

Validation of a high-throughput method for the quantification of flavanol and procyanidin biomarkers and methylxanthines in plasma by UPLC-MS

Article

Supplemental Material

Fong, R. Y., Kuhnle, G. G. C. ORCID: https://orcid.org/0000-0002-8081-8931, Crozier, A. ORCID: https://orcid.org/0000-0001-7581-6782, Schroeter, H. and Ottaviani, J. I. ORCID: https://orcid.org/0000-0002-4909-0452 (2021) Validation of a high-throughput method for the quantification of flavanol and procyanidin biomarkers and methylxanthines in plasma by UPLC-MS. Food & Function, 12 (17). pp. 7762-7772. ISSN 2042-650X doi: 10.1039/D1FO01228B Available at https://centaur.reading.ac.uk/99155/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1039/D1FO01228B

Publisher: Royal Society of Chemistry

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other

copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Electronic supplementary information

Validation of a high-throughput method for the quantification of flavanol and procyanidins biomarkers and methylxanthines in plasma by UPLC-MS

Reedmond Y. Fong^a, Gunter G. C. Kuhnle^b, Alan Crozier^{a,c},

Hagen Schroeter^d, Javier I. Ottaviani^{d*}

^aDepartment of Nutrition, University of California, Davis, CA 95616, USA ^b Department of Food and Nutritional Sciences, University of Reading, Reading, UK. ^cDepartment of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia ^dMars Incorporated, McLean, VA,, USA

*Corresponding author at Department of Nutrition, University of California, Davis, CA 95616, USA

E-mail address: Javier.Ottaviani @effem.com (J.I. Ottaviani)

Supplementary Study design

Healthy male and female adults were recruited by public advertisement in the city of Davis and surrounding areas (California, USA). Exclusion criteria included a body mass index (BMI) higher than 30 kg/m2, blood pressure (BP) higher than 140/90 mmHg, allergies to peanut or cocoa, avoidance of caffeinated food products and beverages, a history of cardiovascular disease (CVD), stroke, renal, hepatic, or thyroid disease, gastrointestinal (GI) tract disorders, previous GI surgery (except appendectomy), the current intake of herbal-, plant- or botanicals-containing dietary supplements, persons following a vegan/vegetarian diet, and those adhering to an uncommon diet or a weight loss program. To determine eligibility, participants were asked to complete health and lifestyle questionnaires, have their height, weight, and in-office BP determined, and to provide a blood sample for complete blood count (CBC), liver panel, lipid panel and metabolic panel assessments. Enrolled participants characteristics are shown in Table S0.

Volunteers were recruited for three different studies that aimed at collecting plasma samples for method validation and application. These studies included: i) sample collection for method validation; ii) Sample collection for method application after single acute intake of flavanol- and methylxanthine-containing material; iii) Sample collection for method application after daily intake of flavanol- and methylxanthine-containing material. A summary of the procedures involved in each study is provided in Scheme I.

	Studies									
-	Method application									
Parameters	i. Method validation	ii. Single acute intake of flavanol- and methylxanthine-	iii. Daily intake of flavanol- and methylxanthine-							
n (f/m)	7 (4/3)	containing material 7 (4/3)	containing material. 7 (3/4)							
Age (y)	37±7	33±6	46±9							
Weight (Kg)	69±9	74±12	79±13							
Body-mass index (Kg/m ²)	23±1	26±3	26±3							
Systolic blood pressure (mmHg)	120±11	124±10	122±9							
Diastolic blood pressure (mmHg)	76±7	80±7	78±10							
Heart rate (bpm)	62±14	61±10	64±5							
Total cholesterol (mg/dL)	151±29	188±36	202±40							
HDL (mg/dL)	56±13	54±54	52±9							

Table SO: Characteristics of volunteers participating in the different studies

In the case of studies for method validation and for method application after single acute intake of flavanol- and methylxanthine-containing material, volunteers were asked to follow a low flavanol diet 24 h prior sample collection. To accomplish this, volunteers were instructed on how to follow a low-flavanol and procyanidin diet, receiving a list of suggested foods containing low or negligible amounts of flavanols and procyanidins. Volunteers were allowed to consume one 8 oz-cup of coffee the morning prior to the study day but refrained from consuming coffee or other methylxanthine-containing beverages during the rest of the day prior and during study visits. Given that recruited volunteers per inclusion/exclusion criteria were regular consumers of caffeine/theobromine-containing foods and beverages, a longer dietary restriction was deemed unnecessary given the inconvenience this would represent to volunteers. Finally, volunteers were asked to refrain from consuming alcohol the day prior to and during the study visit to. Volunteers were asked to fast for 12 h before each study day (water ad libitum).

i. Sample collection for method validation

ii. Sample collection for method application after single acute intake of flavanoland methylxanthine-containing material

iii. Sample collection for method application after daily intake of flavanol- and methylxanthine-containing material

Scheme I: description of study designs for the sample collection for method validation and application.

	Concentration of working solutions (μM)					
Analytes in each working solution	WS1	WS2	WS3	WS4	WS5	
SREMs (EC-3'S, EC-3'GlcUA, 3'Me-EC-5S) ^a	0.1	0.5	1	5	10	
gVLMs (4'OH-VL-3'S, 4'OH-VL-3'GlcUA) ^b	0.1	0.5	1	5	10	
MXs (Tb, Cf) ^c	10	50	100	500	1000	

Table S1: Composition and concentration of working solutions.

^a(–)-epicatechin-3'-sulfate, EC-3'S; (–)-epicatechin-3'-glucuronide, EC-3'-GlcUA, 3'-methoxy-(–)-epicatechin-5-sulfate (3'-Me-EC-5S)

^b5-(4'-hydroxyphenyl)-γ-valerolactone-3'-sulfate, 4'OH-VL-3'S; 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-glucuronide (4'OH-VL-3'-GlcUA). ^ctheobromine, Tb; caffeine, Caf.

Table S2: Concentrations of individual structurally- related (–)-epicatechin metabolites (SREMs), 5-(phenyl)- γ -valerolactone metabolites (gVLM) and methylxanthines (MXs) in plasma samples after mixing SREM- and gVLM-free pooled plasma samples with working solutions WS1-5^a.

	Concentration of analytes in plasma samples (n=4)								
Analytes	P0	PS1 PS2 PS3		PS3	PS4	PS5			
	PU	(<lloq)*< td=""><td>(>LLoQ)*</td><td>(Low)*</td><td>(Mid)*</td><td colspan="2">(High)*</td></lloq)*<>	(>LLoQ)*	(Low)*	(Mid)*	(High)*			
Individual SREMs (nM)	_	2.86	14.3	28.6	143	286			
Individual gVLMs (nM)	_	2.86	14.3	28.6	143	286			
Individual MXs (µM)	_	0.286	1.43	2.86	14.3	28.6			

*Concentrations selected based on the levels of SREMs and gVLMs expected in plasma samples collected after overnight fasting; Lowest Level of Quantification (LLoQ).

_	Concentration					
	QC-α	QC-ß	QC-y			
SREMs/gVLMs ^a	(nM)	(nM)	(nM)			
EC-3'-GlcUA	17	570	451			
EC-3'S	57	2870	1933			
3'Me-EC-5S	371	2809	1492			
4'OH-VL-3'S	2931	4499	3149			
4'-OH-VL-3'GlcUA	286	313	263			
	QC-α	QC-ß	QC-y			
MXs ^b	(µM)	(µM)	(µM)			
Tb	8.09	9.57	4.13			
Caf	18.4	18.6	16.4			

Table S3: Concentration of structurally- related (–)-epicatechin metabolites (SREMs), 5-(phenyl)- γ -valerolactone metabolites (gVLM) and methylxanthines (MXs) in quality controls samples used to assess precision of the method.

^a(–)-epicatechin-3'-sulfate (EC-3'S); (–)-epicatechin-3'-glucuronide (EC-3'-GlcUA); 3'-methoxy-(–)epicatechin-5-sulfate (3'-Me-EC-5S); (4'-hydroxyphenyl)-γ-valerolactone-3'-sulfate (VL-3'S); 5-(4'hydroxyphenyl)-γ-valerolactone-3'-glucuronide (VL-3'-GlcUA)

^btheobromine (Tb); caffeine (Caf)

Table S4: Composition and concentration of structurally- related (–)-epicatechin metabolites (SREMs), 5-(phenyl)- γ -valerolactone metabolites (gVLM), methylxanthines (MXs) and internal standards (ISTD) in standard curve and suitability test solution.

	Concentration of standard curve ^b								
Analytes in each working solution ^a	Suitability test solution	Level 1	Level 2	Level 4	Level 5	Level 6	Level 7	Level 8	ISTD solution
SREMs (EC-3'S, EC-3'G, 3'Me-EC-5S; nM)	10	25	50	100	250	500	1000	2500	600
gVLMs (4'OH-VL-3'S, 4'OH-VL-3'GlcUA; nM)	10	25	50	100	250	500	1000	2500	600
MXs (Tb, Caf; µM)	0.8	2	4	8	20	40	80	200	6

^a(–)-epicatechin-3'-sulfate (EC-3'S); (–)-epicatechin-3'-glucuronide (EC-3'-GlcUA); 3'-methoxy-(–)epicatechin-5-sulfate (3'Me-EC-5S); 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-sulfate (4'-OH-VL-3'S) 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-glucuronide (4'OH-VL-3'-GlcUA); theobromine (Tb); caffeine (Caf)

^bWorking solutions used for preparing standard curve had a 10x concentration compared to concentration of the standard curve listed in the Table. Given the concentration of the sample during sample preparation, the concentrations of the analytes in the standard curve represent 3.5x the concentration detected in plasma (e.g. 25 nM = 7.14 nM)

	8	1 0	
Time	Mobile phase A	Mobile phase B	Flow rate
(min)	(%)	(%)	(ml/min)
0.0	95	5	0.5
2.0	95	5	0.5
3.5	85	15	0.5
6.5	80	20	0.5
6.6	5	95	0.5
7.1	5	95	0.5
8.0	95	5	0.5

Table S5UPLC settings and mobile phase gradient.

•	1	
Parameter	Positive Mode	Negative Mode
Capillary (kV)	4.0	3.1
Extractor (V)	3	3
RF Lens (V)	3.0	2.0
LM Resolution 1	13.0	11.0
HM Resolution 1	8.0	10.0
Ion Energy 1	0.5	0.5
LM Resolution 2	10.0	10.0
HM Resolution 2	8.0	8.0
Ion Energy 2	2.0	2.0
Source Temperature (°C)	150	150
Desolvation Temperature (°C)	500	500
Desolvation Flow (L/h)	1000	1000
Cone Flow (L/h)	0	0
Multiplier	900	900

Table S6: Mass spectrometer tune parameters for positive and negative ionization modes.

Compound ^a	Parent	Daughter	Dwell	Cone	Collision	Time Interval	Retention Time
-	(<i>m/z</i>)	(<i>m/z</i>)	(s)	(V)	(V)	(min)	(min)
EC-3'GlcUA	465.5	289	0.25	22	20	3.8 - 4.6	4.2
EC-3'S	369.4	289	0.25	25	20	4.1 - 6.5	4.6
3'Me-EC-5S	383.5	303	0.25	25	22	4.1 - 6.5	4.9
4'0H-VL-3'S	287.1	207	0.005	20	17	3.8 - 4.6	4.2
3'-OH-VL-4'GlcUA	383.5	207.1	0.05	25	25	3.8 - 4.6	3.8
4'OH-VL-3'GlcUA	383.5	207.1	0.05	25	25	3.8 - 4.6	4.1
[² H ₂ / ² H ₃]EC-3'-GlcUA	468	291	0.25	22	18	3.8 - 4.6	4.2
[¹³ C ₂ , ² H ₂]4'-OH-VL-3'S	291.5	211	0.01	25	20	3.8 - 4.6	4.2

Table S7: Negative ionization MRM transitions, dwell time, cone energy, collision energy, time interval for data collection, and retention time of analytes.

^a(–)-epicatechin-3'-sulfate, EC-3'S; (-)-epicatechin-3'-glucuronide, EC-3'-GlcUA, 3'-methoxy-(–)-epicatechin-5-sulfate (3'-Me-EC-5S).

^b5-(4'-hydroxyphenyl)-γ-valerolactone-3'-sulfate, 4'OH-VL-3'S; 5-(4'-hydroxyphenyl)-γ valerolactone-3'-glucuronide (4'OH-VL-3'-GlcUA); 5-(3'-hydroxyphenyl)-γ-valerolactone-4'-glucuronide (3'OH-VL-4'-GlcUA).

Table S8: Positive ionization MRM transitions, dwell time, cone energy, collision energy,
time interval for data collection, and retention time of analyte(s).

Compound ^a	Parent	Daughter	Dwell	Cone	Collision	Time Interval	Retention Time
compound	(<i>m/z</i>)	(<i>m/z</i>)	(s)	(V)	(V)	(min)	(min)
Tb	181.2	134.9	0.4	25	15	1 - 2.25	1.6
Са	195.2	138	0.005	18	15	3.5 – 4.2	3.8
[² H ₆]Tb	187.2	141.1	0.2	25	18	1 - 2.25	1.6
[¹³ C ₃]Caf	198.5	139.9	0.005	20	15	3.5 - 4.2	3.8

^atheobromine, Tb; caffeine, Caf.

Figure S1: Chromatogram traces of a mixture of analytical standards, including (–)-epicatechin-3'glucuronide (EC-3'GlcUA); (–)-epicatechin-3'-sulfate (EC-3'S); 3'-methoxy-(–)-epicatechin-5-sulfate (3'Me-EC-5S), 5-(4'-hydroxyphenyl)- γ -valerolactone-3'-sulfate (4'-OH-VL-3'S); 5-(4'hydroxyphenyl)- γ -valerolactone-3'-glucuronide (4'-OH-VL-3'-GlcUA), 5-(3'-hydroxyphenyl)- γ valerolactone-4'-glucuronide (3'-OH-VL-4'-GlcUA), theobromine (Tb) and caffeine (Caf). The mixture of analytical standards contained SREMs and and gVLMs at 1 μ M an MXs at 80 μ M, volume of injection was 5 μ L.

Figure S2: UV-chromatogram traces of plasma samples prepared with different volumes of washing solution. The differences among these chromatogram traces depict the amount of material loaded to the column and removed with the different washing conditions tested.