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Abstract
The philosophy of forecast verification is rather different between deterministic
and probabilistic verification metrics: generally speaking, deterministic metrics
measure differences, whereas probabilistic metrics assess reliability and sharp-
ness of predictive distributions. This article considers the root-mean-square
error (RMSE), which can be seen as a deterministic metric, and the probabilis-
tic metric Continuous Ranked Probability Score (CRPS), and demonstrates that
under certain conditions, the CRPS can be mathematically expressed in terms
of the RMSE when these metrics are aggregated. One of the required conditions
is the normality of distributions. The other condition is that, while the fore-
cast ensemble need not be calibrated, any bias or over/underdispersion cannot
depend on the forecast distribution itself. Under these conditions, the CRPS is a
fraction of the RMSE, and this fraction depends only on the heteroscedasticity of
the ensemble spread and the measures of calibration. The derived CRPS–RMSE
relationship for the case of perfect ensemble reliability is tested on simulations
of idealised two-dimensional barotropic turbulence. Results suggest that the
relationship holds approximately despite the normality condition not being met.
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1 INTRODUCTION

Operational numerical weather prediction (NWP) cen-
tres use a range of metrics to monitor and commu-
nicate forecast performance and make decisions about
model upgrades. These metrics, which summarise infor-
mation contained in forecasts and verifying analyses and
convert them into scalar values, can broadly be divided

into two categories. The first category of metrics quantify
differences between a single forecast and the verification
field. Since these metrics depend on only one forecast state,
they can be viewed as deterministic metrics. They are often
used to communicate forecast skill to the public (Bauer
et al., 2015) as well as in theoretical predictability studies
(e.g., Lorenz, 1969; Leith, 1974). On the other hand, prob-
abilistic metrics measure the sharpness and reliability of
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forecast distributions generated by ensembles of forecasts.
The philosophy of probabilistic verification is therefore
rather different from that of deterministic verification.
That being said, it is intuitive to expect that, as proba-
bilistic forecasts evolve in time, the loss of information
manifest by the widening of forecast distributions should
somehow be matched to the growth of deterministic errors
when individual ensemble members, or indeed the ensem-
ble mean, are compared against the verifying analysis. Yet
not much is known about whether this relationship can
be quantified mathematically, beyond the fact that the
ensemble spread should agree with the root-mean-square
error (RMSE) of the ensemble mean when the forecast
is reliable. There has been some progress in this direc-
tion, with Gneiting and Raftery (2007) and Leutbecher
and Haiden (2021) establishing certain analytic formulae
for the probabilistic metric Continuous Ranked Proba-
bility Score (CRPS). In this article we shall demonstrate
further that, in a bulk sense and under certain condi-
tions, the CRPS is a function of the RMSE of the ensemble
members. Furthermore, this RMSE can be related to the
squared difference between the ensemble mean and the
verifying analysis, which is in itself a deterministic verifi-
cation metric. In this way, the CRPS–RMSE relationship
may draw a link between deterministic and probabilistic
verification.

The article is structured as follows. Section 2 intro-
duces the CRPS and the RMSE, and discusses in what
ways the RMSE can be interpreted as a deterministic
verification metric. Our main result, the CRPS–RMSE
relationship, is derived in Section 3. Its usefulness is
explored for simulations of idealised two-dimensional
(2D) barotropic turbulence in Section 4, where departures
from the predicted relationship will be discussed in the
light of the validity of the conditions imposed in the deriva-
tion. Section 5 summarises the results and concludes the
article.

2 THE METRICS

2.1 Preliminaries

We adopt the notation of Gneiting and Raftery (2007) in
respect of scoring rules for probabilistic predictions. Let
P denote the predictive distribution of a scalar random
variable U which materialises at value u. A scoring rule
S(P,u) is a function of the predictive distribution and the
verification value. If, given a predictive distribution P, the
verification value follows some (conditional) distribution
Q, then the average score over many predictions with dis-
tribution P can be denoted by S(P,Q) ≔ EQ [S(P,u)], with

the second argument of the function S(⋅, ⋅) now being a
distribution instead of a scalar value1.

However, in contrast with the set-up of Gneiting and
Raftery (2007), we shall assume that scores are negatively
oriented so that forecasts with lower scores are better.
Hence proper scores over a given class  of distributions
have the property

S(Q,Q) ≤ S(P,Q) ∀P,Q ∈ . (1)

If, for every Q ∈  the equality S(Q,Q) = S(P,Q) holds
only when P and Q are the same2, then the score is known
to be strictly proper (Gneiting and Raftery, 2007). The spe-
cial situation where P = Q is known as the ensemble being
reliable (although we acknowledge that other definitions
and characterisations exist).

2.2 Continuous Ranked Probability
Score

The CRPS is a widely used metric that evaluates the full
ensemble distribution of a continuous scalar variable and
penalises unsharp distributions. It is the integral of the
squared difference between the cumulative distribution
function (CDF) of the forecast and of the verification:

CRPS(P,u) = ∫
∞

−∞
[F(x) − Hu(x)]2dx, (2)

where F(x) is the CDF of P and Hu(x) is the Heaviside
function at the verification value u.

An equivalent expression for the CRPS, often known as
the ‘kernel representation’, is available for distributions P
whose first moments are finite:

CRPS(P,u) = EP[|U − u|] − 1
2
EP

[|U − U′|] , (3)

where U and U′ are independent random variables drawn
from the distribution P (Gneiting and Raftery, 2007). A
proof of equivalence is provided in Lemmata 2.1 and 2.2 of
Baringhaus and Franz (2004).

Gneiting and Raftery (2007) noted that the CRPS is
a strictly proper score over a very general class of distri-
butions, namely the class of Borel probability measures
whose first moments are finite. For the special case of nor-
mal distributions P =  (𝜇P, 𝜎

2
P), an explicit formula for

1Without ambiguity, S(⋅, ⋅) can mean either the score for an individual
prediction or the expected score over many predictions, depending on
the second argument being a scalar variable or a distribution.
2This should be understood in the sense of measure theory, that P and Q
only have to be equal up to a null set.
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(a) (b) (c)

F I G U R E 1 (a) (1∕𝜎Q)CRPS(P,Q), (b) (1∕𝜎Q)RMSE(P,Q) and (c) CRPS(P,Q)∕RMSE(P,Q) as functions of relative bias
b = (𝜇P − 𝜇Q)∕𝜎Q and spread ratio r = 𝜎P∕𝜎Q

CRPS(P,u) is available (Gneiting and Raftery, 2007):

CRPS(P,u) = 𝜎P√
𝜋

[
−1 +

√
𝜋

u − 𝜇P

𝜎P
erf

(
u − 𝜇P√

2𝜎P

)

+
√

2 exp

{
−1

2

(
u − 𝜇P

𝜎P

)2
}]

, (4)

where erf(z) ≔ (2∕
√
𝜋)∫ z

0 e−y2 dy is the error function.
Denoting

𝜑(x) ≔ 1√
2𝜋

exp
(
−1

2
x2
)

for the probability density function (PDF) of a standard
normal random variable and

Φ(x) ≔ ∫
x

−∞
𝜑(x′) dx′

for its CDF, this formula could be obtained by substituting

F(x) = Φ
(

x − 𝜇P

𝜎P

)
into Equation (2), integrating by parts and invoking the
identity

erf

(
z√
2

)
= 2Φ(z) − 1. (5)

Equation (4) can be integrated over a normal
 (𝜇Q, 𝜎

2
Q) kernel to yield a formula for the expected score

CRPS(P,Q):

CRPS(P,Q) = ∫
∞

−∞
CRPS(P,u) 𝜑

(u − 𝜇Q

𝜎Q

)
1
𝜎Q

du

= ∫
∞

−∞
𝜎Q

r2√
𝜋

[
−1 +

√
𝜋 x erf

(
x√
2

)
+
√

2 exp
(
−1

2
x2
)]

𝜑 (rx + b) dx, (6)

where

b ≔ 𝜇P − 𝜇Q

𝜎Q
(7)

is the relative bias and

r ≔ 𝜎P

𝜎Q
(8)

is the ratio of standard deviations, or simply the spread
ratio. The Appendix demonstrates that the integral can be
expressed analytically as

CRPS(P,Q) = 𝜎Q f (b, r), (9)

where

f (b, r) = − r√
𝜋
+
√

2(1 + r2)
𝜋

exp
(
− b2

2(1 + r2)

)

+ b erf

(
b√

2(1 + r2)

)
. (10)

Note that, provided the verifying distribution Q is fixed,
the qualitative properties of CRPS(P,Q) are fully deter-
mined by the function f (b, r) which is shown in Figure 1a.
This formula for CRPS(P,Q), agrees exactly with the one
obtained by Leutbecher and Haiden (2021), who used the
kernel representation of the CRPS (Equation (3)) as the
starting point of their derivation.

2.3 Root-mean-square error

The root-mean-square error (RMSE) is the square root of
the ensemble members’ mean squared error (MSE) from
the verification value. The latter is defined as

MSE(P,u) ≔ EP
[
(U − u)2] (11)
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for an outcome u ∈ R and a distribution P of its forecast U.
Mathematically speaking, this is the MSE of u as an estima-
tor of the ensemble mean, although this could somewhat
be counter-intuitive in a forecasting context. Nevertheless,
the standard bias-variance decomposition of MSE applies:

MSE(P,u) = (𝜇P − u)2 + 𝜎2
P, (12)

where 𝜇P and 𝜎P are respectively the mean and the stan-
dard deviation of P. Assuming that the verifying distribu-
tion Q for u has mean 𝜇Q and standard deviation 𝜎Q, the
expected score MSE(P,Q) is

MSE(P,Q) = EQ
[
(𝜇P − u)2 + 𝜎2

P
]

= 𝜎2
Q + (𝜇P − 𝜇Q)2 + 𝜎2

P

= 𝜎2
Q
(
1 + b2 + r2) , (13)

where b and r are as in Equations (7) and (8). The
second equality can be established by observing that
EQ

[
(𝜇P − u)2] is the MSE of 𝜇P as an estimator of u,

whence the same bias-variance decomposition applies.
From Equation (13), it follows that

RMSE(P,Q) =
√

MSE(P,Q) = 𝜎Q
√

1 + b2 + r2. (14)

Note that we have not defined RMSE(P,u). Should it
be defined by taking the square root of Equation (11), then
the RMSE(P,Q) defined in Equation (14) would generally
not be equal to EQ [RMSE(P,u)]. Hence, strictly speaking,
the RMSE does not fit into the framework of scoring rules.
It is simply a convenient transformation of the scoring
rule MSE(P,u), since it has the same physical dimen-
sions as the variable u of interest. Given that the RMSE
relates with the MSE bijectively and monotonically, we
may nevertheless apply the concepts of scoring rules to the
RMSE, bearing in mind that in this sense the two quanti-
ties are synonymous. The RMSE is not a proper score over
any non-degenerate class of distributions (Gneiting and
Raftery, 2007), as graphically confirmed in Figure 1b.

The RMSE discussed here should not be confused with
the RMSE of the ensemble mean, which is based on the
MSE of the ensemble mean, defined as

MSEmean(P,u) ≔ (EP [U] − u)2 = (𝜇P − u)2. (15)

By verifying the ensemble mean as if it were a deter-
ministic forecast in itself, MSEmean(P,u) and therefore its
associated RMSE can be seen as a score with determin-
istic roots. Compared with Equation (12), MSEmean(P,u)
lacks the contribution from the ensemble variance 𝜎2

P. If
the alternative formulation were to be used in place of
the MSE and RMSE defined in Equations (13) and (14),

then all expressions involving 1 + b2 + r2 throughout this
article would have to be replaced by 1 + b2. (As a conse-
quence, the multiplicative factor

√
2𝜋 often mentioned in

the forthcoming sections would become
√
𝜋.)

3 DERIVATION OF THE
CRPS–RMSE RELATIONSHIP

So far we have seen the basic mathematical properties of
the CRPS and the RMSE. Since the former is proper while
the latter is improper, it is generally impossible to draw
a one-to-one correspondence between the two. Neverthe-
less, if we compare Equations (9) and (14), we obtain

CRPS(P,Q) =
f (b, r)√

1 + b2 + r2
RMSE(P,Q). (16)

What Equation (16) suggests is that, on average, the
CRPS and the RMSE are related through a multiplica-
tive factor dependent on b and r as far as predictions of
normally distributed scalar variables are concerned. This
multiplicative factor as a function of b and r is shown in
Figure 1c. The average, as defined in Subsection 2.1, refers
to aggregation over a large number of cases that share
the same predictive and verifying distributions (P and Q).
However, standard verification practice in NWP aggre-
gates these scores across dimensions defined a priori such
as grid points and forecast start dates, rather than by pre-
dictive and verifying distributions. How can Equation (16)
be modified to accommodate this?

It is important to bear in mind that, in the notation
S(P,Q) for a given score S, there is an implied condition-
ing on the predictive distribution being P, since S(P,Q)
is the average of S(P,u) over many P-distributed predic-
tions. Q in this notation refers to the distribution of the
verification value u, but it is also conditional upon the
predictive distribution being P. To derive a formula for
an aggregated score that takes into account the different
possibilities of predictive distributions, it is therefore nec-
essary to include information about the heteroscedasticity
of P, that is, the relative frequency of occurrence of differ-
ent predictive distributions. Since we have assumed that P
is normal, such heteroscedasticity can be interpreted as a
joint meta-distribution Θ of the parameters 𝜇P and 𝜎P. In
this case the aggregated score S∗ can be written as

S∗ = EΘ[S(P,Q)]. (17)

This is the expectation of a conditional quantity,
S(P,Q). Without prescribing any specific forecast fre-
quency distributionΘ, we can only simplify this expression
further by making an extra assumption that S(P,Q) be in
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fact unconditional on P. This is equivalent to saying that
all forecasts have the same relative bias b and spread ratio
r, regardless of 𝜇P and 𝜎P. It includes the case where all
forecasts are reliable (i.e., P = Q, or (b, r) = (0, 1)), but also
includes the more general case where forecasts are consis-
tently biased or over/underdispersive by a certain percent-
age. Substituting CRPS for S and using Equation (9), we
have

CRPS∗ = f (b, r)EΘ
[
𝜎Q

]
=

f (b, r)
r

EΘ [𝜎P] . (18)

Similarly, substituting MSE for S and using
Equation (13) gives

MSE∗ = (1 + b2 + r2)EΘ

[
𝜎2

Q

]
= 1 + b2 + r2

r2 EΘ
[
𝜎2

P
]

(19)

so that

RMSE∗ =
√

MSE∗ = 1
r

√
(1 + b2 + r2)EΘ

[
𝜎2

P
]
. (20)

Equations (18) and (20) thus provide expressions for
the CRPS and the RMSE aggregated under heteroscedas-
tic conditions, where P’s parameters can vary from grid
point to grid point, and from one forecast start date to
another. These expressions assume the normality of fore-
cast distributions as well as the consistency of the relative
bias and spread ratio across all forecasts. Combining these
expressions and denoting

h ≔ VarΘ [𝜎P]
(EΘ [𝜎P])2 (21)

for the relative heteroscedasticity of the ensemble’s stan-
dard deviation, we have

CRPS∗

RMSE∗ =
f (b, r)√

1 + b2 + r2

EΘ [𝜎P]√
EΘ

[
𝜎2

P
]

=
f (b, r)√

1 + b2 + r2

1√
1 + h

. (22)

Here, we see that the ratio between the aggregated
CRPS and the aggregated RMSE is the product of two
terms: f (b, r)∕

√
1 + b2 + r2, which depends only on the

relative bias and the spread ratio; and 1∕
√

1 + h, which
depends only on the relative heteroscedasticity of the
ensemble spread. Since h ≥ 0 by definition, it follows
that f (b, r)∕

√
1 + b2 + r2 is the upper bound of such

CRPS–RMSE ratio (provided that the predictive and veri-
fying distributions are both normal), which is the same as
the multiplicative factor given in Equation (16) and shown
graphically in Figure 1c. In the limit where the standard

deviation 𝜎P is homoscedastic, that is, VarΘ [𝜎P] → 0, the
bound is attained and Equation (16) is recovered.

Using Equation (10), we can see that for reliable pre-
dictions of normally distributed random variables the
CRPS–RMSE relationship simplifies to

CRPS∗

RMSE∗ = 1√
2𝜋

1√
1 + h

, (23)

which is bounded above by 1∕
√

2𝜋. The bound is robust
to small biases, since it is an even function with respect
to the b = 0 axis. For example, a 5% bias only increases
this bound by 0.06%. It is more sensitive to small
degrees of non-calibration of the ensemble spread. To
first order, the bound increases by 0.5% for every 1%
of under-dispersiveness of the ensemble, and vice versa.
Table 1 provides more detail on how the bound responds
to small departures from perfect ensemble reliability.

4 THE CRPS–RMSE
RELATIONSHIP IN AN IDEALISED
2D TURBULENCE MODEL

The CRPS–RMSE relationship for normally distributed
random variables is numerically tested in an experiment
involving 2D barotropic turbulence. Due to the nature
of perfect-model idealised turbulence simulations, we are
only able to test the relationship for reliable predictions
(Equation (23)), where P = Q. The turbulence is governed
by the equation

𝜕𝜃

𝜕t
+ J(𝜓, 𝜃) = f + d, 𝜃 = Δ𝜓, (24)

where t is the time, 𝜓 is the velocity streamfunction3, 𝜃 is
the vorticity, Δ is the 2D Laplacian operator4 and

J(A,B) = 𝜕A
𝜕x

𝜕B
𝜕y

− 𝜕A
𝜕y

𝜕B
𝜕x

.

Equation (24) is solved pseudo-spectrally in a dou-
bly periodic domain, with a truncation wavenumber of
kt = 1024. This is equivalent to a (2kt) × (2kt) = 2048 ×
2048 grid. The forcing f and dissipation d are prescribed
in spectral space. By forcing at both large and small
scales, a hybrid k−3–k− 5

3 background spectrum is obtained,
where k is the scalar wavenumber. The length-scale
at which the spectral break sits respects the canonical
hybrid spectrum observed and simulated in the midlati-
tude upper troposphere (Nastrom and Gage, 1985; Judt,

3The velocity streamfunction 𝜓 is related to the velocity (u, v) by
u = −𝜕𝜓∕𝜕y and v = 𝜕𝜓∕𝜕x.
4Δ = ∇ ⋅ ∇, where ∇ = (𝜕∕𝜕x, 𝜕∕𝜕y).
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T A B L E 1 Relative changes of f (b, r)∕
√

1 + b2 + r2 compared to the case (b, r) = (0, 1), when (a) the relative bias b is varied but the
spread ratio r is fixed at 1, and (b) the spread ratio r is varied but the relative bias b is fixed at 0

(a)

b 0.00 ±0.01 ±0.02 ±0.03 ±0.04 ±0.05

Change (%) 0 +0.00 +0.01 +0.02 +0.04 +0.06

(b)

r 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05

Change (%) +2.60 +2.06 +1.53 +1.02 +0.50 0 −0.50 −0.99 −1.47 −1.94 −2.41

2020). Further details of the forcing and dissipation terms
are described in Leung et al. (2020).

4.1 Experimental design

A long control integration of Equation (24) is taken as
the verification. When the turbulence is fully developed
and reaches a statistically stationary state, a normally dis-
tributed random variable centred at zero is added to all
Fourier coefficients of the vorticity field to generate the
‘truth’. The variance of the random variable, 𝛽2, depends
on the magnitude but not the direction of the wavevec-
tor. It can be shown that a perturbation of magnitude
𝜌(k) relative to the energy spectral density E(k) of the
control integration can be generated by choosing 𝛽2 =
[𝜌(k)E(k)∕2𝜋]k. In this experiment, 𝜌(k) is fixed to be 10−6

across all k. Next, M = 4 ensemble members are generated
from the ‘truth’ using the same perturbation statistics as
the generation of the ‘truth’ from the control integration.
All perturbations for the four ensemble members and for
the ‘truth’ are mutually independent. The perturbed sim-
ulations are integrated for a fixed time period of T = 150
non-dimensional units, allowing the error to almost fully
saturate by the end of it.

The experiment is repeated for N = 30 start dates. This
can be thought of as N1 = 5 years, among which the con-
trol integrations are fully independent, and N2 = N∕N1 =
6 start dates per year initialised at intervals of 0.1T.

The choice of a relatively small M and large N is moti-
vated by Leutbecher (2019). That article suggests that if the
CRPS for reliable ensembles is adjusted using

CRPS∗
∞ ≔ M

M + 1
CRPS∗ (25)

to remove the effects of the ensemble size being finite,
then a reduction in the number of ensemble members used
for numerical experimentation returns more robust results

than a reduction in the number of start dates, provided that
the constraints in computational cost are similar.

The experimental design guarantees a reliable ensem-
ble, since the verification is statistically indistinguishable
from the M ensemble members. As such, Equation (23) is
expected to hold subject to P being a normal distribution
as the simulation evolves.

The scalar variables of interest chosen for this study are
the velocity components u and v. For each start date and
grid point, the CRPS and the MSE are computed for both
velocity components in physical space. The computation
of the CRPS is performed using the algorithm set out by
Hersbach (2000). These metrics are then aggregated over
Λ ≔  ×  ×, where  represents the set of 20482 grid
points,  the 30 start dates and  the two canonical direc-
tions (u and v), but remain as functions of the forecast lead
time. Isotropy of the turbulence enables the scores for u
and v to be combined without changing the results.

When the metrics are aggregated, the quantity
EΛ [S(P,ui)] is computed for each lead time, where S
can be CRPS or MSE, and where ui represents a generic
velocity component. The law of iterated expectations
guarantees

EΛ [S(P,ui)] = EΘ[EP [S(P,ui)]] = EΘ [S(P,P)] = S∗,

(26)

the last two equalities of which result from the definition
of S and Equation (17) respectively. In this way, CRPS∗

and RMSE∗ (the square-root of MSE∗) can be empirically
computed, which should satisfy Equation (23) subject to
the normality assumption. To account for the finite ensem-
ble size, the aggregated CRPS is corrected by Equation (25)
before being compared with the aggregated RMSE.

4.2 Results

For notational purposes in this subsection, we denote
the start date by t0, and write U(t, t0, x, e1) for u(t, t0, x)
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F I G U R E 2 Growth of the ensemble-mean error energy
spectrum, or equivalently the power spectrum of RMSE∗ (curves
from bottom to top, plotted at intervals of 0.1T), whose initial
condition is indicated by the lowest curve

and U(t, t0, x, e2) for v(t, t0, x). A subscript “f” attached to
U(t, t0, x, ei), u(t, t0, x) or v(t, t0, x) (where i = 1 or 2) indi-
cates a forecast, in which case the variable is understood
to be a random variable with distribution P. The absence
of the subscript indicates the verification, which is also
interpreted as a random variable but with distribution Q.

Figure 2 illustrates the growth of the error energy
spectrum. More precisely, it is the spectrum of the
ensemble-mean error energy aggregated over all grid
points and start dates, that is, the spectral decomposition of

E×
[
EP

[1
2
({uf(t, t0, x) − u(t, t0, x)}2

+ {vf(t, t0, x) − v(t, t0, x)}2)
]]
. (27)

In two spatial dimensions5 and where the ensemble is
reliable (P = Q), this is equivalent to the spectral decom-
position of

E××[EP[{Uf(t, t0, x, ei) − U(t, t0, x, ei)}2]]
= EΛ [MSE(P,U)] = MSE∗ = RMSE∗2, (28)

where Equations (11) and (26) have been used in the
first two equalities respectively. As such, Figure 2 may
also be interpreted as the evolution of the power spec-
trum of RMSE∗. Following an initial period of adjustment
that leads to fast saturation of the mesoscale k− 5

3 range,
a synoptic-scale peak emerges in the error spectrum. The

5The equivalence between Expressions (27) and (28) is not extendable to
higher spatial dimensions, because it only happens in two dimensions
that the factor 1

2
for the kinetic energy is also the factor used to compute

the average over D. In higher dimensions, the ensemble-mean error
energy can be related to the MSE of velocity components via a constant
multiplicative factor.

spectrum then grows more or less uniformly in spatial
scale and gradually saturates the k−3 range. After that, the
growth slows down as the largest scales approach satura-
tion. These observations are consistent with those reported
in Leung et al. (2020).

Like RMSE∗, it is possible to spectrally decompose
CRPS∗

∞. To compute CRPS∗
∞ for a wavenumber or range of

wavenumbers, one simply picks out the associated waves
in spectral space, transforms them to physical space, then
aggregates the score over Λ and applies Equation (25).
Such CRPS∗

∞ may be compared with RMSE∗ for the
same wavenumber(s) using Equation (23). Here, the
verification metrics are decomposed into the planetary
scale (k ∈ [1, 8]), synoptic scale (k ∈ [9, 64]), mesoscale
(k ∈ [65, 512]) and sub-mesoscale (k ∈ [513, 1024]). The
evolution of these metrics is shown in Figure 3a. Generally
speaking, they grow steadily (in exponential terms) before
asymptoting smoothly to their respective saturation val-
ues. The same figure also shows RMSE∗ associated with
these scales but normalised by

√
2𝜋 so that, according

to Equation (23), the curves for the CRPS and the RMSE
would coincide if P were normal and 𝜎P were homoscedas-
tic. Broadly speaking, the agreement between the two
is extremely close for all four spectral ranges, spanning
several orders of magnitude of growth and, importantly,
capturing the differences in saturation times between the
different spectral ranges. This shows that, for these sim-
ulations, the normalised RMSE represents a good proxy
for the CRPS. However, the discrepancy between the two
curves is non-trivial throughout most of the simulation,
although it remains within a factor of two. To enable
closer examination of the discrepancy, the ratio of the
two curves is plotted and shown in Figure 3b. Evidently,
the discrepancy is stronger at the planetary and synoptic
scales. For smaller scales, the CRPS and the normalised
RMSE agree better, especially after the error at these scales
has saturated.

Figure 4 shows the ratio
√

2𝜋 CRPS∗
∞(t)∕RMSE∗(t) for

the full field without decomposition into wavebands (thick
solid curve). In addition, the thin solid curves of a lighter
shade show the evolution of the ratios for the N = 30 indi-
vidual start dates, that is, with Λ =  × instead of  ×
 ×. Considerable variation in this ratio across the 30
cases is seen, particularly at smaller lead times. According
to Equation (23), the solid curves in Figure 4 are expected
to coincide with

EΘ [𝜎P]√
EΘ

[
𝜎2

P
] = 1√

1 + h

if the ensemble is normally distributed. Computing
this ratio involves evaluating the ensemble’s standard
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F I G U R E 3 (a) CRPS∗
∞(t)

(solid) and (1∕
√

2𝜋)RMSE∗(t)
(dashed) for the planetary, synoptic,
meso- and sub-mesoscale (from dark
to light shades), up to T = 150. (b)
The ratio

√
2𝜋 CRPS∗

∞(t)∕RMSE∗(t)
between the solid and dashed curves
of (a) for the respective shades

(a) (b)

F I G U R E 4 The thick solid curve is as Figure 3b, but for the
full field without the scale-decomposition. The dashed curve shows
1∕

√
1 + h as a function of t for the M = 48-member ensemble. The

other curves show
√

2𝜋CRPS∗
∞(t)∕RMSE∗(t) but for Λ =  × (i.e.,

for specific start dates), for the M = 4-member ensemble (thin solid
curves of a lighter shade) and the M = 48-member ensemble (dotted
curve)

deviation 𝜎P, but the sample size (M = 4) is too small to
estimate 𝜎P robustly. To mitigate this, a larger ensemble of
M = 48 members is run to estimate the heteroscedasticity
of the ensemble’s standard deviation. This is done only for
a single start date (N = 1) owing to limited computational
resources. As shown in the dashed curve of Figure 4, the
fraction 1 ∕

√
1 + h exhibits two local minima throughout

the integration, the more extreme of which corresponds
to a relative heteroscedasticity of h ≈ 1. This curve agrees
nicely with the ratio

√
2𝜋 CRPS∗

∞(t)∕RMSE∗(t) for the
same large-ensemble experiment (dotted curve), which
is visibly indistinguishable from the collection of thin
solid curves that depict this ratio for individual cases
involving the smaller ensemble (M = 4). The curves rep-
resenting

√
2𝜋 CRPS∗

∞(t)∕RMSE∗(t) and 1∕
√

1 + h (i.e.,
dotted and dashed) agree nicely, hence suggesting that het-
eroscedasticity is responsible for the discrepancy between
CRPS∗

∞(t) and (1∕
√

2𝜋)RMSE∗(t). Any non-normality that
the ensemble might develop throughout the simulation

would thus appear to have a negligible impact on the
CRPS–RMSE ratio, at least for the particular case consid-
ered in this experiment.

4.3 Non-normality of the ensemble
distribution

Despite the fact that the departure of the normalised
CRPS–RMSE ratio from unity can be primarily explained
by the flow’s heteroscedasticity, it is of interest to check
explicitly whether the M = 48-member ensemble is nor-
mally distributed. This is done by evaluating the ensem-
ble’s skewness and excess kurtosis at each of the 20482

grid points and for each of the two velocity components,
and comparing histograms of these statistics across the
20482 × 2 samples with those obtained via a Monte-Carlo
simulation involving 20482 × 2 groups of 48 standard nor-
mal random variables, all mutually independent. Figure 5
shows the result for several lead times. Initially the two
distributions are almost identical. This can be expected,
since the perturbations are normally distributed by design
(Subsection 4.1). The difference grows as the flow evolves.
This suggests that non-normality in the ensemble distribu-
tion is being built up as the simulation progresses, which
is hardly surprising, since it is a known feature of 2D tur-
bulence (Farge et al., 1999). Yet, it also highlights that the
extent of non-normality found here does not substantially
affect the derived CRPS–RMSE relationship.

5 DISCUSSION AND SUMMARY

In this article, we have derived a functional relationship
between two forecast verification metrics: the CRPS and
the RMSE (Sections 2 and 3). The CRPS is a standard prob-
abilistic score that rewards forecasts that are both sharp
and reliable. On the other hand, the RMSE is the sum of
the ensemble variance and the squared error of the ensem-
ble mean. In some contexts, only the latter contribution
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F I G U R E 5 Histograms, taken over Λ = G × D, of ensemble
skewness (left) and excess kurtosis (right) of velocity components in
the M = 48-member ensemble simulation of idealised 2D
turbulence. These are shown for lead times t = 0 (top),
t = 60 = 0.4T (middle) and t = 120 = 0.8T (bottom), in grey and in
the form of probability densities. The black curves indicate the PDF
of the respective statistics obtained via a Monte-Carlo simulation
involving independent standard normal random variables. Note
that the vertical axis is logarithmic

is included in the definition of RMSE, which makes it
like a deterministic verification metric since the ensemble
mean can be verified as if it were a deterministic predic-
tion in its own right. The fact that the CRPS and the RMSE
can be functionally related provides a link between deter-
ministic and probabilistic verification. Assuming that the
predictive and verifying distributions are both normal, the
relationship comes in the form

CRPS∗ =
f (b, r)√

1 + b2 + r2

1√
1 + h

RMSE∗, (29)

where b is a measure of bias (Equation (7)), r is a mea-
sure of non-calibrated ensemble dispersion (Equation (8)),
f (b, r) is as given in Equation (10), and h is the relative het-
eroscedasticity of the ensemble’s standard deviation 𝜎P as
defined in Equation (21). The asterisks accompanying the
notations CRPS and RMSE refer to aggregation over a sam-
ple, and the heteroscedasticity refers to the variability of
𝜎P across the dimensions of aggregation. The CRPS–RMSE
relationship is subject to a technical assumption that the
measures of non-calibration (b and r) do not depend on the
predictive distribution.

When predictions are reliable, Equation (29) reduces to

CRPS∗ = 1√
2𝜋

1√
1 + h

RMSE∗. (30)

The relationship in this special case has been tested
on simulations of idealised 2D turbulence (Section 4), in
which ensembles are reliable by the experimental design.
Heteroscedastic effects are present, and are found to
depend considerably on the length-scale and the forecast
lead time. To our knowledge, the origins of such het-
eroscedastic effects in idealised turbulence are not well
understood. It would be interesting to investigate the
scale-dependence of heteroscedasticity in the future. In
any case, if we were to ignore such heteroscedastic effects,
a simpler form of the CRPS–RMSE relationship

CRPS∗ = 1√
2𝜋

RMSE∗ (31)

would hold, thus making the CRPS a constant multiple of
the RMSE. Equation (31) turns out to be a reasonably good
approximation of the CRPS–RMSE relationship recorded
in the numerical simulations, including the times at which
the two error metrics saturate at different scales. Devia-
tions from this equation remain within a factor of two.
When heteroscedasticity is taken into account, the two
sides of Equation (30) agree with excellent accuracy. On
the other hand, our results show that the CRPS–RMSE
relationship is resilient to non-normality in ensemble dis-
tributions, at least to the extent demonstrated by this
experiment. Moreover, the factor 1∕

√
2𝜋 in Equation (31)

is robust to small ensemble biases, although it is more
sensitive to over- and underdispersion of the ensemble.

The CRPS–RMSE relationship may be applied on any
scalar meteorological variable in the real world, pro-
vided that the distribution of the variable is not overly
non-normal. Inhomogeneity and anisotropy of the atmo-
spheric flow imply that the results will depend on the
domain and direction of aggregation. It remains to be
seen how the heteroscedasticity observed in NWP simu-
lations compares with that reported here for idealised 2D
turbulence.
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APPENDIX. EXPECTED CRPS FOR NORMAL
PREDICTIVE AND VERIFYING DISTRIBU-
TIONS

The integral

∫
∞

−∞
𝜎Q

r2√
𝜋

{
−1 +

√
𝜋 x erf

(
x√
2

)
+
√

2 exp
(
−1

2
x2
)}

𝜑 (rx + b) dx (A1)

in Equation (6) can be simplified to provide an analytic
expression for CRPS(P,Q), the expected CRPS for normal
predictive and verifying distributions. The integral will
be decomposed into three contributions according to the
terms inside the outermost parentheses of the integrand.
These contributions will be evaluated one by one. To begin,
we have

∫
∞

−∞
𝜎Q

r2√
𝜋
{−𝜑 (rx + b)} dx = −𝜎Q

r√
𝜋

(A2)

and

∫
∞

−∞
𝜎Q

r2√
𝜋

√
2 exp

(
−1

2
x2
)
𝜑 (rx + b) dx

= 𝜎Qr2
√

2
𝜋(1 + r2)

exp
(
−1

2
b2

1 + r2

)
, (A3)
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since they are Gaussian integrals. As for the contribution

∫
∞

−∞
𝜎Qr2 x erf

(
x√
2

)
𝜑 (rx + b) dx, (A4)

we proceed by first seeking an indefinite integral A(x) of
x𝜑 (rx + b), so that Expression A4 can be written as

𝜎Qr2

[
A(⋅)erf

(
⋅√
2

)]∞

−∞

− 𝜎Qr2∫
∞

−∞
A(x) d

{
erf

(
x√
2

)}
.

(A5)
It is not difficult to see that

A(x) = ∫
x

−∞
x′𝜑

(
rx′ + b

)
dx′

= − 1√
2𝜋r2

exp
{
−1

2
(rx + b)2

}
− b

r2 Φ(rx + b), (A6)

so that A(∞) = −b∕r2 and A(−∞) = 0. Substituting these
into (A5), the first term equals −b𝜎Q, whereas

− 𝜎Qr2∫
∞

−∞
A(x) d

{
erf

(
x√
2

)}

= 𝜎Qr2∫
∞

−∞

[
1√

2𝜋r2
exp

{
−1

2
(rx+b)2

}
+ b

r2 Φ(rx+b)

]
× d{2Φ(x) − 1}

=
√

2
𝜋
𝜎Q∫

∞

−∞
exp

{
−1

2
(rx + b)2

}
𝜑(x) dx

+ 2b𝜎Q∫
∞

−∞
Φ(rx + b) 𝜑(x) dx. (A7)

The first term on the right-hand-side of Equation (A7)
is a Gaussian integral which evaluates to

𝜎Q

√
2

𝜋(1 + r2)
exp

(
−1

2
b2

1 + r2

)
.

The second term equals

b𝜎Q∫
∞

−∞

{
1 + erf

(
rx + b√

2

)}
𝜑(x) dx

= b𝜎Q

{
1 + erf

(
b√

2(1 + r2)

)}
, (A8)

which can be established by considering

I(r, b) ≔ ∫
∞

−∞
erf

(
rx + b√

2

)
𝜑(x) dx (A9)

and writing

I(r, b) = ∫
b

0

𝜕I
𝜕b

(r, b′) db′

(note that I(r, 0) = 0, as the integrand is in that case an odd
function). Hence we can write (A4) as

− b𝜎Q + 𝜎Q

√
2

𝜋(1 + r2)
exp

(
−1

2
b2

1 + r2

)
+ b𝜎Q

{
1+erf

(
b√

2(1 + r2)

)}

= 𝜎Q

√
2

𝜋(1 + r2)
exp

(
−1

2
b2

1 + r2

)
+ b𝜎Q erf

(
b√

2(1 + r2)

)
(A10)

Substituting this and Equations (A2) and (A3) into
(A1) and therefore Equation (6), we finally arrive at

CRPS(P,Q) = 𝜎Q f (b, r), (A11)

where

f (b, r) = − r√
𝜋
+
√

2(1 + r2)
𝜋

exp
(
− b2

2(1 + r2)

)

+ b erf

(
b√

2(1 + r2)

)
. (A12)


