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ABSTRACT The learning of classification rules from data to classify new and previously unseen data
instances, is one of the most essential tasks in data mining. To improve accuracy of classifiers in general,
ensemble techniques can be employed, where multiple classifiers are induced and used for prediction.
However, this often goes at the expense of explainability of the predictive model learned. The analyst would
have to examine many decision models (which may already be complex on their own) to gain insights
about the causality of the prediction. To generate a more readable ensemble model the authors of this paper
have developed a rule-based ensemble (ReG-Rules) model that does not require entire base learners to be
involved in the final prediction and thus predictions can be more easily explained. The work presented in
this paper has been implemented and is evaluated empirically. Results show that the approach delivers a
high accuracy and at the same time a manageable set of rules describing the decisions made.

INDEX TERMS Data Mining, Ensemble Learning, Explainable Algorithms, Rule-Based Classification

I. INTRODUCTION

One of the most important tasks in Data Mining applications
is predictive analytics, or, in other words, the classification
of previously unseen data instances by learning models from
training data with known groundtruth. Various algorithms
exist to develop such predictive models, i.e. one popular
predictive algorithm is the Top Down Induction of Decision
Trees (TDIDT) such as ID3 [1] or C4.5 [2], also known as
‘Divide and Conquer’. A more recent approach to predictive
model generation is Deep Learning [3]. However, whereas
Deep Learning has a reputation to develop highly accurate
models in comparison to alternative approaches (such as de-
cision trees), they are black box approaches, meaning they do
not explain to the human analyst the causality of individual
predictions. Such explainability has also been the motivation
of rule-based algorithms for predictive analysis such as Rip-
per [4], CN2 [5], G-eRules [6], a set of related algorithms
collectively termed the Prism family of algorithms with its
first algorithms described in [7], etc. Rule-based algorithms
also offer a greater explainability compared with Decision
Trees as tree-based classifiers tend to suffer from various
problems, such as the ‘replicated subtree problem’ [7], [8].
Rule-base models offer a more concise explanation of how
they arrive at a particular prediction. A common approach to

improve a predictive algorithm’s accuracy and stability, are
ensemble approaches. Recent applications of such ensemble
approaches have been for example to forecast demands in the
electric energy sector [9], for fault diagnosis in refrigeration
systems [10], in education to characterise at-risk students
and improve retention [11], in banking systems to determine
credit scoring [12], etc.

In ensemble learning various base classifiers are induced
on various samples of the training data, typically using the
same algorithm. The prediction is usually derived through a
voting strategy, i.e. majority or weighted majority voting. A
notable representative of tree-based ensemble learning is the
Random Forest (RF) classifier [13]. Also, rule-base ensemble
learners have been developed, such as Random Prism [14].
However, the use of ensemble approaches with explainable
base classifiers, such as trees or rule sets, defies the purpose
of explainability, as the human analyst is presented with a
large range of entire classification models, such as multiple
decision trees. Random Prism builds an ensemble of rule
sets using the PrismTCS [15] as a base classifier to improve
PrismTCS. However, the ensemble votes on every prediction
with the entire rule set and does not extract relevant rules
for prediction. Hence many rules need to be considered for
explaining a prediction which obscures the explainability of
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the approach.
The terms explainable and expressive are similar, but

there is a subtle semantic difference how they are used in
this paper. The term explainability refers to classification
models that explain the outcome of a predicted label to the
analyst. The less information is needed to explain the model
the higher the degree of explainability. Similarly, the term
expressive is used in this paper in the context of single rules.
A rule is more expressive the more compact the information
leading to a prediction is encoded in the rule. This paper
focuses on the explainability part of ensemble classifiers by
minimising the amount of rules needed to derive a prediction.
However, on a rule level also the most expressive types of
rules are utilised.

This paper’s authors recent work has extended the afore-
mentioned Prism family of rule-based classifiers by more
expressive rule-terms in order to enhance explainability of
Prism classifiers further [16]. Their recent development, G-
Rules-IQR, has shown in empirical experimentation to out-
perform the other members of the Prism family in terms of
accuracy, F1-Score, tentative accuracy and produces slimmer
and thus easier to interpret rule sets [16]. This paper proposes
a new rule-based ensemble learner that is different compared
with its predecessors as it aims to maximise overall accuracy
as well as maintaining a high level of explainability in terms
of rule examinations needed for tracing individual predic-
tions. It is based on the most recent G-Rules-IQR approach
due to its more expressive rule term structure and proposes
a method to merge local rule sets thus in turn minimises the
human analyst’s number of rule examinations to explain a
prediction. Furthermore, compared with standalone G-Rules-
IQR, it increases accuracy and considerably reduces the
abstaining rate . The abstaining rate for rule-based prediction
is the percentage of data instances remaining unclassified due
to no matching rules being available. This is sometimes seen
as a drawback of rule-base classifiers, however, abstaining
may be desirable in applications where a false classification
is costly, such as in finance, health and safety, etc. E.g. one
would want a self driving car abstain from decision making
and hand back control to the driver if it cannot classify a sit-
uation, rather than making a arbitrary decision. Nevertheless,
for most applications a low abstaining rate is desired.

The contributions of this paper are (1) a new ensem-
ble classification algorithm that produces expressive human-
readable rules, (2) a local Rule Merging (RM) algorithm to
reduce the overall number of rules induced by the classifier
without loss of rule coverage and (3) a decision committee
facility to reduce the overall number rules presented to the
human analyst giving insights about the prediction.

Overall, an empirical evaluation presented in this paper
shows that the proposed ensemble approach produces a
higher classification accuracy than the original G-Rules-IQR
classifier, offers a much lower abstaining rate and produces
a moderate size prediction set of rules and thus maintains a
high level of explainability for the human analyst.

The remainder of the paper is structured as follows: Sec-

tion II describes related work on rule-based classifiers espe-
cially the Prism family of algorithms. Furthermore, this Sec-
tion also gives a summary of ensemble learning approaches.
Section III then examines the authors’ previous work on G-
Rules-IQR in more detail as this is a building block of the
proposed ensemble approach. Then Section IV introduces
the proposed explainable ensemble learner and Rule Merging
(RM) strategy followed by an empirical analysis in Section
V. Section VI offers a final discussion of the presented
ensemble approach and concluding remarks.

II. RELATED WORK
This Section distinguishes between two types of rule-base
classification systems, (1) single rule-base systems and (2)
ensemble rule-base systems.

A. SINGLE RULE-BASE SYSTEMS
Two common strategies to generate classification rules are
the ‘divide and conquer’ and ‘separate and conquer’ ap-
proaches. Divide and conquer induces rules in the inter-
mediate form of a decision tree by converting each branch
of the tree into a rule. Despite its simplicity and popular-
ity, the decision tree representation of rules suffers from
several problems, most importantly, decision trees suffer
from replicated subtrees. Rule learners based on separate
and conquer approach, also called ‘covering algorithms’, do
not suffer from the replicated subtree problem [17]. They
produce a set of IF...THEN classification rules directly from
a training dataset. The general approach is as follows: rules
are generated one at a time. Instances covered by that rule
will be removed from the training data before the next
rule is induced. Furthermore, each rule can be maintained
independently of the remainder of the rule set, or even be
removed without needing to rebuild the entire classifier [18],
[19]. The aforementioned replicated subtree problem has
been criticised by Cendrowska in [7] as a main reason for
overfitting in decision trees. Although Cendrowska never
uses the term replicated subtree problem, her study showed
that the smallest tree representation for class x defined as:

IF A3 AND B3 THEN Class = x

IF C3 AND D3 THEN Class = x

would result in 10 nodes and 21 branches in a decision
tree, assuming that attributes (A,B,C,D) can each take one
of three possible values and if a classification is not x, then it
must be y. The reader is referred to Cendrowska’s paper [7]
for a detailed example of this problem. The Prism algorithm,
which follows separate and conquer strategy, is introduced
in the same study aiming to generate rules with much fewer
redundant rules terms compared with those extracted from a
tree-based classifier.

Apart from Prism algorithms, there are further rule-based
separate and conquer algorithms such as AQ family, CN2
and RIPPER. AQ [20]–[22] uses a top-down beam search for
discovering the best rule. CN2 algorithm [5] integrates ideas
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from AQ and ID3 algorithms. ID3 induces tree-based classifi-
cation rules. CN2 produces a rule set based on AQ technique
with ID3 capability of handling noisy data. RIPPER algo-
rithm [4] considers the quality and length of generated rules
by utilising an overall optimisation step.

As previously mentioned, the main purpose of Prism al-
gorithm is to prevent the generated classification rule set
from being redundant and unnecessarily complex. Redundant
rule terms and complexity is a necessity in decision trees,
but is also considered an unfavourable outcome of use of
tree representations [23]. The original Prism pseudo code is
described in Algorithm 1. The approach generates modular
classification rules directly from training data by inducing
one rule at a time. Each rule is specialised term-by-term
by selecting the attribute-value pair that maximises the con-
ditional probability of the rule’s selected target class. The
training stops once the rule only covers instances belonging
to that pre-assigned target class. Those instances covered
by the induced rule will be removed from the training data
before the induction of the next rule commences. The process
is repeated until there are no instances left in the training
data that match the target class. Then the same procedure is
carried out for each of the remaining possible classification
values.

However, the original Prism is unable to deal directly
with continuous attributes. Also, it does not take clashes into
account which may occur in the training phase when two or
more instances are identical but belong to different classes.
A rule encountering a clash during training is not able to
specialise further and remains incomplete. Tie-breaking is
another problem that can arise during the Prism rule induc-
tion process when there are rule-terms with equal highest
conditional probability.

Consequently, several studies have been introduced to
improve the performance of original Prism. Bramer’s Inducer
Software [15] which implements an extended version of
Prism that can handle continuous attributes using binary
splitting or cut-point calculations as a local discretisation
method. Also, the Inducer software deals with the clashes in
training data by determining the majority class of the subset
that caused the clash and if it matches the target class the
rule is included in the rule set as it is. If the rule’s target
class is different than the majority class in the clash set, then
the rule is discarded. In both cases instances that match the
target class are removed. This strategy is illustrated further in
[15]. However, this way of dealing with clashes could prompt
underfitting if the discarded rule is covered by a large number
of instances. In this case it would be likely during testing,
that the rule set not covering a large number of rules and thus
abstains from classification. Regarding tie-breaking issue, the
inducer implementation selects rule-terms with highest value
of frequency [24].

PrismTCS [23] is another member in the Prism algorithm
family that uses the minority classes in the training data
first as target class. This may result in a lower number of
unclassified examples. Compared with the original Prism,

this algorithm is faster as it does not require to reset the
training data back to it’s original state before switching the
induction process to a different target class [14]. However, it
constructs a classifier with a similar accuracy level as original
Prism.

Algorithm 1: Pseudocode for Cendrowska’s original
Prism algorithm.

1 foreach class C do
2 Reset input Dataset D to its initial state ;
3 while D does not contain only instances of class C

do
4 Create a rule R with an empty left hand side

(LHS) that predicts class C ;
5 repeat
6 foreach attribute α not mentioned in R , and

each value x do
7 Consider adding the condition α = x to

the LHS of R ;
8 Select α and x to maximise the accuracy

formula ;
9 end

10 Add α = x to R
11 until R is perfect or there are no more attributes

to use;
12 Remove the instances covered by R form D
13 end
14 end

B. ENSEMBLE RULE-BASE SYSTEMS

Generally speaking, ensemble methodology simulates our
nature to look for several views before making any critical
decision [25]. We mentally assess the individual views and
combine them to attain our ultimate choice. Figure 1 shows
the general concept of ensemble learning. It consists of a
collection of n classifiers (C1, C2, ...Cn), each trained on
a different training subset (S1, S2, ...Sn) using sampling
with or without replacement and produces a single prediction
(vote). Combining these individual votes (decisions) using
a some kind of voting approach is likely to create an en-
semble with a higher level of overall predictive accuracy
than its base learners. Therefore, the ensemble methodology
is considered to be one of the most effective strategies to
improve prediction performance in data mining [26]. Such
an ensemble classification system can be referred to as a
system of systems. Generating an ensemble model can be
done sequentially or in parallel.

The sequential paradigm uses the concept of dependence
between the individual classifiers where the base learners are
generated sequentially or hierarchically. Boosting is one of
the well known forms of this paradigm, AdaBoost algorithms
in particular. Also, several sequential ensemble approaches
have been recently proposed in the literature such as Vote-
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boosting algorithm [27], SENF approach [28] and SEL frame-
work [29].

FIGURE 1. General Ensemble Classification.

On the other hand, the parallel ensemble paradigm, which
is more popular and easier to implement, draws on the
independence and diversity between the base learners since
combining their independent decisions can reduce the clas-
sification error effectively [30]. This study uses the parallel
ensemble paradigm because of the beneficial usage of its
independence advantage in parallel computing which can
make the ensemble rule-base model more powerful in practi-
cal applications. Therefore, the following paragraphs briefly
describe a number of parallel ensemble learning algorithms.

A widely used parallel method is Bagging which stands for
Bootstrap aggregating. The method introduced by Breiman
in [31] aims to improve the stability and predictive perfor-
mance of a composite classifier [26]. It involves sampling
of data with replacement. Each sample is selected randomly
with a size equal to that of the original data. This indicates
that some of the training instances may appear more than
once in the same sample set and some may not be included
at all. Each classifier trains on a sample of instances which,
statistically, is expected to contain 63.2% of the training
data and provides one vote to its selected class. The final
classification is typically decided by some form of voting,
such as majority or weighted majority voting. The main
advantage of Bagging is the ability to smoothly reduce bias
and variance in the data [13], [31], [32].

Random Forest (RF) is also a popular independent ensem-
ble method [13] based on decision trees. It can be considered
as an extended version of Bagging and is inspired by the
Random Decision Forest (RDF) introduced by Ho in [33].
RF essentially incorporates the basic RDF approach with
Breiman’s Bagging method [14], [30]. RDF algorithm builds
multiple decision trees. Each tree is constructed using the
whole training dataset in sub-spaces selected randomly from
the feature space. Ho argues that in high dimensional feature
spaces, a considerable number of random subsets of that

feature space can introduce differences in classifiers. There-
fore, each individual tree generalises its classification. On
the other hand, Random Forest evaluates the possible splits
at each node before randomly selecting sub-space features.
This increases (compared with RDF) randomisation in the
base classifier construction step and produces an ensemble
classifier whose variance is lower than one produced by the
individual learners [26].

Random Prism [14], is an ensemble learner not based
on decision trees but on rule sets produced by PrismTCS
algorithm [23]. It follows the parallel ensemble learning
approach and takes a bootstrap sample by randomly selecting
n instances with replacement from the training dataset. On
average, each base classifier constructed in Random Prism
will be trained on 63.2% of the total number of training
instances. Thus, the remaining (about 36.8%) will be applied
to Random Prism as a test dataset. It has been shown in [14],
[34] that Random Prism outperforms its stand-alone base
classifier with regard to accuracy and tolerance to noise.

There are also a number of new parallel ensemble algo-
rithms. For example, a parallel deep rule-based ensemble
classifier, called DRB [35], and a parallel fusing fuzzy rule-
based decision tree via Map-Reduce called MR-FRBDT
algorithm [36]. A further example for parallel ensemble
classifiers is IP-kNN which integrates several parallel k-NN
classifiers [37].

C. OBSERVATIONS ABOUT RELATED WORK
As previously described in Section II-A, practically, the orig-
inal Prism algorithm can be adapted to work with continuous
attributes using binary splitting which is a local discretisation
approach. However, this way of handling numeric values
requires frequent cut-point calculations to accomplish the
conditional probabilities for each value in order to produce
rule-terms in the form of (x < α) or (α ≥ y) where α is
the attribute’s name and x and y are two current values of
that attribute. Computationally, this is very inefficient as it is
extremely costly in time and space complexity, especially for
a large dataset. An alternative is to use a global discretisation
approach, i.e. ChiMerge [38] in which the data is only
discretised once prior to learning the rule set. That seems
to be a computational advantage over cut-point calculations.
However, ChiMerge suffers from a fundamental weakness
as the method converts each attribute independently of the
others, not considering that classifications are not determined
by just the values of a single attribute. Nevertheless, both,
local and global discretisation requires sorting the values of
each attribute prior to the discretisation process, and the dis-
cretisation process itself can be a significant computational
overhead. The interested reader is referred to [24] which
gives further details supported by examples about both types
of discretisation.

A new heuristic approach based on Gaussian Probability
Density Distribution (GPDD) was proposed in [39] to de-
velop an efficient way of handling continuous attributes in the
Prism family of algorithms. The approach introduces a new
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rule-term structure in the form of (x < α < y) instead of two
separate rule-terms combinations which greatly enhances
readability of the individual rules. Also, the range of values
between x and y are representing the most common values of
α for a given target class. This would potentially reduce over-
fitting, a problem that most of rule classification approaches
suffers from. Three Prism based classifiers are integrating
this approach in their numerical rule-term construction; G-
Prism-FB [39], G-Prism-DB [40] and G-Rules-IQR [16].
Further explanations about making use of GPDD function in
Prism family of algorithms are provided in Section III, as this
method is used in the base learners of the ensemble learner
introduced in this paper.

Concerning, Ensemble rule-base System, an extensive
evaluation study conducted in [41] shows that Random Forest
algorithm suffers from some weaknesses. Firstly, RF requires
to construct a number of base learners (trees) in the range of
100 to 500 in order to significantly improve the predictive
accuracy of the classification output. This is might not be
a practical solution in the real life applications where re-
trieving a fast classification decision is critical. Secondly, RF
algorithms are likely to build highly-correlated complex trees
from a high-dimensional datasets, which could considerably
increase the complexity and the forests error rate. Thirdly,
RF does not consider feature interaction (relationships) that
might occur in the feature space. On the other hand, the
Random Prism (RP) ensemble learner suffers from two es-
sential drawbacks. The first weakness point is highlighted
in [14], [34] which is the high computational demand as RP
makes use of all its base classifiers’ votes to produce the final
classification for every instance in the testing stage. Also,
RP is an accuracy-oriented ensemble classifier because of its
weighted majority voting system that uses each individual
base classifier accuracy. However, several studies, such as
[42], have found that the accuracy is unreliable to measure
the quality of a classifier especially for unbalanced datasets.

III. PREVIOUS WORK
This section summarises some of the authors’ preceding
work on enriching the Prism family of algorithms with more
expressive rule-base classifiers. One of the developed algo-
rithms is modified as base learner for the presented ensemble
classifier in Section IV. Section III-B gives a brief summary
of the two early versions of expressive rule-base classifiers :
G-Prism-FB and G-Prism-DB, while Section III-C details the
most recent G-Rule-IQR algorithm which is a cornerstone of
the in this paper proposed ensemble approach. Next Section
(III-A) describes the new numeric rule term structure that
used in previous and current work.

A. INDUCING RULE-TERMS DIRECTLY FROM
NUMERICAL ATTRIBUTES
The idea of utilising GPDD function in learning process
is driven by the fact that Gauss or normal distribution is
common in statistics in many natural phenomena [43]. As
discussed in Section II-C, the GPDD based method can pro-

duce more expressive and computationally efficient numeric
rule-terms compared with converting continuous attributes
into categorical ones in the form of frequent discrete inter-
vals [39]. The Gaussian distribution is calculated for each
continuous attribute αj with mean µ and variance σ2 from all
the values associated with classification, ωi. The conditional
probability for class ωi is calculated using Equation 1.

P(αj |ωi) = P(αj |µ, σ2) =
1√

2πσ2
exp(− (αj − µ)2

2σ2
) (1)

The value for P(ωi|αj) (or equivalently log(P(ωi|αj))) is
be calculated using Equation 2, and this value is then used to
determine the probability of a given class label ωi for a valid
attribute value αj .

log(P(ωi|αj)) = log(P(αj |ωi)) + log(P(ωi))− log(P(αj))
(2)

The Gaussian distribution for each class label in the train-
ing data is then used to calculate the probability of αj belong-
ing to class label ωi. This assumes that αj lies between an
upper and lower bound Ωi. The assumption here is that values
close to µ represent the most common values of numerical
attribute αj for ωi [16], [39], [40].

B. G-PRISM ALGORITHMS
G-Prism-FB algorithm [39] and G-Prism-DB algorithm [40]
are two recent Prism family members based on the new
numeric rule-term structure where G stands for GPDD, FB
and DB refer to the type of upper and lower bounds of the
rule-terms, either fixed (FB) or dynamic (DB). The main
difference between these two algorithms is illustrated in
Figure 2 as follows: (a) G-Prism-FB produces a rule-term
in the form of (x < α ≤ y) where x and y refer to the next
adjacent attribute values left and right of the of the mean µ
of attribute α; (b) G-Prism-DB has expanded the coverage of
it’s predecessor to include a user defined maximum number
of values k left and right of µ. The algorithm then gener-
ates all possible candidate rule-terms within these maximum
bounds and selects the one that maximises the conditional
probability with which the rule-term covers the target class.
The reader is referred to [16] for details about the advantages
and disadvantages of these two algorithms. Loosely speak-
ing, the advantages are an improved expressiveness of the
rules induced, whereas the disadvantages are with G-Prism-
FB that rule-term boundaries achieve low coverage of the
target class and thus more rule-terms are induced compared
with G-Prism-DB; and the disadvantage of G-Prism-DB is
that the optimal rule-term boundaries may lie beyond the user
defined range of boundaries.

C. G-RULES-IQR ALGORITHM
A recent study introduced G-Rules-IQR as a new algorithm
of the Prism family with the aim of overcoming or mitigating
some of the aforementioned limitations and drawbacks of
both versions of G-Prism algorithm [16]. The approach is
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FIGURE 2. Example of finding rule-terms with G-Prism. The shaded area represents values of attributes αj for class ωi. Part (a) of the figure depicts finding a
rule-term using G-Prism-FB and part (b) of the figure depicts finding a rule-term using G-Prism-DB.

centred around two aspects: (1) a new rule-term induction
method which is based on a combination of GPDD and
Interquartile Range (IQR) to set boundaries; and (2) en-
abling/facilitating this rule-term induction on attributes that
are not normally distributed. G-Rules-IQR is outlined in
Algorithm 2. With respect to (1), as highlighted in Algorithm
2, G-Rules-IQR algorithm utilises the quartiles that partition
the probability density function into four quarters (each
containing 25% of data points). Then the algorithm makes
use of Gauss distribution on Z-Score scale to determine the
third and the first quartiles as in Equation 3 in order to find
the upper rule-term and the lower rule-term boundaries. σ
is the standard deviation from the mean, z1 is the standard
score of the first quartile and is ≈ −0.67 while z3 is the
standard score of the third quartile and is ≈ 0.67. x usually
represents the mean µ but in case of data that is normally
distributed it represents the highest probability density of
value of P(αj |ωi) as in lines 15 and 16 of Algorithm 2, where
ωi is the current target class.

Q1 = x = (σ ∗ z1) + αj

Q3 = y = (σ ∗ z3) + αj

IQR = Q3 −Q1

(3)

Regarding (2), G-Rules-IQR performs a test for normality
for each attribute. If the values for an attribute are not
normally distributed for a particular target class, then G-
Rules-IQR transforms the attribute values with respect to that
target class to approximate a normal distribution. Loosely
speaking G-Rules-IQR reduces the skewness rate of attribute
values from the normal distribution. A simple and common
transformation for attribute values is to take the logarithm
of the values [44]. This method to approximate normal
distribution is used in this paper due to its simplicity. The
normality of each attribute is individually tested against all
possible classes in the dataset using Jarque-Bera test [45].
This is done before G-Rules-IQR is applied. If the values
of an attribute are not normally distributed in regard to a
target class, then the logarithmic approximation to normal
distribution is applied.

D. EVALUATION SUMMARY OF G-PRISM AND
G-RULES-IQR
G-Rules-IQR algorithm has been empirically evaluated in
[16], comparing its performance with two different groups
of Prism based approaches. The first group includes the orig-
inal Prism with three different discretisation methods: cut-
point calculations (local discretisation), ChiMerge (bottom-
up global discretisation), and Caim (top-down global dis-
cretisation) [16]. The second group includes the two versions
of G-Prism algorithms that were briefly described in Section
III-B. The transformation to approximate normal distribution
was implemented in both G-Prism versions and G-Rules-IQR
and could be switched off. The study [16] concluded that G-
Rules-IQR with transformation outperformed its competitors
with respect to F1 Score, accuracy, tentative accuracy and
execution time.

IV. THE REG-RULES ENSEMBLE LEARNER
The improved version of the G-Rules-IQR algorithm with
approximation to normality component is the base inducer
of the in this paper proposed ensemble classifier; therefore, it
will be illustrated in detail in the current section. The reason
for choosing this algorithm is because the stand-alone model
of G-Rules-IQR approach shows a high performance in most
cases comparing with several other Prism-based classifiers,
while producing more expressive rules [16]. However, in
general, single rule-base classifiers are not stable especially
when they are applied on data containing noise and are
also sensitive to the sampling techniques and consequently
the level of 13 predictive accuracy varies between different
samples [46]. Ensemble learning is an effective approach that
can address several single classifier limitations [46] that will
be explained in Section IV-A.

A. STAND-ALONE CLASSIFICATION SYSTEM
LIMITATIONS
According to [46], learning algorithms that produce only a
single classification model suffer from three essential draw-
backs that can be addressed by ensemble classification mod-
els: (i) the statistical problem, (ii) the computational problem,
(iii) and the representation problem.

The statistical issue occurs when the learning algorithm
is searching a large feature space for the amount of available
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Algorithm 2: Learning classification rules using G-
Rules-IQR Algorithm.

1 for i = 1→ C do
2 D ← Training Dataset;
3 while D does not contain only instances of class ωi

do
4 forall attributes αj ∈ D do
5 if attribute αj is categorical then
6 Calculate the conditional probability,

P(ωi|αj) for all possible attribute-value
(αj = x) from attribute α;

7 else if attribute αj is continuous then
8 Calculate mean µ and variance σ2 of

continuous attribute α for class ωi ;
9 foreach value αj of attribute α do

10 Calculate the conditional probability
P(αj |ωi) based on created
Gaussian distribution created in
line 8 ;

11 end
12 Select αj of attribute α, which has

highest value of P(αj |ωi) ;
13 Compute 1st and 3rd quartile using

zscore values ;
14 zScore = 0.67 ;
15 x = σ ∗ (−zScore) + αj ;
16 y = σ ∗ (zScore) + αj ;
17 Create rule-term rα in form of

(x < α ≤ y) ;
18 Calculate P(rα|ωi)
19 end
20 end
21 Select (αj = x) or (x < αj ≤ y) with the

maximum conditional probability as a
rule-term ;

22 Create a subset S from D containing all the
instances covered by selected rule-term at line
21 ;

23 D ← S
24 end
25 The induced rule R is a conjunction of all selected

rule-terms built at line 21 ;
26 Remove all instances covered by rule R from

Training Dataset ;
27 repeat
28 lines 2 to 26 ;
29 until all instances of class ωi have been removed

form the training data;
30 Reset Training Data to its initial state ;
31 end
32 return induced Rules ;

training instances. In such cases, different classification mod-
els with similar predictive accuracy rates might be generated
and hence selecting one of them is a difficult task. The risk of
choosing an over-fitted model is rather high [19]. Therefore,
combining the decisions (votes) of these models can lower
this risk [46].

The computational obstacle relates to the size of the
dataset. In real life datasets, considerable dependencies be-
tween different features are likely to exist especially among
large datasets with high dimensionality in the feature space
[47]. This makes the task of finding the best classification
model in a computationally feasible time more challenging.
Consequently, classification algorithms must utilise heuristic
methods to deal with this problem. These heuristics might get
trapped in ‘local minima’ and hence cannot guarantee identi-
fying the best model. Therefore, like with the statistical issue,
selecting several different classifiers rather than a single one
reduces the risk of selecting a bad model, which might suffer
from such a computational problem [46].

Lastly, the representational problem appears when there is
no optimal classifier to be selected within the classification
models spaces. In this case, constructing several weak clas-
sifiers might ensure better classification results than trying to
chose the best representative one of them.

In general, a learning model that suffers form statistical
or computational problems is described as model with high
‘variance’ while the one that experiences representational
problems is said to have high ‘bias’ [46]. Constructing en-
semble classification model by combining the predictions
from several base classifiers can be an effective method
to overcome these two problems as the main strength of
ensemble learning is the ability to handle bias and variance
in the data effectively.

B. FRAMEWORK FOR THE ENSEMBLE CLASSIFIER:
REG-RULES
This section proposes a new rule-based ensemble classifi-
cation system named: Ranked ensemble G-Rules-IQR and
termed (ReG-Rules). Algorithm 3 details the pseudocode for
this classifier. Figure 3 describes the general framework of
this system which consists of 5 stages with several opera-
tions: (1) Diversity Generation, (2) Base Classifiers Induc-
tions, (3) Models Selection, (4) Rule Merging, (5) Combi-
nation and Prediction. These stages will be illustrated in the
following sections referring to lines in Algorithm 3.

C. ENSEMBLE DIVERSITY GENERATION
The performance of an ensemble classification model is
highly dependent on the level of diversity among the group
of classifiers that constitute the ensemble [25], [26], [30].
Clearly, combining individual classifiers with identical or
even similar outputs leads to a do-nothing ensemble model.
Therefore, if sufficient diversity is obtained, each classifier
commits different errors at different times. Thus an appro-
priate combination strategy can result in reducing the total
number of errors in the overall ensemble system.
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FIGURE 3. The General Frame Work of the Ensemble Rule-Based Classifier: ReG-Rules.

Nevertheless, unlike regression, in classification context
there is no explanatory theory defines why and how diversity
among individual classifiers contributes to overall ensemble
accuracy [48], [49]. However, a widely used method to obtain
classifiers diversity is: ‘using different training datasets to
train individual classifiers’ [30]. This method is also used
in the ensemble classifier presented in this paper. In this ap-
proach all the subsets are drawn from a single data source, but
they can just as well be entirely different datasets gathered
from different data sources, capturing different aspects of
data features if an appropriate randomness is introduced into
their re-sampling technique.

Accordingly, as it can be seen in Figure 1, diversity gen-
eration part in particular, ReG-Rules utilises two types of
sampling in order to maximise the level of base classifiers
diversity: (1) sample a dataset randomly without replacement
into train and test dataset. Please note that the test data is used
only once as unseen data to assess the general performance
of the ensemble classification model, not the individual base
classifiers. (2) Bagging, which is a well known sampling
with replacement method [31] used to create multiple data
samples. Each sample size is equal to the size of the trained
dataset; hence, some instances may appear more than once
in a sample set while some may not appear. Statistically, the
bagging method produces a sample that is likely to contain
63.2% of the original training dataset. As a result, there are
approximately 36.8% of the original training instances that
are not used to train the model, these instances are called
out-of-bag instances. This portion of the available instances
is used as a validation dataset to measure the performance of
a base classifier.

D. BASE CLASSIFIERS INDUCTIONS
Among the factors controlling the induction of any predictive
ensemble model are (1) the total number of base classifiers
induced which is represented by ensemble pool in Figure
3, and (2) the number of models selected from this pool to
participate in the final ensemble decision [25], [26]. While
the former is explained in this Section, the latter which is
also known as the ensemble size, will be discussed in details
in the next Section (IV-E).

As it can be seen in Algorithm 3 (lines 2 to 5), ReG-Rules
system utilises a user-defined parameter to induce M base
classifiers fromM bagged samples of the training dataset. An
important aspect of ensemble learning is to determine how
many (M ) base learners should be induced. The impact of
this on the ensemble efficiency in terms of runtime, memory
consumption, diversity, and predictive accuracy make its
determination not easy in general [48]. There is no ideal
number of component classifiers within an ensemble. How-
ever, a major experimental study conducted in [50] suggested
constructing between 64 and 128 base learners to ensure a
balance between computational cost and accuracy. The same
study has shown that there is no significant performance gain
if a larger number of base models is induced. Therefore, a 100
base learners as a default number within this range has been
chosen for ReG-Rules. Also, the experiments presented in
this paper have been carried out with this default parameter.
The induction of these base classifiers is invoked line 5
of Algorithm 3 is G-Rules-IQR Algorithm. As mentioned
in Section III-D, selecting this algorithm is based on its
performance as a stand-alone model in [16] where it has been
empirically evaluated and compared with other members of
the Prism family of algorithms in terms of accuracy and
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Algorithm 3: Ensemble Rule-based Classifier: ReG-
Rules.

1 initialise the ensemble model (ReG-Rules)
2 for i = 1→M do
3 si ← Random sample with replacement using

Bagging method
4 vi ← out-of-bag set
5 Generate a base classifier BCi by applying

Algorithm 2 (G-Rules-IQR) on si dataset and learn
a rules set Ri

6 Evaluate BCi performance by applying Ri on vi
dataset

7 Calculate a weight for each rule induced in previous
line

8 Send BCi including its rules set weights to the
ensemble pool Epool

9 end
10 Rank all the base classifiers BC collected in Epool

according to the criteria described in Section IV-E
11 Eliminate weak BC by selecting the top models

(topBC) ranked in the previous step according to the
following if statement:

12 if ensemble size type = defualt then
13 Select top 20% BC models in line 10
14 else
15 user decide the ensemble size
16 Assign all the top BC (topBC) selected in line 11 to the

ensemble model (ReG-Rules)
17 for j = 1→ topBC do
18 w1 ← Rj weight computed previously in line 6
19 Apply Algorithm 4 (Rule merging) on current

topBcj and update its rules set Rj
20 Re evaluate Rj on the same validation dataset used

for weighting the rules in line 6
21 w2 ← Calculate the merged rules Rj weight

returned from the previous line
22 if w2 > w1 then
23 replace rules set of the current topBCj by the

new merged rules Rj
24 end
25 Sort the rules set Rj according to their correctly

used times
26 end
27 return ReG-Rules Classifier

expressiveness.
At this level of training stage in ReG-Rules system, mul-

tiple models are constructed independently. Nevertheless, it
is not possible to measure the quality of these models in
order to chose the best learner that can lead to a smaller and
more accurate ensemble, until the entire ensemble members
contributes to deciding a final classification output. For this
reason, as highlighted in Algorithm 3 (lines 6 to 8), a val-
idation data subset is used during induction stage of base

classifiers to perform what is called a classifier performance
weighting.

The basic idea is to associate each individual classifier
with a combination of measurements obtained during the
validation phase in which assesses the performance of the
individual learner. In other words, given M base classifiers
are induced in the training phase, their metrics are organised
as anM -dimensional vector which each consists of : (1) rules
set size, (2) average of a rule length, (3) CUR: stands for
Correctly Used Rules (on the validation data), (4) abstain
rate, (5) accuracy, and (6) tentative accuracy. Please note,
metrics 1-3 are used in rules merging strategy, one of the
contributions of this paper, which is described in Section IV-F
while metrics number 3, 4 and 6 are used in combination
strategy which is described in Section IV-G. Definitions of
all these metrics are also illustrated in Section V-A. The
final step of this stage is represented by the term ‘Ensemble
pool’ in Figure 1. The Ensemble pool contains all the base
classifiers that are independently evaluated, weighted and
prepared for the models selection stage.

E. MODELS SELECTION
As stated in the previous section, how many component
classifiers should be included in the final ensemble is an
influential factor for building an efficient and accurate en-
semble [26], [48]. A large ensemble explores different feature
subspaces which might increase its general classification ac-
curacy. However, it requires a higher computational overhead
than of a smaller one and decreases the ensemble’s explain-
ability. To overcome this trade-off, reducing the ensemble
size should be considered but to what extent this reduction
can be applied without causing significant accuracy loss to
the whole model is difficult to determine. According to an
empirical study presented in [51], a compact ensemble can
be extracted from a large one without reducing the whole
ensemble predictive performance in terms of diversity and ac-
curacy. Moreover, the theorem of ‘many could be better than
all’ which was presented in [52] inspired researchers to in-
troduce many ensemble selection methods such as Ranking-
Based which is a popular approach for selecting the ensemble
members. The reader is referred to [53] for additional models
selection approaches.

The main concept of Ranking-Based approach is to sep-
arately rank each base classifier ‘according to a certain cri-
terion and chose the top ranked classifiers according to a
threshold’ [26]. The most commonly used criterion is the
predictive accuracy which is in ReG-Rules computed for
each individual base classifier using the separate validation
dataset. However, accuracy might be an inappropriate metric
to evaluate the classifier especially in imbalanced domains
[42]. Taking this into consideration, more measurements are
considered in this study. Hence, as previously presented
in Section IV-D, each individual base classifier induced in
the in proposed ensemble system (ReG-Rules) is associated
with a combination of metrics that are acquired using dif-
ferent validation datasets. Three of these metrics namely

VOLUME 4, 2016 9



Almutairi et al.: ReG-Rules: An Explainable Rule-based Ensemble Learner for Classification

(1) tentative accuracy, (2) CUR: number of rules that were
used correctly, and (3) abstaining rate, are used as ensemble
selection criteria by ranking all the base classifiers according
to their values. Then, as highlighted in Algorithm 3 (lines
10 and 11), the weak base classifiers will be eliminated after
selecting the top ranked models according to a predefined
ensemble size. Please note that the number of base classifiers
that are retained from the ensemble is determined using two
types of threshold: (1) default or (2) user defined. There is no
optimal ensemble size to be determined [48] but in this study,
the default threshold is the top 20% of the ranked models
and it was set in this way to ensure that only the strong
base classifiers are selected. Thus from the 100 base learners
induced in the experiments presented in this paper, only the
top 20 ranked base classifiers are chosen to design the final
ReG-Rules ensemble system and the remaining 80 models
are discarded. Despite this big reduction in the ensemble size,
the top 20 models was sufficient according to ‘many could be
better than all’ theory [52] and this default threshold worked
well in most cases.

F. INTEGRATED RULE MERGING (RM) TECHNIQUE

Overlapping rules might occur within a rule set of a selected
base classifier. Overlapping rules are generally unnecessary,
need to be tested at prediction stage, thus incurring unnec-
essary computational cost of classification. The proposed
integrated RM method aims to address locally and inde-
pendently this problem for each selected base classifier in
the ensemble model. The method is described in Algorithm
4 and represents a post-processing of the induced rules.
First the rules are filtered according to their target class and
attributes contained in their rule-terms. The Rule Merging is
applied for the rules of each target class in turn. During this
process some of the rules within the same target class will
either be discarded or merged with other rules according to
their similarities (overlap of features’ ranges). This results
in more concise and smaller base classifier rule sets, which
are thus more easily read and understood by human analysts.
The following passages describes RM technique using three
exemplary scenarios.

Figure 4 shows a basic example of the process using two
different rules having the same attributes and class where in
(a) the two rules are overlapped and hence can be merged to
the single rule; (IF 10.6 < α1 ≤ 13.4 THEN low). In
case of (b) the figure shows a gap between the upper bound
of the first rule and the lower bound of the second and thus
the merging cannot be performed.

Algorithm 4: Local Rule Merging (RM) Algorithm.

1 checkedRules→ empty
2 for i = 1→ R do
3 checkedRules← ckeckedRules+Ri ;
4 OtherR← R [−checkedRules] ;
5 j = 1 ;
6 repeat
7 if ( class ωi of Ri = class ωj of OtherRj) and
8 ( all attributes α in Ri = all attributes α in

otherRj) then
9 OverlapExist← True ;

10 foreach attribute αr ∈ α do
11 switch the type of attribute αr do
12 case Continuous do
13 OverlapExist← Rangei

Overlap Rangej
14 case Categorical do
15 OverlapExist← value of αr(i) =

value of αr(j)
16 end
17 if OverlapExist = False then
18 Exit for loop in line 10
19 end
20 end
21 end
22 if overlapExist then
23 Compute new upper and lower bounds

for each rule-terms rα ;
24 Create merged rule in a form of

(x < αr ≤ y) or (αr = x) ;
25 Replace Ri in R rules list by the new

merged rule created in line 24
26 end
27 end
28 j ← j + 1 ;
29 until No more rules in OtherR list;
30 end
31 return new rules list R

FIGURE 4. Rules sets with single term each rule sharing similar features and
classes. In example (a) there is an overlap between rules and in example (b)
the rules do not overlap.

Figure 5 shows another example of three rules having the
same attributes, α1, α2 and referring to the same class label.
While the second rule cannot be incorporated in the merging
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process due to the gap existing between 14.7 and 17.8 in
α2, the first and third rules are overlapped and thus can be
combined together to produce a single rule. The output of
this approach is the following rule set:

IF (2.8 < α1 ≤ 11.3) and (10.6 < α2 ≤ 14.7) THEN high

IF (6.8 < α1 ≤ 12.9) and (16.1 < α2 ≤ 22.9) THEN high

FIGURE 5. Rules sets with two rule-terms sharing similar features and
classes.

As previously stated, the main advantage of this approach
is reducing the complexity and improving the interpretabil-
ity of rules that might be generated from large datasets or
high dimensional data. As a result, the number of rules for
each selected base classifier in the ensemble model would
be reduced by removing the overlapping that might occur
between rules and thus also reduce the computational cost
of prediction. Following is another example to show how
benefical this rule merging can be. Figure 6 includes four
rules (Rule 1, Rule 2, Rule 3, Rule 4); each of which have
four terms ( α1, α2, α3, α4 ) and refer to the same class label
(low). Assume that a given classifier is searching this rule set
in the same order to find the first rule that covers an instance
with the following attributes values: ( α1 = 8.1 , α2 =
20.2 , α3 = 27.5 , α4 = 43.4 ). In this case, the first rule
that fires is the last one (Rule 4). Consequently, the classifier
is required to check all 4 rules in order to find a match.

FIGURE 6. Rules set with multiple rule-terms sharing similar features and
classes (before merging).

As it can be seen from Figure 6, each rule-term in any
of the rules in the example is either completely or partially
overlapped with at least one rule that includes the same
attribute. Applying the new merging method to this rules set,
as shown in Figure 7, replaces the four rules with the single

merged rule below and hence less effort is required to find a
rule that matches the instance:

IF (1.7 < α1 ≤ 9.4) and (6.7 < α2 ≤ 20.9) and

(8.2 < α3 ≤ 28.5) and (23.1 < α4 ≤ 44.1) THEN low

FIGURE 7. A rule with multiple rule-terms sharing similar features and
classes (after merging).

G. COMBINATION STRATEGY
Instead of trying to determine the perfect single model,
ensemble methods combine a diverse set of models to achieve
accurate induction ability. Consequently, it is essential to an
ensemble combiner to utilise the appropriate combination
strategy in order to produce not only accurate but more robust
classification results [26]. The in Section IV-B proposed
ensemble classifier termed ReG-Rules, adopts the parallel
learning approach, meaning that the induction of each base
learner is independent and can be built in parallel to other
models without cooperation in the training phase. Instead
collaborations between these models are taking place in the
testing stage where their independent decisions are passed to
a combiner using the combination strategy introduced in this
section to generate the final classification decision [30].

A frequently used, simple and thus proven technique is the
majority voting [26], [54]. In this type of voting, all the base
models have the same weights [30]. Thus, in the testing stage,
the ensemble classifier will assign an unlabelled instance
to the class that has the highest number of votes. Several
ensemble classifiers such as Random Forest adopt this equal
voting. However, in classification tasks, it is favoured to
use weighted voting instead to avoid a potential problem of
reliability when some base classifiers are more reliable than
others. Assigning higher weights to the decisions of those
qualified models may further improve the overall predictive
performance than can be achieved by the equal majority
voting [25].

The combination method adopted in this research is based
on the latter strategy, but not just on classifier level but also on
individual rule level. For this, ReG-Rules builds a committee
of rules, termed Classification Committee. The process is
described in Algorithm 5. In the algorithm, i refers to the
unseen instance, T denotes the test data and topBC is the
subset of top ranked base classifiers build according to the
selection method described in Section IV-E and represented
by the model selection stage in the general framework of the
system (Figure 3). Essentially for each unseen instance, i,
the combiner creates a committee of rules, which comprises
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the first rule that fired from each base classifier contained in
topBC. As previously explained in Section IV-F, please note
that these rules are already improved locally withing each
base classifier contained in the topBC. The improvement
involves applying the Rule Merging techniques to the rules of
each target class in turn and then sorting the resulted merged
rules according to their performance during validation phase
(see lines 20 to 28 in Algorithm 3.

Algorithm 5: Combiner: ReG-Rules Committees.

1 for i = 1→ T do
2 Generate new classifier committe com
3 for n = 1→ topBC do
4 voten ← predict class Ci for instance ti
5 Add voten to comi including the weight of the

model topBCn and the weight of its rules set
Rn that has been used for the prediction

6 end
7 Eliminate the abstaining classifiers whose Rules set

does not cover the instance ti
8 Compute the score wi for each class in comi

9 return committe decision comi that has highest
weighted average probability Evaluate comi final
prediction

10 end

Table 1 shows this committee of rules on an example,
how it has been computed by lines 1 to 6 in Algorithm 5.
Each prediction received by the committee from the topBC
is associated with the following components:

1) Tentative accuracy of the base classifier from which the
rule comes from. The tentative accuracy, is computed
only on classification attempts.

2) The number of times a rule was used during the valida-
tion phase and predicted the correct class label (CUR).

3) The predicted class label of the rule.
4) The classification type, i.e. did the base classifier use a

rule or was it just a majority vote.
Next in lines 7 to 10 in Algorithm 5 the votes are

combined. First all votes that are based on majority class
as classification type are not considered for computing the
weight. The reason is because no rule has fired for these
base classifiers, thus they have abstained and their votes
are considered unreliable. In this example this is concerning
classifiers 84 and 38. Next the score for each class label in
Table 1 is calculated, in this case there are 3 class labels
namely A, B and C.

The computed score in this example is shown in Table
2. The score contains the following components: Vote Fre-
quency, Sum Tentative Accuracy per class, and total CUR
per class. Vote Frequency is simply how often there is a rule
in the rule committee that voted for a particular class. Sum
Tentative Accuracy per class is simply the sum of tentative
accuracies of the rules’ base classifiers that have voted for
that class. The Total CUR per predicted class is the sum of

all CUR values of the rules’ base classifier that voted for that
class. Thus, as it can be seen in Table 2:
Total CUR for class A = 3
Total CUR for class B = 81
Total CUR for class C = 2

TABLE 2. Predicted Classes Scores.

Predicted Vote Freq. Total Sum
Class Vote Freq. CUR/Class Ten. Acc./Class
Class A 4 3 3.85
Class B 13 81 12.78
Class C 1 2 0.75

Accordingly, CUR value is used to assign a class to the
test instance for which the committee of rules was build for,
a higher CUR indicates a better class label discrimination and
thus is selected as the final prediction of the committee.

If there is a tie break, meaning for two or more classes
the same highest CUR was achieved, then the highest sum of
tentative accuracies per class is used to discriminate further.
If tie break issue still exist, then Vote Frequency per class
label will be considered.

V. EVALUATION
This section first introduces the experimental setup in Section
V-A and the datasets used in Section V-B. The evaluation
comprises three investigations. The first investigation, which
is explored in Section V-C, aims to empirically evaluate
the overall performance of the new rule-based ensemble
learner (ReG-Rules) compared with the stand-alone G-Rules-
IQR. The second investigation explained in Section V-D
empirically evaluates the Ranking-based [53] approach for
selecting an ensemble subset. The approach which is de-
tailed in Section IV-E, is compared with another method for
selecting an ensemble subset without ranking its members.
Lastly, Section V-E describes the third investigation which
qualitatively evaluates the performance of new proposed rule
merging technique in terms of rules complexity and quantity.

A. EXPERIMENTAL SETUP
All the experiments were performed on a 2.9 GHz Quad-
Core Intel Core i7 machine with 16GB 2133 MHz LPDDR3,
running macOS Catalina version 10.15.1. All 19 datasets
used in the experiments were picked randomly from the UCI
repository [55], the only condition being that they contain
continuous attributes and involve classification tasks. All
algorithms have been implemented in the statistical program-
ming language R [56] and reuse the same code base differing
only in the methodological aspects described in this paper.
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TABLE 1. Example of metrics contained in a committee of 20 rules for the classification of one test instance.

Classifier No. Rule ID CUR
times

Tentative
Acc.

Vote Classification
Type

34 8 3 1.0 Class B Rules
14 8 0 1.0 Class A Rules
80 3 10 1.0 Class B Rules
54 4 12 1.0 Class B Rules
25 12 3 1.0 Class B Rules
84 - - 1.0 Class C Majority class
20 3 12 1.0 Class B Rules
59 10 0 1.0 Class A Rules
77 4 7 1.0 Class B Rules
12 3 12 1.0 Class B Rules
38 - - 1.0 Class C Majority class
7 10 0 1.0 Class A Rules
53 3 9 1.0 Class B Rules
71 4 7 1.0 Class B Rules
81 4 3 1.0 Class B Rules
60 12 1 0.94 Class B Rules
50 12 0 0.93 Class B Rules
90 7 2 0.91 Class B Rules
73 13 3 0.85 Class A Rules
46 10 2 0.75 Class C Rules

The algorithms were evaluated against 5 metrics for clas-
sifiers which are described below:

• Number of Rules: This is the total number of rules
generated for G-Rules-IQR classifier and the average
number of rules generated by the ensemble base clas-
sifiers.

• F1 Score: This is also known as the harmonic mean of
precision and recall. A high F1 Score is desired. This is
a number between 0 and 1.

• Accuracy: This is the ratio of data instances that
have been correctly classified. Unclassified instances are
classified using the majority class strategy. A high clas-
sification accuracy is desired. This is a number between
0 and 1.

• Tentative Accuracy: This is the ratio of correctly clas-
sified instances based only on the number of instances
that have been assigned a classification. A high tentative
accuracy is desired. This is a number between 0 and 1.

• Abstaining Rate: The proportion of cases a classifier
abstains from classification, i.e. the proportion of exam-
ples not covered in the rule set. Tentative accuracy is
based only on the number of instances that have been
classified and does not count the ones the classifier
abstained of, while accuracy considers the abstained
instances as misclassification. Hence, the higher the
abstaining rate, the higher the tentative accuracy and the
lower the accuracy. This is a number between 0 and 1.

B. DATASETS
The characteristics of the datasets used in the experiments
are highlighted in Table 3 in terms of number of instances,
attributes (including type of attributes) and class labels.
Datasets 15 and 16 included few missing values. A common
strategy to estimate each of the missing values using the

values that are occur in the dataset is called: replace by most
frequent / average value [24]. This approach is adopted in
this research by replacing a missing categorical value with
the most frequently occurring value and estimating a missing
numerical value with the average value for the concerning
attribute.

Two sampling methods have been employed in the present
study: (1) sample a dataset randomly without replacement
into train and test datasets; whereas the test set consists of
30% the data instances and the remaining 70% were used
to build the ensemble classifier. The test data is used only
once to assess the general performance of the ensemble
classification model. (2) Bagging, a well known sampling
with replacement method was used to create multiple data
samples from the training data.

TABLE 3. Characteristics of the datasets used in the experiments.

No. Dataset No. No. Attributes No.
Instances Classes

1. iris 150 4 (cont) 3
2. seeds 210 7 (cont) 3
3. wine 178 13 (cont) 3
4. blood transfusion 748 5 (cont) 2
5. banknote 1372 5 (cont) 2
6. ecoli 336 8 (7 cont, 1 name) 8
7. yeast 1484 9 (8 cont, 1 name) 10
8. page blocks 5473 10 (cont) 5
9. user modelling 403 5 (cont) 4
10. breast tissue 106 10 (cont) 6
11. glass 214 10 (9 cont, 1 id) 7
12. HTRU2 17898 9 (cont) 2
13. magic gamma 19020 11 (cont) 2
14. wine quality-white 4898 12 (cont) 11
15. breast cancer 699 11 (10 cont, 1 id) 2
16. post operative 90 9 (8 categ, 1 cont) 3
17. wifi localization 2000 7 (cont) 4
18. indian liver patient 583 11 ( 1 categ, 10 cont) 2
19. sonar 208 61 (cont) 2
20. leaf 340 16 (15 cont, 1 name) 40
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TABLE 4. Number of Rules and Abstaining Rates.

Number of Rules Abstaining Rate
# G-Rules-IQR ReG-Rules G-Rules IQR ReG-Rules

before merging after merging
1 18 17 13 0.07 0.00
2 22 19 15 0.03 0.00
3 13 13 11 0.06 0.00
4 20 16 11 0.00 0.00
5 89 82 82 0.02 0.00
6 53 32 29 0.08 0.00
7 132 82 68 0.07 0.00
8 215 158 143 0.02 0.00
9 57 45 42 0.30 0.00
10 28 24 23 0.19 0.00
11 30 25 22 0.11 0.02
12 31 26 17 0.00 0.00
13 155 113 95 0.00 0.00
14 171 127 76 0.01 0.00
15 11 9 8 0.00 0.00
16 29 23 23 0.11 0.00
17 59 48 38 0.01 0.00
18 190 118 118 0.36 0.00
19 16 13 12 0.13 0.00
20 129 101 98 0.39 0.00

C. EMPIRICAL EVALUATION OF THE ENSEMBLE
REG-RULES CLASSIFIER
Tables 4 and 5 show the results of the experiments with
respect to 5 evaluation metrics. In each table the # symbol
refers to the number of the dataset in Table 3. The best
result(s) in the tables for each dataset are highlighted in bold
letters. Table 4 compares three types of induced rules sets in
each dataset: (1) number of rules generated by G-Rules-IQR
classifier, (2) average number of rules induced by ReG-Rules
classifier before utilising the RM algorithm, and (3) average
number of rules generated by ReG-Rules after integrating the
local RM algorithm in its selected base classifiers rules sets.
As it can be seen in Table 4, on average a ReG-Rules base
classifier produces fewer rules than G-Rules-IQR classifier
by producing lower number of rules in all the 20 datasets.
However, further minimising in the number of induced rules
without reducing the performance of the classifier is desired
and beneficial to the human analyst. For this reason, ReG-
Rules integrates the local RM approach in its construction.
As it can be observed from Table 4 and Figure 8, in 17
out of 20 datasets a reduction in the number of rules was
achieved after applying the local RM algorithm. In some
cases the reduction was more than 40% and only in three
datasets (5, 16, 18) where ReG-Rules classifier produces the
same number of rules sets before and after utilising the RM
method. Due to this significance, the remaining experimental
results in this section will consider only this version of ReG-
Rules algorithm which involve the local RM technique in its
construction.

Table 5 compares ReG-Rules and G-Rules-IQR in terms of
F1 score, accuracy and tentative accuracy. With regards to F1
score, which is the harmonic mean of precision and recall, the
results show that the proposed ReG-Rules achieves best score
on 13 out of 20 datasets. Also, in 5 out of the remaining 7
cases where it did not outperform its competitor, ReG-Rules

FIGURE 8. Difference (in percentage) of average number of rules of
ReG-Rules classifier after integrating RM approach compared with before the
merging process.

algorithm performs at the same level of score as G-Rules-
IQR. On two datasets (1 and 9), ReG-Rules algorithm was not
the best method, but was still very close within 3% difference
to the best F1 score. In most cases the proposed ensemble
method ReG-Rules achieved the highest accuracy rate. In
particular, it outperforms G-Rules-IQR algorithm in 15 out of
20 datasets and performs at the same level as its competitor
in 3 other datasets. With respect to tentative accuracy, ReG-
Rules algorithm performs better or equal than G-Rules-IQR
in 17 out of 20 datasets. Among these 17 cases, the proposed
ensemble algorithm outperforms G-Rules-IQR in 9 cases.
In the 3 cases in which ReG-Rules underperformed it only
underperformed by a difference of maximum 4%.
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TABLE 5. F1 Score, General Accuracy and Tentative Accuracy.

F1 Score Accuracy Tentative Accuracy
# G-Rules- ReG- G-Rules- ReG- G-Rules- ReG-

IQR Rules IQR Rules IQR Rules
1 0.96 0.93 0.91 0.93 0.95 0.93
2 1.00 1.00 0.97 1.00 1.00 1.00
3 0.98 1.00 0.94 1.00 0.98 1.00
4 0.98 1.00 0.97 1.00 0.97 1.00
5 0.99 0.99 0.98 0.99 0.99 0.99
6 0.79 0.92 0.91 0.96 0.94 0.96
7 0.86 0.91 0.89 0.98 0.97 0.98
8 0.93 0.94 0.98 0.99 0.99 0.99
9 0.96 0.95 0.72 0.94 0.95 0.94
10 0.81 0.97 0.66 0.97 0.81 0.97
11 0.86 0.87 0.86 0.92 0.97 0.94
12 0.99 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00
14 0.79 0.92 0.99 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00
16 0.52 0.77 0.67 0.63 0.67 0.63
17 1.00 1.00 0.99 1.00 1.00 1.00
18 0.80 0.81 0.73 0.71 0.70 0.71
19 0.95 0.97 0.87 0.97 0.94 0.97
20 0.68 0.71 0.37 0.64 0.57 0.64

D. EMPIRICAL EVALUATION OF RANKING CUR
APPROACH
As explained in Section IV-E, the idea behind this approach is
to rank once the individual ensemble members according to
a certain criteria, based on their rules sets quality and not just
the overall accuracy, and then select the top base classifiers
whose rank is above a given threshold (a fixed user-specified
amount or percentage of models). This approach is empir-
ically evaluated in order to show not only its performance
but also to what extent this strategy contributes towards the
improvement of overall accuracy of the ensemble classifica-
tion. In this part of experimental study, another version of
ensemble ReG-Rules is implemented using the same code
base differing in the ensemble selection method. In other
words, the second version of ReG-Rules algorithm will not
rank the available composite classifiers before selecting a
sub-ensemble according to the same user defined ensemble
size that has been chosen in the first version. Detailed results
of the experiments are depicted in Tables 6 and 7. The best
result(s) in these tables for each dataset are highlighted in
bold letters.

E. QUALITATIVE EVALUATION OF RULES MERGING
(RM) ALGORITHM
For simplicity, the bar chart shown in Figure 9 summarises
the performance comparisons between the two different
implemented versions of ReG-Rules algorithm. Version 1:
ReG-Rules classifier incorporates a prior ranking to its base
classifiers according to the average CUR numbers of these
models’ rules sets before selecting the top ranked members.
Version 2: ReG-Rules classifier that does not involve any
ranking process to its composite classifiers before selecting
the same subset size of ensemble as for the first version.
The figure reports the number of wins, losses and ties. These
numbers refer to the number of datasets where Ranked-CUR

TABLE 6. Comparison between two types of Ensemble selection models
applied to ReG-Rules classifier in terms of number of rules and abstaining
rate.

Datasets Number of Rules Abstaining Rate
No Ranking Ranking No Ranking Ranking

CUR CUR
1 11 13 0.00 0.00
2 16 15 0.00 0.00
3 11 11 0.00 0.00
4 16 11 0.00 0.00
5 80 82 0.00 0.00
6 31 29 0.00 0.00
7 83 68 0.00 0.00
8 146 143 0.00 0.00
9 42 42 0.00 0.00
10 22 23 0.00 0.00
11 20 22 0.00 0.02
12 20 17 0.00 0.00
13 89 95 0.00 0.00
14 78 76 0.00 0.00
15 8 8 0.00 0.00
16 21 23 0.00 0.00
17 36 38 0.00 0.00
18 116 118 0.01 0.00
19 12 12 0.00 0.00
20 99 98 0.00 0.00

FIGURE 9. Performance of Random G-Rules with Ranking CUR approach
over ReG-Rules without Ranking.

ReG-Rules algorithm (first version) outperformed, under-
performed or equal performed respectively. With regards to
number of rules measure, the results demonstrated in Table
6 and in Figure 9 suggest that there is no clear winner as
the number of wins is equal to the number of losses with
4 ties. However, the numbers of wins and ties suggest that
version 1 is generally competitive with version 2 regarding
number of rules measure. Concerning the abstain rates met-
ric, apart from a single loss, both versions are almost equally
performed with 19 ties out of 20 datasets.

However, the results detailed in Table 7 and summarised
in Figure 9 show that integrating ranking CUR method into
the proposed ensemble algorithm improves the classification
performance in most cases in terms of F1 score, accuracy
and tentative accuracy. With regards to F1 Score, Figure 9
reflects that ReG-Rules (version 1) outperforms (version 2) in
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TABLE 7. Comparison between two types of Ensemble selection models applied to ReG-Rules classifier in terms of F1 Score, Accuracy and Tentative Accuracy.

# F1 Score Accuracy Tentative Accuracy
No Ranking Ranking CUR No Ranking Ranking CUR No Ranking Ranking CUR

1 0.91 0.93 0.91 0.93 0.91 0.93
2 1.00 1.00 1.00 1.00 1.00 1.00
3 0.98 1.00 0.98 1.00 0.98 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00
5 0.99 0.99 0.99 0.99 0.99 0.99
6 0.91 0.92 0.95 0.96 0.95 0.96
7 0.87 0.91 0.97 0.98 0.97 0.98
8 0.88 0.94 0.97 0.99 0.97 0.99
9 0.93 0.95 0.93 0.94 0.93 0.94
10 0.87 0.97 0.88 0.97 0.88 0.97
11 0.90 0.87 0.97 0.92 0.97 0.94
12 1.00 1.00 1.00 1.00 1.00 1.00
13 0.99 1.00 0.99 1.00 0.99 1.00
14 0.99 0.92 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00
16 0.74 0.77 0.59 0.63 0.59 0.63
17 1.00 1.00 1.00 1.00 1.00 1.00
18 0.82 0.81 0.71 0.71 0.71 0.71
19 0.96 0.97 0.95 0.97 0.95 0.97
20 0.70 0.71 0.65 0.64 0.65 0.64

11 out of 20 datasets. Also, among the remaining 9 datasets
where it is not surpassing, Ranking CUR ReG-Rules algo-
rithm achieves similar scores in 6 datasets compared with the
second version. Concerning accuracy and tentative accuracy
metrics, Random G-Rules algorithm (version 1) achieves the
highest rates in 18 out of 20 datasets with 10 wins and 8
ties. Only in two datasets where the proposed RenG-Rule
algorithm was at most 5% lower in accuracy and 3% lower
tentative accuracy than the results accomplished by ReG-
Rules (version 2). It is important to note that the similarity in
accuracy and tentative accuracy results highlighted in Table 7
are caused by having almost no abstain rates as can be seen in
Table 6, this is due to the relationships between these metrics
which were explained previously in Section V-A.

The RM method developed in this paper is detailed in
Algorithm 4 and aimed to mitigate the complexity of rules
set for the individual classifier by reducing the number of
rules/terms. The RM approach has been empirically evalu-
ated with respect to the ReG-Rules ensemble in Section V-C.
This Section evaluates the RM method qualitatively on two
case studies where the rule sets produced by a G-Rules-IQR
classifier without RM and one with RM are examined.

The two case studies are the blood transfusion and the
wine datasets from the UCI repository [55]. The descriptions
of the two datasets can be found in Table 3 in terms of
number of instances, attributes (including type of attributes)
and classes. Both datasets are used previously among other
datasets to evaluate the original G-Rules-IQR algorithm in a
published work [16]. Also they are used in the current study
to evaluate the ensemble classifier (ReG-Rules). The datasets
have been randomly sampled without replacement into train
and test datasets; whereas the test sets consist of 30% the data
instances and the remaining 70% were used to learn the rule
set.

1) Case Study 1: Experiments Conducted on Blood
Transfusion Dataset

The same 524 training instances were used to learn the
classifier and induce the rules sets illustrated below. The
20 original rules were induced by G-Rules-IQR algorithm
before applying the merging approach while the 12 merged
rules are the ones generated using RM approach. Both, the
original and the merged rule sets are validated on the same
test data examples which consists of the remaining 224
instances. The results can be seen in Table 8.

Original Rules:

R1 : 18.59 < Time ≤ 51.41 → 0

R2 : 30.8 < Time ≤ 73.2 → 0

R3 : 2.41 < Monetary ≤ 2.98 &
−1.06 < Time ≤ 33.06 &
0.44 < Frequency ≤ 0.51 &
0.70 < Recency ≤ 1.01 → 0

R4 : 2.41 < Monetary ≤ 2.98 &
−2.44 < Time ≤ 34.44 &
0.44 < Frequency ≤ 0.51 &
0.50 < Recency ≤ 0.90 → 0

R5 : 2.41 < Monetary ≤ 2.98 &
0.44 < Frequency ≤ 0.51 &
1.45 < Time ≤ 26.55 → 0

R6 : 0.69 < Recency ≤ 1.12 &
−3.45 < Time ≤ 39.45 &
0.17 < Frequency ≤ 1.44 &
2.39 < Monetary ≤ 2.40 → 0

R7 : − 6.43 < Time ≤ 42.43 &
0.17 < Frequency ≤ 0.43 &
0.93 < Recency ≤ 1.42 &
2.39 < Monetary ≤ 2.40 → 0
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R8 : 48.54 < Time ≤ 99.46 → 0

R9 : 6.60 < Time ≤ 15.41 → 0

R10 : 0.32 < Recency ≤ 0.63 &
0.21 < Frequency ≤ 0.39 &
1.99 < Time ≤ 2.0 → 0

R11 : 12.43 < Time ≤ 19.57 → 0

R12 : 3.99 < Time ≤ 4.0 → 0

R13 : 1.12 < Time ≤ 1.64 → 1

R14 : 0.75 < Time ≤ 1.48 → 1

R15 : 1.25 < Time ≤ 2.03 &
0.87 < Frequency ≤ 1.29 → 1

R16 : 0.29 < Time ≤ 1.11 → 1

R17 : 1.76 < Time ≤ 1.93 → 1

R18 : 1.61 < Time ≤ 1.82 → 1

R19 : 1.60 < Frequency ≤ 1.69 → 1

R20 : 1.95 < Time ≤ 1.97 → 1

Merged Rules:

R1 : 18.59 < Time ≤ 99.46 → 0

R2 : 2.41 < Monetary ≤ 2.99 &
−2.44 < Time ≤ 34.44 &
0.44 < Frequency ≤ 0.51 &
0.50 < Recency ≤ 1.10 → 0

R3 : 0.69 < Recency ≤ 1.42 &
−6.43 < Time ≤ 42.43 &
0.17 < Frequency ≤ 0.44 &
2.39 < Monetary ≤ 2.40 → 0

R4 : 6.6 < Time ≤ 19.57 → 0

R5 : 0.29 < Time ≤ 1.64 → 1

R6 : 1.61 < Time ≤ 1.93 → 1

0.21 < Frequency ≤ 0.39 &
1.99 < Time ≤ 2.0 → 0

R7 : 2.41 < Monetary ≤ 2.98 &
0.44 < Frequency ≤ 0.51 &
1.45 < Time ≤ 26.55 → 0

R8 : 0.69 < Recency ≤ 1.12 &
−3.45 < Time ≤ 39.45 &
0.17 < Frequency ≤ 1.44 &
2.39 < Monetary ≤ 2.40 → 0

R9 : − 6.43 < Time ≤ 42.43 &
0.17 < Frequency ≤ 0.43 &
0.93 < Recency ≤ 1.42 &
2.39 < Monetary ≤ 2.40 → 0

R10 : 48.54 < Time ≤ 99.46 → 0

R11 : 6.60 < Time ≤ 15.41 → 0

R12 : 0.32 < Recency ≤ 0.63 &
0.21 < Frequency ≤ 0.39 &

1.99 < Time ≤ 2.0 → 0

It can be seen that the number or rules and rule terms
is considerably reduced, making it easier for the analyst
to understand the rule model. In this case the number of
rules were reduced from 20 to 12. The RM method merges
without loss of information, thus instances covered by a
rule before merging should still be covered either by the
same rule or the resulting merged rule (leading to the same
classification) after RM was applied. Nevertheless, what can
also be seen in Table 8 is that there are very small variations
in Precision, F1 Score, Accuracy and Tentative Accuracy. A
closer examination of the results on the test data revealed
that the variation are a result of the order in which the rules
are applied. Before merging a data instance may have been
covered by two or more rules each leading to a different class
label and the first rule applied and matching the data instance
would determine the class label. The same effects are still
true after the RM, if two rules being merged they are not
listed consecutively the rule order changes.

TABLE 8. Experimental Results of Case Study 1.

Metrics Original Rules set Merged Rules set
Number of Rules 20 12
Abstaining Rate 0 0
Recall 1 1
Precision 0.966 0.971
F1 Score 0.982 0.985
Accuracy 0.973 0.977
Tentative Accuracy 0.973 0.977

2) Case Study 2: Experiments Conducted on Wine Dataset
The same 125 training instances were used to learn the
classifier and induce the rules sets illustrated below. The 13
original rules were induced by G-Rules-IQR algorithm be-
fore applying the merging approach while the 9 merged rules
are the ones generated using RM approach. Both, the original
and the merged rule sets are validated on the same test data
examples which consists of the remaining 53 instances. The
results can be seen in Table 9.
Original Rules:

R1 : 0.09 < Noflavan phenols ≤ 0.12→ 1

R2 : 0.58 < Total phenols ≤ 0.62→ 1

R3 : 0.59 < Total phenols ≤ 0.65→ 1

R4 : 0.05 < Noflavan phenols ≤ 0.11→ 1

R5 : 13.68 < Alcohol ≤ 13.70→ 1

R6 : 1.93 < Magnesium ≤ 2.02→ 2

R7 : 1.85 < Magnesium ≤ 2.01→ 2

R8 : 2.01 < Magnesium ≤ 2.15→ 2

R9 : 2.77 < Proline ≤ 2.89 → 2

R10 : 0.39 < Total phenols ≤ 0.46→ 3

R11 : 509.6 < Proline ≤ 670.4→ 3

R12 : 0.34 < Totalphenols ≤ 0.43→ 3
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R13 : 0.57 < Hue ≤ 0.62→ 3

Merged Rules:

R1 : 0.05 < Noflavan phenols ≤ 0.12→ 1

R2 : 0.58 < Total phenols ≤ 0.65→ 1

R3 : 1.85 < Magnesium ≤ 0.65→ 1

R4 : 0.34 < Total phenols ≤ 0.46→ 1

R5 : 13.68 < Alcohol ≤ 2.02→ 1

R6 : 2.01 < Magnesium ≤ 2.15→ 2

R7 : 2.77 < Proline ≤ 2.89 → 2

R8 : 509.6 < Proline ≤ 670.4→ 3

R9 : 0.57 < Hue ≤ 0.62→ 3

Here it can be seen as well that the number or rules and
rule terms is considerably reduced, again, making it easier
for the analyst to understand the rule model. In this case the
number of rules were reduced from 13 to 9. As discussed for
Case Study 1, the merging does not cause loss of information,
merely the rule order may be influenced. In this case no
effects of the rule order can be observed with respect to the
performance metrics listed in Table 9.

TABLE 9. Experimental Results of Case Study 2.

Metrics Original Rules set Merged Rules set
Number of Rules 13 9
Abstaining Rate 0.06 0.06
Recall 0.98 0.98
Precision 0.98 0.98
F1 Score 0.98 0.98
Accuracy 0.94 0.94
Tentative Accuracy 0.98 0.98

VI. CONCLUSION
The paper presents the development of a new predictive
ensemble learner termed ReG-Rules. ReG-Rules’ purpose is
to explore if it is possible to create an explainable predictive
ensemble model (by reducing the amount of information for
analyst to interpret the ReG-Rules decision) while benefiting
from predictive performance of ensemble learning. The paper
first identifies rule-based methods as the most expressive
predictive data mining model representation and discusses
relevant developments in this area. The paper then further
reviews and discusses work in the area of ensemble learning
as a way to boost classification accuracy and in general pre-
dictive performance of stand-alone classifiers and postulates
that the induction of an explainable ensemble model would
require the base learner used to be expressive and and thus
interpretable by humans as well. Hence, the choice for a
rule-based learner as a basis to develop the ReG-Rules base
learner. Then the paper briefly summarises previous work
of the authors on the development of a rule term structure
and rule-based classifier termed G-Rules-IQR, which is then
identified as a suitable candidate for the base learner of

ReG-Rules. This is because G-Rules-IQR has already been
optimised to induce a highly expressive rule set and provides
a high classification accuracy in comparison with other rule-
based learners and also exhibits a low abstaining rate.

ReG-Rules induces a diverse ensemble based on bagging.
The induced base models are ranked according to their clas-
sification performance and only best performing models are
retained and considered for predicting class labels. These
base-models’ rule sets are further optimised by merging
overlapping rules further reducing the average number of
rules in the base models. ReG-Rules uses a validation set
to measure the individual classification performance which
is a composite measure composed of various metrics. Out of
these best ranked base models a classification committee of
rules is being built for each classification attempt.

ReG-Rules was then evaluated empirically and qualita-
tively. With respect to the Rule Merging method, it was found
that many fewer rules are in the model per base learner than
using original unmerged G-Rules-IQR. The Rule Merging
was also examined on two case studies, displaying the rulsets
before and after merging, it was found that the rule sets are
lot more compact and thus easier to read. Furthermore it was
found that there can be minor differences in the classifica-
tion performance due to Rule Merging possibly changing
the sequence in which rules are applied. It was also found
that the problem of abstaining, a typical problem of rule-
based classifiers, was almost non-existent. With respect to
F1 Score tentative accuracy and accuracy ReG-Rules clearly
outperformed the standalone G-Rules-IQR classifiers in most
cases. The ranking method was also examined and found to
improve all classification performance metrics.

Overall, it can be said that rule-based predictive models are
among the most expressive classification techniques in data
mining. Ensemble Learners aim to improve classification per-
formance but generally often at the expense of explainability.
ReG-Rules successfully provides an approach to harvest the
predictive power of an ensemble learner, while maintaining
explainable aspects of rule-based predictive models.
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