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Abstract

Deforestation and forest degradation are major drivers of global environmental

change and tropical forests are subjected to unprecedented pressures from both.

For most tropical zones, deforestation rates are averaged across entire countries,

often without highlighting regional differentiation. There are also very few esti-

mates of forest degradation, either averaged or localized for the tropics. We

quantified regional and country-wide changes in deforestation and forest degra-

dation rates for Madagascar from Landsat temporal data (in two intervals,

1994–2002 and 2002–2014). To our knowledge, this is the first country-wide

estimate of forest degradation for Madagascar. We also performed an intensity

analysis to categorize the magnitude and speed of transitions between forest,

vegetation matrix, cultivated land and exposed surface. We found significant

regional heterogeneity in deforestation and forest degradation. Deforestation

rates decreased annually in lowland evergreen moist forest by �0.24% and in

all other vegetation zones. Forest degradation rates had annual increases in the

same period in lowland evergreen moist forest (0.09%), littoral forest (0.06%)

but decreased in medium altitude moist evergreen forest (�0.25%), dry decidu-

ous forest (�0.23%) and scelrophyllous woodland (�0.61%) in the same per-

iod. Despite these regional differences, higher rates of deforestation and forest

degradation were consistently driven by rapid and large-sized conversions of

largely intact forest to cultivated lands and exposed surfaces, most of which

occurred between 1994 and 2002. These results suggest that while targeted con-

servation projects may have reduced forest degradation rates in some areas (e.g.

medium altitude moist evergreen forest), the drivers of land cover change

remain intense in relatively neglected regions. We advocate a more balanced

approach to future conservation initiatives, one recognizing that deforestation

and forest degradation, particularly in tropical Africa, are often driven by

region-specific conditions and therefore require conservation policies tailored

for local conditions.

Introduction

Tropical forests make up 52% of global forests (FAO,

2015). They also harbour two-thirds of the world’s terres-

trial biodiversity (Whitmore 1998) and 96% of the

world’s estimated tree species (Fine et al. 2009). Despite

their global significance, these habitats are under unprece-

dented pressure from a variety of factors, including defor-

estation and forest degradation (Vieilledent et al. 2013).

Deforestation involves anthropogenic large-scale forest

clearance, while forest degradation mainly occurs from

small-scale conversions of persistent and subtle thinning

in forest cover, ultimately resulting in a landscape mosaic

comprised of non-degraded, secondary and fragmented

forests (Ghazoul et al. 2015). Both processes are usually

accompanied by marked changes to forest structure, spe-

cies composition and biodiversity (Achard et al. 2014;

Barlow et al. 2016).

Although remote sensing techniques have enabled reli-

able detection and monitoring of deforestation in tropical
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forests, the same has not been true for forest degradation

(Berenguer et al. 2014). Whether natural, anthropogenic,

landscape-scale or within-forest disturbances, quantifying

tropical forest degradation has been historically challeng-

ing (Stibig et al. 2014; Barlow et al. 2016). The main

obstacle is that estimating degradation requires identifica-

tion of subtle changes in canopy cover occurring over

small spatial scales, usually not readily available from

remotely sensed data. However, it is becoming increas-

ingly clear that reliable estimates of forest degradation in

the tropics is vital, since the proportion of global forest

affected by degradation is rising faster than areas

impacted by deforestation (Herold et al. 2011; Berenguer

et al. 2014).

Using proportions of net change in forest areas, such

as those reported by the global forest resource assessments

(e.g. FAO) masks differences at national-scales (Keenan

et al. 2015). This is because tropical landscapes are often

heterogenous and dependent on region-specific socio-eco-

nomic dynamics, thus reporting single-values of forest

loss may be misleading (Lambin et al. 2001). A disaggre-

gated approach that highlights regional rates of deforesta-

tion and forest degradation is likely to reflect the nuanced

differences in Sub-Saharan African (SSA) landscapes. Sim-

ilarly, a disaggregated approach allows for an analysis of

region-specific drivers of land use land cover change

(LULCC) and estimates of their intensification (Scrieciu

2007). Despite the heterogeneous and region-specific nat-

ure of deforestation and degradation in tropical forests,

many studies still give averaged estimates and few mea-

sure forest degradation.

Studies of land cover change are often biased towards

forest loss (Achard et al. 2007; Hansen et al. 2010; Stibig

et al. 2014), despite evidence that regenerating forests

possess faster biomass recovery, higher productivity and

carbon uptake compared to old-growth forests (Zahawi

et al. 2015; Poorter et al. 2016; Mora et al. 2018). More-

over, recent studies indicate that forest regeneration may

play a significant role in mitigating effects of climate

change (Houghton et al. 2015; Chazdon et al. 2016; Phil-

lips and Brienen 2017). Therefore, making forest gains a

research priority can complement the core mandates of

Reduced Emissions from Deforestation and Degradation

(REDD) mechanisms, especially for SSA. The estimates of

forest gains are rarely reported for the tropics, despite

growing understanding of their role in forest change

dynamics in the region (FAO, 2015). For SSA countries, a

bias towards forest loss may negatively impact national

strategies for achieving conservation targets including the

robustness of LULCC assessments.

In Madagascar, reliable estimates of deforestation and

forest degradation rates are affected by a dearth of unified

baseline data on forest cover to reflect 20th century

changes (Kull 2012). This has led to different estimates of

deforestation and in some cases, contentious assessments

of forest cover change (Mcconnell and Kull 2014; Aleman

et al. 2017). Several studies have attempted to characterize

changes taking place in Madagascan forests. Hansen et al.

(2008) estimated the deforestation rates of <0.7% for

tropical Africa including Madagascar; others have focused

on structural characterization of littoral forests in the

southeast (Ingram et al. 2005), patterns of forest patches

and changes in dry deciduous forests (Zinner et al. 2014)

or comparing the accuracy of different approaches in esti-

mating forest cover losses (Grinand et al. 2013). Most of

these studies utilize whole pixel image differencing to

assess forest cover change, which does not account for the

fine-scale processes caused by forest degradation (Harris

et al. 2012). Still, Allnutt et al. (2013) apply sub-pixel

analysis of deforestation and degradation within Masaola

National Park in north-eastern Madagascar their result

show significant losses in forest cover within 6 years, with

minimal differences (�0.03%) between deforestation and

forest degradation rates. Although Madagascar has sub-

mitted an updated 2018 Forest Reference Level (FREL) to

the United Nations Framework Convention on Climate

Change (UNFCCC), it only includes emission reductions

from deforestation and does not include degradation, fur-

ther highlighting the importance of assessing forest degra-

dation in the country (United Nations Framework

Convention on Climate Change (UNFCCC) 2018).

In this paper, we map deforestation and forest degrada-

tion rates for Madagascar using a sub-pixel analysis,

which assessed changes in forest cover at ≤0.1 ha resolu-

tion. To our knowledge, there is no other assessment of

localized forest changes caused by subtle, small-scale

degradation across the island. Secondly, we investigate the

impact of land-cover driven shifts in habitat types and

analyse the intensity of land cover category transitions

within habitats highly vulnerable to LULCC, yet slow to

recover due to persistent disturbances. This disaggregated

approach (i.e. analysing regions separately and combined)

was adopted to highlight the regional differences in defor-

estation and forest degradation across the island, as they

may be driven by distinct causes locally, or different

biomes may respond differently to similar pressures.

There is no a priori prediction about which regions would

exhibit the highest or lowest rates of deforestation and

forest degradation. However, the expectation is for shift-

ing cultivation to be an active driver in all regions, while

increases in exposed surfaces, possibly caused by erosion

and/or wildfires to actively degrade arid forests (Carter

et al. 2018). Next, we also account for forest regeneration

in our analysis to provide a complete picture of forest

change dynamics (Hansen et al. 2013). We do not present

a conceptual distinction between the processes leading to
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forest gain, including forestation, afforestation or refor-

estation. Rather, intensity analysis is utilized to detect

land cover category swaps to forest, as well as all other

transitions taking place in two intervals (see below).

Materials and Methods

Study area: geographical setting of eco-
regions

Madagascar is the fourth largest island in the world and

forms the major portion of one of 34 global biodiversity

hotspots, characterized by high floral and faunal endemism,

as well as threats from deforestation and degradation. In

this paper, land use land cover change assessment is imple-

mented for dominant vegetation zones as defined in Gau-

tier et al. (2018). These vegetation zones are littoral forest,

lowland evergreen moist forest, medium altitude moist

evergreen forest, dry deciduous forest and sclerophyllous

woodland (Fig. 1). The highly degraded and fragmented

montane forests and spiny thickets were excluded because

they are not strictly forested regions. Mangroves were also

excluded because they face different pressures and impacts

which are not present in other vegetation zones. We define

forested areas as portion of the landscape with greater than

25% closed canopy cover, covering an area more than

0.5 ha largely made up of trees whose height exceeds 5 m

and the predominant absence of other land-uses (FRA,

2000; Hansen et al. 2010).

The littoral forest is situated on the eastern border of

the island close to sea level on sandy sediments rising to

an elevation of 100 masl (metres above sea level) in some

areas (Insets in Fig. 1). Due to low elevation and subse-

quent easy accessibility, littoral forests are under constant

pressure and are now regarded as the country’s most

threatened vegetation zone and is predicted to disappear

unless drastic measures are taken (Crowley 2010; Andria-

mandimbiarisoa et al. 2015). The lowland evergreen moist

forest constitutes the region that mostly borders the

Indian Ocean to the east in a northerly and southerly

direction, at an elevation range of 0–800 masl covering an

area of c. 30 000 km2. Following a similar orientation is

the medium altitude moist evergreen forest which range

in elevation from 800 to 1800 masl occupying an area of

c. 34 000 km2. The dry deciduous forest occurs along the

western axis and also in the extreme north, bordering the

Mozambique channel in some parts with an elevation

range of 0–800 masl and covers c. 24 000 km2 of land

area (Gautier et al. 2018). The scelrophyllous woodland

elevation ranges from 800–1800 masl dissecting parts of

the montane forests and in large patches along the south-

west region (Fig. 1) covering an area of c. 1470 km2 (Kull

2002a; Rakotondrasoa et al. 2012).

Selection of satellite imagery

The following imagery was used for LULCC assessment:

Landsat Thematic Mapper (TM), Enhanced Thematic

Mapper plus (ETM+) and Operational Land Imager

(OLI). All datasets were obtained from the archives of

United States GloVis viewer and had a 30-m spatial reso-

lution (http://glovis.usgs.gov/) (Table S1). The satellite

images collected enabled repetitive measurements of land

cover change covering 20 years in three image time

stamps. The first time stamp comprised of Landsat TM

images from predominately 1994, but also included 1995

and 1996. The second time stamp comprised of Landsat

ETM+ images from 2000, 2001 and predominantly 2002.

The third time stamp included Landsat OLI images from

2013 and predominately 2014. For each time stamp,

images were selected based on the date of image acquisi-

tion (late dry to early rainy season) and the absence of

cloud cover (<10%). The analyses were carried out using

two intervals: the first interval consisted of images from c.

1994 to c. 2002; while the second interval was defined by

images from c. 2002 to c. 2014. All Landsat imagery was

Level 1T, which had been processed for radiometric

calibration and geometric correction using digital

elevation models of terrestrial surface of Madagascar (Lee

et al. 2004).

Assessing rates of deforestation and forest
degradation

The proportion of deforestation and forest degradation in

each interval was estimated using CLASlite v3.3 (http://

claslite.carnegiescience.edu/en/about/software.html), which

allows for mapping forest cover change at large scales and

can detect forest degradation occurring at less than a hec-

tare (Asner et al. 2009). The analysis required the use of

forest cover obtained from Landsat imagery to analyse

sub-spectral characteristics of pixels across Madagascar

(Mart�ınez et al. 2006; Asner et al. 2009). The images were

corrected for radiometric errors caused by atmospheric

attenuation using rescaled gains and bias (offsets) param-

eters provided for each band. These rescaled values

underwent a second simulation (6S transfer model) that

resolved errors untreated during the initial rescaling pro-

cess, before the radiance values were converted to surface

reflectance values (Vermote et al. 1997). The simulation

model used NASA’s MODIS data in the background to

modulate the effect of the atmosphere on sun rays as it

interacts with the atmosphere and land surface. The raw

Landsat imagery input was then corrected by removing

the estimated model of the atmosphere, leaving an image

of the resultant surface reflectance (0–100%). Thereafter,

each image scene was examined to determine the suitable
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threshold to set the mask for water, clouds and shadow

(reduced masking approach); this was done to avoid

over-masking, especially in areas of high relief. Next, the

composition of each pixel fraction was determined using

Auto Monte Carlo pixel-Unmixing (AutoMCU) (Quin-

tano et al. 2012), a probabilistic algorithm that takes each

input pixel reflectance value and decomposes it into three

component fractions: live vegetation, dead vegetation and

bare substrate.

During the process of pixel decomposition, each frac-

tion component was compared with historical modelled

values in CLASlite’s spectral libraries. These spectral

libraries consisted of large collections of representative

samples of individual components corresponding to pure

spectra for each of the land cover components (i.e. spec-

tral end-members). The end-member libraries in CLASlite

are available for tropical regions only. They consist of

detailed signatures of bare substrate and dead vegetation

ground-truthed using field observation. Live vegetation

signatures were collected from airborne hyperspectral sen-

sors due to the impediments associated with tropical for-

est landscapes usually in the form of large crowns and

Figure 1. Selected vegetation zones of Madagascar showing forested areas. Forested areas were characterized by >25% closed canopy cover

with trees taller than 5 m. Insets are littoral forests on the eastern coast of the Island. Vegetation zone shapefiles downloaded from Royal Botanic

Gardens, Kew website and cartographic visualization implemented in GIS. Vegetation zones following the classifications of Gautier et al. 2018.

Map projection: Geographic coordinate system using WGS1984 datum.
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basal areas. Previous studies have demonstrated the effec-

tiveness of AutoMCU in mapping tropical ecosystems,

including savanna, woodland, shrubland and broadleaf

forests (Asner et al. 2005; Allnutt et al. 2013). Next, the

pixel values were analysed using decision trees, where

splits were based on the analyses of differences between

pixel components at the start and end of intervals. The

differences in the proportion of these components from

1994 to 2014 were used to determine deforested and

degraded pixels. Generally, the reductions in live vegeta-

tion within pixels that were ≥60% represented deforested

pixels, while those ≥40% suggested forest degradation

(Asner et al. 2009).

The process of decomposition required identification of

the optimum threshold for which a pixel’s component

could be quantified into different fractions. In moist eco-

regions (i.e. littoral, medium altitude moist evergreen and

lowland evergreen moist forests) live vegetation compo-

nents were predictably higher for most pixels (average

90%), 5% for dead vegetation components and negligible

values for bare substrate. Whereas in western dry forests,

live vegetation component values were comparably lower

than those of medium altitude moist evergreen forests,

averaging 80% per pixel, while dead vegetation and bare

substrate values were on average around 15% and 5%

respectively. In the scelrophyllous woodland, there was

very wide variation in all three component values mea-

sured during pixel unmixing. Therefore, a 50% optimum

threshold was selected for decomposition. For each inter-

val, the sizes of deforested and degraded area were deter-

mined in GIS and represented the portion of the pixels

whose live vegetation fraction was below 60% and 40%.

The rates of deforestation and degradation were calcu-

lated and Mann–Whitney U-test was performed to com-

pare whether there were any differences between

deforested and degraded area sizes between intervals (i.e.

1994–2002 and 2002–2014).

Mapping land use land cover change

Following the classification scheme of Moat and Smith

(2007) for Madagascar, thematic land use classes were

identified in each vegetation zone. Moat and Smith

(2007) classification was modified to form four distinct

classes: forest, vegetation matrix (includes grassland,

wooded grassland and highly degraded forest), cultivated

land and exposed surface (includes urban areas). These

land use classes served as an implicit measure of the dri-

vers of deforestation and forest degradation (Paneque-

G�alvez et al. 2013; Haque and Basak 2017). Training sites

were identified randomly with the aid of high resolution

Quick Bird images (Google Earth) in ERDAS Imagine

(Vieilledent et al. 2013; Devries et al. 2015), as well as

sites selected from multiple land cover categories directly

observed by Brown et al. (2013) during their field

research in Madagascar. Images were classified into land

use land cover maps using the maximum likelihood tech-

nique which was implemented for each time stamp ima-

gery. The derived maps were cross-tabulated to obtain a

square contingency table of land cover transitions to

determine three-pixel states in each interval: (1) persis-

tence; (2) gains and (3) losses. Thereafter, the intensity

analysis was implemented to determine the causes of land

cover transitions and to partition the speed and magni-

tude of these transitions into two time intervals (e.g. c.

1994–2002 and c. 2002–2014) (Aldwaik and Pontius

2012). Two component parts of the intensity analysis (i.e.

observed and uniform intensities) were quantified. In

each interval, uniform intensity for each observed inten-

sity transition was estimated to explain differences in the

rate of change and how these differences affected gross

gains or losses. The estimated rates represent measures of

speed of category transitions. Furthermore, the annual

observed transition intensity for different land cover cate-

gory swaps relative to the speed of other transitions tak-

ing place in each interval was quantified. The observed

transition intensities were aggregated to determine the

magnitude of land cover category swaps and their inten-

sity of gains and losses in each interval. Gains were deter-

mined relative to magnitudes of LULCC categories in the

initial year and losses relative to the magnitudes in the

subsequent year for each category swap in each interval.

Transitions from forest pixels to all non-forest state

pixels (i.e. vegetation matrix, cultivated land, exposed sur-

faces) were used as implicit measures for estimating dri-

vers of deforestation and forest degradation. Likewise,

transitions from vegetation matrix to exposed surface and

cultivated land, as well as all transitions from cultivated

land to exposed surface were considered as drivers for

both deforestation and forest degradation. Similarly, tran-

sitions from exposed surface and cultivated land to forest

and vegetation matrix were also quantified. These catego-

rizations allowed assessment of how the magnitude, speed

and nature of transitions vary between vegetation zones

over 20 years.

Validating patterns of LULCC

Quantifying errors in sub-pixel analysis

The uncertainties associated with the results of deforesta-

tion and forest degradation rates were quantified using a

combination of standard deviation and root mean square

error (RMSE). The root mean square error compared the

difference between predicted end-member values for the

region and measured end-member values quantified from
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the input images. Both the standard deviation (results not

presented) and RMSE of the modelled results allowed for

the assessment of the uncertainty associated with the

derived rates of deforestation and forest degradation. Fur-

thermore, we compare the results obtained from our

analysis with Hansen et al. (2013) global forest change

datasets to determine the extent of agreement between

the areas of forest loss (Fig. S2).

Accuracy assessment of land cover maps

Reference pixels were independent of the training samples

used during image classifications and were assessed

against randomly selected verification datasets. The verifi-

cation datasets consisted of 250 locations randomly

selected across the island using Google Earth high resolu-

tion images. To account for bias in sampling intensity

commonly associated with land cover category sizes, the

different measures of accuracy were weighted against the

proportion of the categories in each map (Olofsson et al.

2014). Using error matrices, the number of reference

(sample) pixels assigned to different land cover categories

were determined relative to the verified datasets collected

from Google Earth. Then, accuracy of the classifications

was calculated and expressed as three metrics: overall

accuracy (OA), user’s accuracy (UA) and producer’s accu-

racy (PA). The OA for each classification was derived by

dividing the number of total correct (diagonal) by the

total number of pixels in the error matrix. The PA deter-

mines the probability of correctly classifying a reference

pixel (i.e. error of omission) obtained by dividing the

total number of correct pixels of any given category by

the total number of pixels of that category in the refer-

ence data. UA provides the probability that a pixel classi-

fied on the map corresponds to the same category in the

verification data (i.e. error of commission) and is calcu-

lated from the total number of correct pixels per category

divided by the total number of pixels classified in that

category (Tables S2–S3).

Results

Regional scale deforestation and
degradation rates

Sub-pixel analysis showed that deforestation rates

decreased in all vegetation zones, but forest degradation

rates increased in lowland evergreen moist and littoral

forests by 0.09% year�1 and 0.06% year�1 (Table 1).

Sclerophyllous woodland had the lowest deforestation

(�0.87% year�1) and forest degradation (�0.61% year�1)

rates. In littoral forest, high forest degradation rates did

not equally translate to high deforestation rates. The

deforestation rates in dry deciduous forest were much

lower than forest degradation rates in the same period.

Minimal differences between deforestation and forest

degradation was detected in medium altitude evergreen

forest (Table 1). The accuracy associated with deforesta-

tion and forest degradation results were mapped and

show variations in error for each time stamp (Fig. S1).

Comparing sizes of deforestation and forest
degradation by intervals

Interval comparisons revealed that there was significant

difference between the sizes of deforested areas in med-

ium altitude moist evergreen forest, dry deciduous forest

and sclerophyllous woodland (Mann–Whitney U-test,

P<0.001; Table 2). During the second interval (i.e. 2002–
2014), large-sized deforestation was dominant in medium

altitude moist evergreen forest and dry deciduous forest

which suggest an increase in the severity of deforestation

in these vegetation zones (Fig. 2).

There were significant differences in sizes of forest

degradation during first (i.e. 1994–2002) and second

interval in all vegetation zones. For instance, in littoral

forests, forest degradation sizes were significantly smaller

in the first interval compared to the second interval

(Mann–Whitney U-test, p<0.001; Table 2). Similarly, the

average area of degradation was smaller in the first inter-

val than in the second interval in medium altitude moist

evergreen and dry deciduous forests. Generally high

deforestation and degradation rates did not always trans-

late to the presence of large-sized forest clearings within

vegetation zones. For instance, on average deforested area

sizes in dry deciduous forests were one of the largest dur-

ing both intervals (Fig. 2) but relative to other zones had

low deforestation rates (Table 1). Areas of agreement

between sub-pixel analysis and the global forest change

dataset by Hansen et al. (2013) for Madagascar reveal

considerable agreement between both maps (Fig. S2).

Forest loss vs. forest gains

Forest loss out-stripped forest gain in littoral and dry

deciduous forests. However, the proportion of forest

gained was larger than deforestation and degradation in

both intervals for lowland evergreen moist and medium

altitude moist evergreen forests (Table 3). In littoral for-

est, the proportion of forest gains (1.2%) was smaller

than those of forest loss (3.5%). Although during second

interval, the proportion of forest gains was larger than

losses due to deforestation and degradation. A similar

pattern was detected in dry deciduous forest where com-

bined forest losses impacted 6.4% of the landscape com-

pared to 0.5% of areas experiencing forest gains.
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Magnitude and nature of land use land
cover transitions

Quantifying forest loss and other transitions

Largely, forest transitions to exposed surface and vegeta-

tion matrix, as well as vegetation matrix transitions to

exposed surface and cultivated land were on average faster

and larger than other transitions and mainly occurred in

the first interval (Fig. 3A–E). Specifically, large and rela-

tively fast transitions from forest and vegetation matrix to

cultivated land and/or exposed surface dominated transi-

tions in the lowland evergreen moist, medium altitude

moist evergreen and dry deciduous forests. Sclerophyllous

woodland was dominated by large transitions of culti-

vated land to exposed surface in the second interval.

However, the fastest transitions were of forest to exposed

surface, albeit at a lower magnitude (Fig. 3D). In the sec-

ond interval, fewer large-sized transitions occurred in

medium altitude moist evergreen forests, compared to the

lowland evergreen moist forests where more intermediate-

to small-sized transitions of forest to cultivated land and

vegetation matrix to cultivated land were detected. On

average, second interval transitions in four of the five

eco-regions were slower than first interval transitions

regardless of the type of transitions. Only within the lit-

toral forests did this pattern differ, with almost identical

speeds between large-sized transitions of forest to culti-

vated land.

All observed transitions from the perspective of forest

loss during the first and second intervals were mapped

and provided as Figs. S3–S5. The overall accuracy of the

c. 2014 land cover maps was 84% and higher than that of

c. 2002 maps at 74%. The associated stratified producer

and user accuracies are given in Tables S2 and S3.

Discussion

Quantified rates of deforestation and forest
degradation

Our study documented significant regional differences in

deforestation and degradation rates in Madagascar,

Table 1. Summary of deforestation and forest degradation rates as quantified from sub-pixel analysis for selected vegetation zones of Madagas-

car. Rates in each vegetation zone are listed in descending order for both deforestation and forest degradation.

Vegetation Zones

Deforestation (ha)

RoC (%year�1) Vegetation Zones

Degradation (ha)

RoC (%year�1)1994–2002 2002–2014 1994–2002 2002–2014

Lowland evergreen

moist forest

149 706 123 708 �0.17 Lowland evergreen

moist forest

42 938 46 702 0.09

Medium altitude

moist evergreen

forest

130 889 99 525 �0.24 Littoral forest 135 143 0.06

Dry deciduous forest 222 040 135 577 �0.39 Dry deciduous forest 22 775 17 602 �0.23

Littoral forest 859 341 �0.60 Medium altitude moist

evergreen forest

43 305 32 457 �0.25

Sclerophyllous woodland 7353 961 �0.87 Sclerophyllous woodland 2142 834 �0.61

Table 2. Comparative analysis of mean sizes of deforestation (def.) and forest degradation (deg.) categorized by intervals for selected vegetation

zones of Madagascar. Statistically significant results between intervals are highlighted in bold (a=0.05).

Vegetation zone Interval Mean def. area (ha) Sig. Mean deg. area (ha) Sig.

Medium altitude moist evergreen forests 1994–2002 0.69 <0.001 0.17 <0.001

2002–2014 0.82 0.20

Lowland evergreen moist forests 1994–2002 0.69 0.87 0.18 <0.001

2002–2014 0.70 0.19

Littoral forests 1994–2002 0.93 0.86 0.15 <0.003

2002–2014 0.63 0.19

Dry deciduous forests 1994–2002 1.45 <0.001 0.17 <0.001

2002–2014 1.52 0.20

Sclerophyllous woodland 1994–2002 0.52 0.002 0.16 0.01

2002–2014 0.48 0.15

Sig. represents the significance of Mann–Whitney U-test between intervals for each vegetation zone.
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highlighting the importance of partitioning the effects of

LULCC at regional scales. Deforestation from lowland

evergreen moist forest was the highest, though estimates

for this study are lower than the most recent assessments

for the region (Allnutt et al. 2013; Hansen et al. 2013).

The deforestation rates for medium altitude moist ever-

green and dry deciduous forests were considerably lower

than estimates from Harper et al. (2008), (+0.8% year�1)

possibly because their assessment did not differentiate

between deforestation and degradation within largely

intact forests and perhaps due to an overestimation of

deforested areas when using whole-pixel analytical tech-

niques. Our assessment gives a nuanced view of deforesta-

tion rates across different regions of Madagascar, some of

which align with recent studies that suggest a slowing of

deforestation in unprotected tropical landscapes (Aleman

et al. 2017). However, the magnitude of deforestation in

Madagascan forests is likely to be more severe in the

future, evidenced by the large-sized clearings detected in

lowland evergreen moist, medium altitude moist

Figure 2. Outputs of sub-pixel analysis showing areas impacted by (A) deforestation and areas impacted by (B) forest degradation from 1994 to

2014.
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evergreen and dry deciduous forests during the second

interval. In western dry deciduous forests where natural

habitats are relatively smaller, the average size of defor-

estation was the largest in both intervals compared to all

other eco-regions. Such evidence of impact from defor-

estation in highly fragmented natural habitats reinforces

the threats to all regions of Madagascar (Brown et al.

2015).

Moreover, these results also show early evidence that

subtle thinning or within-forest disturbances is emerging

as an active driver of change. However, there is no clear

explanation for inconsistent forest degradation rates

between regions. Though high forest degradation rates in

lowland evergreen moist vegetation zones may be a conse-

quence of the absence of large tracts of forests and the

presence of small forest patches that are easily accessible

(Eckert et al. 2011). Evidence of increased degradation

rates supports recent studies showing that despite some

successes in tackling deforestation in tropical regions, for-

est degradation may have evaded prior regulatory mea-

sures and poses a threat to largely primary forest habitats

(Boucher et al. 2014; Barlow et al. 2016; Prestele et al.

2016).

The results of differences in regional deforestation and

forest degradation rate highlight the complexity of change

processes in Madagascan habitats. For example, shifting

cultivation, selective logging and cyclones are major

agents of forest cover change along the eastern escarp-

ment, which comprises the lowland evergreen and med-

ium altitude moist evergreen forests (Brown and

Gurevitch 2004; Burivalova et al. 2015); while deforesta-

tion and degradation in dry forest are more likely modu-

lated by shifting cultivation, livestock grazing, charcoal

production and wildfires, and to a lesser degree, selective

logging (Waeber et al. 2015; Feldt and Schlecht 2016).

Consequently, although selective logging is often the most

common cause of degradation in tropical forests (Asner

et al. 2005), the influence of local drivers at the regional

scales may differ or get displaced through leakages (i.e.

spatial displacement in forest loss) (Gasparri et al. 2016).

There are several explanations for these regional differ-

ences: one could be the consequence of pressures caused

by in-migration of re-settlers to high elevation habitats

(Devries et al. 2015). Alternatively, leakage may be driven

by shifts in dryland cropping on slopes (Tanety) upland

towards montane forests (V�agen 2006), seasonal burning

(Kull 2002b) or slow reforestation of dry forests once

exposed to disturbances (Zinner et al. 2014). Arguably,

the dominant drivers of deforestation and forest degrada-

tion have shifted to other regions or are beginning to

shift in an upslope direction. This may have led to

increasing trends in deforestation and forest degradation

in parts of Madagascar and decreasing trends in others.T
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Since these analyses did not explicitly estimate selective

logging however, it was not possible to determine to what

extent it modulates forest cover change. It should be

noted that for the lowland evergreen moist forest, there

was higher proportion of cloud cover in the c. 2002 ima-

gery, which resulted in masking of those pixels during

sub-pixel analysis and may be a contributing factor to the

high rate of deforestation and verified with the error

quantified for that vegetation zone.

Drivers of forest loss and other land cover
transitions

The most frequent and largest magnitude transitions were

from other categories to cultivated lands (during both

intervals), confirming our expectation that shifting culti-

vation modulates land cover change in Madagascar (Elsa

et al. 2017). It is worth noting that smaller-sized, slower

transitions in the second interval do not necessarily reflect

slowing deforestation and forest degradation. Instead, it

may simply indicate that the process of degradation

associated with transitions from cultivated lands to

exposed surfaces is slower than converting largely intact

forests to either of the other categories. Regions exhibiting

increased deforestation and/or forest degradation had

similarly large transitions to exposed surfaces, which sug-

gests the presence of similar drivers of LULCC in both

arid and moist forests (Zaehringer et al. 2015).

Conclusion

This study highlights considerable heterogeneity in rates

of deforestation and degradation in Madagascar, with

locally and regionally distinct patterns of both increasing

and decreasing forest loss. Our study also suggests that

although there were regional differences, increased rates

of deforestation and degradation were consistently driven

mainly by rapid and large-sized conversions of largely

intact forest to cultivated lands. Similar trends could exist

for other tropical regions but are often masked by rates

of deforestation and degradation averaged across eco-

regions and sometimes for entire countries. These results

Figure 3. Difference between the nature of land cover category transitions in two intervals (c. 1994–2002 and c. 2002–2014) for five vegetation

zones: (A) medium altitude moist evergreen forest; (B) lowland evergreen moist forest; (C) littoral forest; (D) scelrophyllous woodland; and (E) dry

deciduous forest. Proportional bubbles depict large and small-sized transitions of land cover categories. Speed indicates the rate of change of land

cover category swaps relative to other transitions taking place. First and second intervals transitions are depicted as black and white circles

respectively. Note: cul, cultivated land; ex, exposed surface; fo, forest; vm, vegetation matrix.
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and others (e.g. Waeber et al. 2015) suggest the adoption

of a more balanced approach to future conservation

initiatives, since deforestation and forest degradation are

often driven by region-specific conditions and there-

fore require conservation policies tailored for local

environments.

The detection of forest degradation in all vegetation

zones highlights the value of the additional, often unre-

ported contribution of degradation to forest cover change,

the absence of which leads to continued underestimation

of LULCC in the tropics. Perhaps this result could inform

the ongoing debate surrounding the importance of quan-

tifying and monitoring forest degradation in tropical

developing countries. In regions where weak governance

and insecure land tenure rights drive shifting cultivation,

illegal selective logging and extraction of non-timber for-

est products – such as many countries in SSA – estimat-

ing forest degradation is equally as valuable as

deforestation.
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Figure S1. Accuracy assessment maps of sub-pixel analysis

mapped as root mean square errors each pixel. The errors

indicate difference between modelled end-members and

images in three periods (c. 2014, 2002 and 1994). Differ-

ences ranged from c. 1–7% representing regions of low

and high variations respectively. Background image is

shaded relief of Madagascar.

Figure S2. Validating the distribution of deforestation

and forest degradation as determined from sub-pixel anal-

ysis with Hansen et al. (2013) global forest cover datasets.

Areas of agreement during first interval are represented as

red (84 242 ha) while during second interval are repre-

sented as blue (32 381 ha).

Figure S3. Map showing the dominant transitions from

the perspective of forest loss during first (left-side) and

second (right-side) intervals in medium altitude moist

evergreen forest. Inset figure shows the geographical
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range of medium altitude moist evergreen forest in

Madagascar.

Figure S4. Map showing the dominant transitions from

the perspective of forest loss during first (left-side) and

second (right-side) intervals in lowland evergreen moist

forest. Inset figure shows the geographical range of low-

land evergreen moist forest in Madagascar.

Figure S5. Map showing dominant transitions from the

perspective of forest gain during first (left-side) and sec-

ond (right-side) intervals in dry deciduous forest and

scelrophyllous woodland. Inset figure shows the geo-

graphical range of dry deciduous forest and scelrophyl-

lous woodland in Madagascar.
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