University of
< Reading

Analysis of Minidava programs via
translation to ML

Conference or Workshop Item

Accepted Version

Lester, Martin ORCID logoORCID: https://orcid.org/0000-0002-
2323-1771 (2019) Analysis of Minidava programs via
translation to ML. In: FTfJP '19: Proceedings of the 21st
Workshop on Formal Techniques for Java-like Programs, 15th
Jul 2019, London. doi:
https://doi.org/10.1145/3340672.3341119 Available at
https://centaur.reading.ac.uk/99157/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing.
Published version at: https://doi.org/10.1145/3340672.3341119

To link to this article DOI: http://dx.doi.org/10.1145/3340672.3341119

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
Central Archive at the University of Reading

Reading’s research outputs online

Analysis of MiniJava Programs via Translation to ML

Martin Mariusz Lester
Department of Computer Science
University of Reading
United Kingdom
m.lester@reading.ac.uk

Abstract

MiniJava is a subset of the object-oriented programming lan-
guage Java. Standard ML is the canonical representative of
the ML family of functional programming languages, which
includes F# and OCaml. Different program analysis and veri-
fication tools and techniques have been developed for both
Java-like and ML-like languages. Naturally, the tools devel-
oped for a particular language emphasise accurate treatment
of language features commonly used in that language. In Java,
this means objects with mutable properties and dynamic
method dispatch. In ML, this means higher order functions
and algebraic datatypes with pattern matching.

We propose to translate programs from one language into
the other and use the target language’s tools for analysis
and verification. By doing so, we hope to identify areas for
improvement in the target language’s tools and suggest tech-
niques, perhaps as used in the source language’s tools, that
may guide their improvement. More generally, we hope to
develop tools for reasoning about programs that are more
resilient to changes in the style of code and representation
of data. We begin our programme by outlining a translation
from MiniJava to ML that uses only the core features of ML;
in particular, it avoids the use of ML’s mutable references.

CCS Concepts -« Software and its engineering — For-
mal methods; Object oriented languages; Functional languages;

Keywords Java, ML, automated verification, static analysis,
program transformation

ACM Reference Format:

Martin Mariusz Lester. 2019. Analysis of MiniJava Programs via
Translation to ML. In Formal Techniques for Java-like Programs
(FIfjP’19), July 15, 2019, London, United Kingdom. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3340672.3341119

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FTf7P’19, July 15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6864-3/19/07...$15.00
https://doi.org/10.1145/3340672.3341119

1 Motivation

Tools for program analysis and verification have developed
rapidly since the success of Microsoft’s SLAM driver verifi-
cation project [3]. A range of complementary and overlap-
ping techniques and technologies have gained prominence,
such as abstract interpretation, model-checking, CEGAR and
SMT solvers. All provide some way of bounding potentially
infinite behaviours in a program or avoiding state space
explosion.

Many of the biggest successes have been in the world of
traditional imperative programs. Idiomatic C programs make
comparatively little use of dynamic memory allocation, but
may control their behaviour through intricate use of bit-level
manipulation and values of complex combinations of flags
and other variables. Bounded model-checking using SMT
solvers has been particularly successful here [6].

There has also been some success in dealing with object-
oriented programs, such as those written in Java [8], and
functional programs [10], written in ML or Haskell.

The challenges for handling idiomatic programs written in
these paradigms are different. In Java, allocation of objects on
the heap is very common. Use of dynamic method dispatch is
central to writing idiomatic Java code of any complexity. This
means that, even for simple programs, accurate modelling of
program control flow requires good modelling of the heap,
combined with context sensitivity to match method calls and
returns. (In C programs, the equivalent problem of tracking
function pointers stored at heap-allocated memory locations
still arises, but less frequently.) However, this may not always
be important for program verification, as in a well-designed
object-oriented program (or at least one that obeys the Liskov
Substitution Principle), methods of a subclass that override
methods in the superclass will usually satisfy a stronger
specification than the method they override. Thus, for many
verification problems, it is not necessary to know exactly
which subclass method is being called.

In functional languages, the use of higher order func-
tions is similarly prevalent. Conceptually, the difficulty they
present is similar to dynamic method dispatch in object-
oriented programming, but the complexity of analysis re-
quired is often greater. Firstly, accurately tracking flow con-
trol for higher order functions requires tracking of more
levels of calling context. Secondly, the same functionals are
often used in a wide variety of unrelated situations, so type

https://doi.org/10.1145/3340672.3341119
https://doi.org/10.1145/3340672.3341119

FTfJP’19, July 15, 2019, London, United Kingdom

information cannot reliably be used to delineate and par-
tition their uses. Furthermore, for the same reason, deter-
mining the actual results of functionals is more important
for accurate program analysis. Consequently, many analyses
for functional programming languages emphasise accurate
modelling of control flow for higher order functions. In con-
trast, they often neglect or ignore mutable state, as its use
is prohibited in Haskell (other than through monads) and
discouraged in ML.

2 Goals

Because Java and ML have different feature sets, it is difficult
to apply an analysis designed for one language to a program
written in the other. But by doing so, we may gain some
insight into our tools and techniques. We may discover that
techniques developed in one community would be useful to
the other. Or the inability of one community’s tool to handle
programs from the other may motivate improvements to the
tool. In particular, the introduction of lambda expressions to
Java 8 may make it more important for Java tools to be able
to reason about higher order functions in programs written
in a functional style [7].

We propose to begin this exploration by translating Java
programs into ML, so that they may be analysed by tools
written for functional programs. In order for the translation
to be manageable, we focus on translating the MiniJava sub-
set of Java. So that our translated programs may be used with
as many tools as possible, we use only the core features of the
language, namely recursive functions, algebraic datatypes
(including lists) and pattern-matching. In particular, we avoid
the use of references (mutable variables). Subject to these
constraints, we aim to be as idiomatic as reasonably possible
in our translation.

MiniJava is a subset of Java introduced in Appel and Pals-
berg’s book Modern Compiler Implementation in Java[2].
Types in MiniJava are limited to int, boolean, arrays of int
and object types corresponding to any classes defined in the
program. Java features omitted from MiniJava include inter-
faces, explicit casts, exceptions, visibility modifiers, generics
and reflection. The combination of features is expressive
enough for writing idiomatic object-oriented programs, but
constrained enough to support easy compilation, analysis or
transformation.

3 Translation

Statements and expressions. Each Java statement becomes
a let-binding, with the “current” program state being used
in the bound expression and the “next” program state being
the newly bound variables. The style of the resulting code is
similar to Administrative Normal Form [4].

Mutable state. The mutable state of a Java program is split
into two parts: heap-allocated objects and method-local vari-
ables. As the number of local variables in any method is fixed,

Martin Mariusz Lester

the local variables can be encoded as a fixed-size tuple of
variable values. The heap is a map from pointers to objects.
Pointers can be encoded using any datatype that supports
the operations required for a name, namely comparison for
equality and creation of fresh names. The simplest choice is
to use unbounded integers starting at 0, allocating integers
sequentially as fresh pointers. Any encoding of maps can be
used, but the choice will impact the analysis of the translated
program.

Objects and subclasses. Java objects are encodable as a tu-
ple combining their methods (which become ML functions)
and their properties (which become either ints, bools or
ints encoding object pointers). Member lookup simply be-
comes selection of an element from the tuple. Property up-
date requires replacing the whole object in the map encoding
the heap. Subclassing could be handled using row-level poly-
morphism for records [15], as in OCaml’s objects. As this is
not part of Standard ML, we instead encode an object as a
tuple combining its members and an Option for any subclass
members. The type of the Option is then an algebraic sum
over all possible subclasses.

4 Related Work

Program transformation is often used for removal of more
complex features of a language [5], or translation to a simpler
language, so that the verification tools need only handle a
smaller number of language features. Notably, the Jimple [14]
intermediate language for Java used by Soot is deliberately
simpler than Java bytecode. Such transformations are often
avoided, as they hide the structure of a program, confounding
analysis. Indeed, attempting to recover this structure is a key
step in analysis of compiled programs [9].

Previous work considers analysis of functional programs
written in Haskell via translation to C using the compiler
JHC and application of the symbolic execution tool Klee [1].
We are not aware of any work in the reverse direction, pre-
sumably because of the relative immaturity of tools for func-
tional languages. Tools for analysing ML programs are based
around a variety of different techniques, such as model-
checking of Higher Order Recursion Schemes (MoCHi [13]),
refinement type inference (DSolve [12]) and algorithmic
game semantics (SyTeCi [11]), but there is no clear leader.

5 Status and Future Work

We are currently implementing the translation. The starting
point for our work is a toy MiniJava compiler used to teach
a module on compilers at the University of Reading. The
next step will be to compare Java analysis tools on MiniJava
programs with ML program tools on the translated programs.

We expect that they will be reasonably accurate until they
have to reason about values retrieved from the heap, however
we choose to encode it.

Analysis of MiniJava Programs via Translation to ML

References

(1]
(2]

[3

—_

—
w
—

—
O
[

(10]

[11

—

[12]

Mario Alvarez-Picallo. 2015. MPRI Internship Report: Verification by
compilation of higher-order functional programs. (2015).

Andrew W. Appel and Jens Palsberg. 2002. Modern Compiler Imple-
mentation in Java, 2nd edition. Cambridge University Press.

Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
2004. SLAM and Static Driver Verifier: Technology Transfer of For-
mal Methods inside Microsoft. In Integrated Formal Methods, 4th
International Conference, IFM 2004, Canterbury, UK, April 4-7, 2004,
Proceedings (Lecture Notes in Computer Science), Eerke A. Boiten,
John Derrick, and Graeme Smith (Eds.), Vol. 2999. Springer, 1-20.
https://doi.org/10.1007/978-3-540-24756-2_1

Robert Cartwright (Ed.). 1993. Proceedings of the ACM SIGPLAN’93
Conference on Programming Language Design and Implementation
(PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993. ACM. http:
//dl.acm.org/citation.cfm?id=155090

Wontae Choi, Baris Aktemur, Kwangkeun Yi, and Makoto Tatsuta. 2011.
Static analysis of multi-staged programs via unstaging translation. In
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-
28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 81-92. https:
//doi.org/10.1145/1926385.1926397

Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A
Tool for Checking ANSI-C Programs. In Tools and Algorithms for
the Construction and Analysis of Systems, 10th International Confer-
ence, TACAS 2004, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004, Proceedings (Lecture Notes in Computer Science),
Kurt Jensen and Andreas Podelski (Eds.), Vol. 2988. Springer, 168-176.
https://doi.org/10.1007/978-3-540-24730-2_15

David R. Cok. 2018. Reasoning about functional programming in
Java and C++. In Companion Proceedings for the ISSTA/ECOOP 2018
Workshops, ISSTA 2018, Amsterdam, Netherlands, July 16-21, 2018, Julian
Dolby, William G. J. Halfond, and Ashish Mishra (Eds.). ACM, 37-39.
https://doi.org/10.1145/3236454.3236483

Lucas C. Cordeiro, Daniel Kroening, and Peter Schrammel. 2018. Bench-
marking of Java Verification Tools at the Software Verification Com-
petition (SV-COMP). ACM SIGSOFT Software Engineering Notes 43, 4
(2018), 56. https://doi.org/10.1145/3282517.3282529

Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017.
rev.ng: a unified binary analysis framework to recover CFGs and func-
tion boundaries. In Proceedings of the 26th International Conference on
Compiler Construction, Austin, TX, USA, February 5-6, 2017, Peng Wu
and Sebastian Hack (Eds.). ACM, 131-141. https://doi.org/10.1145/
3033019

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie
Weirich. 2016. Language Based Verification Tools for Functional Pro-
grams (Dagstuhl Seminar 16131). Dagstuhl Reports 6, 3 (2016), 59-77.
https://doi.org/10.4230/DagRep.6.3.59

Guilhem Jaber. 2018. SyTeCi: Towards automation of contextual equiv-
alence for higher-order programs with references. (2018).

Ming Kawaguchi, Patrick Maxim Rondon, and Ranjit Jhala. 2010.
Dsolve: Safety Verification via Liquid Types. In Computer Aided Verifi-
cation, 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings (Lecture Notes in Computer Science), Tayssir
Touili, Byron Cook, and Paul B. Jackson (Eds.), Vol. 6174. Springer,
123-126. https://doi.org/10.1007/978-3-642-14295-6_12

Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. 2013. Towards
a scalable software model checker for higher-order programs. In
Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evalu-
ation and Program Manipulation, PEPM 2013, Rome, Italy, January
21-22, 2013, Elvira Albert and Shin-Cheng Mu (Eds.). ACM, 53-62.
https://doi.org/10.1145/2426890.2426900

[14]

[15]

FTfJP’19, July 15, 2019, London, United Kingdom

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick
Lam, and Vijay Sundaresan. 1999. Soot - a Java bytecode optimiza-
tion framework. In Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research, November 8-11, 1999, Mis-
sissauga, Ontario, Canada, Stephen A. MacKay and J. Howard Johnson
(Eds.). IBM, 13. https://dl.acm.org/citation.cfm?id=782008

Mitchell Wand. 1989. Type Inference for Record Concatenation and
Multiple Inheritance. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA,
June 5-8, 1989. IEEE Computer Society, 92-97. https://doi.org/10.1109/
LICS.1989.39162

https://doi.org/10.1007/978-3-540-24756-2_1
http://dl.acm.org/citation.cfm?id=155090
http://dl.acm.org/citation.cfm?id=155090
https://doi.org/10.1145/1926385.1926397
https://doi.org/10.1145/1926385.1926397
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/3236454.3236483
https://doi.org/10.1145/3282517.3282529
https://doi.org/10.1145/3033019
https://doi.org/10.1145/3033019
https://doi.org/10.4230/DagRep.6.3.59
https://doi.org/10.1007/978-3-642-14295-6_12
https://doi.org/10.1145/2426890.2426900
https://dl.acm.org/citation.cfm?id=782008
https://doi.org/10.1109/LICS.1989.39162
https://doi.org/10.1109/LICS.1989.39162

	Abstract
	1 Motivation
	2 Goals
	3 Translation
	4 Related Work
	5 Status and Future Work
	References

