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Abstract 12 

Despite building energy use being one of the largest global energy consumers, building energy 13 

simulations rarely take the actual local neighbourhood scale climate into account. A new globally 14 

applicable approach is proposed to support buildings energy design. ERA5 (European Centre Reanalysis 15 

version 5) data are used with SUEWS (Surface Urban Energy and Water balance Scheme) to obtain (in 16 

this example case) an urban typical meteorological year (uTMY) that is usable in building energy 17 

modelling. The predicted annual energy demand (heating and cooling) for a representative four-storey 18 

London residential apartment using uTMY is 24.1% less (cf. conventional TMY). New vertical profile 19 

coefficients for wind speed and air temperature in EnergyPlus are derived using SUEWS. EneryPlus 20 

simulations with these neighbourhood scale coefficients and uTMY data, predict the top two floors have 21 

~40% larger energy demand (cf. the open terrain coefficients with uTMY data). Vertical variations in 22 

wind speed have a greater impact on the simulated building energy than equivalent variations in 23 

temperature. This globally appliable approach can provide local meteorological data for building energy 24 

modelling, improving design for the local context through characterising the surrounding neighbourhood. 25 

Keywords: 26 

EnergyPlus, Urban climate modelling, TMY, Meteorological profiles, Wind profile coefficients, ERA5 27 

1 Introduction 28 

Given the building sector is responsible for about 40% of the global energy use, over 30% of the CO2 29 

emissions (IEA, 2019), and a third of many countries’ total primary energy requirement (PER) (e.g. China 30 

35%, EU 37%, USA 40%; Yang et al., 2014), there is a large effort to reduce energy use in this sector. A 31 
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large fraction of this energy is used to maintain thermal comfort. Strategies to reduce energy use (Nazi et 1 

al., 2017) and enhance lifetime performance of equipment (Bragança et al., 2014) consider heating, 2 

cooling, dehumidification, and ventilation loads (Bourikas, 2016). The design process uses climatological 3 

data to assess timing and amount of heating, air conditioning and ventilation systems (HVAC) needed 4 

(Herrera et al., 2017; Yao et al., 2011, 2015).  5 

Numerous shortcomings exist to improving building energy modelling for climate resilient design (Hong 6 

et al., 2020), here we focus on the climate forcing data. Typically, these data are not representative of the 7 

neighbourhood that the building will be located in. Atmospheric observations are impacted by their 8 

surroundings. If observed outside of the city (e.g., at an airport), the setting is quite different from other 9 

neighbourhoods across a city (e.g., low density residential, central business district). Most well-known is 10 

the urban heat island effect, where central city near surface air temperatures may stay warmer (cool more 11 

slowly) at night than the rural surroundings. With long-term weather stations intentionally located in open 12 

vegetated areas, following World Meteorological Organisation (WMO) general siting recommendations, 13 

they are unlikely to be representative of urban building sites (cf. Chapter 9 in WMO, 2017) even though 14 

the urban expansion may possibly warm the records there (Lowry 1977, Ren et al., 2008; Jones et al. 15 

2008). Urban areas also modify wind (e.g. Grimmond and Oke, 1999), and many other climate variables 16 

(e.g. Kershaw et al. 2010, Cleugh and Grimmond 2012, Christen et al. 2004, Offerle et al. 2005, Oke et al. 17 

2017). 18 

Building energy simulation aim to capture the building’s response to the outdoor climate. However, the 19 

dynamic feedbacks between the buildings and its surroundings (other buildings, vegetation and roads) 20 

modify the external atmospheric state, and new buildings in turn impact this (Duan et al., 2019). Notably, 21 

heat emissions from buildings (anthropogenic and natural) modify radiation, wind flow, temperatures, etc. 22 

When these conditions are not considered (e.g., the absence of the urban thermal effects) ventilation 23 

systems may neither work as designed, requiring costly retrofit, nor save energy (Short et al., 2004).  24 

Currently, building energy simulations typically use regional climate observations to form a synthetic 25 

year from 12 “real” months. Each month is independent, but representative of its long-term mean (e.g. 30 26 

year climatological Normal) (Herrera et al., 2017). Methods to select the months include the so-called test 27 

reference year (TRY) (Miguel and Bilbao, 2005), and typical meteorological year (TMY) (Hall et al., 28 

1978). Although many statistical techniques are used to derive these, they all use observed data from 29 

weather stations close to cities, but often in rural/non-urban settings, for varying reference periods (e.g., 30 

ASHRAE’s (2001) International Weather for Energy Calculations (IWEC), 1982–1999; Zhang and 31 

Huang’s (2004) Chinese Typical Year Weather, 1982–1997, CMA’s (2005) Chinese Standard Weather 32 

Data, 1971–2003, CIBSE’s UK Test Reference Year, 1984–2013 (Eames et al., 2016)).  33 
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To provide the required weather forcing data for building energy simulations at the appropriate scale, 1 

many approaches have been taken. These address different issues related to the source of data and spatial 2 

scale (e.g., dynamic modelling/downscaling, Murphy (2000)), and the lack of data (e.g. stochastic weather 3 

generator, Fatichi et al. (2011); morphing, Belcher et al. (2005)). Among the dynamic modelling 4 

approaches two broad categories are CFD (computational fluid dynamics) and urban land surface 5 

modelling or urban canopy modelling (UCM, Grimmond et al. 2009). The goal of CFD approaches (e.g., 6 

OpenFOAM - e.g. Alibadi et al. (2017); PALM - e.g. Resler et al. (2017), ENVI-Met - e.g. Crank et al. 7 

(2018)) is to provide very detailed information at high spatial resolution (O(1 m)), most notably the wind 8 

fields. CFD models require high resolution digital surface models and very good model boundary 9 

condition meteorology (e.g. downscaled from (or coupled to) numerical weather prediction models). 10 

Compared to the UCM approach, CFD is more computationally demanding, and not suitable for climate 11 

scale studies spanning decades. The UCM approach utilizes the same type of models as used in numerical 12 

weather prediction to parameterise sub-grid scale urban-atmosphere interactions. As these need to be 13 

computationally efficient but able to characterise different neighbourhood scale areas (O(0.1 – 10 km)), 14 

we take this approach in this study. 15 

The UCM approach tries to capture various aspects of the urban climate caused by modifications of both 16 

the landscape form (notably buildings and streets) and people’s activities (notably behaviour influencing 17 

energy use) (Grimmond et al. 2009, Barlow et al. 2017, Oke et al. 2017, Capel-Timms et al. 2020). A 18 

large number range of UCM exist (e.g., Town Energy Balance (TEB) - Masson (2000), single-layer urban 19 

canopy model - Kusaka et al. (2001), multi-layer urban canopy model - Kondo et al. (2005), Building 20 

Effect Parameterization (BEP) - Martilli et al. (2002), Urban Canopy Parameterisation + Building Energy 21 

Model - Salamanca et al. (2009)) to parameterise these net impacts between the urban surface and the 22 

atmosphere (as compared in Grimmond et al. 2010, 2011). These models can be run independently (i.e. 23 

‘offline’) forced by observations, global reanalysis data and/or future climate projections. Reanalysis and 24 

climate projections provide spatially continuous data for past and future time periods, respectively. For 25 

the latter, a range of scenarios can be modelled. However, the modelled data products (e.g. global 26 

reanalysis, future climate) may be at coarse spatial scales and/or not have an urban surface 27 

parameterisation within them. Thus, using an offline UCM allows the downscaling of the climate to “any” 28 

location accounting for feedbacks from neighbourhood buildings/vegetation/roads and local climate. 29 

Underpinning these models is the urban energy balance, which includes anthropogenic heat flux 30 

emissions. Near-surface meteorology is diagnosed to provide building energy models with data that 31 

incorporate local influences.  32 
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Here, our objective is to incorporate the missing neighbourhood signature into building simulation data. 1 

To demonstrate this, using TMY as the baseline format (but could also be other building energy 2 

simulations formats; e.g., Hong et al., 2013; Ohunakin et al. 2013; Sánchez et al. 2020), we use the 3 

Surface [Urban] Energy and Water Balance Scheme (SUEWS) (Section 2) to determine neighbourhood 4 

scale meteorological variables from a global climate dataset and generate TMY data (Section 3). The 5 

neighbourhood-scale TMY data are employed to drive EnergyPlus simulations, whose results are 6 

examined against those produced with conventional TMY data (Section 4). 7 

2 SUEWS Enhancement and Evaluation 8 

Surface [Urban] Energy and Water Balance Scheme (SUEWS) is a local-scale land surface model for 9 

simulating the surface energy and hydrological fluxes (Grimmond and Oke 1986, 1991; Järvi et al. 2011, 10 

2014; Offerle et al. 2003; Ward et al. 2016) without requiring specialised computing facilities. It has been 11 

extensively evaluated and applied in many cities (Lindberg et al. (2018) Table 3, Sun and Grimmond’s 12 

(2019) Table 1). 13 

2.1 Roughness sublayer atmospheric profiles 14 

In this work we enhance SUEWS (v2020a) to include near-surface diagnostics of meteorological 15 

variables in the roughness sublayer (RSL, Fig. 1). The RSL extends from the ground where buildings (and 16 

other roughness elements) are located to where their individual influences become blended in the constant 17 

flux layer (CFL) or inertial sublayer (ISL, Fig. 1). Knowledge of the atmospheric state within the RSL is 18 

required in a wide range of urban service applications (Baklanov et al. 2018, Grimmond et al. 2020) 19 

including building energy simulation (e.g. ESP-r (Strachan et al., 2008), TRNSYS (Beckman et al., 20 

1994), and DOE-2 (Lokmanhekim et al., 1979)).  21 

To determine the spatial mean of scalars (e.g., air temperature T, specific humidity q, and wind speed U) 22 

or fluxes (e.g., sensible QH or latent QE heat) we use a RSL approach (Harman and Finnigan, 2007, 2008), 23 

assuming: (1) a constant flux layer or ISL above the RSL (Fig. 1), (2) horizontally homogeneous area or 24 

neighbourhood, and (3) negligible canopy volume. Standard Monin-Obukhov Similarity Theory (MOST; 25 

Monin and Obukhov 1954), assumes that height above the surface is the only relevant length scale within 26 

the ISL. When the roughness elements are short and extensive (e.g. vegetation, Fig.1), the RSL is shallow 27 

and the ISL extensive because of large fetch. However, in urban areas we are often interested in the 28 

processes in the UCL and RSL (Fig.1) so we need to take a RSL approach. For this an additional drag 29 

length scale (Coceal and Belcher’s 2004 eqn 8) is also used, which is a function of the height of the 30 

roughness elements (e.g., buildings, trees) and their spacing. In the urban area, the neighbourhoods (or 31 
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fetch) may not be extensive, so the changing UCL and RSL characteristics may make the ISL shallow or 1 

even non-existent (Rotach 1999, Cheng and Castro, 2002; Flagg and Taylor, 2011; Britter and Hanna, 2 

2003).  3 

This RSL approach we incorporate into SUEWS was evaluated in Basel and Gothenburg using 4 

observations for near neutral to strongly unstable conditions (Theeuwes et al. 2019). Wind speed profiles 5 

are better predicted at both sites (cf. a MOST-based approach), and for temperature profiles the results are 6 

similar (Theeuwes et al. 2019). The RSL approach provides meteorological values for the UCL and RSL 7 

(Fig. 1) that can be used to force building energy simulations.  8 

MOST flux-gradient relations are adapted to the RSL (Garratt, 1980; Theeuwes et al.’s (2019a) Appendix 9 

A shows the basis) are used to obtain profiles at height (z), relative to the forcing height (za), of T, q and 10 

U. For above urban canopy (z>zh): 11 

𝑇(𝑧) − 𝑇(𝑧𝑎) ≈
𝑄𝐻

𝜅𝑢∗𝜌𝑐𝑝
[ln (

𝑧 − 𝑧𝑑

𝑧𝑎 − 𝑧𝑑
) − 𝜓𝐻 (

𝑧 − 𝑧𝑑

𝐿
) + 𝜓𝐻 (

𝑧𝑎 − 𝑧𝑑

𝐿
) + �̂�𝐻(𝑧) − �̂�𝐻(𝑧𝑎)]   (1) 12 

𝑞(𝑧) − 𝑞(𝑧𝑎) =
𝑄𝐸

𝜅𝑢∗𝜌𝐿𝑣
[ln (

𝑧 − 𝑧𝑑

𝑧𝑎 − 𝑧𝑑
) − 𝜓𝐻 (

𝑧 − 𝑧𝑑

𝐿
) + 𝜓𝐻 (

𝑧𝑎 − 𝑧𝑑

𝐿
) + �̂�𝐻(𝑧) − �̂�𝐻(𝑧𝑎)]   (2) 13 

𝑈(𝑧) =
𝑢∗

𝜅
[ln (

𝑧 − 𝑧𝑑

𝑧0
) − 𝜓𝑀 (

𝑧 − 𝑧𝑑

𝐿
) + 𝜓𝑀 (

𝑧0

𝐿
) + �̂�𝑀(𝑧)]   (3) 14 

Within urban canopy layer (z ≤ zh): 15 

𝑇(𝑧) = 𝑇(𝑧ℎ) −
𝑄𝐻

𝑢∗𝜌𝑐𝑝

𝑃𝑟

𝛽𝑓
[1 − exp (

𝛽𝑓(𝑧 − 𝑧ℎ)

𝑙𝑀
)] (4) 16 

𝑞(𝑧) = 𝑞(𝑧ℎ) −
𝑄𝐸

𝑢∗𝜌𝐿𝑣

𝑃𝑟

𝛽𝑓
[1 − exp (

𝛽𝑓(𝑧 − 𝑧ℎ)

𝑙𝑀
)] (5) 17 

𝑈(𝑧) = 𝑈(𝑧ℎ) exp (
𝛽(𝑧 − 𝑧ℎ)

𝑙𝑀
) (6) 18 

where κ is the von Kármán constant (0.4), u* friction velocity, ρ density of air, cp the specific heat of air at 19 

constant pressure, Lv the latent heat of vaporisation, Pr the Prandtl number, and lM the mixing length. β 20 

and f are the Harman and Finnigan (2007) parameters. For the surface roughness length for momentum 21 

(z0), zero-plane displacement (zd), the integral form of stability correction function for momentum, heat, 22 

water vapour (𝜓𝑚, 𝜓ℎ, 𝜓𝑣), and the correction functions for the RSL effects from the urban roughness 23 

elements (�̂�𝑚, �̂�ℎ and �̂�𝑣 ) forms are based on Harman and Finnigan (2007) as given in Theeuwes et al. 24 

(2019a). Potential temperature (𝜃 = 𝑇(
𝑝0

𝑝⁄ )
𝑅/𝑐𝑝

; actual (p) and standard atmospheric pressure (p0 =100 25 

kPa), gas constant for air (R)) is needed in eqn 4 if there are large height differences (e.g. > 200 m, ~2.1 26 

kPa equivalent in air pressure), but otherwise it is acceptable to use air temperature T instead of θ 27 
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(Brutsaert 1982). 1 

 2 

Figure 1: Over a simple extensive vegetated surface, the roughness elements (plants) create the canopy 3 
layer. In an urban neighbourhood the roughness elements (e.g. buildings and trees) create the urban 4 
canopy layer (UCL). In both areas critical layers of the atmosphere and their approximate heights are 5 
indicated. The ERA5 surface-level data (Section 3.1) are assumed to represent environment with short 6 
vegetation (roughness length for momentum z0m,E = 0.3 m, Hersbash et al. 2020). As the vegetation is 7 
short the effect of the individual plants is blended so ‘sensor’ height is within the inertial sublayer (ISL) 8 
or constant flux layer (CFL). The spacing and height of urban roughness elements influences the 9 

depth of the urban RSL. The SUEWS forcing height (𝑧𝑠,𝑈) needs to be within the ISL. Variations in 10 

meteorological variables (notably temperature, pressure, humidity) are impacted by altitude 11 
differences (above sea level, asl) between areas. The SUEWS RSL module (Eqn. 1–6) determine the 12 

variables (air temperature 𝑇, specific humidity 𝑞 and wind speed 𝑈) within the RSL for a height of 13 
interest for an application. Figure not to scale. 14 

2.2 Evaluation of the temperature profiles: methods and results 15 

SUEWS ability to predict energy and water fluxes in central London has been evaluated (e.g. v2016: 16 

Ward et al. 2016; v2017a, Ward and Grimmond 2017) using eddy covariance and radiation sensors 17 

mounted in the ISL (Fig. 1) to measure these fluxes (Kotthaus and Grimmond 2014). This is 18 

complemented by profile data into the UCL (Björkegren and Grimmond 2018). These data are used to 19 

evaluate SUEWS v2020a with a focus on the performance in predicting vertical temperature profile given 20 

it is a key enhancement in this new version with the RSL module.  21 

Buildings are the predominate land cover (Fig. 2; Table 1) in this area. The SUEWS model configuration 22 

draws upon Ward et al. (2016), using the physics schemes indicated in Table 2. Gap-filled meteorological 23 

observations for 2013, from sensors located at 49.6 m on a lattice flux tower are used as forcing. The 24 

evaluation uses two fine wire thermocouples sensors (6.5 and 12.5 m agl, 30 min averages) with data 25 

available for two periods (1 January – 18 March 2013 and 28 April to 27 June 2013). These sensors are 26 

located below roof level (mean building height 21.5 m, Kotthaus and Grimmond 2014) in the UCL. The 27 

SUEWS simulations are conducted with a 5 min timestep for two years (2012–2013) with the first year as 28 
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spin-up.  1 

The simulation results are aggregated into 30 min averages for evaluation. The metrics used for this are 2 

the mean absolute error (MAE) and mean bias error (MBE). Both have units of the variable and would be 3 

ideally 0 ºC. The interquartile range (IQR) with the median allows the variability between 25th and 75th 4 

percentile relative to 50th percentile to be compared. 5 

The data are evaluated for a series of different conditions during the period: 6 

(1) Sunny: [measured incoming solar radiation to top at the atmosphere] ratio > 0.65. 7 

(2) Cloudy: non-sunny days without rain. 8 

(3) Rainy:  daily total precipitation > 3 mm d-1 9 

(4) Windy:  daily mean wind speed > 2 m s-1 10 

(5) Weekday: Monday to Friday 11 

(6) Weekend: Saturday to Sunday 12 

At both positions in the UCL the simulated 30 min mean air temperature for the evaluation periods have 13 

MAE of less 1 ºC (Fig. 3). The median diurnal cycles (and inter quartile range) are consistent with the 14 

observed values (Fig. 3a, d). The MBE indicates the simulated air temperatures are slightly 15 

underestimated at both heights (Fig. 3b, e).  16 

The results for 6.5 m agl are better simulated on sunny than cloudy days (Fig. 3c). At both heights, the 17 

model performs better during weekdays than for weekends (Fig. 3c, f). When other conditions are 18 

assessed the model performance is similar (Fig. 3c, f). Overall, SUEWS-RSL has reasonable skill in 19 

predicting sub-daily dynamics of near surface air temperature.  20 

 21 
Figure 2: SUEWS evaluation site: (a) within Southeast England with ERA5 (Section 3.1) 0.125° × 0.125° 22 

(~12.5 km) grid (red box), (b) simulation site (red dot) and St James’s Park (blue marker) within central 23 
London, and (c) oblique view of the canyon. Sources: (a-b) OpenStreetMap (2017); (c) Google (2021).  24 
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Table 1: Plan area fractions surrounding the central London site within the average footprint climatology 1 
derived by Kotthaus and Grimmond (2014).  2 

Site 
Plan area (fraction) 

Building Paved Evergreen Trees Deciduous Trees Grass Bare Soil Water 

KC 0.43 0.38 0.00 0.02 0.03 0.04 0.14 

 3 

Table 2: SUEWS used with options selected as defined in Sun et al. (2020). Sun et al. (2021) gives the 4 
model setup and all model results 5 

Physics scheme Code Remark 

Radiation 3 Net all-wave radiation: incoming longwave radiation modelled uses air temperature 

and relative humidity (Loridan et al., 2011) 

Heat storage 1 OHM model (Grimmond et al., 1991) 

Anthropogenic heat 2 Anthropogenic heat model responds to temperature and population density based on 

time of day and day of week (Järvi et al., 2011) with heating set point 𝑇𝐻 = 18 °𝐶 

and cooling 𝑇𝐶 = 26 °𝐶. 

Snow 0 Snowpack modelling with radiative, thermal, hydrological, and human dynamics 

(Järvi et al., 2014) 

Roughness length for 

momentum 

2 Momentum roughness length and zero plane displacement height: function of height 

(Grimmond and Oke, 1999) 

Roughness length for 

heat 

2 Thermal roughness length: function of vegetation fraction with bluff bodies (Kawai 

et al., 2009) 

Atmospheric stability 3 Atmospheric stability correction function (Campbell and Norman, 1998) 

 6 

Figure 3: Air temperature simulated with SUEWS-RSL and observed at two heights (6.5 and 12.5 m agl) 7 

in central London (Fig. 2) during the periods 1 January – 18 March 2013 and 28 April to 27 June 8 

2013: (a, d) diurnal median (line) and inter-quartile range (IQR, shading); (b, e) 30 min data (black) 9 

with data density (shading > 1/1000 of probability density function); and (c, f) box plot 30 min bias 10 
between simulations and observations (IQR, median with 5th and 95thpercentiles whiskers, outliers 11 
(dots) for classification criteria given in Section 2.2).  12 
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3 Building energy simulations methods  1 

To assess the impacts of using different climate data (uTMY, cTMY and uAMY) on building energy load 2 

simulations we use the heating-cooling (HC) mode in EnergyPlus. As our study goal is not design 3 

optimization, we select one common building archetype that occurs in Greater London (Communities and 4 

Local Government 2008, Three Regions Climate Change Group 2008, Porritt 2012) rather than anything 5 

representative of actual buildings around the site used in the SUEWS evaluation (Section 2). 6 

3.1 Configuration for Climate Runs  7 

In this study, we use the ERA5 (European Centre Reanalysis version 5) data as our source of 8 

meteorological variables, as it is globally available at 0.125° × 0.125° (~12.5 km) resolution, and at 9 

hourly resolution from 1979 to within 5 days of real time (Hersbach et al., 2020). We use the ground level 10 

(Fig. 1) data (zs,E), which in ERA5 is typically assumed to be similar to the standard WMO observational 11 

area of extensive short grass, so the RSL/ISL boundary is close to the ground (a typical 2 m agl 12 

observation within the ISL, Fig. 1).  13 

To force SUEWS the meteorological data need to be at an equivalent height above the roughness 14 

elements (zs,U, Fig. 1, i.e. above the RSL). Roughness element heights and spacing influence zs,U  (e.g. 15 

references within Grimmond and Oke 1999, Kastner-Klein and Rotach 2001, Grimmond et al. 2004, Ao 16 

et al. 2018). In this study, we use 3zH as the area has a dense building canopy (Oke et al. 2017). 17 

To adjust the data two height differences (Fig. 1) need to be accounted for:  18 

Δ𝑧𝑛𝑒𝑡 = Δ𝑧𝑔 + Δ𝑧𝑠 = [𝑧𝑔,𝑈 − 𝑧𝑔,𝐸] + [𝑧𝑠,𝑈 − 𝑧𝑠,𝐸]  (7) 19 

(1) altitude Δzg (height above sea level, asl) between the site of interest (zg,U) and ERA5 grid altitude 20 

(zg,E). In areas with large terrain variability over short distances this can be significant.  21 

(2) surface roughness elements Δzs (height above ground level, agl). 22 

3.2 Generation of urban Typical Meteorological Year (uTMY) 23 

To force building energy simulations, one common data type is TMY. The general method used to select 24 

these data is outlined in Appendix A. We refer to this as the conventional TMY (cTMY) (Fig. 4). 25 

Here we also generate a dataset with local-scale neighbourhood effects accounted for, that we refer to as 26 

our urban TMY (uTMY) dataset. To generate this the following steps are used (Fig. 4), that correspond to 27 

Appendix A steps (c#) as indicated:  28 

(u1) Meteorological variables selection (step c1): air temperature 𝑇𝑎, relative humidity 𝑅𝐻, wind speed 𝑈 29 

and incoming shortwave radiation K↓.   30 



10 

(u2) Data source selection (step c2): ERA5 (Hersbach et al., 2020) data (Section 3.1) are used, which is 1 

refer hereafter to as Actual Meteorological Years (AMY).  2 

(u3) Urban climate modelling: SUEWS (Section 2) is used to obtain the neighbourhood scale forcing 3 

variables (e.g., air temperature, humidity, wind speed). These create an urban AMY dataset (uAMY, a 4 

multi-year climate series with same timespan as source data chosen in u2). 5 

(u4) Selection of months (steps c3 and c4): We use the Hall et al.’s (1978) weights (𝑤𝑣) in eqn A2 for 6 

both cTMY and uTMY. However, despite 𝑤𝐾↓
= 0.5 (Table A.1) we keep uAMY K↓ and AMY K↓ the 7 

same, as spatially variability from clouds over short distances creates observations and modelling 8 

challenges (e.g., Dastoor, 1994; Forbes and Ahlgrimm, 2014).  9 

 10 
Figure 4: Workflow to generate urban (u) typical meteorological year (uTMY, orange arrows) and 11 

conventional TMY (cTMY, blue arrows) datasets from actual meteorological year (AMY) data. 12 

3.3 EnergyPlus Configuration 13 

The open-source building energy simulation programme funded by the U.S. Department of Energy, 14 

EnergyPlus, integrates multiple modules of building systems to simulate thermal zones based on heat 15 

balance models (Crawley et al., 2001). For the energy balance of building zone air, the model considers: 16 

convective internal loads; convective heat transfer from the zone surfaces; heat transfer from inter-zone 17 

air mixing; heat transfer from infiltration of outside air; and hot or cold air from mechanical systems to 18 

the zones to meet heating or cooling loads. 19 

The heating and cooling energy loads are simulated for the ‘low-rise residential flat’ archetype (Fig. 5, 20 

Table 3) in Greater London. The description is derived from various sources (Communities and Local 21 

Government 2008, Three Regions Climate Change Group 2008, Porritt 2012). The building’s main façade 22 

has a north-south orientation (Fig. 5a). Each floor has two flats and a shared hallway (Fig. 5b). Each flat 23 
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is modelled with five thermal zones. The building is sited in an infinite plane without surrounding 1 

buildings, which will impact surface fluxes (e.g. Xie et al. 2021). 2 

 3 

Figure 5: EnergyPlus simulations are undertaken for (a) a low-rise flat in Greater London with (b) floor 4 
plan (height of floor: 2.5 m) based on details from Communities and Local Government (2008) and 5 
Three Regions Climate Change Group (2008). 6 

 7 

Table 3: Parameters used in the EnergyPlus simulations for a low-rise residential flat in Greater London 8 
(Porritt, 2012). Configuration files can be found in Sun et al. (2021).  9 

Parameters Specifications 

U-value (W m-2 K-1) External wall = 1.37 

External window = 2.70 (Pre-2002 double-glazing) 

Window to wall ratio North = 0.29, South = 0.23, East = West = 0 

Ventilation and infiltration Dynamic, calculated with opening area and pressure difference (cf. Fig. S1) 

Occupant density (m-2) 0.04 

Activities and occupied hours  Sitting (living room: 7:00 to 9:00 and 17:00 to 23:00): 108 W person-1 

Sleeping (bedroom: 23:00 to 7:00): 72 W person-1 

Energy consumption (W m-2) Lighting = 4.1, Equipment=4.0 

Heating/cooling point (°C) 18 / 26 

Cooling/Heating mode Continuously operating when indoor temperature is beyond the thermal 

comfort range using ideal HVAC system 

 

Three model runs are undertaken with different meteorological forcing data of varying timespan (Table 10 

4): the cTMY is generated following steps in Appendix A while uTMY is produced after procedure in 11 

Section 3.2; uAMY is the urbanised actual meteorological years from 1979 to 2020, representing the past 12 

truth. 13 

The cTMY data are estimated for the WMO standard observing reference heights (i.e., 2 m agl for 𝑇 and 14 

RH, 10 m for 𝑈) (Table 4). These standard WMO heights, although used in many applications, are much 15 

shorter than the mean building height in almost all urban areas. Here our focus is on an area of central 16 

London (Fig. 2) with a mean building of 21.3 m (Kotthaus and Grimmond 2014). Hence, both (wind, 17 

temperature) WMO reference heights are well within the urban canopy layer (Fig. 1).  18 

a) b)
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Analysis of the EnergyPlus results (Section 4) uses the net values for the four floors, unless otherwise 1 

indicated. The impact of buildings on the variables profile, and on building energy simulations are 2 

discussed in Section 4.3. 3 

Table 4: Summary of EnergyPlus simulations undertaken. The forcing heights are based on WMO  4 
standard observations heights (i.e., 2 m agl for temperature and relative humidity, 10 m for wind) 5 
(Fig. 1). The uTMY data are also used for the Table 6 model runs. 6 

Meteorological data Forcing height Period 

cTMY WMO 12 months selected from 1979–2020 

uTMY WMO 12 months selected from 1979–2020 

uAMY WMO All months of 1979–2020 

4 Results and Discussion 7 

4.1 Comparison of the conditions within the uTMY and cTMY 8 

First, we examine the characteristics of the months selected in the two TMY datasets (Table 5) derived for 9 

one 0.125°×0.125° grid in central London (51.0°N, 0.125°W, Fig. 2) from ERA5 data for 1979-2020 10 

(Hersbach et al. 2020). As the climate variables differ between uTMY and cTMY (i.e., with and without 11 

urban characteristics), different months may be selected (Appendix A).  12 

However, if the final decision is between the same five candidates, the non-changed incoming solar 13 

radiation (Section 3.2, Appendix A) will result in the same period being chosen. Here, only April differs 14 

(Table 5, orange shading) from the four months with different candidate years (Table 5, blue shading), 15 

despite June having more different candidate years. However, April is the only month for which the 1st 16 

candidate differs. 17 

The actual time series of variables differ between the two TMY even when the same months are selected 18 

(Fig. 6). Overall, the temperatures are comparable (Fig. 6a–d) with an hourly mean absolute difference of 19 

<0.6 °C in each season. The ERA5 dataset utilises actual observations with the ECMWF Integrated 20 

Forecasting System (IFS) meteorological model via data assimilation (Hersbash et al. 2020). Thus, 21 

despite the IFS not having an urban land surface model any data assimilated that are measured within a 22 

city will have an urban signature (e.g. air temperature measured at St James’s Park in central London, 23 

blue marker in Fig. 2b). The ERA5 data are assumed to represent short vegetation (z0m,E = 0.3 m, 24 

Hersbash et al. 2020) at the latitude and longitude of the grid cell but this would be inappropriate for an 25 

urban setting. The uTMY T has a mean bias error of −0.53 ℃ (cf. cTMY, Fig. 6a, b), indicating a counter-26 

intuitive cooler T than cTMY.  27 

As uTMY accounts for the neighbourhood mean building heights the ERA5 data are lapse-rate corrected 28 

(Appendix B, Fig. 1) for height differences (eqn 7). However, the environmental lapse rate (−6.5 K km−1) 29 

used may possibly be too large for central London (Dutra et al. 2020). These corrected data are used to 30 
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force SUEWS-RSL, to obtain near surface (in this case 2 m) air temperature within the UCL accounting 1 

for the surroundings (Table 1). The cTMY, because of the ERA5 data assimilation, have an inherent 2 

urban signature. Obviously these both differ from using the IWEC data for Gatwick Airport (ASHRAE 3 

2001). These differences imply the heterogeneity in a megacity like London, warrants attention in TMY 4 

generation.   5 

The wintertime RH values are larger (> 80%) than the other seasons (Fig. 6c). Wind speeds are reduced in 6 

the uTMY (cf. cTMY, Table 5) across all seasons (Fig. 6e), with an MBE of about −2 m s−1 . Differences 7 

in K↓ between cTMY and uTMY (Fig. 6g) occurs only in one month (Table 5) as no other corrections are 8 

done (Appendix B). Although, such corrections are important in building energy simulations (e.g. Xie et 9 

al. 2021). 10 

 11 

Figure 6: Monthly boxplots (as Fig. 3c,f) and frequency (logarithmic scale) for uTMY (gold) and cTMY 12 

(blue) for: (a–b) air temperature 𝑇, (c–d) relative humidity 𝑅𝐻, (e–f) wind speed 𝑈 and (g–h) incoming 13 

solar radiation 𝐾↓. 14 
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Table 5: Top five years selected from 1979-2020 ERA5 data with metrics W (dimensionless, eqn A.2) and RMSD ( 𝑊 𝑚−2) (eqn A.3) values for 
each month (M), used to construct cTMY and uTMY datasets. Selection of different candidate years between the cTMY and uTMY (blue shading) 
and final chosen month (orange shading) indicate few differences. 

M 

cTMY Year 

W | RMSD 

uTMY Year 

W | RMSD 

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 

1 
1992  

 0.267 | 11.1 

2013  

 0.271 | 13.6 

2015  

 0.235 | 13.6 

2006  

 0.252 | 14.2 

2001  

 0.269 | 16.8 

1992  

 0.263 | 11.1 

2013  

 0.270 | 13.6 

2015  

 0.235 | 13.6 

2006  

 0.252 | 14.2 

1982  

 0.271 | 14.4 

2 
1986  

 0.250 | 22.5 

1997  

 0.253 | 25.1 

2002  

 0.243 | 27.4 

2001  

 0.247 | 27.5 

2019  

 0.243 | 31.3 

1986  

 0.250 | 22.5 

1979  

 0.251 | 24.4 

2002  

 0.243 | 27.4 

2001  

 0.250 | 27.5 

2019  

 0.240 | 31.3 

3 
2014  

 0.247 | 38.7 

1997  

 0.250 | 40.7 

1986  

 0.252 | 41.3 

2012  

 0.211 | 47.2 

2003  

 0.221 | 50.9 

2014  

 0.248 | 38.7 

1997  

 0.251 | 40.7 

1986  

 0.253 | 41.3 

2012  

 0.212 | 47.2 

2003  

 0.220 | 50.9 

4 
2019  

 0.245 | 51.3 

1987  

 0.225 | 52.9 

2015  

 0.247 | 59.5 

2011  

 0.239 | 60.7 

1984  

 0.220 | 64.8 

2013  

 0.247 | 43.9 

2019  

 0.244 | 51.3 

1987  

 0.223 | 52.9 

2011  

 0.240 | 60.7 

1984  

 0.225 | 64.8 

5 
2019  

 0.269 | 52.7 

2003  

 0.273 | 55.6 

1993  

 0.270 | 59.3 

2001  

 0.264 | 69.2 

1996  

 0.275 | 75.1 

2019  

 0.267 | 52.7 

2003  

 0.271 | 55.6 

1993  

 0.267 | 59.3 

2014  

 0.274 | 68.6 

2001  

 0.264 | 69.2 

6 
1984  

 0.258 | 42.7 

1999  

 0.270 | 62.5 

2012  

 0.228 | 65.7 

1986  

 0.262 | 75.5 

1994  

 0.270 | 77.1 

1984  

 0.258 | 42.7 

1990  

 0.270 | 55.6 

2005  

 0.269 | 64.9 

2012  

 0.227 | 65.7 

1986  

 0.265 | 75.5 

7 
2004  

 0.257 | 50.5 

2010  

 0.236 | 52.1 

1994  

 0.265 | 61.1 

2019  

 0.268 | 65.0 

1993  

 0.259 | 65.7 

2004  

 0.254 | 50.5 

2010  

 0.235 | 52.1 

1994  

 0.268 | 61.1 

2019  

 0.268 | 65.0 

1993  

 0.258 | 65.7 

8 
2004  

 0.242 | 48.0 

2015  

 0.234 | 54.7 

2018  

 0.240 | 58.9 

1995  

 0.248 | 67.3 

2003  

 0.235 | 67.8 

2004  

 0.239 | 48.0 

2015  

 0.234 | 54.7 

2018  

 0.245 | 58.9 

1995  

 0.248 | 67.3 

2003  

 0.235 | 67.8 

9 
1981  

 0.234 | 35.9 

1997  

 0.225 | 40.7 

1999  

 0.235 | 45.9 

2004  

 0.204 | 46.7 

1991  

 0.205 | 50.9 

1981  

 0.235 | 35.9 

1997  

 0.228 | 40.7 

1999  

 0.235 | 45.9 

2004  

 0.205 | 46.7 

1991  

 0.208 | 50.9 

10 
2016  

 0.230 | 20.8 

1991  

 0.221 | 26.0 

1979  

 0.231 | 28.6 

1986  

 0.238 | 32.7 

1994  

 0.246 | 33.2 

2016  

 0.232 | 20.8 

1991  

 0.226 | 26.0 

1985  

 0.248 | 26.6 

1979  

 0.231 | 28.6 

1986  

 0.238 | 32.7 

11 
2019  

 0.254 | 14.0 

2014  

 0.244 | 14.3 

1991  

 0.252 | 15.7 

1985  

 0.216 | 16.4 

2018  

 0.241 | 17.1 

2019  

 0.251 | 14.0 

2014  

 0.245 | 14.3 

1991  

 0.251 | 15.7 

1985  

 0.215 | 16.4 

2018  

 0.239 | 17.1 

12 
2013  

 0.264 | 10.9 

1984  

 0.270 | 12.6 

1983  

 0.258 | 12.7 

1999  

 0.254 | 13.1 

1995  

 0.271 | 13.8 

2013  

 0.262 | 10.9 

1984  

 0.273 | 12.6 

1983  

 0.261 | 12.7 

1999  

 0.254 | 13.1 

1995  

 0.270 | 13.8 
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4.2 Impact of climate forcing on the building energy simulations 1 

Using the uTMY and cTMY data, the energy loads for the residential building (Fig. 5) are modelled with 2 

EnergyPlus (Section 3.3). Although London rarely has air conditioning installed it is permitted in this 3 

simulation. A consistently higher energy load is predicted from cooling (although minimal, <7 kWh m-2 4 

in total for both cases) with uTMY (cf. cTMY) but lower heating load, particularly in winter months 5 

(November to February) (Fig. 7). The uTMY forcing data predicted higher cooling (44.6 %) demand is 6 

offset by the decrease in heating (11.5%) to give a net annual decrease of 6.9% (Supplementary Material 7 

Fig. S2a).  8 

More generally, seasonal and net annual differences obviously depend on regional climate because of 9 

geography (e.g. latitude, maritime/continental). However, the urban wind speeds are expected to be 10 

notably lower and will have uneven but clear impacts on energy load in different seasons. Such intra-11 

annual differences may exert a non-trivial influence on the energy load.  12 

 13 
Figure 7: Monthly EnergyPlus energy load simulated for central London (a) heating and (b) cooling using 14 

two TMY datasets (Table 4). Supplementary material Fig. S2 shows daily scale cumulative annual 15 
influence.  16 

If all available climate data are used (i.e., the long-term ERA5 data since 1979, with urban characteristics, 17 

uAMY, Table 4) the variability caused by climate can be assessed. The annual total energy load differs 18 

between the three datasets by season (Fig. 8a), with the uTMY results more similar to the uAMY than 19 

cTMY. The annual uTMY results are closer to the uAMY median (10.1% difference, e.g. [(uTMY − 20 

uAMYmed) × 100]/ uAMYmed) than cTMY (18.3%) (Fig. S2a). As these results are consistent with 21 
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previous TMY modelling studies (e.g. Cui et al., 2017), it suggests more attention is warranted into the 1 

method of selecting typical months. However, it is promising that uTMY estimates the building energy 2 

load with better agreement to uAMY across all seasons (cf. cTMY).  3 

 4 

Figure 8: Using cTMY, uTMY and uAMY to determine monthly total: (a) heating degree days (HDD) and 5 
(b) cooling degree days (CDD). Error bars for uAMY show ranges between the 25th and 75th 6 
percentiles. Supplementary material Fig. S2 shows daily scale cumulative annual influence.  7 

Given the simple and popular use of heating degree days (HDD) and cooling degree days (CDD) as 8 

proxies of potential heating (cooling) energy load, we calculate these with base temperature of 15.5 °C 9 

(18 °C) (CIBSE 2006). Unlike the EnergyPlus predictions (Fig. 8a), the HDD (Fig. 8b) results suggest the 10 

cTMY is better than uTMY at representing the median uAMY (Fig. S2b). Whereas for the CDD, uTMY 11 

is better than cTMY overall but the pattern of timing of days is poor in both TMY (Fig. 8c, S2c), likely 12 

suggesting quite different type of solution needs. The EnergyPlus building energy simulations, appear to 13 

differ most in the early spring (Fig. 8a, S2a), which indicates they are the more useful and consistent 14 

estimate of building energy load independent of the three sources. This suggests use of temperature-only-15 

based proxy indicators (e.g. HDD/CDD) are not representative of the median TMY climatology. 16 

4.3 Impacts of vertical meteorological profiles on building energy simulations 17 

Meteorological conditions vary with height, but a TMY dataset only contain values for one height. Given 18 
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a single storey building, the standard 2 m level is approximately half building height but for taller 1 

buildings an increasing fraction of the building volume is above that. Here we consider the impact on the 2 

vertical variation in meteorological conditions on building energy simulation. The wind speed and air 3 

temperature are modified from (ASHRAE 2005): 4 

𝑈𝑠,𝑧 = 𝑈10 (
𝛿𝑟𝑒𝑓

𝑧10

)

𝛼𝑟𝑒𝑓

(
𝑧𝑠

𝛿
)

𝛼

 (8) 5 

𝑇𝑠,𝑧 = 𝑇2 + 𝛤(𝑧𝑠 − 𝑧2) (9) 6 

where ẟ is referred to as the boundary layer depth (Table 6). In the EnergyPlus, this refers to the height 7 

where a constant mean gradient wind speed is assumed to occur (Gupta and Moss, 1993), rather than the 8 

meteorological “boundary layer depth” that varies through the day and season (e.g., Kotthaus and 9 

Grimmond 2018). By default EnergyPlus uses open terrain values (ẟref = 270 m, αref = 0.14, ASHRAE 10 

(2005), Table 6) with 10 m agl wind speed and 2 m agl air temperature reference levels. 11 

As these profiles (eqn 8, 9) are recommended by ASHRAE (2005), they are widely used in building 12 

energy simulations. Comparison of these to the RSL-based predictions (eqn 6, 4) have obvious 13 

differences (Fig. 9). The SUEWS-RSL urbanised meteorology (median values at each height with 8760 14 

hourly results under all conditions, shown in central dashed red lines in Fig. 9) are used to derive 15 

coefficients (Table 6) for use in EnergyPlus eqn 8 profiles (Fig. 9a. red solid lines) using 16 

NonlinearModelFit of Mathematica v12.2 (Wolfram Research 2008). For temperature, a new near surface 17 

lapse rate is determined for eqn 9 from the RSL analyses (Table 6, Fig. 9b). The corrected coefficients are 18 

considered more appropriate for a central business district similar to central London. 19 

Table 6: Coefficients for Eqn. 8 and 9. The default EnergyPlus values (*) are for open terrain. SUEWS-20 
RSL results fitted parameters are provided with standard errors at a 95% confidence level. 21 

Terrain 
Exponent  

𝜶 

Boundary layer depth  

𝜹 (m) 

Lapse rate 

 𝜞 (K km-1) 
Source 

Open* 0.14 270 6.5 ASHRAE 2005 

Rough 0.22 370 6.5 ASHRAE 2005 

Urban 0.33 460 6.5 ASHRAE 2005 

Central business 

district 
0.29 ± 0.03 50.1 ± 8.3 

1.6 ± 0.03 UT; This study Fig. 9 

Central business district 0.29 ± 0.03 50.1 ± 8.3 6.5 U; This study Fig. 9a 

Central business district 0.14 270 1.6 ± 0.03 T; This study Fig. 9b 

 22 

 23 
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 1 

Figure 9: Mean building height (zH) (Fig. 2) and vertical profiles of: (a) wind speed (eqn 8, Table 6 2 
coefficients, eqn 3 RSL) normalised by wind speed at 10 m agl (zref), and (b) air temperature (eqn 9, 3 
Table 6 coefficients, eqn 1 RSL) difference 2-m agl (zref) temperature. The annual median (line) and 4 
interquartile range (shading) are shown using uTMY data. 5 

The RSL-based corrections lead to differences in wind speed and air temperature of varying magnitude 6 

across all floors with the top floor (f3) having the largest differences (Fig. 10) when eqn 8 and 9 are used 7 

with open terrain coefficients (Table 6). Both wind speed and air temperature differences increase with 8 

the height above ground.  9 

New coefficients for eqn 8 and 9 are derived using the RSL data (Fig. 9) for three conditions: wind and 10 

temperature together (denoted by UT), but also for each separately to understand their roles (i.e. U and T) 11 

(Table 6). These are used in EnergyPlus with the uTMY data to examine the impacts on energy load for 12 

different floors in the residential building.  13 

The energy loads for the top two floors (f2 and f3) show the largest changes when different coefficients 14 

are used (Fig. 11). Accounting for wind speed has a generally larger impact (> ~8% in all cases; Fig. 11), 15 

with larger influences at higher floors (> 9%). Wind speed corrections dominate the impact (UT, U, cf. T 16 

Fig. 11) whereas, the temperature-correction-induced changes are very minimal (< 1% in all cases), 17 

suggesting the relative minor role of temperature in the case examined here. 18 
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 1 

 2 

Figure 10: Median difference in calculated: (a) wind speed (eqn 8 – eqn 3) with IQR in error bars and (b) 3 
air temperature calculated with (eqn 9 - eqn 1) (no IQR as eqn 9 is linear). The EnergyPlus is used with 4 
the open terrain coefficients (Table 6). Analysis is for mid floor height with uTMY forcing. 5 

 6 
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Figure 11: EnergyPlus simulated annual energy load using with new coefficients [UT, U, T] minus open 1 
terrain (default) (Table 6) for: (a) heating, (b) cooling and (c) total. Percentages (%) are differences 2 
normalised by the open terrain values. 3 

5 Concluding remarks 4 

By using typical meteorological year (TMY) (or other similar weather data types) datasets with 5 

neighbourhood characteristics for use in building energy simulations the results should be more 6 

applicable to actual building settings. Our proposed method uses the SUEWS (Surface Urban Energy and 7 

Water Balance Scheme) urban land surface model with long-term (1979-2020) ERA5 climate data to 8 

generate an urban TMY (uTMY). Both uTMY and conventional TMY (cTMY) data are used to force 9 

EnergyPlus to determine the energy load for a four-storey building with flats in central London in 10 

heating-cooling mode. 11 

It is concluded that: 12 

 The wind speed values in the uTMY data are lower than the cTMY, whereas temperature and 13 

humidity differences are minimal as the data assimilation into the ERA5 dataset has acquired some  14 

of the urban thermal signature. 15 

 Of these three meteorological variables, wind speed has the largest impact on building energy load.  16 

 Using long-term ERA5 data with urban characteristics (uAMY) in London, the uTMY forced 17 

EnergyPlus energy load simulations fit better than cTMY. However, cTMY heating degree days 18 

(HDD) are closer to the uAMY median, while cooling degree days (CDD) of both cTMY and uTMY 19 

differ from the uAMY median. This suggests temperature-only indices may be inadequate proxies for 20 

determining energy load.  21 

 Using the default (i.e., open terrain) parameters in EnergyPlus the vertical profiles forced with uTMY 22 

data modifies the annual both heating (11.5 % lower) and cooling (44.6% higher) energy loads (cf. 23 

cTMY). 24 

 New wind speed (cf. air temperature) profile coefficients, derived with the SUEWS-RSL scheme, 25 

have a larger impact on predicted energy load. With greater impact at higher (cf. lower) floors. The 26 

difference in annual load can be ~10%. 27 

This work highlights the importance of considering the neighbourhood climate for building energy 28 

simulation (Section 4.2), including the vertical heterogeneity as this influences intra-floor energy loads 29 

(Section 4.3). As we apply the uTMY approach to only one area, with minimal cooling needs, further 30 

studies should consider a wider range of climates, including future climate (i.e. replacing the ERA5 data 31 

with projections). The EnergyPlus terrain profile coefficients could be derived for a wider range of 32 

neighbourhoods types (e.g. with shorter/taller buildings, less/more dense) using the SUEWS-RSL. 33 
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There are clearly other improvements to EnergyPlus meteorological forcing that can be made. The most 1 

obvious is related to the radiation field to take into account the neighbourhood geometry. This is a focus 2 

of our recent work (e.g. Xie et al. 2021). It should be noted that changing the weights from those used in 3 

the TMY (Table A1), to those such as used in TRY (Eames et al., 2016), would likely make the impacts 4 

and benefits of our proposed method greater as the relative importance of solar radiation is decreased. 5 
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Appendix A: Generation of conventional Typical Meteorological Year (cTMY) 11 

To generate a conventional TMY (cTMY) dataset, the 12 “best” months are selected from a “long-term” 12 

climatology to create a “typical year” (Fig. A1), in four steps (Herrera et al., 2017):  13 

(c1) Selection of key variables: Meteorological observations (e.g., air temperature, air humidity, wind 14 

speed and solar radiation) relevant to building energy consumption (e.g., related to HVAC processes) 15 

are identified. 16 

(c2) Selection of a meteorological variables data source: e.g., standard WMO weather station 17 

observations  18 

(c3) Assessment of representativeness of each month (typically) uses closeness of a variable to the desired 19 

long-term climatology based on the Finkelstein and Schafer (1971) (Fv) metric: 20 

𝐹𝑣 = (
1

𝑛
) ∑|𝑋𝑖 − �̅�|

𝑛

𝑖=1

   (A1) 21 

where n is the number of daily readings in a month, i is the sequential position in variable record Xi in its 22 

cumulative distribution function (CDF) and �̅� the mean rank of long-term CDF. The scores are combined 23 

with weights (wv) (Table A1) for each variable’s assessed impact on modelled HVAC (Hall et al., 1978): 24 

𝑊 = 𝛴𝑤𝑣𝐹𝑣 ,   (A2) 25 

As our aim is to modify the cTMY dataset with urban climate modelling rather than to correct the original 26 

methodology, we do not modify the weighing scheme (Table A1). However, others have adjusted them in 27 

some contexts (Su et al. 2009) and could explore these impacts within the uTMY framework in a future 28 

study. 29 
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(c4) Selection of representative months (Pissimanis et al. 1988) considers the five lowest W scores (of all 1 

the years) for each month. From the five candidates, given the importance of incoming solar radiation (K↓, 2 

Table A.1), the month selected for the TMY has the smallest root mean square difference (𝑅𝑀𝑆𝐷𝐾↓

𝑚) from 3 

the long-term climatological mean (�̅�𝑚): 4 

𝑅𝑀𝑆𝐷𝐾↓

𝑚 = [(
1

𝑛
) ∑ (𝐷𝑗 − �̅�𝑚)2𝑛

𝑗=1 ]
0.5

 (A3) 5 

where Dj the flux for each day j in a candidate month. Although the RMSD is biased by outliers 6 

potentially resulting in less accurate assessment of closeness of the variable of interest (Chai and Draxler 7 

2014; Willmott et al. 2017), we retain it for consistency. 8 

 9 

Figure A1: Workflow to generate conventional typical meteorological year (cTMY) dataset. 10 

Table A1: Weights (w) used (eqn A2) to generate a typical meteorological year (TMY) dataset (Hall et al., 11 

1978).  12 

 Air temperature 

Air relative 

humidity Wind speed Incoming solar radiation 

mean 2/24 2/24 2/24 12/24 

max 1/24 1/24 2/24 0 

min 1/24 1/24 0 0 

 13 
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Appendix B: Height-based corrections of ERA5 forcing variables 1 

For each ERA5 variable used to drive SUEWS corrections are undertaken. The heights referred to in the 2 

following equations are discussed in Section 3.1 (also shown in Fig. 1). The methods (with other original 3 

references) follow Weedon et al. (2010): 4 

(1) ERA5 air temperature (T2,E) at 2 m agl is used to obtain air temperature at the forcing height (𝑇𝑠,𝑈 =5 

𝑇2,𝐸 + ∆𝑧𝑛𝑒𝑡𝛤) assuming an environmental lapse rate (𝛤) of –6.5 K km-1. 6 

(2) Atmospheric pressure at the forcing height (pS,U) is obtained using the hypsometric equation: 7 

𝑝𝑠,𝑈 = 𝑝2,𝐸 (
𝑇2,𝐸

𝑇𝑠,𝑈
)

−
𝑔

𝛤 𝑅𝑑

  (B1)  8 

where g = 9.8 m s−2 is gravity acceleration, Rd = 287.05 J kg−1 K−2 is the ideal gas constant for dry air. 9 

(3) Specific humidity qS,U is obtained assuming a constant relative humidity RH for ΔzS (Weedon et al. 10 

2010, Kokkonen et al. 2018): 11 

𝑞𝑠,𝑈 = 𝑞𝑠𝑎𝑡,𝑠,𝑈 𝑅𝐻 = 𝑞𝑠𝑎𝑡,𝑠,𝑈

𝑞2,𝐸

𝑞𝑠𝑎𝑡,2,𝐸
  (B2) 12 

where the saturation specific humidity (𝑞𝑠𝑎𝑡) at atmospheric pressure 𝑝 is: 13 

𝑞𝑠𝑎𝑡 = (
𝑅𝑑

𝑅𝑣
)

𝑒𝑠𝑎𝑡

𝑝 − (1 −
𝑅𝑑
𝑅𝑣

) 𝑒𝑠𝑎𝑡

 (B3)
  14 

where 𝑅𝑣 = 461.52 J kg
−1K−1 the specific gas constant for dry air, and 𝑒𝑠𝑎𝑡 is the saturation vapour 15 

pressure at air temperature 𝑇 is (Jones 2013): 16 

𝑒𝑠𝑎𝑡 = 613.75 exp (17.502 ×
𝑇 − 273.15

𝑇 − 32.18
) (B4) 17 

Eqn B3 and B4 are written generically for 𝑝 and 𝑇 at any height (i.e., without subscripts for height). 18 

(4) Wind speed 𝑈𝑧,𝑈 is determined using the log-law assuming neutral stability and ignoring u* 19 

differences: 20 

𝑈𝑠,𝑈 = 𝑈10,𝐸

ln (
Δ𝑧net −  𝑧𝑑,𝐸

𝑧0𝑚,𝐸
)

ln (
10𝐸 − 𝑧𝑑,𝐸

𝑧0𝑚,𝐸
)

, (B5) 21 
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Figure S1: EnergyPlus simulated ventilation (blue, left y axis) and infiltration (orange, right y axis) driven 4 
by the uTMY dataset for two typical periods: a) winter (01 Feb – 08 Feb) and b) summer (01 Aug – 08 5 
Aug). 6 
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Figure S2: Using cTMY, uTMY and uAMY (multi-year median (line) and inter-quartile range (shading)) to 2 
determine cumulative: (a) total energy load, (b) heating degree days (HDD) and (c) cooling degree 3 
days (CDD).  4 
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