a principal com-
ponent analysis (PCA) of all eight taxon-specific variables in order
to generate site-specific PC1 scores (Appendices S1.3 & S1.4) or
by calculating an unweighted mean of the values across all eight
taxonomic groups for each site. Rankings based on either the
PCA-generated values or the unweighted means of taxon values
were likely to be similar given that all taxa loaded in the same direc-
tion on PCl when partitioning the variance among variables
(Appendix S1.5).

Triage scenarios (individual and aggregate methods)

After completion of all of the above procedures, all site-specific
variables were standardized to mean zero and unit variance. In
order to generate aggregate ranks, we first binned sites into differ-
ent priority groups by identifying natural breaks in the distribution
of standardized values for each variable or creating bins one stan-
dard deviation wide if no natural breaks were apparent (Appendix

S1.6). Sites that fell within the same bin for a given variable (e.g.,
SoK) were considered of equal priority with respect to that variable.
We used the following subjective criteria:

1.  SoK: we split standardized data into five bins one standard
deviation wide. We assigned highest priority (lowest rank)
to PAs for which SoK was low.

2. Forest loss: we used natural breaks in standardized forest loss
(forest cover in c. 2016 relative to c. 1996) in order to assign
sites to four bins. We assigned highest priority to PAs with
high proportional forest cover loss.

3. Acceleration in forest cover loss/gain: we used natural breaks in
the rate of change of forest loss to assign sites to three bins
(corresponding to increasing loss in the 2006-2016 period rel-
ative to the earlier period, little to no difference between the
two periods or decreasing loss in the 2006-2016 period). We
prioritized PAs with accelerated forest cover loss.

4.  PA size: we split standardized log-transformed data for forest
area remaining in each PA in 2016 into five bins one standard
deviation wide. We assigned highest priority to small PAs with
low remaining forest cover.

5. Relative species diversity: we used natural breaks in standard-
ized residual species diversity across taxa when SoK was held
constant in order to assign sites to five bins. We prioritized
PAs with higher-than-expected species diversity.

We first ordered sites by SoK priority bin, then within each SoK
priority bin by forest loss priority, then within each forest loss pri-
ority bin by acceleration in forest cover loss/gain priority, then by
PA size priority and finally by relative species diversity priority.
This procedure produced an overall priority ranking for each site.
We assigned identical overall priority ranks to sites that fell within
the same priority bins for all variables. We used these criteria to
build two aggregate rankings because we used two different proce-
dures in order to produce site-specific SoK and relative species
diversity values: a mean ranking based on variables constructed
from unweighted means of taxon values and a PCA ranking that
included variables produced by the PCA of taxon values.

Alternative aggregate priority rankings

The aggregation methods described above imposed a priori
assumptions about the relative importance of different types of
information in prioritizing PAs. For example, more importance
was placed on SoK than on any other variable. It then used the
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Fig. 2. Protected areas (PAs) on Madagascar categorized by individual (a-f) and aggregate (g-j) priority rankings. Ranks were binned in intervals of 20 and classified into five
categories (see legend). Categories may have more than 20 PAs due to tied rankings (see Appendix S2). Map projection: geographical coordinate system (GCS) using the WGS1984
datum. MC = Markov chain; PCA = principal component analysis; SoK = state of knowledge.

other variables to rank within SoK bins. We also implemented the
Markov chain (MC) algorithm by Dwork et al. (2001) using R code
from Wilkinson and Van Duc (2017). This method finds consen-
sus among various expert opinions when the same set of objects are
ranked on the same criteria. Here, we used this method to rank the
same set of PA sites being ranked on different criteria. In essence,
we treated each type of information (i.e., SoK, forest loss, acceler-
ation in forest cover loss/gain, PA size and relative species diver-
sity) as a different ‘expert opinion’ and used the MC algorithm in
order to identify a set of consensus ranks among them. We also
implemented the PageRank algorithm from Wilkinson and Van
Duc (2017). We then used Kendall’s tau to examine the association
between all pairwise combinations of priority aggregate ranks
(unweighted-derived, PCA-derived, MC and PageRank). We per-
formed all data analyses in R (R Development Core Team
2019).

Spatial distribution of individual priority rankings

We used Moran’s I tool in ArcGIS (Mitchell 2005) in order to test
whether individual priority rankings were randomly distributed

among the 98 PAs. We performed spatial analyses at the country
level and at the regional level (east and west) by grouping PAs
according to their geographical location or, where location was
ambiguous (e.g., PAs in the Central Highlands), by their dominant
vegetation (Appendix S1.7). We classified PA priority ranks as
either clustered, random or dispersed (Appendix S1.7). In addition
to Moran’s I index, we estimated z-scores and p-values in order to
check for significance in the observed patterns.

Results
Individually ranked variables

The spatial distribution of priority ranks based on individual var-
iables showed some degree of regional bias, as most of the variables
presented spatial clustering at the country level and along the
eastern corridor (Fig.2a-f, Table3 & Appendix S2). Overall,
PAs in the west seem to have been relatively little studied compared
to those in the east, which may also have resulted in lower levels of
relative species diversity, as evidenced by the spatial clustering of
high-priority ranks for SoK (Fig. 2a) and absolute (Fig.2e) and
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Table 3. Results of spatial autocorrelation analyses using Moran’s | in order to assess the distribution of priority ranks between protected areas (PAs) using individual
variables. Analyses were performed at the country level and for the eastern and western corridors separately. CEC = contiguity of edges and corners; CEO = contiguity
of edges only; clust = clustered; rand = random; SoK = state of knowledge; SP = spatial pattern.

SoK Forest loss Forest loss PA size Absolute species Relative species
acceleration diversity diversity
CEO CEC CEO CEC CEO CEC CEO CEC CEO CEC CEO CEC

Country level

Moran’s | 0.44 0.44 0.32 0.32 0.56 0.56 0.56 0.56 0.69 0.69 0.97 0.97
z-score 1.98 1.99 1.47 1.47 2.54 2.54 2.53 2.53 3.09 3.09 4.33 4.33
Variance 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
p-value 0.05 0.05 0.14 0.14 0.01 0.01 0.01 0.01 0.002 0.002 <0.01 <0.01
SP clust clust rand rand clust clust clust clust clust clust clust clust
Eastern corridor

Moran’s | 0.60 0.60 0.03 0.03 0.26 0.26 0.75 0.75 0.85 0.85 0.77 0.77
z-score 241 241 0.18 0.18 1.09 1.09 2.98 2.98 3.35 3.35 3.06 3.06
Variance 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
p-value 0.02 0.02 0.86 0.86 0.28 0.28 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
SP clust clust rand rand rand rand clust clust clust clust clust clust
Western corridor

Moran’s | -0.07 -0.07 0.37 0.26 0.64 0.64 0.15 0.15 -0.11 -0.11 0.27 0.27
z-score -0.08 -0.09 0.89 1.09 1.49 1.49 0.40 0.40 -0.18 -0.18 0.67 0.67
Variance 0.20 0.20 0.20 0.07 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
p-value 0.92 0.92 0.37 0.28 0.14 0.14 0.69 0.69 0.86 0.86 0.50 0.50
SP rand rand rand rand rand rand rand rand rand rand rand rand

relative species diversity (Fig.2f) in the west (Table3). SoK
(Fig. 2a) was relatively high along the eastern corridor dominated
by lowland and medium-altitude evergreen moist forests that
resulted in spatial clustering of low-priority ranks for that variable
in the east (Table 3). In the western region, covered mostly by dry
deciduous forests and dry spiny thickets, SoK (Fig. 2a) ranks were
randomly distributed with no bias towards any particular type of
vegetation (Table 3).

Rates of forest loss (Fig. 2b) and acceleration in forest cover loss
(Fig.2c) were randomly distributed along both corridors.
However, ranks of acceleration in forest cover loss showed spatial
clustering at the country level (Table 3), probably because of the
high number of ‘top-priority’ PAs distributed across the two
regions (Fig. 2¢). The top ranks for PA size (circumscribed by for-
est area size) were inherently biased towards PAs with small areas
of forest cover (Fig. 2d), since that was the ranking criterion for this
variable, and they were spatially clustered along the eastern corri-
dor (Table 3).

Absolute and relative species diversity showed distinct priority
ranks and confirmed that accounting for SoK (i.e., research effort
and subsequent taxonomic research) when generating ranks based
on measures of species diversity made a significant difference
(Appendix S3). For instance, the dry spiny thickets in the south-
west were assigned mid-level ranks when considering absolute spe-
cies diversity (Fig. 2e), but top ranks when accounting for the level
of knowledge of the local biodiversity (Fig. 2f). The ranks of both
species diversity measures were spatially clustered along the
eastern corridor, but were random in the west (Table 3).

Aggregate priority ranks

Most of the PAs in the top aggregate priority ranks were located
along the western corridor (mostly dry deciduous vegetation)
and in the northern region (mainly evergreen moist vegetation),
regardless of the type of aggregator used to prioritize sites
(Fig. 2g-j & Appendix S2). Most of the low-priority PAs were con-
centrated along the eastern evergreen moist corridor (Fig. 2g-j).
The aggregate ranks were significantly correlated with each other

(Appendix S3), but the strengths of the associations changed
significantly depending on what pairwise combinations were com-
pared. The unweighted- and PCA-derived ranks were statistically
indistinguishable from perfectly correlated ranks, and the MC
and PageRank ranks were very strongly correlated with each other
(Fig. 3 & Appendix S3). However, the unweighted- and PCA-
derived ranks were relatively weakly correlated with the MC and
PageRank ranks (Fig. 3), suggesting that each provided a distinct
measure of priority.

Discussion

The multivariate methods presented here contribute to conserva-
tion triage in biodiversity hotspots and integrate four essential
components of data-based conservation efforts: (1) the use of
indicators of pressure and/or threat to habitat conservation;
(2) the use of expert knowledge derived from field surveys of local
biodiversity and subsequent taxonomic research; (3) the flexibility
of individually prioritizing pertinent variables for conservation
planning; and (4) the aggregation of individual ranks in order to
find the best possible consensus among different priorities.

The unweighted- and PCA-derived aggregate ranks gave higher
priority to sites with low SoK since this was selected in advance as
being the most important individual criterion for ranking sites.
Their resulting ranks were thus heavily influenced by the choice
of variables deemed to be most important. Little-studied sites such
as Ambohidray, Ampanangandehibe-Behasina and Ambondrobe
were highly prioritized, even though they did not have particularly
high rates of forest loss. This method emphasized areas where field
inventory and subsequent taxonomic research efforts should be
focused in the near future, regardless of forest loss, PA size or level
of biodiversity.

On the other hand, the MC and PageRank aggregators
attempted to ‘find consensus’ among the different variables and
assigned similar weights to each of them. Sites with relatively high
forest loss (e.g., Pointe a Larrée, Bongolava) and accelerated forest
cover loss (e.g., Mangabe-Ranomena-Sahasarotra) were generally
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Fig. 3. Pairwise comparisons between the four aggregate rankings (unweighted, PCA, MC and PageRank). Comparisons of the unweighted and PCA ranks with the MC and
PageRank ranks (a, b, d & e) are in grey; comparisons between the MC and PageRank ranks (c) are in red and between the PCA and unweighted ranks (f) are in blue. Grey line
is an identity (1:1) line (intercept = 0, slope = 1). MC = Markov chain; PCA = principal component analysis.

assigned high priority, emphasizing areas where efforts to halt
deforestation should be focused while still considering other fac-
tors such as PA size and level of biodiversity. The MC and
PageRank aggregators offered the advantage of not being primarily
driven by one single variable. However, by treating all sets of ranks
as equally important, they may run counter to specific conserva-
tion or research priorities. MC and PageRank aggregators can
be useful when there is no clear rationale for ordering a preferred
set of variables for ranking sites or to limit the influence of single
variables that may be affected by data biases. The unweighted and
PCA aggregators can be used when stakeholders have clear ideas
(and reliable data) about the set of variables to prioritize. We sug-
gest using these different aggregators in combination in order to
assess the different outcomes resulting from different variable
aggregation methods.

The unweighted approach for combining information from the
eight taxonomic groups for a single variable seemed to offer the
advantage of not making relatively arbitrary distinctions between
sites, such as in the PCA approach. There were major differences
between the two approaches for forest loss and acceleration in forest
cover loss/gain, with PCA values once again yielding apparently arbi-
trary distinctions between sites. For those reasons, the unweighted
approach seemed the most appropriate when generating individual
rankings of SoK, forest loss and acceleration in forest cover loss/
gain. Although there were also noticeable differences between the
PCA and the unweighted values for both the absolute and relative
(residuals) species diversity variables, there was no obvious indication
of which was the most appropriate for generating individual rank-
ings. Since there was virtually no difference between them when

calculating overall priority rankings, it was more consistent to use
the unweighted individual ranks of the species diversity variables.
The use of expert knowledge made a significant difference when
estimating levels of biodiversity within PAs. Sites assigned the
highest priorities in terms of relative species diversity were gener-
ally assigned mid-rank positions in absolute species diversity (e.g.,
Lac Alaotra, Mandena and Petriky). Littoral forests and dry spiny
thickets were the dominant forms of vegetation among the top ten
ranked sites in terms of relative species diversity, and they were
generally well studied. On the other hand, PAs dominated by ever-
green moist forests and dry deciduous forests comprised most of
the top ten ranked sites in terms of absolute species diversity, and
they were relatively little studied. It would thus appear that the lat-
ter two forest types can potentially support a relatively high num-
ber of species compared to other forest types, but more data would
be needed before using forest types as a proxy for species diversity,
considering the differing levels of SoK between them. As high-
lighted here and elsewhere (Orsi et al. 2011, Hochkirch et al.
2013), expert-based knowledge of local biodiversity can provide
a scoring method for prioritizing conservation units within a net-
work that can facilitate the protection of species-rich sites. It can
also provide crucial information when spatial data for conservation
planning are limited (Keppel 2014) and be a cost-effective way of
generating site-based indicators to be used by decision-makers
(Oliver 2002). Expert assessments of biodiversity can be particu-
larly useful in countries where data on the socioeconomic costs
of conservation are limited (Klein et al. 2014), and they should play
a key role in understanding the spatial distribution of high-priority
PAs in developing countries (Keppel 2014). Moreover, regularly
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updating site-level SoK could aid in evaluating how well PAs
achieve conservation objectives regarding particular species and
habitats.

The estimation of two distinct measures of deforestation (forest
cover loss and acceleration in forest cover loss) also proved useful.
It helped to identify sites that have lost a high proportion of their
forest cover and to highlight instances where deforestation has
worsened in recent years (Vieilledent et al. 2018). For these rea-
sons, prioritization schemes should apply measures of pressure
and/or threat to habitat conservation alongside measures of biodi-
versity and knowledge-based variables (Campagnaro et al. 2018).
If priority ranks were solely based on expert knowledge or species
diversity, the final result could erroneously identify areas of top
priority that were not under particular risk of degradation.

Individual ranks of carefully selected priority variables can be
used in parallel and help decision-makers address multiple conser-
vation goals of existing PA networks. For instance, if prioritizing
PAs in order to fulfil the original objectives of Madagascar’s PA
network of promoting biodiversity conservation and scientific
research, stakeholders could rank PAs by relative species diversity
and SoK in order to identify sites of highest biodiversity value and
in need of more research. In addition, given the current approach
on Madagascar of promoting multiple-use PAs for the sustainable
extraction of natural resources, variables such as forest loss and
acceleration in forest cover loss/gain could be useful in identifying
areas where natural resource exploitation has surpassed sustain-
able levels. Given that some of these sites may now be particularly
vulnerable due to recent rapid degradation, our individual ranks
could be wuseful tools for helping decision-makers on
Madagascar to identify sites that could be aligned to national ini-
tiatives in order to effectively manage natural resource extraction
(Gardner et al. 2013). For instance, of the ten sites identified by
Gardner (2011) as inappropriate for anthropogenic use due to neg-
ative effects on biodiversity, our individual ranking of acceleration
in forest cover loss/gain listed six of them in the top 30 priority sites
for conservation (Bombetoka Beloboka, Anjozorobe-Angavo,
Menabe Antimena, Ranobe PK32, Amoron’i Onilahy and
Ankodida).

Other efforts to define priorities for conservation resources on
Madagascar and the surrounding region tended to focus on indi-
vidual taxonomic groups (Herrera 2017) or vulnerable habitats
(Watson et al. 2005). However, producing multi-taxonomic and
multivariate prioritization ranks of entire PA networks may prove
beneficial for developing wide-ranging conservation schemes,
since PAs normally comprise an array of endangered endemic spe-
cies (including micro-endemics) and habitats. Other prioritization
methods used on Madagascar (Kremen et al. 2008) showed that
single-taxon analysis may indeed fail to capture cross-taxon prior-
ities that might be independent of forest cover and have variable
spatial patterns and associated conservation values (Gardner
et al. 2015). Therefore, the use of multiple taxonomic groups
and variables related to habitat degradation is required in order
to produce robust prioritization of investment for conservation
across existing PAs in the study region and beyond.

Conclusion

We have shown that prioritizing existing PAs using individual and
aggregate ranks can provide flexibility in the selection of variables
designed to address continued biodiversity and habitat loss by
using standard data analysis techniques that are relatively simple
to implement. The use of expert knowledge by active researchers

Fabio Carvalho et al.

made a significant contribution to our understanding of species
diversity across PAs on Madagascar and highlighted areas most
in need of additional research effort to assess local biodiversity pat-
terns. Immediate attention is warranted to the most highly ranked
PAs in our priority ranks, particularly those that are highly ranked
across different priority variables. Moreover, the use of expert
knowledge generated by on-site researchers can be an effective
way to bridge the gap between PA managers and the scientific com-
munity (Gardner et al. 2013) in order to help identify knowledge
gaps and integrate the scientific process into PA management
decision-making.

Our study was designed to provide a flexible prioritization
scheme for decision-makers on Madagascar and elsewhere, but
it was not intended to produce a definitive priority rank of PAs
within the country, nor to realign the conservation goals of
Madagascar’s PAs. Our methods contribute to conservation triage
efforts in biodiversity hotspots around the world and can be devel-
oped to stakeholders’ preferences by weighting variables based on
their priorities or by incorporating other variables that are locally
pertinent to conservation goals. For instance, variables that reflect
important ecosystem services for local communities (Verhagen
et al. 2017) and key socioeconomic factors (Di Minin et al.
2017) could be used in conjunction with similar variables pre-
sented here in order to further develop our rankings. Their advan-
tage is that they do not require considerable computational power
or high-resolution spatial analyses, which are often inaccessible to
developing countries, and they can be adapted to the quantity and
quality of data available. The Supplementary Material made avail-
able online (Appendix S1) contains a summary flowchart of the
methodology and can be used as a step-by-step tutorial for guiding
those who are interested in applying these methods.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/50376892920000090
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