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SUMMARY

The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases
characterized by spasticity and weakness in the lower body. Owing to the com-
bination of genetic diversity and variable clinical presentation, the Hereditary
Spastic Paraplegias are a strong candidate for protein-protein interaction
network analysis as a tool to understand disease mechanism(s) and to aid func-
tional stratification of phenotypes. In this study, experimentally validated hu-
man data were used to create a protein-protein interaction network based on
the causative genes. Network evaluation as a combination of topological anal-
ysis and functional annotation led to the identification of core proteins in puta-
tive shared biological processes, such as intracellular transport and vesicle traf-
ficking. The application of machine learning techniques suggested a functional
dichotomy linked with distinct sets of clinical presentations, indicating that
there is scope to further classify conditions currently described under the
same umbrella-term of Hereditary Spastic Paraplegias based on specific molec-
ular mechanisms of disease.

INTRODUCTION

The Hereditary Spastic Paraplegias (HSPs) are a group of heterogeneous neurodegenerative diseases char-

acterized by the core features of slowly progressive bilateral lower limb spasticity, hyperreflexia, and

extensor plantar responses (Harding, 1983) accompanied by degeneration of the upper motor neurons

(Deluca et al., 2004). Although the first description of clinical presentations we now refer to as HSPs dates

back at least 140 years (Strümpell, 1880; Lorrain, 1898), the molecular mechanisms responsible for disease

onset are, to date, still unclear. A number of mechanisms have been proposed to contribute to the degen-

erative process, including dysfunction of intracellular active transport and endolysosomal trafficking, alter-

ation of lipid metabolism and endoplasmic reticulum (ER) shaping, as well as disruption of mitochondria

homeostasis (Blackstone, 2012, 2018a; Blackstone et al., 2011; Boutry et al., 2019).

The heterogeneity of the HSPs derives from both the complex range of clinical presentations (summarized

in Table S1) and diverse underlying genetic causes. Regarding the former, the age of onset can vary from

early childhood to late adulthood, all modes of inheritance can be observed, and the form of the disease

can be pure or complex. Complex forms of the HSPs are defined by the co-occurrence of clinical features in

addition to lower limb spasticity, including peripheral neuropathy, seizures, cognitive impairment, and op-

tic atrophy (Fink, 2013). Regarding the genetic heterogeneity of HSPs, mutations in over 70 genes have

been associated with the HSPs (Faber et al., 2017), rendering it one of the hereditary disorders with the

highest numbers of known causative genes (Blackstone, 2018a). In such a complex scenario, it is not clear

as to whether all the HSP syndromes, despite being classified under the same umbrella term, share the

same underlying molecular etiology (Blackstone, 2018a). Given the lack of treatments able to prevent,

halt, or revert the HSPs, understanding the etiology of these disorders and gaining greater clarity in this

area of HSP biology is crucial.

The intersection of genetics and functional biology has, historically, been dominated by single gene inves-

tigations, focusing on understanding the role of individual genes in cellular processes and phenotypes.

This approach is powerful, but it allows for studying a limited number of genes at a time (Manzoni et al.,

2020). In contrast, systems biology approaches such as protein-protein interaction (PPI) network (PPIN)
iScience 24, 102484, May 21, 2021 ª 2021 The Authors.
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analyses provide tools to evaluate the entirety of known genes/proteins involved in a disease collectively

through a holistic approach (Koh et al., 2012). The connections within the PPIN can be subjected to math-

ematical analysis to gain insight into the global relationships among potential contributors to the disease

process, thus creating an in silicomodel system to investigate the molecular mechanisms and generate hy-

potheses to further support functional research and disease modeling (Manzoni et al., 2020).

This article describes the first study in which PPINs are created solely based on experimentally validated

human PPIs of HSP genes and are applied to the investigation of HSP pathogenesis to identify global mech-

anisms, as well as individual processes involved in subtypes of disease following stratification based on the

association of specific HSP genes with particular clinical features. Based on a combination of network, func-

tional, and machine learning analyses, we propose HSPs to be subdivided into at least two major etiolog-

ical groups. These results might suggest that not all the HSPs’ clinical manifestations relate to the same

disruption at a molecular level, and that it is indeed possible to hypothesize stratification of patients

with HSP based on the molecular aspects of disease. This is an in silico modeling approach, thus it would

require further functional validation; nevertheless, it suggests that both drug discovery and clinical trials for

HSPs would need to take into consideration the molecular heterogeneity of disease.

RESULTS

Generation of PPI networks

TheHSP seeds (HSPgenes, n = 66 and test seeds, n = 17; see Table S2 and STARMethods formore details) were

used as the input list to query the online tool, PINOT (Tomkins et al., 2020), generating a list of experimentally

validated human PPIs. Briefly, PINOT collects PPIs from seven manually curated databases that fully or partially

complywith the IMEx annotationguidelines (Orchard et al., 2012) and scores each interaction based on the num-

ber of different methods and publications in which it has been described. PPIs with a final PINOT score <3 were

excluded from further analyses as these interactions lack replication in the curated literature (i.e., they are re-

ported in only one publication and detected by only one method). Following this filter, 746 interactors of HSP

seeds were retained. Of note, 15 of the initial seeds were excluded due to no PPIs being identified (a total of

57 HSP seeds and 11 test seeds were retained). The resulting filtered network was termed the global HSP-

PPIN andwas composed of 814 nodes (57 HSP seeds + 11 test seeds + 746 interactors) connected via 925 edges

(Data S1). The global HSP-PPIN (Figure S1) was composed of 1 main graph that contained the majority of nodes

(n = 755/814, 92.8%), including the majority of seeds (n = 53/68, 77.9%) and 14 additional unconnected, smaller

graphs. Of particular note is the presence of an interactor in the global HSP-PPIN, RNF170, which was found to

be associated with the HSPs (i.e., an additional HSP gene) in a study published after the creation of the network

(Wagner et al., 2019).

Each protein of the global HSP-PPIN was scored based on the number of seeds to which it was directly con-

nected, and a degree distribution was plotted (Figure S2). All nodes interacting with at least 2 seeds (IIHs)

were selected and used to extract the core HSP-PPIN composed of 164 nodes (including 45/57 HSP seeds

[72.7%] and 8/11 test seeds [78.9%]) and 287 edges (Figure 1 and Data S2). The core HSP-PPIN represents

themost interconnected part of the global HSP-PPIN graph and contains the interactors that are communal

to 2 or more seeds, thus it can be used to investigate common functionalities across the different HSP

genes.

Of note, the test seed CCDC50 is present in the core HSP-PPIN and directly interacts with 2 proteins that

are interactors of 6 HSP seeds. Comparatively, 95.5% of the proteins within the global HSP-PPIN and 74.5%

of the proteins within the core HSP-PPIN interacted with less than 6 HSP seeds. The strong connectivity of

CCDC50 with HSP seeds indicates that they might be functionally related, and thus further supports the

hypothesis that CCDC50 could be an HSP gene based on its genetic location (CCDC50 is located at

3q28 [NCBI gene: https://www.ncbi.nlm.nih.gov/gene/152137], whereas the genetic locus of SPG14 is

3q27-28 [Boutry et al., 2019]).

Functional enrichment: trafficking and intracellular organization

The nodes composing the core HSP-PPIN were analyzed through functional enrichment to identify asso-

ciated Gene Ontology Biological Processes (GO-BPs). Three different enrichment tools were used (g:Pro-

filer, PantherGO, and WebGestalt; Table S3). Despite p values being corrected differently in the different

tools, the enrichment ratio was calculated using the same formula (see STAR Methods). We therefore

selected the top 10 GO-BP terms (based on the enrichment ratio) from each of the 3 tools (Figure 2).
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Figure 1. Functional enrichment of the core HSP-PPIN

The core HSP-PPIN is the most interconnected part of the global HSP-PPIN and includes (1) the interactors connecting at

least 2 seeds and (2) the connected seeds. Seeds (HSP genes) are represented with a black border and test seeds with a

red border (ACO2, ALS2, BICD2, CCDC50, CCT5, IFIH1, KIDINS220, LYST). The size of each node positively correlates

with its number of connections (i.e., node degree) within the core HSP-PPIN. The thickness of each edge positively

correlates with the final score of the respective interaction as calculated by PINOT (which is a proxy for confidence as it

represents the sum of the number of different publications and number of different methods reporting the interaction).

(A) Nodes contributing to the enrichment of functional blocks (built on Gene Ontology Biological Processes) are color

coded according to the legend (gray nodes are those that did not contribute to any of the enriched functional blocks).

(B) The involvement of nodes of the core HSP-PPIN in pathways is visualized by node colour coding based on Reactome’s

pathway analysis. (See also Figures S1 and S2 and Table S2).
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The majority of the top terms indicated functions such as those of ‘‘Transport’’ or ‘‘Intracellular organi-

sation’’ (collectively accounting for 60%–70% of terms significantly enriched using the 3 tools). The re-

maining terms referred to ‘‘Cell death’’ and ‘‘Physiology-host/virus’’ with important reference to protein

targeting and the endomembrane system. Of note, we observed a 60% match of the GO-BPs in the top

10 enriched terms across all the 3 tools and 60%–100% match between at least 2 tools (g:Profiler: 100%,

WebGestalt: 100%, and PantherGO: 60%). The unique terms from each tool, however, were closely

related to already shared terms (e.g., ‘‘Anterograde axonal transport’’ [unique to PantherGO] is closely

related to ‘‘Retrograde neuronal dense core vesicle transport’’ and ‘‘Retrograde axonal transport’’ [g:Pro-

filer, WebGestalt and PantherGO]) (Figure 2).

The entirety of enriched GO-BP terms was then grouped by semantic similarity into semantic classes, which

were further organized into functional blocks, thus aiding the interpretation of the enrichment results (see

STAR Methods and Bonham et al., 2018; Ferrari et al., 2018; Ferrari et al., 2017; Tomkins et al., 2018).
iScience 24, 102484, May 21, 2021 3



Figure 2. Top 10 GO-BPs enriched within the core HSP-PPIN

The 10 GO-BP terms from the functional enrichment of the core HSP-PPIN with the highest enrichment ratio were grouped into functional blocks based on

semantic similarity. Most of the terms resulted from at least 2 enrichment tools (g:Profiler & WebGestalt: n = 10/10, 100%; PantherGO: n = 6/10, 60%).
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The raw results from each tool were similar in all three levels explored: the identity of the GO-BP terms, of

the semantic classes, and of the functional blocks. In fact, most of the GO-BP terms were common to at

least 2 tools (n = 115/171, 67.3%) (Figure S3A), whereas after semantic classification of GO-BPs a higher pro-

portion of semantic classes derived from at least 2 tools (n = 49/58, 84.5%) (Figure S3B). Finally, all the func-

tional blocks were represented by all the 3 tools (n = 11/11, 100.0%) (Figure S3C). Overall, this confirmed the

consistency of results across different enrichment tools. However, these results also showed that even if

consistency is very high at the more general levels of semantic classes and functional blocks, discrepancies

can occur at the very specific GO-BP term level. Therefore, we decided to improve functional interpretation

and reduce tool-specific bias in further analyses by merging the GO-BP terms derived from the 3 tools

within functional blocks replicated in at least 2 tools (in this case all terms) and adjusting the threshold

of the p value (see STAR Methods).

The majority of significant GO-BP terms from the core HSP-PPIN enrichment analysis were associated with

the functional block ‘‘Intracellular organisation’’ (22.2%), followed by ‘‘Transport’’ (19.3%), and then ‘‘Pro-

tein localisation’’ (13.5%), collectively accounting for more than half of GO terms (55.0%) (Figures 3 and

S4, Table S3). This result confirmed the findings previously obtained from the top 10 enriched terms, sug-

gesting a role for these processes in themolecular mechanism(s) underlying HSP pathogenesis. Finally, and

to overcome any bias based on the architecture of the grouping of GO terms, we also performed text min-

ing for single key words within all the significantly enriched GO-BP terms and detected significant enrich-

ment for ‘‘axon’’ (n = 7/171, 4.1% [8.9-fold enrichment] p < 10�10 after 1,000 random simulation),
4 iScience 24, 102484, May 21, 2021



Figure 3. Graphical representation of the functional enrichment of the core HSP-PPIN

Functional enrichment was performed on the nodes of the core HSP-PPIN. The resulting GO-BP terms (n = 171) (Table S3) were grouped into semantic

classes (brief descriptions of several semantic classes are inside each circle) and then into functional blocks (title of each circle, bolded). The number and

percentage of terms in each functional block was calculated for g:Profiler, WebGestalt, and PantherGO as described in STAR Methods. For a more detailed

version see Figure S4.
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‘‘endosomes’’ (n = 3/171, 1.8% [5.7-fold enrichment] p < 10�10), ‘‘membrane’’ (n = 24/171, 14.0%

[5.7-fold enrichment], p < 10�10), ‘‘neurons’’ (n = 9/171, 5.3% [3.4-fold enrichment], p = 7.85 10�7), ‘‘projec-

tion’’ (n = 6/171, 3.5% [5.4-fold enrichment], p = 6.54 10�7), and ‘‘vesicles’’ (n = 10/171, 5.8% [4.5-fold enrich-

ment], p < 10�10).

Of note, the independent analysis of the core HSP-PPIN through Reactome (Table S3) suggested similar

enrichment, whereby the 2 most significantly enriched pathways were vesicle-mediated transport (REA

identifier: R-HSA-5653656, p < 10�10, 46 (28.0%) contributing nodes) and membrane trafficking (REA iden-

tifier: R-HSA-199991, p < 10�10, 44 (29.3%) contributing nodes) (Figure 1B).
Stratification of HSP clinical groups into two clusters

HSPs can present with a wide set of clinical features, with marked phenotypic heterogeneity between

different patients. The complex forms of HSPs are defined by the co-occurrence of additional clinical fea-

tures, the most frequently reported being peripheral neuropathy (P), thinning of the corpus callosum (T),

seizures (S), dementia or mental retardation (D), and optic atrophy (O). Finally, some patients also present

with an early disease onset (E). Interestingly, medical reports and case studies sometimes state the pres-

ence of the aforementioned features in association with specific mutations in HSP genes. We have taken

advantage of this knowledge and grouped the genes based on the features with which they are associated.

Therefore, the seeds within the core HSP-PPIN were coded based on their associated clinical features (Fig-

ure S5). Of note, some seeds are associated with a single feature (n = 9/57, 16%), whereas others are
iScience 24, 102484, May 21, 2021 5



Figure 4. Comparison of the functional profiles of the six clinical subnetworks

(A) In the PCA graph each clinical subnetwork is represented by a single point of coordinates calculated based on PCA performed for the percentage of GO-

BP terms and adjusted based on the explained variation of each axis (for details see STAR Methods) [i.e., (x, y) = (PC1x0.630, PC2x0.258)].

(B) Cluster dendrogram produced based on hierarchical clustering of the gene groups as analyzed in (A), in which the two suggested clusters are shown.

*pvclust-p-value>0.90 (pvclust-p-value A = 0.99, pvclust-p-value B = 0.91). E, early onset; P, peripheral neuropathy; T, thin corpus callosum; S, seizures; D,

dementia or mental retardation; O, optic atrophy.

(C) The percentage of protein identity between gene groups within the same cluster (EPOD and TS cluster) was compared with the protein identity between

gene groups of different clusters using t-test (two-tailed, unequal distribution). (See also Figures S7–S10 and Tables S5–S7).
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responsible for 2 (n = 18/57, 32%), 3 (n = 12/57, 21%), or 4 (n = 7/57, 12%) clinical features. This seed char-

acterization allowed the extraction of 6 smaller subnetworks from the core HSP-PPIN, each of them contain-

ing the interconnected seeds (and their interactors) associated with each specific feature mentioned above

(Figure S6).

Enrichment of biological processes was performed on each clinical subnetwork separately, as previously

described, using g:Profiler, PantherGO, and WebGestalt (Table S4 and Figure S7). The enrichment results

obtained from the 3 tools were compared to assess their reproducibility and identify GO-BP terms of func-

tional blocks that were replicated in at least 2 tools. These terms were merged to increase functional

coverage as described earlier. The percentage of GO-BP terms within each functional block was calculated

to weight its relevance. Principal-component analysis (PCA) was then applied to reduce the complexity of

the results obtained from the functional enrichment analyses to 2 principal components (PC1 and PC2).

PCA thus allowed comparison of the 6 clinical subnetworks (Figure 4A). Interestingly, some of the clinical

subnetworks functionally clustered together. Of note, this result was obtained with PCA performed on both

the percentage of the GO terms in each functional block (Figure 4A) and their absolute numbers

(Figure S8A).

The PCA plot provided a first visual insight into potential functional clustering that was further confirmed by

hierarchical clustering. Results were plotted into a cluster dendrogram (Figures 4B and S9), and the exact

number of clusters to best fit the data was determined by 2 methods: Silhouette method and Multiscale

bootstrap resampling (Figure S10). Both methods suggested the presence of 2 clusters (named clusters

A and B) in the cluster dendrogram (Silhouette method: the highest score was for 2 clusters; Multiscale
6 iScience 24, 102484, May 21, 2021



Figure 5. Differential patterns of enrichment for the TS and EPOD clusters

(A and B) The distribution of the GO-BP terms (A) and GO-CC terms (B) of the clusters, TS and EPOD, are presented as a

fold change compared with the profile of the core HSP-PPIN. A more detailed version is shown in Figure S11, whereas the

totality of the results is shown in Table S8.
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bootstrap resampling: Clusters A and B had a pvclust-p-value = 0.99 and 0.91, respectively, showing 99%

and 91% confidence in the result). Cluster A is composed of thin corpus callosum and seizures (hereafter

named TS), whereas cluster B is composed of early onset, peripheral neuropathy, optic atrophy, and de-

mentia or mental retardation (hereafter named EPOD).

The co-clustering of the T and S subnetworks within the TS cluster is not surprising as they had 23 common

proteins (n = 23; TXS = 82.1%, SXT = 100%). However, we also observed a large overlap of proteins be-

tween the subnetworks of O and P (n = 39; OXP = 92.9%, PXO = 53.4%), T and D (n = 25; TXD = 89.3%,

DXT = 43.9%), S and E (n = 23; SXE = 100%, EXS = 20.2%), and D and E (n = 55; DXE = 96.5%, EXD =

48.2%). In all these cases, the common composition was large, yet not able to guide the order of similarity

based on the dendrogram, or to promote the co-clustering (Figure 4B). A full report of the overlaps be-

tween the clinical subnetworks is detailed in Tables S5–S7.

Plotting the percentages of overlaps across different clinical subnetworks allowed for running a statistical

comparison. When considering the overlap of the subnetworks within cluster TS and within cluster EPOD

(networks within the same cluster) in comparison to the overlaps of the subnetworks in TS versus EPOD (net-

works in different clusters) we found a non-significant difference in their distributions (p = 0.07; Figure 4C).

This result suggests that the generation of the 2 distinct clinical clusters was highly affected by similarities in

the functional profile of the subnetworks in terms of GO-BPs, whereas the overlap of nodes had a small or

potentially no contribution.
Differences between the clinical clusters based on functions and subcellular localization

The potential differences of the 2 clinical clusters were further explored by performing enrichment analysis

for GO-BPs using as input the protein components of the 2 clusters, TS and EPOD (Table S8). The compar-

ison of the 2 obtained functional profiles is shown in Figures 5A and S11. Despite an overlap in the identity

of the GO-BPs functional blocks between the 2 clusters (TS: n = 4/5, 80%; EPOD: n = 4/10, 40%), the gran-

ular distribution of specific GO-BP terms in each functional block differs between clusters, with the GO-BP

functional blocks of: ‘‘Waste disposal’’ (+12.7-fold [compared with the core HSP-PPIN]), ‘‘Metabolism’’

(+9.3-fold), and ‘‘Protein metabolism’’ (+2.15-fold) being more represented in the TS rather than in the

EPOD cluster (�0.13-, �1.0-, and 0.25-fold, respectively) (Figure 5A). Meanwhile, the GO-BP functional

blocks ‘‘Physiology-host/virus’’ (+0.22-fold), ‘‘Cell cycle’’ (+0.1-fold), and ‘‘Cell death’’ (+0.1-fold) were

more represented in the EPOD rather than in the TS cluster (�1.0-,�1.0-, and�1.0-fold, respectively). Inter-

estingly, 5 GO-BP terms related to the unfolded protein response (e.g., ‘‘Cellular response to unfolded pro-

tein’’ and ‘‘Cellular response to topologically incorrect protein’’) were unique to the TS cluster (n = 5/25,
iScience 24, 102484, May 21, 2021 7



ll
OPEN ACCESS

iScience
Article
25%), even with cluster EPOD having a 6-fold higher number of total GO-BP terms (nGO-BPtotalEPOD = 158

versus NGO-BPtotalTS = 25), thus highlighting the importance of protein folding for the TS cluster only. Over-

all, these results of GO-BP enrichment indicated that functions associated with protein metabolism, waste

disposal, and unfolded protein response might be more important processes in the TS rather than in the

EPOD cluster, whereas the EPOD cluster presents with a functional enrichment profile very similar to that of

the entire core HSP-PPIN.

Similarly, we performed Gene Ontology Cellular Component (GO-CC) enrichment using as input the pro-

tein components of the 2 clusters TS and EPOD (Table S8). The comparison of the 2 obtained cellular com-

ponents profiles is shown in Figures 5B and S11, where location block is a sister term to the functional block

of GO-BP terms. Even though there are common GO-CC location blocks between the 2 clusters (TS: n = 5/

6, 83.3%; EPOD: n = 5/17, 29.4%), the composition of the most enriched location blocks based on the per-

centage of GO-CC terms differed substantially. Interestingly, and confirming the results obtained previ-

ously with GO-BPs, a higher percentage of GO-CC location blocks are related to ‘‘ER’’ (+4.7-fold

[compared with the core HSP-PPIN]), ‘‘Melanosomes’’ (+8.5-fold), and ‘‘Membranes’’ (i.e.,

‘‘Membranes’’: +25.0-fold, ‘‘Membrane/network’’ +8.5-fold, and ‘‘Membranes/organelle’’ +0.5-fold) for

the TS cluster when compared with the EPOD cluster (0.13-, 0.13-, 0-, 0.13-, �0.30-fold, respectively). As

for the EPOD clusters, higher enrichment is observed in the GO-CC location blocks: ‘‘Other organelles’’

(+0.5-fold), ‘‘Microtubules’’ (+0.4-fold), ‘‘Cytoskeleton,’’ ‘‘Cytosol,’’ ‘‘Extracellular,’’ ‘‘Mitochondria,’’ and

‘‘Other membranes’’ (+0.1-fold) than in TS (-1-fold for all these location blocks in TS).
DISCUSSION

Network-based approaches have been increasingly used to study complex human diseases, such as neuro-

degenerative diseases and cancer (Manzoni et al., 2020). The HSPs are neurodegenerative diseases with

considerable genetic and clinical heterogeneity (Boutry et al., 2019; Faber et al., 2017), rendering them

particularly interesting to study using a PPIN approach. We applied a bottom-up approach, starting with

the selection of genes involved in the disease and built the relevant interactome around them. We focused

on experimentally validated human PPIs of HSP genes, not including genes associated with a disease spec-

trum in which HSP is involved (e.g., HSP-ataxia spectrum) or genes with related phenotype, in contrast with

prior studies (Parodi et al., 2018; Novarino et al., 2014; Synofzik and Schule, 2017; Bis-Brewer et al., 2019).

Although the excluded data might be useful in the effort to conceptualize the possible interactions and

mechanisms of HSP-related diseases, they were not considered to be specific or supported strongly

enough to be included in our analysis.

We applied the PINOT pipeline to mine the curated literature and download PPIs for each single seed, thus

obtaining each seed’s interactome (Ferrari et al., 2018). We then constructed the global HSP-PPIN by

combining each seed’s interactome in a modular fashion. We finally filtered the global HSP-PPIN,

excluding the nodes that interacted with a single seed, thus retaining those interactors that were bridging

at least 2 seeds’ interactomes. This step allowed for removal of all the unique interactors of each seed and

for the extraction of the core HSP-PPIN, which is the most connected part of the network, containing nodes

that are shared across seeds, and responsible for connections across different interactomes. By containing

all the shared interactors and connections among seeds, the core HSP-PPIN can be used to infer shared

functions communal to multiple HSP genes (Tomkins et al., 2020).

It is important to observe that most HSP seeds are indeed part of the core HSP-PPIN, meaning they are

connected through at least one shared interactor. This result suggests that they are likely to be functionally

related (based on the guilt-by-association principle [Oliver, 2000]) and therefore convergent molecular

mechanism(s) drive disease pathogenesis, regardless of the mutated gene acting to initiate the degener-

ative process. The seeds that were absent from the core HSP-PPIN (i.e., seeds that do not share any inter-

actors with other seeds) had a low number of curated interactors ranging from 0 to 4 (PLA2G6, CPT1C,

CYP2U1, C12orf65, B4GALNT1, TECPR2, ENTPD1, ATL1, SPG11, DDHD1, AP5Z1, SLC16A2, GAD1, RAB3-

GAP2, and HACE1). With limited interactors, their absence from the core HSP-PPIN could be the result of

ascertainment bias (i.e. these seeds are understudied proteins with limited number of known interactors)

rather than representing a more fundamental divergence in etiology (Schaefer et al., 2015). As more

PPIs are discovered, the human interactome will become more complete (Luck et al., 2020; Rolland

et al., 2014; Huttlin et al., 2017; Wewer Albrechtsen et al., 2018) and might be able to help us better under-

stand the connecting processes of large groups of genes and potentially point toward the disease
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mechanism. Exceptions were EXOSC3 (test seed), SPG21 (HSP-seed), and KCNA2 (test seed) with 21, 10,

and 6 interactors, respectively. In this second scenario, it can be hypothesized that these seeds are not in-

teracting with other HSP seeds, meaning that, by not sharing the same interactome, they might potentially

be associated with different molecular mechanisms of disease.

In this study we included 17 test seeds, genes for which there is no clear consensus regarding their potential

association with HSPs, as they have been controversially reported in clinical literature. Eight of the test

seeds (i.e., ALS2, BICD2, CCDC50, CCT5, KIDINS220, ACO2, LYST, and IFIH1) were present in the core

HSP-PPIN, providing in silico evidence of their relevance within the HSP protein interaction landscape.

The presence of five of those test seeds (i.e., CCT5, KIDINS220, ACO2, LYST, and IFIH1) correlates with

the processes and cellular components indicated to play a role in HSPs from previous and the current

work, namely, of lysosomal homeostasis, protein folding and transport, cell death, neurodegeneration,

and antiviral responses, with which they also have been associated (Crow et al., 2020; Faigle et al., 1998;

Freund et al., 2014; Leong and Chow, 2006; Liao et al., 2007; Spiegel et al., 2012). The presence of ALS2

in the core HSP-PPIN is not surprising, as it is considered an HSP gene by many clinicians and researchers

(Lo Giudice et al., 2014; Boutry et al., 2019; de Souza et al., 2017). An interesting test seed present in the

core HSP-PPIN is CCDC50, because it was included in this study based on its chromosomal location being

within the locus of SPG14 (CCDC50 is located at 3q28 [NCBI gene: https://www.ncbi.nlm.nih.gov/gene/

152137], whereas the genetic locus of SPG14 is 3q27-28 [Boutry et al., 2019]). Of note, CCDC50 formed in-

teractions withmore seeds thanmost interactors of the global HSP-PPIN and the core HSP-PPIN. This result

represents an in silico prediction that alterations in CCDC50 could be leading to the HSP type SPG14 and it

suggests to include CCDC50 in the list of prioritized genes to be screened for rare variant discovery.

Notably, the protein product of the gene RNF170 was found to be associated with HSPs (and published) after

this analysis commenced (Wagner et al., 2019) and was indeed present within the global HSP-PPIN. This result

demonstrates the utility in using PPINs to study complex disorders, as they can aid prioritization of candidate

genes from genetic analysis (Erlich et al., 2011) and hint to key proteins involved in disease mechanisms.

The analysis of a disease-focused PPIN based on functional annotation provides an opportunity to gain a

deeper understanding of the underlying mechanism(s) of disease using a holistic view (Koh et al., 2012).

Therefore, enrichment analysis was performed for the components of the core HSP-PPIN, supporting

the involvement of some of the processes previously suggested to be associated with the disease mech-

anism of HSPs. Of the 10mechanisms suggested by LoGiudice et al. (2014), 3 were supported by the results

of this work, namely, ‘‘endosome membrane trafficking and vesicle formation,’’ ’’abnormal membrane traf-

ficking and organelle shaping,’’ ‘‘dysfunction of axonal transport,’’ and also 3 additional processes, namely,

‘‘autophagy,’’ ‘‘axon development,’’ and ‘‘abnormal cellular signaling in protein morphogenesis,’’ whereas

we did not find evidence in our analysis for ‘‘oxidative stress,’’ ‘‘abnormal lipid metabolism,’’ ‘‘abnormal

DNA repair,’’ and ‘‘dysregulation of myelination.’’ Regarding the mechanisms hypothesized by de Souza

et al. (2017), those in accordance with this work were ‘‘intracellular active transport,’’ ‘‘endolysosomal traf-

ficking pathways,’’ and ‘‘ER shaping,’’ whereas we did not find evidence in our analysis for ‘‘lipid meta-

bolism,’’ ‘‘mitochondrial dysfunction,’’ or ‘‘migration and differentiation of neurons.’’ Our results are

more in line with the suggestion from Blackstone (2018a) that the key biological processes at play in the

etiopathogenesis of HSPs are ‘‘organelle shaping and biogenesis’’ and ‘‘membrane cargo and trafficking,’’

further supporting the notion that HSPs could be considered transportopathies (Gabrych et al., 2019), and

that the dysregulation of ER morphology and function could be implicated in HSPs (Lee and Blackstone,

2020). However, some of the suggested hypotheses, namely, ‘‘nucleotide metabolism,’’ ‘‘mitochondrial

function,’’ and ‘‘lipid/cholesterol metabolism’’ (Blackstone, 2018a), were not supported by the findings

of this study. Interestingly, functional data were not used for the creation of the HSP-PPINs, therefore

the conclusions obtained here are only based on PPIs and represent a further validation of some of the pub-

lished functional analyses. These results highlight the potential of a PPIN analysis approach combined with

functional enrichment to identify the most relevant functions among the genes of interest related to a

complicated disease, which is an important step for discovering disease-modifying agents. A similar

approach has been used in Ferrari et al. (2018) to compare the functional profiles of Mendelian Parkinson

disease, parkinsonism, and frontotemporal dementia genes. In Dervishi et al. (2018) PPIN analysis coupled

with expression profiling was used to isolate key cellular events in amyotrophic lateral sclerosis, whereas

Bonham et al. (2018, 2019) applied protein networks for the functional evaluation of behavioral and lan-

guage variant frontotemporal dementia.
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To explore if the clinical diversity of the HSPs reflects a mechanistic heterogeneity of disease, machine

learning tools (PCA and hierarchical clustering) were used to analyze the functional profile of the core

HSP-PPIN. Based on our in silico analysis, we suggest the existence of at least 2 main subtypes of HSPs.

The first functional subtype includes the clinical features of thin corpus callosum and seizures (i.e., TS clus-

ter), whereas the second gathers those cases characterized by early onset, peripheral neuropathy, demen-

tia or mental retardation, and optic atrophy (i.e., EPOD cluster). Further analysis for biological processes of

the 2 clinical clusters suggested that ‘‘protein metabolism’’ and ‘‘waste disposal’’ are prominent in the TS

cluster. In addition, most of the unique results for this cluster were related to the unfolded protein

response. These results support the relevance of the regulation of protein level and conformation for

the TS cluster. In contrast, for the EPOD cluster, the most important functions were related to ‘‘physi-

ology-host/virus’’ and ‘‘cell death,’’ which suggests that the endomembrane system involved in the viral

process, together with mechanisms involved in cell survival, are of greater importance in the EPOD cluster.

These findings were further supported by cellular component and pathways analyses, where the TS cluster

showed a higher enrichment in different types of membranes, melanosomes, and the ER, whereas results

for the EPOD cluster were more focused on extracellular components, mitochondria, other organelles, and

the cytoskeleton.

Therefore, this study provides a platform indicating that patients with HSP could be stratified based on the

molecular mechanisms involved in disease etiopathogenesis, and this in turn can be beneficial for devel-

oping therapeutic strategies and aiding efforts to stratify patients for clinical trials.

This application provides insight into the utility of PPIN analysis in the study of complex disorders, as PPINs

are a powerful tool that can extract and combine a large extent of previous data in a relatively quick and

easy fashion. The use of this approach can create a comprehensive picture that summarizes the current

knowledge, helping in prioritizing and confirming existing mechanistic theories, guiding research based

on the identification of interesting proteins and pathways, as well as highlighting uncertain areas that

require further investigation.
Limitations of the study

It is important to note the limitations of the approach used in this study. The mapping of the human inter-

actome has progressed massively within the last decade, but it is still incomplete and for the most part it is

still based on hypothesis-driven experiments. In addition, the most accurate and trustworthy type of cura-

tion for PPI data (i.e. manual curation) is also the most time-consuming, leading to a delay between the

publishing of PPIs and their input in PPI databases. This introduces two typical biases of protein networks:

they are incomplete by definition and affected by ascertainment bias. Another consideration that is worth

raising is that some relevant pathways can be consequential to disease and therefore not directly depen-

dent on the first layer of protein interactions built around the seeds.

As a result, PPI-based analyses are affected by type II error. In this specific case, for example, some func-

tions genuinely associated with HSPs could be omitted from the results. It is also worth considering that the

results presented in this study require further functional and clinical validation. At the same time, however,

this study provides a platform indicating that patients with HSP could be stratified based on the molecular

mechanisms involved in disease etiopathogenesis, and this in turn can be beneficial for developing ther-

apeutic strategies and aiding efforts to stratify patients for clinical trials.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Neuromuscular disease

center database

Washington University in St. Louis; http://neuromuscular.wustl.edu/ RRID:SCR_007305

PINOT Bioinformatic web server of University of Reading; http://www.reading.ac.

uk/bioinf/PINOT/PINOT_form.html

N/A

Software and algorithms

R R Project for Statistical Computing; http://www.r-project.org/ RRID:SCR_001905

Cytoscape Institute for Systems Biology; Washington; USA , University of California at

San Diego; California; USA; http://cytoscape.org

RRID:SCR_003032

gProfiler BIIT - Bioinformatics Algorithmics and Data Mining Group; http://biit.cs.ut.ee/gprofiler/ RRID:SCR_006809

Panther University of Southern California; Los Angeles; USA; http://www.pantherdb.org/ RRID:SCR_004869

WebGestalt Vanderbilt University; Tennessee; USA; http://www.webgestalt.org/ RRID:SCR_006786
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and protocols should be directed to and will be fulfilled by

the lead contact, Dr Claudia Manzoni (c.manzoni@ucl.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The published article includes all datasets and code generated or analyzed during this study. The main

resource used in this study was PINOT, whose code is freely available to download from the help-page

of the tool: http://www.reading.ac.uk/bioinf/PINOT/PINOT_help.html#select.

METHOD DETAILS

Selection of seeds

The protein products of 83 genes were selected as seeds based on their clinical relevance for HSPs (de

Souza et al., 2017), among which 17 have not been widely recognised as HSP genes hereafter referred

to as test seeds. The list of HSP seeds (n=66) is: ALDH18A1, AMPD2, AP4B1, AP4E1, AP4M1, AP4S1,

AP5Z1, ARL6IP1, ARSI, ATL1, ATP13A2, B4GALNT1, BSCL2, C12orf65, C19orf12, CAPN1, CPT1C,

CYP2U1, CYP7B1, DDHD1, DDHD2, DSTYK, ENTPD1, ERLIN1, ERLIN2, FA2H, FARS2, GBA2, GJC2,

HSPD1, IBA57, KIF1A, KIF1C, KIF5A, KLC2, L1CAM, MAG, MARS, NIPA1, NT5C2, PGAP1, PLP1, PNPLA6,

RAB3GAP2, REEP1, REEP2, RTN2, SLC16A2, SLC33A1, SPART, SPAST, SPG7, SPG11, SPG21, TECPR2,

TFG, TPP1, UBAP1, UCHL1, USP8, VPS37A, WASHC5, WDR48, ZFR, ZFYVE26 and ZFYVE27.

The list of HSP test seeds (n=17) is: ACO2 (Bouwkamp et al., 2018), ALS2 (Simone et al., 2018), BICD2 (Kro-

patsch et al., 2019), CCDC50, CCT5 (Bouhouche et al., 2006), EXOSC3 (Blackstone, 2018a), GAD1 (Lo Giu-

dice et al., 2014), HACE1 (Akawi et al., 2015), IFIH1 (Liu et al., 2019), KCNA2 (Helbig et al., 2016), KIDINS220

(Zhao et al., 2019), LYST (Shimazaki et al., 2014), MT-ATP6 (Verny et al., 2011), MT-CO3 (Blackstone, 2018b),

MT-ND4 (Clarencon et al., 2006), RETREG1 (Ilgaz Aydinlar et al., 2014) and SELENOI (Ahmed et al., 2017)

Collection of PPIs and HSP-PPINs

The 83 seeds were used as the input to query the PINOT webtool (Tomkins et al., 2020) [http://www.

reading.ac.uk/bioinf/PINOT/PINOT_form.html]. PINOT produces a list of experimentally demonstrated bi-

nary PPIs containing unique, human PPI data obtained by merging and processing PPI data from 7
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databases: BioGrid (Oughtred et al., 2019), InnateDB (Breuer et al., 2013), IntAct (Orchard et al., 2014),

MBInfo [https://www.mechanobio.info/], MINT (Licata et al., 2012), UniProt (UniProt, 2019) and bhf-ucl.

Through PINOT, interactions are filtered and scored based on the number of publications that report a

particular interaction and the number of different methods used for their detection. The interactions pro-

vided from PINOT were then screened to remove PPIs with a final score <3 (those interactions without repli-

cation in the curated literature). The retained interactions were visualised using Cytoscape (RRID:

SCR_003032; v3.7.2), thus creating the global HSP-PPIN.

Each node in the network was scored based on the number of seeds to which it connected. The nodes in-

teracting with more than one seed, referred to as ‘‘inter-interactomes hubs (IIHs)’’ (Ferrari et al., 2017), were

used to extract a subnetwork composed of IIHs and the connected seeds. This subnetwork was termed the

‘‘core’’ HSP-PPIN.

The interactions for the global HSP and core HSP networks were downloaded on the 09/07/2019, PINOT

(beta version), using the stringent and Homo sapiens filters (default).
Enrichment analyses

The subset of proteins composing the core HSP network underwent enrichment analysis (Biological Pro-

cesses [BPs] and/or Cellular Components [CCs] Gene Ontology [GO] annotations). The consistency of

the results was evaluated by using 3 independent online tools, which utilise different algorithms, multiple

test correction and/or versions of the GO database. In particular: g:Profiler (RRID: SCR_006809; July 2019,

Over-representation enrichment analysis (Fisher’s one tailed test), Bonferroni’s corrections, GO database

release 11/07/2019, excluding electronic annotations and analysed against the annotated human genome)

(Reimand et al., 2016) [https://biit.cs.ut.ee/gprofiler/gost], Gene Ontology using Panther’s tool (RRID:

SCR_004869; September/October 2019, Binomial test, Bonferroni’s corrections, GO database release

03/07/2019, analysed against the human genome) (Ashburner et al., 2000; The Gene Ontology, 2019; Mi

et al., 2017) [http://geneontology.org/ and http://pantherdb.org/] and WebGestalt (WEB-based GEne

SeT AnaLysis Toolkit, RRID: SCR_006786; October 2019, Over-representation enrichment analysis (Hyper-

geometric test), FDR, GO database release 14/01/2019, analysed against the protein coding human

genome) (Wang et al., 2017) [http://www.webgestalt.org/].

The output of the functional enrichment includes a list of enriched GO terms and their respective enrich-

ment ratio which can be calculated using the following formulas:

Enrichment Ratio =
Ng

Nexp g
(Equation 1)

Ntg �NgGO

Nexp g =

Ntag
(Equation 2)

where Ng is the number of genes with a GO term in the data, Nexp_g the number of expected genes with a

GO term in the data, Ntg the number of genes in the data, NgGO the number of genes annotated with a

GO term in the GO database, and Ntag the total number of annotated genes in the GO database.

The enriched BP and CC GO terms were grouped by semantic similarity into semantic classes using in-

house developed dictionaries. The semantic classes were further clustered into functional blocks and loca-

tion blocks, respectively. The GO terms classified in the semantic classes ‘‘general’’ and ‘‘metabolism’’ were

not included in the analysis as they refer to GO terms that provide limited functional specificity to the anal-

ysis (Ferrari et al., 2017).

Finally, in order to reduce any tool specific bias, only the functional or location blocks confirmed to be en-

riched by at least 2 of the 3 enrichment tools (g:Profiler, PantherGO and WebGestalt) were retained for

further analysis. Particularly, for those blocks that were replicated across at least 2 tools, we analysed the

merge of their semantic classes resulting from each individual tool. Additionally, only the terms that

were enriched in association with at least 4 genes were retained.

The comparison of the clusters’ enrichment profiles for BP and CC was performed by calculating the

following ratio for each block:
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%cluster �%core

%core
(Equation 3)

where %cluster is the percentage of GO terms of a cluster, and %core is the percentage of GO terms of the

core-HSP-PPIN.

In the case that the aforementioned ratio of the functional or location block had the value of zero for the

core dataset, since dividing by zero results to N, we set up 25 as the maximum value and -25 as the min-

imum value for visualisation purposes.

Pathway enrichment was performed using Reactome’s online analysis tool (RRID: SCR_003485; v69 & v70 in

September and December 2019) (Jassal et al., 2020) [https://reactome.org/PathwayBrowser/#TOOL=AT].

The pathways that were significantly enriched (p-value<0.05) were retained and filtered further to remove

those with 3 or less proteins involved.

The associations of HSP genes with clinical phenotypes were collected from the Neuromuscular Disease

Center database, (RRID: SCR_007305; https://neuromuscular.wustl.edu/spinal/fsp.html [Accessed 29/04/

2020 2020]).

Text mining was performed on the GO-BP terms after the merging of results from the 3 tools. The number

of terms related to axons, cytoskeleton, endosomes, membranes, neurons, projections and vesicles were

counted based on the presence of ‘‘axo*’’, ‘‘cytoskelet*’’, ‘‘endos*’’, ‘‘membrane*’’ ‘‘microtubu*’’, ‘‘vesic*’’,

‘‘neuro*’’ and ‘‘projections*’’, respectively. An enrichment analysis was performed using the same key

words, based on their frequency in the results versus in the in-house dictionary that included a collection

of GO terms, using the described Equations (1) and (2).
PCA & Hierarchical clustering

In order to compare functional enrichment profiles, Principal Component Analysis (PCA) was conducted

through R (R Project for Statistical Computing, RRID: SCR_001905; v. 4.0.2) using the prcomp() function

of the stats package. The analysis of the number and percentage of GO terms in each functional block

were both rendered necessary due to the substantial difference in the number of resulting GO terms of

the 6 groups, whose functional enrichment profiles were compared (22<n<114) (Table S4).

Hierarchical clustering was performed using the hclust() function (R stats package) for the groups in the PCA

plot, using Euclidean as a distance measure for row clustering. However, one unit of distance in the x axis of

the PCA plot is more important than on the y axis, due to PC1 (x axis) explaining more variation than PC2 (y

axis) (63% and 25.8%, respectively for the analysis based on the percentage of GO terms). Thus, the coor-

dinates of each point had to be transformed; they were multiplied by the explained variation, so that the

distance between points can have the same significance in any direction and can thus be used for hierar-

chical clustering. Through Hierarchical clustering, the cluster dendrogram was produced. Choosing the

best fit for the number of clusters derived from Hierarchical clustering was based on the Silhouette method

(Rousseeuw, 1987) and the Multiscale bootstrap resampling method (Suzuki and Shimodaira, 2006). For the

former, the index/score were calculated for 2 up to 6 clusters. The latter was based on the R package

‘‘pvclust’’ that assigns pvclust p-values to each branch of the dendrogram, which show the confidence of

the result (the higher the value, the more confident we are of the result) (Suzuki and Shimodaira, 2006)

(Data S1).
QUANTIFICATION AND STATISTICAL ANALYSIS

For the analysis of the merged semantic classes from the 3 different tools, the threshold for determining

statistical significance of each GO term was decreased to p = 0.0166 (=0.05/3) to account for the multiple

comparisons.

The statistical analysis of the enrichment of key words was performed by running 100,000 random simula-

tions, where these key words were extracted from the in-house dictionary, and the pnorm() value was calcu-

lated using R.
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