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Parameter Tracking of Time-varying Hammerstein-Wiener Systems 

Abstract: A two-stage identification algorithm is introduced for tracking the 

parameters in time-varying Hammerstein-Wiener systems. The Kalman filtering 

algorithm and parameter separation technique are employed in the proposed 

algorithm. The convergence analysis of this two-stage algorithm is provided. It is 

shown that the proposed algorithm can guarantee the boundedness of the parameter 

estimation error. Four simulation examples, including a practical system 

application of electric arc furnace, have been employed to validate the 

effectiveness of the proposed approaches, for a range of simulated time-varying 

characteristics. 

Keywords: Hammerstein-Wiener systems; time-varying; two-stage identification; 

tracking 

1 Introduction 

Some complex industrial systems are composed of several subsystems as blocks, 

with their subsystems cascaded in series, each of which has different characteristics, 

either linear dynamic or nonlinear static. The systems such as Hammerstein (H) systems 

and Wiener (W) systems are two typical nonlinear block-oriented systems. There have 

been extensive researches on identification of block-oriented systems, including for H 

systems, the identification algorithms are reported in Wang et al. (2018), Hong et al. 

(2012) and (2007), Liu et al. (2019) and Zhang et al. (2017); for W systems, in Mu et al. 

(2013), Ding et al. (2016), Hong et al. (2013), Giri et al. (2013) and Li et al. (2017); and 

for the more complex Hammerstein-Wiener (H-W) systems, which are the combination 

of H and W systems, in Wang et al. (2012), Wills et al. (2013), Yu et al. (2013, 2014 and 

2017) and Voros (2014). 

The time-varying system refers to the fact that its characteristics change as 

operating conditions changes, e.g. with the variation of system status, working 

environment or operation mode (Astrom et al., 2013). One way of time-varying system 

modelling is to treat the system as having time-varying parameters (Chen et al., 2021). 

While block-oriented systems have been subjected to extensive research, much less 

attention has been devoted on identifying the time-varying block-oriented systems. The 

work of Nordsjo et al. (2001) tracked the time-varying block-oriented systems through 



extended Kalman filter (KF). It also considered the estimation of the variance of the 

measurement noise. The work of Bershad et al. (2000) identified the time-varying W 

systems through stochastic gradient method. The recursive least square (RLS) with 

forgetting factor was used in the works of Voros (2005, 2011, 2013 and 2017) to estimate 

the time-varying parameters of different H or W systems, such as H systems with 

piecewise linear block containing time-varying parameter or time-varying backlash block, 

W systems with time-varying hysteresis output part. The work of Kobayashi et al. (2010) 

studied identifying time-varying W systems. The optimization technique and neural 

networks were used in the identification process. These contributions all focused on 

tracking the simple H or W systems. For the H-W systems, there has fewer relevant 

research published as the problem is more challenging due to structure complexity. The 

work of Voros (2018) discussed on tracking a special time-varying H-W systems, of 

which the nonlinear part has backlash characteristics. Its parametric system model can be 

represented as the product form of time-varying parameters and information terms. The 

RLS method with forgetting factor can be used for the tracking problem. For the more 

general cases, the work of Yu et al. (2020) used a modified extended KF algorithm to 

track a more general H-W systems with time-varying parameters. It also presented a 

convergence analysis for the proposed algorithm. From these studies, it is suggested that 

the parametric model of H systems can be expressed in linear form. The RLS algorithm 

could be used to obtain the parameter estimates directly. For the W systems and H-W 

systems, nonlinear methods, such as extended KF algorithm, the method combining RLS 

and key term separation principle, etc., are proposed as their parametric models are 

nonlinear. However, these methods are all locally convergent and cannot guarantee the 

global convergence of parameter estimation. In addition, some methods have no strict 

convergence analysis. Users may not necessarily understand what conditions should be 

satisfied to ensure the convergence of the algorithm (Wang et al., 2019; 2021). All these 

restrict the application of the algorithms. It can be seen that there is still a lot of work to 

be done for tracking time-varying block-oriented systems. 

The research on time-varying H-W systems is seldom seen, which is the topic of 

the paper. Tracking changes in systems is important because it not only can estimate 

system output in real time but also can be combined with on-line control strategies to 

produce adaptive control algorithms for improved performance (Voros, 2005). Compared 

with the general black-box modelling, such as artificial neural network modelling, the 

identification of block systems is more complex. This is because not only the accurate 



estimate of system output, but also the characteristics of each subsystem are required in 

the identification process. Different from other basic block systems, such as H systems 

and W systems, H-W systems contain two nonlinear sub blocks. Stronger nonlinear 

characteristic makes identification more difficult (Chen et al., 2018). 

This paper studies on tracking general time-varying H-W systems with random 

varying parameters. Based on the parametric system model, a two-stage identification 

algorithm is proposed to identify the time-varying parameters. This identification strategy 

has been applied to off-line identifying time-invariant H-W systems (Bai et al. 1998). In 

this paper, it will be used to track the time-varying H-W systems. In the first stage, time-

varying parameter product terms in the system model are tracked by the Kalman filtering 

(KF) algorithm. In the second stage, the identified estimates of parameter product terms 

are separated to obtain the system model parameter estimates. The average method (AVE) 

and the singular value decomposition (SVD) method are introduced to separate the 

parameter. The convergence of the algorithm is also investigated with two parts. In the 

first part, it is proved that the KF algorithm is global convergent for the estimation of the 

parameter product terms in H-W model and it can achieve tracking with bounded error. 

Furthermore, it is proved in the second part that the estimation error of original system 

parameter is bounded either AVE method or SVD method is used. Four simulation 

examples are given to show the validity of the proposed algorithm. 

The contributions of the paper are summarized as follows: 

1. The varying parameters of time-varying H-W systems can be tracked by 

the proposed two-stage identification algorithm. 

2. The convergence of the algorithm does not depend on the initial parameter 

estimates. If the persistent excitation condition is satisfied, the algorithm can achieve 

global convergence. 

3. In addition, to the case of random varying parameters, the proposed 

algorithm can also track the H-W systems with other kinds of time-varying parameters, 

which further extends its application. 

The remainder of the paper is organized as follows. Section II provides H-W 

mathematical formulation. Section III introduces the proposed tracking algorithm, 

followed by convergence analysis in Section IV. Numerical examples are given in Section 

V and Section VI is devoted to conclusions. 

https://fanyi.baidu.com/#en/zh/time-invariant


2 Problem formulation 

Fig. 1 shows the structure of the studied H-W systems. 
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Linear dynamic 

block

Output nonlinear 

static block

, ( )I t tF u

Input nonlinear 

static block  

Fig .1 Time-varying H-W systems 

Gt(z
-1) is the time-varying linear block transfer function; z-1 is the backward shift 

operator; FI,t(ut) is the function of time-varying input nonlinear block; FO,t(wt) is the 

function of time-varying output nonlinear block; ut is the system input; yt is the system 

output; vt and wt are the internal variables, both of them are immeasurable. 

The following time-varying difference function with ARMA form is used to 

describe the dynamic characteristic of linear block: 
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where r and m are the system orders of linear block; ai,t and bi,t are the time-varying 

parameters and 

 , +1 , , +1,ii t i t a ta a    (2) 

 , +1 , , +1,ii t i t b tb b    (3) 

where , +1ia t  and , +1ib t  are the time-variations of ai,t and bi,t, respectively. 

The input nonlinearity is modelled by a linear combination of basis function fI,i 

with time-varying parameters ci,t: 
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where p is the number of basis function fI,i. 

In order to estimate the unavailable internal variable wt, the inverse of the output 

nonlinearity is required, which is also modelled by a linear combination of basis function 

fO,i with time-varying parameters di,t, namely: 

    1
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,
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where q is the number of basis function fO,i. 

Similar to the linear time-varying parameters, we have 

 , +1 , , +1ii t i t c tc c    (6) 



 , +1 , , +1ii t i t d td d    (7) 

where , 1ic t   and , +1id t  are the time-variations of ci,t and di,t, respectively. 

The assumptions for the H-W systems are adopted as follows: 

Assumption 1. The input and output signal and the system parameters are 

bounded; 

Assumption 2. The orders of linear block r and m are known, as well as the basic 

functions fI,i and fO,i and their numbers p and q in nonlinear blocks; 

Assumption 3. The output nonlinearity is one-to-one within the input and output 

data so that the inverse of FO,t(wt) exists; 

Assumption 4. The values of c1,t and d1,t are set to be 1 in the system 

parameterization. They are not updated in the identification process; 

Assumption 5. The time-variation parameters ,ia t , ,ib t , ,ic t  and ,id t  are 

modelled as stochastic processes. Furthermore, 
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Assumption 1 is a traditional assumption for system identification. If the linear 

part is unstable, the system input must keep the output bounded. Assumption 2 implies 

that the algorithm proposed in this paper aims to identify the system parameter rather than 

estimates the model structure (Bai et al. 2002). This shows that in the application of the 

algorithm, certain prior knowledge of the system structure is required. The order of the 

model should be known. Assumption 3 makes the parameterization of the inverse of 

output nonlinearity available. This is a special assumption for the H-W system 

identification problem (Wang et al., 2012 and Bai et al., 1998 and 2002). The H-W 

systems with reversible output nonlinearity are widespread in practice, although this 

assumption limits the application of the algorithm for the H-W systems with irreversible 

output nonlinearity. Assumption 4 guarantees the consistency of parameter estimation 

(Yu et al., 2013 and 2014 and Bai 1998). Assumption 5 shows the time-varying 

characteristics of the system, which can be called “random walk”. It is a common method 

to model the time-varying parameters in the time-varying system (Ljung et al., 1990). 



To facilitate the identification of model parameters, the parametric model of the 

H-W systems is given. Notice that c1,t and d1,t are set to be 1, define 
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Therefore, we obtain the parametric model of H-W systems as follows 

  ,1

T

t t O tf y    . (11) 

3 Parameter estimation algorithm 

In this section, a two-stage recursive identification algorithm is proposed to track 

the time-varying parameter vectors ai,t, bi,t, ci,t and di,t in the parameterized model (11). 

For the first stage, tracking the time-varying parameter vector θt is considered. As 

θt is not the original model parameter, a study on it is given. Define , ,,T T T
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Therefore, we have 
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where 
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From (11), it can be seen that θt is only composed of unknown parameters and φt 

only contains the items regard to the measurements of system input and output. Therefore, 

θt can be identified by the KF algorithm. The following algorithm is proposed: 

 +1
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where ˆ
t  is the estimate of θt; et is the model prediction error; Kt is the update gain of ˆ

t ; 

Pt is the estimate of 
T

t tE   
  , where t  is the estimation error of θt; Q

2 is the estimate of 

T
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Remark 1. In the traditional identification algorithm, et is defined as the 

difference between the measurement of system output and its estimate(Chen et al., 2020a). 

However, there is no estimate of system output in the system model (11). Considering the 

special form of (11), define et as follows: 

  ,1
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Remark 2. Pt is updated by (17) recursively at each sampling time. The initial 

value of Pt can be set to 

 0 1P l I  (19) 

where I is identity matrix; l1 is a large positive real number. It is obvious that if equation 

(19) is used to initialize P0, Pt will be symmetric positive definite at any sampling time 

(Chen et al., 2020b). Q2 is set as follows: 

 
2

2Q l I  (20) 

where l2 is a positive real number. R2 can be set as a small value. 



From the algorithm (15)-(17), the estimate of θt can be obtained. However, the 

aim of the paper is to identify the time-varying parameter ai,t, bi,t, ci,t and di,t. Therefore, 

for the second stage, separate the parameters in θt is considered to obtain the original 

system parameter estimates ˆ
ta , ˆ

tb , t̂c  and ˆ
td . The following two methods are introduced. 

Average (AVE) method 

Notice that the parameter sets ai,t, ci,t and di,t exist independently in θt. Therefore, 

the estimates of these parameters can be obtained from ˆ
t  directly. The following AVE 

methods can be used to obtain the estimates of bi,t: 
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Remark 3. ,
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terms of 
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ˆ
i t j t j tb c c , different solutions may be obtained due to estimation errors of ˆ

t . 

Therefore, the average value as shown in equation (21) is used to calculate ,
ˆ
i tb . On the 

one hand, this method can give a unique estimate; on the other hand, it eliminates some 

influence on ,
ˆ
i tb  caused by random errors of ˆ

t . 

Singular value decomposition (SVD) method 

Note that θt has a special structure in terms of ai,t, bi,t, ci,t and di,t. The SVD method 

can be used to separate them. Define 
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The estimates of ,ad t  and ,bc t  can be obtained from ˆ
t . Let 
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where σi and ρi are the singular values of ,
ˆ
ad t  and ,

ˆ
bc t , respectively. They are arranged 

to be nonnegative and in order of decreasing magnitude; ηi, νi, χi and γi are r, q, m and p 

dimensional singular column vectors, respectively. Then the estimates of At, Bt, Ct and Dt 

can be computed by 
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Remark 4. As an online algorithm, the complexity of the algorithm must be 

considered. Ave method needs less computation. It is easy to combine with KF to realize 

online application. The time complexity of SVD is O(n3), where n is the maximum 

number of rows and columns of the matrix. If n is large, it consumes a lot of computation. 

For the H-W systems we studied, most of the linear dynamic characteristics can be 

described by the model shown in equation (1) with the order less than 5. That means r 

and m will not be too large. In addition, a few basis functions are required to fit the 

nonlinear characteristics if the system works stably. Therefore, the orders of  ,
ˆ
ad t r q




 and 

 ,
ˆ
bc t m p



 will not be too high. SVD can also be combined with KF to realize online 

identification in practical application. 

4 Convergence analysis 

Define 
t  as the parameter estimation error: 

 ˆ .t t t     (28) 

In order to analyse the convergence of the algorithm strictly, the following lemma 

about Ht is given. 

Lemma 1. If Assumption 1 and Assumption 5 are satisfied, then there is a 

positive real number H  such that  1 1
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        

      

 (31) 

From equation (10) in Assumption 5, it is obtained that for any i j  and h k ,

 , , 0i h j kE    . It is also noticed that 
,dr t  does not depend on 

, +1dl t  and 
,dl t  does not 

depend on 
, +1dr t , namely , +1 ,( ) 0dl t dr t tE      and , +1 ,( ) 0dr t dl t tE     . Therefore, 

the following terms 

, , +1 , +1 ,([ ][ ] )T T

dl t dr t dl t dr t tE      , 

, , +1 , +1 , +1([ ][ ] )T T

dl t dr t dl t dr t tE      , 

, +1 , , , +1([ ][ ] )T T

dl t dr t dl t dr t tE      , 

, +1 , , +1 , +1([ ][ ] )T T

dl t dr t dl t dr t tE      , 

, +1 , +1 , , +1([ ][ ] )T T

dl t dr t dl t dr t tE       

and 

, 1 , 1 , 1 ,([ ][ ] )T T

dl t dr t dl t dr t tE         

are all equal to 0. Therefore, 
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 



 

 (32) 

According to the definition of ht and Assumption 5, it follows that 

 +1( )=(0 0).T

t tE h  , ,  (33) 

In addition, we have 
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 (34) 

According to the definition of ht and equation (9) in Assumption 5, it is obvious that 

 
, +1( )=(0 0).T

s t tE   , ,  (35) 

From (32) and (34), it follows that 
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 

      

 (36) 

According to Assumption 1 and Assumption 5, τ2 and all the system parameter 

are finite. Therefore, there must be a positive real number H  such that 

 
2 2 4

, , , ,( 1) +[ ( 1) ] .T T

dl t dl t dr t dr tH r m q mp q r              (37) 

The conclusion of (29) is obtained. 

From (33) and (35), the conclusion of (30) is obtained.□ 

For further analysis, the following two lemmas are given. 

Lemma 2 (Deyst et al., 1968). Assume there is a stochastic process ( )t tL   and 

the following positive real numbers β, l , l  and 0 1   such that 

 
2 2

2 2|| || ( ) || ||t t t tl L l     (38) 

and 

 1( )t t t tE L L L        (39) 



are satisfied for all the solution of (15). Then the stochastic process is exponentially 

bounded in mean square and bounded with probability one. 

Lemma 3 (Reif et al., 1999). Let the following conditions hold. 

1) There are positive real numbers r , r , q  and q  such that R2 and Q2 in (16) and 

(17) are bounded by 

 2r R r   (40) 

 
2 ,qI Q qI   (41) 

2) There is a finite positive integer N and positive real numbers   and   such 

that the persistent excitation condition 

 
1

t
T

t t

i t N

I I  
  

   (42) 

are satisfied for all t N . 

Then there are positive real numbers p  and p  such that Pt is bounded by 

 .tpI P pI   (43) 

Based on the three lemmas, the main convergence analysis is given. Since the 

identification algorithm consists of two stages, the convergence analysis is divided into 

two parts. 

Theorem 1. When the algorithm (15)-(17) is used to system (11), if Assumptions 

1-5 and conditions (40), (41) and (42) are satisfied, then 
t  is exponentially bounded in 

mean square and bounded with probability one. 

Proof: From (14), (15) and (28), it follows that 

 +1 +1+ .t t t t tK e H    (44) 

Define the following Lyapunov function (Kalman et al., 1960): 

 1

1 1 1 1.
T

t t t tL P      (45) 

From (16) and (17), it can be obtained 
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and 

 
2
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By using (15) and (47), (45) becomes 
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Substituting (46) into (48), it follows that 
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 (49) 

From (11) and (18), 

    ,1 ,1
ˆ + .T T T
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Therefore, (49) becomes 
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According to Lemma 1,    +1 = 0 0 .T

t tE H  , ,  In addition, since neither 1

tP  nor 

t  depend on Ht+1. Therefore, 2 1

+1[ ( ) | ]=0T

t t t tE P Q H  . And then, given that 
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Considering that Pt and Q2 are symmetric positive, from (46), it is obviously that 
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Therefore, 
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Applying Lemma 1 and Lemma 3, it is obtained 
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According to (41) and (43), we have 
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Therefore, 
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Considering (54), (55) and (57), (52) yields 
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As  
1

0 1q p q


   , let  
1

q p q


  be α and 
2 1H p

 be β. From Lemma 2, the 

conclusion of the theorem is obtained. □ 

Based on the conclusion of Theorem 1, the second stage of the convergence 

analysis is given. 

Theorem 2. Consider the solutions of ˆ
tA , ˆ

tB , ˆ
tC  and ˆ

tD  from AVE method or 

SVD method, if 
t  is bounded and 

,
ˆ 0i tc   ( 2, ,i p ), then ˆ

tA , ˆ
tB , ˆ

tC  and ˆ
tD  are 

bounded. 

Proof: Firstly, the convergence analysis for AVE method is given. If 
t  is 

bounded, ˆ
t  is bounded. Since ˆ

tA , ˆ
tC  and ˆ

tD  are obtained from ˆ
t  directly, they are 

also bounded. ˆ
tB  is obtained from (21), it follows that 
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
   (59) 

It can be seen that if ,
ˆ 0i tc   as well as , ,i t j tb c  and jc  are bounded, ˆ

tB  is bounded either. 

Secondly, the convergence analysis for SVD method is studied. If 
t  is bounded, 

,
ˆ
ab t  and ,

ˆ
bc t  are bounded. According to the calculation method of singular value and 

singular column vector, if a matrix is bounded, all its singular values and singular column 

vectors are bounded. Therefore, ˆ
tA , ˆ

tB , ˆ
tC  and ˆ

tD  are also bounded. The conclusion of 

Theorem 2 is obtained. □ 

Remark 5. For the AVE method, the additional condition 
,

ˆ 0i tc   is required to 

guarantee the boundedness of ,
ˆ
i tb . This assumption is reasonable because it is almost 



impossible for 
,î tc  to be exactly zero in the identification process. However, in order to 

eliminate this situation completely, 
,î tc  can be set as a small number if it equals to zero. 

Remark 6. From the conclusions of Theorem 1 and Theorem 2, it is clear that 

the algorithm can achieve global convergence. Compared with the local convergence 

algorithm, such as the algorithm proposed in Yu et al. (2020), the global convergence 

algorithm can make the parameter estimate converge to the true value even when the 

parameter estimation error is large. This property is very important, especially for the 

identification of systems without prior knowledge. We will further show this in the 

simulation experiments. 

In addition, the variation of the parameters is modelled as a stochastic process 

shown in Assumption 5 in the convergence analysis of the algorithm. The influence of 

noise on parameter estimation is also not considered. However, the algorithm can still be 

applied to track the H-W systems with other kinds of time-varying parameters under noisy 

environments. This property will also be shown through simulation examples. 

5 Simulation examples 

Four simulation examples will be shown to verify the validity of the proposed 

algorithm in this section. 

Example 1. Consider the following time-varying H-W system. The input 

nonlinear block is represented by a polynomial function: 

 2 3( ) 0.4 0.7t I t t t tv F u u u u    ,  

the linear block is represented by 

 1 2 1 20.6 0.4 0.7 0.36t t t t tw w w v v       ,  

and the inverse of the output block is also represented by a one-to-one polynomial 

function: 

 
1 2 3( ) 0.4 0.6t O t t t tw F y y y y    .  

All of the time-varying terms ,i t  obey the statistical laws  , 0, 0.002i t N ～ . 

P1 is initialized with 108I. Q2 is defined as the estimate of T

t tE H H   . However, 

unbiased estimation of this matrix is not necessary from Theorem 1. According to (58), 

we have 



 2 1

1( | ) .t t t

p
E L L H p

p q
 
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

 (60) 

It can be seen that appropriately increasing Q2 may reduce the parameter estimation error. 

Therefore, Q2 is set to 10I. 1̂  is initialized with 0.01I. The white Gaussian sequence with 

zero mean and variance 1 is taken as the system input. In the second stage of the algorithm, 

both of the AVE method and SVD method are used. The simulation goes through 5000 

samples. The convergence results of the parameter estimation errors are shown in Fig. 2. 

 

Fig. 2 Convergence results of parameter estimation error 

In Fig. 3 and Fig. 4, the estimation results of each parameter from the two 

parameter separation methods are shown for contrasting. 

 

Fig. 3 Tracking results of parameter ai, bi 



 

Fig. 4 Tracking results of parameter ci, di 

From the identification results, it can be seen that the parameter estimation errors 

of the two algorithms converge to a small range rapidly. All the parameter estimates can 

track the true values. Compared with AVE method, SVD method has higher tracking 

accuracy. But the difference between the two results is not obvious. 

Example 2. In this simulation example, the two-stage algorithm proposed in the 

paper and a modified EKF algorithm proposed in Yu et al. (2020) are used to carry out a 

comparative experiment. The simulation example contains three experiments. The 

identification object in the three experiments is the same as Example 1. In order to test 

the convergence of different algorithms, different initial conditions of 1̂  are used. In the 

first experiment, 1
ˆ =0.01 (1, ,1)T  , which is the same as Example 1. In the second 

experiment, 1
ˆ =10 (1, ,1)T  . In the third experiment, 1

ˆ =1000 (1, ,1)T  . Same process is 

used for the two algorithms in each experiments in order to have a fair comparison. 

Convergence curves of parameter estimates are shown in Fig.5, Fig.6 and Fig.7. 

 



Fig. 5 Convergence results of estimation error with initial condition 1
ˆ =0.01 (1, ,1)T   

 

Fig. 6 Convergence results of estimation error with initial condition 1
ˆ =10 (1, ,1)T   

 

Fig. 7 Convergence results of estimation error with initial condition 1
ˆ =1000 (1, ,1)T   

It can be seen from Fig.5 that the convergence rate of EKF algorithm is slower 

than that of two-stage method. This phenomenon is more obvious in Fig. 6. It is because 

the first order Taylor approximation is no longer reasonable with the increase of 

parameter estimation error. At the same time, too large parameter estimation error will 

make the EKF algorithm unable to converge, such as the results shown in Fig. 7. However, 

the two-stage method can achieve fast convergence no matter how large the initial 

parameter estimation error is. 

Example 3. In this simulation example, the initialization form of the model to be 

identified is also the same as that in Example 1. However, the variation properties of the 

parameters are different. For parameter ai,t, ,ia t  are constants, setting 
1 , 0.00005a t   and 



2 , 0.00004a t   . It is obvious that the variation of ai,t is monotone linear. The change of 

parameters bi,t obeys the following rules: 

  1, 0.7 0.0003cos 0.005tb t  ,  

  2, 0.36 0.0005sin 0.003tb t   .  

The characteristic of the time-varying parameters Ct is the same as that in Example 1, 

namely  , 0, 0.002
ic t N ～ . The parameter di,t have a jump at the 1000th sampling point. 

The amplitudes of the jump for d2,t and d3,t are 0.1 and -0.1, respectively. 

In addition, measurement noise is added to the system output with 20dB signal-

to-noise ratio. The simulation also goes through 5000 samples. The convergence results 

of the parameter estimation errors for the two parameter separation methods are shown 

in Fig.8. 

 

Fig. 8 Convergence results of estimation error 

In Fig. 9 and Fig. 10, the estimation results of each parameter are shown for 

contrasting. 

 



Fig. 9 Tracking results of parameter ai and bi 

 

Fig. 10 Tracking results of parameter ci and di 

From the results, it can be seen that although the time-variation properties of 

parameters are different from Assumption 5, all the parameter estimates track the true 

values very well for both of the two separation methods. At the same time, it is also noted 

that the noise does not cause obvious interference to the identification accuracy. At the 

1000th sampling point, the parameter estimation error has a great change. It is because 

d2,t and d3,t jumped at that time. Although there is a sudden change, the parameter 

estimation error converged to the normal level quickly. 

Example 4. In this simulation, the identification of an electric arc furnace (EAF) 

system is given (Yu et al. 2014). EAF is a device for steel production by melting scrap. 

The model of arc furnace consists of proportional valve, hydraulic system and arc 

characteristics in series. The structure of EAF model is shown in Fig.11, 

u v L

Arc
Hydraulic

System

Proportional

Valve

arcR

 

Fig. 11 Structure of EAF system 

where u is input signal; v is voltage value, V; L is the length of arc, cm; Rarc is arc 

resistance, mΩ. The proportional valve converts input signal into voltage value and drives 

the hydraulic system to change the length of arc, so as to realize the control of arc 

resistance. 

The proportional valve contains a dead-zone nonlinearity, which can be expressed 

as: 
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where p1 and p2 are dead-zone parameters. The characteristic of hydraulic system can be 

expressed by a linear model. The discrete transfer function is 
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The EAF power supply system can be modelled by the following equivalent R-L circuit: 

 
2 2 2( ) ( )p d arc arc d arcU R I U X I    (63) 

where Up is the transformer secondary voltage, V; Rd is the circuit resistance, mΩ; Xd is 

the circuit inductance, mΩ; Iarc is the arc current, A; Uarc is the arc voltage, V; and we 

have: 

 ,arc arc arc t arc arcU a b L I R    (64) 

where aare is the voltage drop of arc anode and cathode, V; bare,t is the arc voltage drop 

gradient, V/cm. It is a time-varying parameter and decreases with the increase of furnace 

temperature. It can be seen that the relationship between Rare and L is one-to-one, time-

varying and nonlinear. In the simulation, we set 1 1p  , 2 1p    for proportional valve; 

1 1.637a   , 2 1.044a  , 3 0.4066a   , 1 0.0378b  , 2 0.0333b  , 3 0.0097b   for 

hydraulic system; 320pU  , 0.4dR  , 0.7dX  , 30arca  , bare,t decreases from 6 to 3 

for power supply system. 

The characteristics of EAF can be expressed by an H-W model. Rewritten equation 

(61) with the form of equation (4): 
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As the characteristic of arc is one-to-one, its inverse is approximated by a 

polynomial function 
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The purpose of identification is to estimate the parameters p1, p2, a1-a3 and b1-b3 

and track the change of arc characteristics by the measurable input and output data u and 

Rarc for obtaining accurate system output estimation. In the simulation, P1 is initialized 

with 108I. Q2 is set to I. 1̂  is initialized with 0.01I. The uniformly distributed sequences 



within [-3, 3] around the working point is taken as the system input. The simulation goes 

through 5000 samples. The parameter bare,t changes uniformly in each sampling point 

from 6 to 3. Three different polynomial functions with orders q equal to 4, 5 and 6 are 

used. The AVE method is adopted to obtain the original system parameters. The 

identification results are shown in Fig. 12 and Fig. 13. Fig. 12 shows the sum of squares 

of estimation errors of parameters pi, ai and bi for the models with different orders, where 

      
22 2

, , ,
ˆˆ ˆ .i t i i t i i t iEr p p a a b b         (67) 

Fig.13 shows the estimation error et of system output. 

 

Fig. 12 Parameter estimation error 

 

Fig. 13 System output estimation error 

From Fig. 12 and Fig. 13, it can be seen that both of the parameter estimates and 

system output estimates converged for all the three models. However, with the increase 

of model order p, estimation errors of parameter and system output decrease gradually. It 



can be seen that in the application of the algorithm, appropriately increasing the number 

of basis function can improve the accuracy of identification. 

6 Conclusions 

This paper has introduced a new two-stage recursive algorithm aimed at tracking 

the time-varying H-W systems. In the first stage, KF algorithm is used for identifying the 

parameter vector θt. In the second stage, AVE method and SVD method are proposed to 

separate the parameter product terms in θt to obtain the system parameter estimates. The 

convergence analysis for the proposed method also includes two parts. In the first part, it 

is proved that KF algorithm can guarantee that t  is bounded under the condition of 

sufficient excitation. Based on the conclusion of the first part, it is proved in the second 

part that both parameter separation methods can ensure the boundness of parameter 

estimation errors. The performance of the proposed algorithms has been demonstrated via 

four simulated examples with experimental design of a variety of system varying 

characteristics typical in complex systems, including a practical EAF system case. It is 

shown that the proposed algorithm is robust to measurement noise and can be used to 

tracking the H-W systems with deterministic trend change, jump change. 

For the identification of time-varying H-W systems, there are still a lot of 

important issues to be investigated. The further research should focus on structure 

identification, e .g, on adaptively estimating of the order r and m, the numbers of basis 

function p and q and determining the type of the basis function for the nonlinear parts. 
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