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Abstract
Data assimilation algorithms combine prior and observational information,
weighted by their respective uncertainties, to obtain the most likely posterior of a
dynamical system. In variational data assimilation the posterior is computed by
solving a nonlinear least squares problem. Many numerical weather prediction
(NWP) centers use full observation error covariance (OEC) weighting matrices,
which can slow convergence of the data assimilation procedure. Previous work
revealed the importance of the minimum eigenvalue of the OEC matrix for con-
ditioning and convergence of the unpreconditioned data assimilation problem.
In this article we examine the use of correlated OEC matrices in the precondi-
tioned data assimilation problem for the first time. We consider the case where
there are more state variables than observations, which is typical for applica-
tions with sparse measurements, for example, NWP and remote sensing. We find
that similarly to the unpreconditioned problem, the minimum eigenvalue of the
OEC matrix appears in new bounds on the condition number of the Hessian of
the preconditioned objective function. Numerical experiments reveal that the
condition number of the Hessian is minimized when the background and obser-
vation lengthscales are equal. This contrasts with the unpreconditioned case,
where decreasing the observation error lengthscale always improves condition-
ing. Conjugate gradient experiments show that in this framework the condition
number of the Hessian is a good proxy for convergence. Eigenvalue clustering
explains cases where convergence is faster than expected.

K E Y W O R D S

condition number, correlated observation error covariance, data assimilation, Hessian, least
squares, preconditioning

1 INTRODUCTION

Data assimilation algorithms combine observations of a dynamical system, yi ∈ Rpi at times ti, with prior information
from a model, xb ∈ RN to find xi ∈ RN , the most likely state of the system at time ti. In variational data assimilation the
posterior is computed by solving a nonlinear least squares problem. In this article we examine the effect of using correlated
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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observation error covariance (OEC) matrices on the convergence of the preconditioned variational data assimilation
problem. We develop new bounds on the condition number of the Hessian of the linearized preconditioned objective
function. Numerical experiments allow us to compare the bounds to the computed condition number. We also investigate
the relationship between conditioning, the full spectrum of the Hessian and convergence of a linear data assimilation test
problem to assess the suitability of using the condition number of the Hessian as a proxy for convergence in this setting.

We now define the variational data assimilation objective function of interest for this article. For a time window [t0, tn],
we let xt

i ∈ RN be the true state of the dynamical system of interest at time ti, where N is the number of state variables.
The prior, or background state, is valid at the initial time t0 and can be written as an approximation to the true state as
xb = xt

0 + 𝜖b. We assume that the background errors 𝜖b ∼  (0,B), where B ∈ RN×N is the background error covariance
matrix. As observations can be made at different locations, or of different variables to those in the state vector xi, we define
an observation operator hi ∶ RN → Rpi which maps from state variable space to observation space at time ti. Observations
yi ∈ Rpi at time ti are similarly expressed as yi = hi[xt

i] + 𝜖i for i = 0, … ,n: the sum of the model equivalent hi[xt
i] and an

observation error 𝜖i ∼  (0,Ri), where Ri ∈ Rpi×pi are the OEC matrices. We additionally assume that the observation and
background errors are mutually uncorrelated. The total number of observations across the whole time window is given
by p =

∑n
i=0pi. The state xi−1 at time ti−1 is propagated to the next observation time ti using a nonlinear forecast model

operator, , to obtain

xi = (ti−1, ti; xi−1). (1)

In variational data assimilation the analysis, x0, or most likely state at the initial time t0, minimizes the full 4D-Var
objective function, given by

J(x0) =
1
2
(x0 − xb)TB−1(x0 − xb) + 1

2

n∑
i=0

(yi − hi[xi])TR−1
i (yi − hi[xi]). (2)

In applications such as numerical weather prediction (NWP), the nonlinear objective function (2) is typically mini-
mized using an iterative method. The most common implementation is the incremental formulation, which solves the
variational data assimilation problem via a small number of nonlinear outer loops, and a larger number of inner loop iter-
ations which minimize a linearized least squares problem.1 This procedure is equivalent to a Gauss–Newton method2-4

and will be presented in Section 2.
For many systems in the geosciences and neurosciences5,6 the number of state variables, N, can be of the order of 109.

In this article we consider the case where the number of state variables is greater than the number of observations,
that is, N > p, an assumption which holds for applications with sparse measurement data. The large dimension of the
state space motivates the use of a control variable transform (CVT) to model the background error covariance matrix, B,
implicitly.7 The CVT uses the square root of B as a variable transform to obtain a modified objective
function [8, sec 9.1], and can be interpreted as a form of preconditioning. The transformation diagonalizes the weight-
ing on the first term of (2), making the transformed state variables uncorrelated. We refer to the incremental variational
problem with the CVT as the preconditioned data assimilation problem for the remainder of this article.

As the inner iterations of the incremental 4D-Var algorithm solve a linear least squares problem, the conjugate gradient
method can be used for the minimization of the linearized objective function.9-11 Convergence of a conjugate gradient
method can be bounded by the condition number of the Hessian of the objective function;12-14 therefore the condition
number of the linearized Hessian can be considered as a proxy to study how changes to a data assimilation method are
likely to affect convergence of the inner loop. The Hessian of the linearized preconditioned objective function is given by

Ŝ = I +
n∑

i=0
B−1∕2MT

i HT
i R−1

i HiMiB−1∕2, (3)

where Hi ∈ Rpi×N is the linearized observation operator, and Mi ∈ RN×N is the linearization of the model operator (1).
The Hessian (3) is a low rank update of the identity matrix, and hence is typically better conditioned than the Hessian
corresponding to the unpreconditioned problem (as its minimum eigenvalue is one). However, the distribution of the full
spectrum, and not just the extreme eigenvalues, is important for the conjugate gradient method (see [12, theorem 38.4; 15,
theorems 38.3, 38.5]). In this article we will therefore consider how the condition number of the Hessian relates to con-
vergence of the conjugate gradient method in an idealized numerical framework, and examine the distribution of the full
spectrum of (3).

In recent years there has been a rise in the introduction of correlated OEC matrices (Ri in (2)) at NWP centers
(e.g., [16-18]). The use of correlated OEC matrices brings benefit to applications by allowing users to include more
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observations19,20 at higher resolutions. Correlated OEC matrices also lead to greater information content of observations,
particularly on smaller scales.19,21-23 However, the move from uncorrelated (diagonal) to correlated (full) covariance matri-
ces has caused problems with the convergence of the data assimilation procedure in experiments at NWP centers.17,24,25

Previous studies of the conditioning of the preconditioned Hessian have focused on the case of uncorrelated OEC
matrices.14,26 In this article we extend this theory to the case of correlated OEC matrices.

Tabeart et al.27 considered the effect of using correlated (full) OEC matrices within the unpreconditioned data assim-
ilation problem. The minimum eigenvalue of the correlated OEC matrix was found to be important in determining the
conditioning of the Hessian of the objective function both theoretically and numerically. The condition number of the
Hessian was found to be a good proxy for convergence in this framework. Haben et al.14,26 developed bounds on the con-
dition number of the Hessian for both the unpreconditioned and preconditioned problems in the case of uncorrelated
(diagonal) OEC matrices. In the preconditioned case, reducing the observation error variance increases both the bounds
on and numerical value of the condition number of the Hessian. The choice of observation network was also shown to be
important for determining the conditioning and convergence of the preconditioned problem.

In this article we consider the conditioning of the preconditioned variational data assimilation problem in the case
of correlated OEC matrices. We extend the analysis of Tabeart et al.27 to the preconditioned case where there are fewer
observations than state variables, that is, p < N. We begin in Section 2 by defining the problem and introducing existing
mathematical results relating to conditioning. In Section 3 we present new theoretical bounds on the condition number
of the preconditioned Hessian in terms of its constituent matrices. In Section 4 we introduce the numerical framework
that will be used for our experiments. We present the results of these experiments and related discussion in Section 5.
These experiments reveal the ratio between background and observation error correlation lengthscales strongly influ-
ences the conditioning of the Hessian, with minimum condition numbers occurring when the two lengthscales are equal.
This contrasts with the unpreconditioned case, where the condition number of the Hessian could always be reduced by
decreasing the lengthscale of the observation error covariances. We find cases where the new bounds represent the qual-
itative behavior of the conditioning well, as well as cases where bounds from Haben14 are tighter. For many cases the
condition number of the Hessian is a good proxy for convergence of a conjugate gradient method. Cases where conver-
gence is much faster than expected can be explained by a single large eigenvalue with the remainder clustering around
unity. Our conclusions are presented in Section 6.

2 THE PRECONDITIONED VARIATIONAL DATA ASSIMILATION
PROBLEM

2.1 The CVT formulation of the data assimilation problem

In this section we define the preconditioned 4D-Var data assimilation problem and introduce further notation that will
be used in this article. We recall28 that covariance matrices can be decomposed as B = ΣBB̃ΣB, and Ri = ΣRi R̃iΣRi where
ΣB,ΣRi are diagonal matrices containing standard deviations, and B̃, R̃i are correlation matrices with unit entries on the
diagonal. By definition covariance matrices are symmetric positive semidefinite. However, we will assume in what follows
that B̃, R̃i,B, and Ri are strictly positive definite, and therefore their inverses are well defined.

We now derive the linearized incremental objective function. In this formulation instead of finding the state which
minimizes the objective function (2) directly, subject to the model constraint (1), we minimize a sequence of linearizations
of the objective function to obtain a sequence of increments to the background, xb. Typically this is done via a series of
outer loops, where the forecast model and observation operators are linearized about the current best estimate of x0.

For the lth outer loop we define x(l+1)
0 = x(l)

0 + 𝛿x(l)
0 . We then consider the Taylor expansion of(ti−1, ti; x(l)

i−1) and obtain
the linearization 𝛿x(l)

i = Mi𝛿x(l)
i−1 where Mi ∈ RN×N is the linearized model operator at time ti, linearized about the model

forecast initialized at x(l)
0 . Finally we denote 𝛿x(l)

b = xb − x(l)
0 , with x(0)

0 = xb and 𝛿x(0)
0 = 0.

Similarly, expanding hi[xi] about x(l)
i we obtain the linearization hi[x(l)

i + 𝛿x(l)
i ] ≈ hi[x(l)

i ] + Hi𝛿x(l)
i where Hi ∈ Rpi×N is

the linearized observation operator at time ti linearized about x(l)
i .

We then write the linearized objective function in terms of 𝛿x(l)
0 ,

J̃(𝛿x(l)
0 ) = 1

2
(𝛿x(l)

0 − 𝛿x(l)
b )TB−1(𝛿x(l)

0 − 𝛿x(l)
b ) + 1

2

n∑
i=0

(d(l)
i − Hi𝛿x(l)

i )TR−1
i (d(l)

i − Hi𝛿x(l)
i ), (4)
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where d(l)
i = yi − hi[x(l)

i ] are the innovation vectors. These measure the misfit between the observations and the linearized
state, using the full nonlinear observation operator.

In order to simplify the notation in what follows we can group the linearized forecast model and observation operator
terms together as a single linear operator. We define the generalized observation operator as

Ĥ =
[
HT

0 , (H1M̂1)T , … , (HnM̂n)T
]T

∈ R
N(n+1)×p(n+1), (5)

where the linearized forward model from time t0 to time ti is given by

M̂i𝛿x(l)
0 = Mi … M1𝛿x(l)

0 . (6)

Finally we let R̂ ∈ Rp×p denote the block diagonal matrix with the ith block consisting of Ri. This allows us to write
the Hessian of the linearized objective function, (4), in the simplified form

S = B−1 + ĤTR̂−1Ĥ. (7)

The formulation of the objective function given by (4) is too expensive to be used in practice both in terms of
computation, but also storage. The number of state variables, N, is very large and typically B cannot be stored explicitly.

The CVT formulates the objective function in terms of alternative “control variables,” which means that the back-
ground matrix B does not need to be stored explicitly. The CVT is described in detail by Bannister,7,29 and is often used in
NWP applications.

The CVT may be applied to the incremental form of the variational problem (4), via the change of variable 𝛿z(l)
0 =

B−1∕2𝛿x(l)
0 . This yields the objective function

Ĵ(𝛿z(l)0 ) = 1
2
(𝛿z(l)0 − 𝛿z(l)b )T(𝛿z(l)0 − 𝛿z(l)b ) + 1

2

(
d̂
(l)
− ĤB1∕2𝛿z(l)0

)T
R̂−1

(
d̂
(l)
− ĤB1∕2𝛿z(l)0

)
, (8)

where 𝛿z(l)b = B−1∕2𝛿x(l)
b , and

d̂
(l)T

=
[
d(l)T

o ,d(l)T

1 , … ,d(l)T

n

]
(9)

is a vector made up of the innovation vectors.
This yields a Hessian for the incremental 4D-Var problem with the CVT given by

Ŝ = IN + B1∕2ĤTR̂−1ĤB1∕2. (10)

Therefore using the CVT is equivalent to pre- and postmultiplying the Hessian of the incremental data assimilation
problem (7) by B1∕2 (the uniquely defined, symmetric square root of B). The exact value of B−1∕2 is not computed, but
rather an approximation is constructed using physical and statistical knowledge of the system of interest.7 The CVT
can be interpreted as preconditioning the Hessian by B1∕2. The data assimilation formulation described in (8) is often
referred to as the preconditioned data assimilation problem, and this naming convention will be used throughout the
remainder of the article. We note that as we assume B and R̂ are strictly positive definite, Ŝ is also symmetric positive
definite.

The preconditioned Hessian (10) highlights the computational benefit of using the CVT. For most NWP applications
there are fewer observations than state variables (typically a difference of two orders of magnitude5), meaning that the
second term in (10) is rank deficient. Therefore the preconditioned Hessian is a low-rank update to the identity, and hence
its minimum eigenvalue is unity. This guarantees that the preconditioned Hessian will not suffer from small minimum
eigenvalues that often result in ill-conditioning for the unpreconditioned problem. This improved conditioning is expected
to lead to faster convergence of the associated data assimilation algorithm.

In this article we study the conditioning of the Hessian of the CVT objective function (8) as a proxy for convergence
of the preconditioned data assimilation problem. We develop bounds on the condition number of (10) in terms of its con-
stituent matrices. Separating the contribution of each matrix in the bounds allows us to investigate the effect of changes
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to each component of the data assimilation system on conditioning and convergence. In particular, we focus on the
introduction of correlated OEC matrices within the preconditioned framework.

2.2 Some inequalities for the eigenvalues of the product of positive semidefinite
Hermitian matrices

For the remainder of this article, we use the following order of eigenvalues: For a matrix A ∈ Rk×k let the eigenvalues 𝜆i
be such that 𝜆max(A) = 𝜆1(A) ≥ 𝜆2(A) ≥ · · · ≥ 𝜆k(A) = 𝜆min(A).

In this section we introduce theoretical results from linear algebra. These will be used in Section 3 to develop new
bounds on the condition number of the preconditioned Hessian in terms of its constituent matrices. We also present
existing bounds on the Hessian of the preconditioned 3D-Var problem. The 3D-Var problem is obtained by setting n = 0
in (2). In the numerical experiments of Section 5 we will compare these existing bounds with the new bounds developed
in Section 3.

We begin by formally defining the condition number.

Definition 1 (13, sec. 2.7.2). For A ∈ Rk×k symmetric positive definite we define the condition number 𝜅(A) by

𝜅(A) = ||A||||A−1||. (11)

We then characterize the condition number in the 2-norm of A as

𝜅2(A) = ||A||2||A−1||2 = 𝜆1(A)
𝜆k(A)

, (12)

where 𝜆i are the eigenvalues of A. The condition number in the 2-norm shall be referred to as the condition number and
denoted 𝜅(A) for the remainder of this work.

We recall our additional assumption that both B and R̂ are strictly positive definite. Since Ŝ is symmetric positive
definite we apply the characterization of the condition number given by (12) throughout this article.

We present two results which bound the eigenvalues of a matrix product in terms of the product of the eigenvalues of
the individual matrices. These will be used in Section 3 to separate the contribution of the background and OEC matrices
to 𝜅(Ŝ).

Theorem 1. Let F,G ∈ Cd×d be positive semidefinite Hermitian matrices and let i1, … ik denote an ordered subset of the
integers {1, … , d}. Then

k∑
t=1

𝜆it (FG) ≤
k∑

t=1
𝜆it (F)𝜆t(G), k = 1, … , d − 1. (13)

Proof. The proof is given by Wang and Zhang,30 theorem 3. ▪

Theorem 2. Let F,G ∈ Cd×d be positive semidefinite Hermitian and let i1, … ik denote an ordered subset of the integers
{1, … , d}. Then

k∑
t=1

𝜆it (FG) ≥
k∑

t=1
𝜆it (F)𝜆d−t+1(G). (14)

Proof. The proof is given by Wang and Zhang,30 theorem 4. ▪

These results will be used to develop bounds on the condition number of the Hessian (10).
We now present an existing bound on the condition number of the 3D-Var preconditioned Hessian, 𝜅(Ŝ), from

Haben.14
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Theorem 3. Let B ∈ RN×N be the background error covariance matrix and R ∈ Rp×p be the OEC matrix with p < N. Then
the following bounds are satisfied by the condition number of the preconditioned 3D-Var Hessian Ŝ = IN + B1∕2HTR−1HB1∕2

1 + 1
p

p∑
i,j=1

(
R−1∕2HBHTR−1∕2)

i,j ≤ 𝜅(Ŝ) ≤ 1 + ‖‖‖R−1∕2HBHTR−1∕2‖‖‖∞ . (15)

Proof. The proof is given by Haben,14 theorem 6.2.1. ▪

We note that the result of Theorem 3 extends naturally to the 4D-Var problem by replacing R with R̂ and H with Ĥ. As
discussed at the end of Section 2.1, we want to develop bounds that separate the contribution of each constituent matrix.
This will allow us to study how altering a single term, particularly the OEC matrix, is likely to affect the conditioning and
convergence of the preconditioned data assimilation system. As well as being interesting from a theoretical perspective,
improved understanding of the influence of individual terms will be useful for practical applications. For example, when
introducing new observation operators or OEC matrices into operational systems, bounds which separate the role of each
matrix will provide insight into how the conditioning of the preconditioned 4D-Var problem is likely to change. However,
as the bounds given by (15) do not separate out each term, they are likely to be tighter than the new bounds which
are presented in Section 3. In Section 5 we will numerically compare the bounds given by (15) with those developed in
Section 3.

3 THEORETICAL BOUNDS ON THE HESSIAN OF THE
PRECONDITIONED PROBLEM

In this section we develop new theoretical bounds on the condition number of the Hessian of the preconditioned varia-
tional data assimilation problem, following similar methods to the unpreconditioned case in Tabeart et al..27 These bounds
will all be presented in terms of the Hessian of the preconditioned 4D-Var problem (10). For the case n = 0, R̂ ≡ R0 ∈
Rp0×p0 and Ĥ ≡ H0 ∈ Rp0×N , meaning that the bounds in this section will also apply directly to the preconditioned 3D-Var
Hessian. This relation will be used in the numerical experiments presented in Section 5.

Key Assumption. The total number of observations across the time window, p, is smaller than the number of state
variables, that is, p < N.

The first result shows that the condition number can be calculated via the eigenvalues of the rank-p update
B1∕2ĤTR̂−1ĤB1∕2.

Lemma 1. Following the Key Assumption we can express the condition number of Ŝ as

𝜅(Ŝ) = 1 + 𝜆1(BĤTR̂−1Ĥ) (16)

= 1 + 𝜆1(R̂−1ĤBĤT). (17)

Proof. We begin by showing that 𝜅(Ŝ) = 1 + 𝜆1(B1∕2ĤTR̂−1ĤB1∕2), as was presented in Haben,14 equation (4.2). We
define B1∕2ĤTR̂−1ĤB1∕2 = C and write Ŝ = I + C. Let 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆N be the eigenvalues of C, with corresponding
eigenvectors vi. As p < N, C is rank deficient and therefore 𝜆N = 0.

Therefore 𝜆N(Ŝ) = 1, and 𝜅(Ŝ) = 𝜆1(Ŝ) = 1 + 𝜆1(C). Matrices AB and BA have the same nonzero eigenvalues,31 and
therefore we can write

𝜆1(C) = 𝜆1(B1∕2ĤTR̂−1ĤB1∕2) = 𝜆1(BĤTR̂−1Ĥ) = 𝜆1(R̂−1ĤBĤT). (18)

Hence, we obtain the result

𝜅(Ŝ) = 1 + 𝜆1(BĤTR̂−1Ĥ) = 1 + 𝜆1(R̂−1ĤBĤT). (19)
▪
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The result of Lemma 1 shows that computing 𝜅(Ŝ) only requires the computation of the maximum eigenvalue
of a single matrix product. We also note that the matrix products that appear in (16) and (17) are of different
dimensions: BĤTR̂−1Ĥ ∈ RN×N and R̂−1ĤBĤT ∈ Rp×p. Additionally, by the Key Assumption (as p < N) the first
matrix product is always rank deficient, whereas for the case that ĤTR̂−1Ĥ is rank p, the second matrix product is
full rank.

Previous studies14,27 have considered the effect of separately changing the variances and correlations associated with
the background and observation covariances. In our numerical experiments in Section 5, we will focus on the role of
the correlations in B and R in the conditioning of the preconditioned assimilation problem and assume the variances
are constant, that is, B = 𝜎2

BB̃, R = 𝜎2
Ri

R̃i, where 𝜎Ri , 𝜎B ∈ R. In that case it is known26 that 𝜅(Ŝ) increases and decreases
with the ratio of the background variance to the observation variance. We therefore assume in the experiments that
the variances all take unit values and examine how changes to the background and observation correlations affect the
conditioning.

3.1 General bounds on the condition number

We now develop bounds on the condition number of Ŝ in terms of its constituent matrices. We assume that B and R̂ are
strictly positive definite, and that the Key Assumption holds. Otherwise we make no further restrictions on the structure
of the constituent matrices in this section.

Theorem 4. Given the Key Assumption we can bound 𝜅(Ŝ) = 𝜅(IN + B1∕2ĤTR̂−1ĤB1∕2) by

1 + max

{
𝜆1(ĤTR̂−1Ĥ)𝜆N(B),

𝜆1(ĤBĤT)
𝜆1(R̂)

,
𝜆p(ĤBĤT)

𝜆p(R̂)

}

≤ 𝜅(Ŝ) ≤ 1 + min

{
𝜆1(B)𝜆1(ĤTR̂−1Ĥ), 𝜆1(ĤBĤT)

𝜆p(R̂)

}
. (20)

Proof. We write 𝜅(Ŝ) as in the statement of Lemma 1. To obtain the upper bound of (20), we use the result of Theorem 1
to separate the contribution of the background and observation term

𝜅(Ŝ) = 1 + 𝜆1(BĤTR̂−1Ĥ) ≤ 1 + 𝜆1(B)𝜆1(ĤTR̂−1Ĥ). (21)

Similarly the alternative formulation from Lemma 1 yields

𝜅(Ŝ) = 1 + 𝜆1(R̂−1ĤBĤT)

≤ 1 + 1
𝜆p(R̂)

𝜆1(ĤBĤT). (22)

Combining these two expressions yields the upper bound in the theorem statement.
To compute the lower bound of (20), we apply the result of Theorem 2 to (16) with k = 1, i1 = 1, d = N. This yields

𝜆1(BĤTR̂−1Ĥ) ≥ max
{
𝜆1(ĤTR̂−1Ĥ)𝜆N(B), 𝜆N(ĤTR̂−1Ĥ)𝜆1(B)

}
≥ 𝜆1(ĤTR̂−1Ĥ)𝜆N(B). (23)

This last inequality is due to the fact that ĤTR̂−1Ĥ is rank deficient. It follows from fact 5.11.14 of Bernstein32 that
𝜆i(R̂−1) = 1

𝜆p−i+1(R̂)
. Applying the result of Theorem 2 to (17) with k = 1, i1 = 1, d = N we obtain

𝜆1(R̂−1ĤBĤT) ≥ max

{
𝜆1(ĤBĤT)

𝜆1(R̂)
,

𝜆p(ĤBĤT)

𝜆p(R̂)

}
. (24)

Combining the results of (21)–(24) yields (20) as required. ▪
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We can separate the contribution of the OEC matrix from the observation operator to give the following bound.

Corollary 1. Under the same conditions as in Theorem 4, we can bound 𝜅(Ŝ) by

1 + max

{
𝜆p(ĤĤT)𝜆N(B)

𝜆p(R̂)
,
𝜆1(ĤĤT)𝜆N(B)

𝜆1(R̂)

}
≤ 𝜅(Ŝ) ≤ 1 + 𝜆1(B)

𝜆p(R̂)
𝜆1(ĤĤT). (25)

Proof. We begin by considering the upper bound of (20). By theorem 21.10 of Harville,31 ĤTR̂−1Ĥ has precisely the same
nonzero eigenvalues as R̂−1ĤĤT . It follows from fact 5.11.14 of Bernstein32 that 𝜆i(R̂−1) = 1

𝜆p−i+1(R̂)
. Applying Theorem 1

for k = 1, i1 = 1, d = p to 𝜆1(R̂−1ĤĤT) yields:

𝜆1(R̂−1ĤĤT) ≤ 𝜆1(ĤĤT)
𝜆p(R̂)

. (26)

By theorem 21.10 of Harville,31 ĤBĤT has precisely the same nonzero eigenvalues as BĤTĤ. Applying Theorem 1
for k = 1, i1 = 1, d = N yields:

𝜆1(BĤTĤ) ≤ 𝜆1(B)𝜆1(ĤTĤ) = 𝜆1(B)𝜆1(ĤĤT). (27)

The final equality arises as the nonzero eigenvalues of ĤĤT are equal to those of ĤTĤ. Therefore the two cases from
Theorem 4 yield the same “factorized” upper bound, and gives the upper bound in (25).

We now consider the first term in the lower bound of (20) and bound 𝜆1(ĤTR̂−1Ĥ) below. We separate the contribution
of R̂ and ĤĤT using Theorem 2 for k = 1, i1 = 1, d = p. This yields

𝜆1(R̂−1ĤĤT) ≥ max

{
𝜆1(ĤĤT)
𝜆1(R̂)

,
𝜆p(ĤĤT)

𝜆p(R̂)

}
. (28)

Multiplying this by 𝜆N(B) gives the two terms that appear in the lower bound of (25).
We now consider the second term of (20) and bound 𝜆1(ĤBĤT) below. We separate the contribution of B and ĤTĤ

using Theorem 2 for k = 1, i1 = 1, d = N. This yields

𝜆1(BĤTĤ) ≥ max
{
𝜆1(B)𝜆N(ĤTĤ), 𝜆N(B)𝜆1(ĤTĤ)

}
≥ 𝜆N(B)𝜆1(ĤTĤ). (29)

The last inequality follows as ĤTĤ is not full rank and therefore 𝜆N(ĤTĤ) = 0. Multiplying this result by 1∕𝜆1(R̂)
gives the same value as the second term in (25).

Finally, we bound the third term of the lower bound in (20). By theorem 21.10 of Harville,31 𝜆p(ĤBĤT) = 𝜆p(BĤTĤ).
Applying Theorem 2 for k = 1, i1 = p, d = N yields

𝜆p(BĤTĤ) ≥ max{𝜆p(B)𝜆N(ĤTĤ), 𝜆N(B)𝜆p(ĤTĤ)}

≥ 𝜆N(B)𝜆p(ĤTĤ). (30)

Multiplying the second term of (30) by 1∕𝜆p(R̂) gives the first term in (25), as 𝜆p(ĤTĤ) = 𝜆p(ĤĤT). ▪

In general it is not possible to determine which term in the lower bound of (25) is larger, as this will depend on
the choice of B, Ĥ, and R̂. However, we are able to comment on how the bounds are likely to be altered by changes to
individual matrices. As we increase 𝜆p(R̂) both the upper bound and first term in the lower bound decrease. Increasing
𝜆1(R̂) will lead to a decrease in the second term of the lower bound. As 𝜆N(B) increases, the lower bound will increase but
the upper bound will remain unchanged. Increasing 𝜆1(B) will yield a larger upper bound and has no effect on the lower
bound. Larger values of 𝜆p(ĤĤT) will lead to increases to the first term in the lower bound and larger values of 𝜆1(ĤĤT)
will lead to increases of the upper bound and second term of the lower bound. In the experiments in Section 5 we will
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study how each of these terms change with interacting parameters, and assess which lower bound is tighter for a variety
of situations.

3.2 Bounds on the condition number in the case of circulant error covariance matrices

The theoretical bounds presented in Section 3.1 apply for any choice of observation and background error covariance
matrices. However, for a given numerical framework, general bounds can typically be improved by exploiting specific
structure of the matrices being used.14 In this section we will show that under additional assumptions on the structure of
the error covariance matrices and observation operator, the bounds given by (15) yield the exact value of 𝜅(Ŝ).

We begin by defining circulant matrices. Circulant matrices are a natural choice for spatial correlation matrices on a
one-dimensional periodic domain, as they yield correlation matrices that are homogeneous and isotropic.14 We will make
use of this structure in the numerical experiments presented in Section 5.

Definition 2 (33). A circulant matrix C ∈ RN×N is a matrix of the form

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 … cN−2 cN−1

cN−1 c0 c1 … cN−3 cN−2

cN−2 cN−1 c0 … cN−4 cN−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

c2 c3 c4 … c0 c1

c1 c2 c3 … cN−1 c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One computationally beneficial property of circulant matrices is that their eigenvalues can be calculated directly
via a discrete Fourier transform. As we shall see in Theorem 5, any circulant matrix of dimension N admits the same
eigenvectors.

Theorem 5. The eigenvalues of a circulant matrix C ∈ RN×N , as given by Definition 2, are given by

𝛾m =
N−1∑
k=0

ck𝜔
mk, (31)

with corresponding eigenvectors

vm = 1√
N
(1, 𝜔m, … , 𝜔m(N−1)), (32)

where 𝜔 = e−2𝜋i∕N is an Nth root of unity.

Proof. See Reference 34 for full derivation. ▪

Our numerical experiments in Section 5 will use circulant background and OEC matrices. When both ĤBĤT and R̂
are circulant, with some additional assumptions on the entries of matrix products, we can prove that the upper and lower
bounds given by Theorem 3 are equal and yield the exact value of 𝜅(Ŝ).

Corollary 2. If ĤBĤT ∈ Rp×p and R̂ ∈ Rp×p are circulant matrices, and all of the entries of R̂
−1∕2

ĤBĤTR̂
−1∕2

are positive,
then the upper and lower bounds in Theorem 3 are equal, and the bound on 𝜅(Ŝ) is exact.

Proof. The product of circulant matrices is a circulant matrix, the inverse of a circulant matrix is circulant,34 and
the square root of a circulant matrix is also circulant.35 Therefore if the product ĤBĤT is circulant then the product
R̂

−1∕2
ĤBĤTR̂

−1∕2
is circulant, as R̂ is circulant by assumption of the corollary.

The lower bound of (15) computes the average row sum of the product R̂
−1∕2

ĤBĤTR̂
−1∕2

. As the product is circulant,
each row has the same sum, given by

∑p−1
k=0ck, where ci is the ith entry of the first row of the circulant matrix (as introduced

in Definition 2).
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The upper bound of (15) returns the maximum absolute row sum of the product. As the product is circulant with only
positive entries, all absolute row sums are identically equal to

∑p−1
k=0|ck| = ∑p−1

k=0ck. Hence, we have equality of lower and
upper bounds and hence the exact value for 𝜅(Ŝ). ▪

This result shows that, if the additional assumptions are satisfied, we can compute 𝜅(Ŝ) directly using (15). If B and
R̂ are both circulant, and the observed state variables are regularly spaced then the first assumption of Corollary 2 is
satisfied. The requirement that all entries of R̂

−1∕2
ĤBĤTR̂

−1∕2
are positive is less straightforward to guarantee a priori,

and depends on the specific structure of the three matrices being considered. In particular, even if all of the entries of
R̂, Ĥ, and B are positive, entries of the product R̂

−1∕2
ĤBĤTR̂

−1∕2
can still be negative. The result of Corollary 2 will be

used in the numerical experiments in the next section to compare the performance of the new bounds given by (25) and
the existing bounds given by Theorem 3.

4 NUMERICAL FRAMEWORK

In this section we describe the numerical framework that will be used to study how the bounds on the preconditioned
Hessian (10) compare with the actual value of 𝜅(Ŝ). Although the bounds that were developed in Section 3 were developed
for the 4D-Var problem, the numerical experiments presented in Section 5 will be conducted for a 3D-Var problem. This
allows us to use the framework that was introduced in Tabeart et al.,27 and directly compare the preconditioned and
unpreconditioned formulations in the same numerical setting. We note that in the case of 3D-Var, R̂ and Ĥ simplify to the
standard OEC matrix R and observation operator H, respectively in (8), (10) and all the bounds in Section 3. The Hessian
that is used for the experiments in this section is therefore given by Ŝ = IN + B1∕2HTR−1HB1∕2.

We now define the different components of the numerical framework. Our domain is the unit circle, and we fix the
ratio of the number of state variables to observations as N = 2p, that is, twice as many state variables as observations.
Similarly to Tabeart et al.27 we define both the observation and background error covariance matrices to have a circulant
structure with unit variances. Circulant matrices are a natural choice for correlations on a periodic domain with evenly
distributed state variables. They also admit useful theoretical properties as was discussed in Section 3.2. The use of circu-
lant error covariance matrices allow us to better understand the interaction between different terms in the Hessian, and
to isolate the impact of parameter changes.

The experiments presented in this article will use circulant matrices arising from the second order autoregressive
(SOAR) correlation function.36,37 SOAR matrices are used in NWP applications as a horizontal correlation function20 and
are fully defined by a correlation lengthscale for a given domain. We remark that we substitute the great circle distance
in the SOAR correlation function with the chordal distance38,39 to ensure that the properties of positive definiteness are
satisfied and that we obtain a valid correlation matrix.

Definition 3. The SOAR error correlation matrix on the unit circle is given by

D(i, j) =
⎛⎜⎜⎜⎝1 +

||||2 sin
(

𝜃i,j

2

)||||
L

⎞⎟⎟⎟⎠ exp
⎛⎜⎜⎜⎝
−
||||2 sin

(
𝜃i,j

2

)||||
L

⎞⎟⎟⎟⎠ , (33)

where L > 0 is the correlation lengthscale and 𝜃i,j denotes the angle between grid points i and j. The chordal distance
between adjacent grid points is given by

Δx = 2 sin
(
𝜃

2

)
= 2 sin

(
𝜋

N

)
, (34)

where N is the number of gridpoints and 𝜃 = 2𝜋
N

is the angle between adjacent gridpoints.

Both the background and OEC matrices for the experiments presented in Section 5 will be SOAR with constant unit
variance. We will denote their respective lengthscales by LB and LR.

We now introduce the observation operators that will be used for the 3D-Var experiments. Three of our observation
operators are the same as those used in Tabeart et al.27 which we state again for clarity.
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F I G U R E 1 Representation of state variables that are observed for H4. Black denotes state variables that are observed directly and white
denotes state variables that are not observed

Definition 4. The observation operators H1, H2, H3 ∈ Rp×N , for N = 2p, are defined as follows:

H1(i, j) =

{
1, j = i for i = 1, … , p
0, otherwise.

(35)

H2(i, j) =

{
1, j = 2i for i = 1, … , p
0, otherwise.

(36)

H3(i, j) =

{
1
5
, j ∈ {2i − 2, 2i − 1, 2i, 2i + 1, 2i + 2 (mod N)} for i = 1, … , p

0, otherwise.
(37)

The first choice of observation operator, H1, corresponds to direct observations of the first half of the domain. The
second observation operator, H2, corresponds to direct observations of alternate state variables. The third observation
operator, H3, is a smoothed version of H2. Observations of alternate state variables are smoothed equally over five adja-
cent state variables. The fourth choice of observation operator, H4, selects p random direct observations. We considered a
number of choices of random observation operator, and all choices yielded similar numerical results. In order to ensure
a fair comparison, we fix the same choice of H4 for all of the results presented in Section 5. This choice of observation
operator is shown in Figure 1. Observations are spread over the whole domain, but are clustered rather than evenly
distributed. Figure 2 of Tabeart et al.27 shows a representation of a low dimensional version of the observation operator
structure for H1, H2, and H3. For the numerical experiments in Section 5, we will use p = 100 observations and N = 200
state variables. In the unpreconditioned case, structure in the observation operator, such as regularly spaced observations,
was important for the tightness of bounds and convergence of a conjugate gradient method.27 We therefore consider H4
as an operator without strict structure. This will allow us to see how structure (or the lack of it) affects the preconditioned
problem.

4.1 Changes to the condition number of the Hessian

Our first set of experiments consider how different combinations of parameters will alter the value of 𝜅(Ŝ) and the bounds
given by (25). We compute the condition number of the Hessian (10) using the Matlab 2018b function cond40 and compare
against the values given by our bounds. Table 1 (reproduced from Tabeart et al.27) shows that increasing the lengthscale
of a SOAR correlation matrix will reduce its smallest eigenvalue and increase its largest eigenvalue. The maximum and
minimum eigenvalues of both error covariance matrices appear in (25). We can therefore predict how the bounds will
change with varying parameter values.

• As LR (the lengthscale of the correlation function used to construct R) increases, 𝜆p(R) decreases. This means that
both the upper bound and the first term in the lower bound of (25) will increase. However, 𝜆1(R) increases with LR
meaning that the second term in the lower bound will decrease. It is therefore not possible to determine whether the
lower bound will increase or decrease with increasing LR in general.

• For the case of direct observations, all eigenvalues of HHT are equal to unity.14 Therefore the first term in the
lower bound of (25) will always be greater than the second term. Both H1 and H2 correspond to direct obser-
vations; hence for these choices of observation operator the first term in the lower bound of (25) is the lower
bound of 𝜅(Ŝ).

• As LB (the lengthscale of the correlation function used to construct B) increases, 𝜆1(B) increases. This means that the
upper bound of (25) will increase with LB. As LB increases, 𝜆N(B) decreases. This means that both terms in the lower
bound of (25) will decrease with increasing LB. Hence, the bounds (25) will diverge as LB increases.
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T A B L E 1 Reproduction of Table 1 from Tabeart et al. 27

Lengthscale LR or LB

0.1 0.33 0.66 0.99 1

𝜆N (R) 1.92 × 10−2 5.74 × 10−4 7.21 × 10−5 2.14 × 10−5 2.08 × 10−5

𝜆1(R) 6.40 × 100 2.26 × 101 4.67 × 101 6.36 × 101 6.40 × 101

𝜆N (B) 2.54 × 10−3 7.19 × 10−5 8.99 × 10−6 2.67 × 10−6 2.59 × 10−6

𝜆1(B) 1.28 × 101 4.51 × 101 9.35 × 101 1.27 × 102 1.28 × 102

Note: Summary of changes to the eigenvalues of B ∈ R200×200 and R ∈ R100×100 with the lengthscales LB and LR

for B and R both SOAR matrices

We wish to assess whether the qualitative behavior of 𝜅(Ŝ) agrees with the qualitative behavior of the bounds for our
experimental framework. Additionally, we are interested in determining which term in the lower bound of (25) is largest,
and whether this depends on the choice of B, R, and H.

In Section 5 we compare the bounds given by (25) with those of (15). As discussed at the end of Section 2, although we
expect the bounds given by (15) to be tighter in many cases, separating the contribution of constituent matrices by using
(25) will be qualitatively informative.

4.2 Convergence of a conjugate gradient algorithm

Although conditioning of a problem is often used as a proxy to study convergence, there are well-known situations where
the condition number provides a pessimistic indication of convergence speed, notably in the case of repeated or clustered
eigenvalues (e.g., [12, theorem 38.4; 15, theorems 38.3, 38.5]). We therefore wish to investigate how well the condition
number of the preconditioned system reflects the convergence of a conjugate gradient method for our experimental frame-
work. Following a similar method to section 5.3.2. of Tabeart et al.27 we study how the speed of convergence of a conjugate
gradient method applied to the linear system Ŝx = b changes with the parameters of the system. We define x as a vec-
tor with features at a variety of scales, and then calculate b = Ŝx before recovering x. We use the Matlab 2018b routine
pcg.m to recover x using the conjugate gradient method. As we are studying a preconditioned system, convergence is fast.
In order to make the differences between parameter choices more evident we use a tolerance of 1 × 10−10 on the relative
residual. In Section 5 we show results for one particular realization of x to enable a fair comparison between different
choices of R, B, and H. A number of other values of x were tested, with similar results.

We consider how changes to lengthscale and observation operator alter the convergence of the conjugate gradient
method. For cases where convergence behaves differently to conditioning, we study the spectrum of Ŝ to understand why
these differences occur.

5 3D-VAR EXPERIMENTS

In this section we present the results of our numerical experiments. Figures will be plotted as a function of changes to
correlation lengthscales for both B and R. We recall that increasing the lengthscale of a SOAR correlation matrix will
reduce its smallest eigenvalue and increase its largest eigenvalue.27,41

Figure 2 shows how the condition number of the preconditioned Hessian (10) changes with the lengthscales of B and
R for different choices of H. For H1, increasing LR increases the value of 𝜅(Ŝ). Changes with LB are much smaller, but
increases to LB lead to a slight decrease in 𝜅(Ŝ). For both H2 and H3, large values of 𝜅(Ŝ) occur for very large values of LR
and small values of LB. For a fixed value of LR, increasing LB results in a rapid decrease in the value of 𝜅(Ŝ). For small fixed
values of LR (LR < 0.1), this decrease is followed by a slow increase to 𝜅(Ŝ) with increasing LB. The minimum value of 𝜅(Ŝ)
occurs when LR = LB; in this case HBHT = R to machine precision for both H2 and H3. The qualitative behavior for H2
and H3 is very similar, with smaller values of 𝜅(Ŝ) for H3 than H2. This is also the case in the unpreconditioned setting,27

and occurs as H3 can be considered as a smoothed version of H2. Qualitatively the behavior for H4 is a compromise
between H1 and H2; we can reduce 𝜅(Ŝ) by increasing LB or decreasing LR. In the unpreconditioned case decreasing either
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(a) (b)

(c) (d)

F I G U R E 2 Change to 𝜅(Ŝ) with changes in LR, LB for (a) H1, (b) H2, (c) H3, and (d) H4. The color map is shown on a logarithmic scale
which is standardized for all figures. Contours range from log10(𝜅(Ŝ)) = 0.25 to log10(𝜅(Ŝ)) = 5 with a contour interval of 0.25

lengthscale always reduces 𝜅(Ŝ). However, in the preconditioned setting the ratio between background and observation
lengthscales is important, meaning that for some cases increasing LB or LR will reduce 𝜅(Ŝ).

Figure 3 shows the value of𝜅(Ŝ), terms in the bounds (25), and the bounds (15) for various combinations of H, R, and B.
The second term in the lower bound (25), given by 1 + 𝜆1(HHT)𝜆N(B)(𝜆1(R))−1, is not shown, as it performs worse than
the first term of (25), given by 1 + 𝜆p(HHT)𝜆N(B)(𝜆p(R))−1, for all parameter combinations studied. Both the upper and
lower bounds of (25) increase with LR. They represent the increase in 𝜅(Ŝ) which occurs for LR ≥ LB for H2 and H3 and
for larger values of LR for H1 and H4. The initial decrease of 𝜅(Ŝ) with increasing LR is not represented by the bounds of
(25). Although some of the qualitative behavior is well represented, the bounds are very wide. Notably for larger values
of LB the lower bound given by (25) is very close to 1 for all values of LR. By contrast, the bounds given by (15) represent
the initial decrease in 𝜅(Ŝ) for small values of LR well, both qualitatively and quantitatively. The upper bound of (15) then
increases with increasing LR and remains tight for all parameter combinations. The lower bound of (15) is monotonically
decreasing, and hence does not represent the behavior of 𝜅(Ŝ) well for larger values of LB and LR. We note that for H2 and
H3 the upper and lower bounds of (15) are equal for LB > LR. This results from Corollary 2 as HBHT is circulant when
H = H2 or H = H3 and all entries in the product R−1∕2HBHTR−1∕2 are positive for LB ≥ LR. For panels (j) and (k) this
means that the bounds given by (15) are equal to 𝜅(Ŝ) for all plotted values of LR

Comparing the bounds given by (25) and (15), we find that the upper bound of (15) performs better for all parameters
studied. The best lower bound depends on the choice of LB and LR: for lower values of LB and larger values of LR the
first term of (25) is the tightest. Otherwise the bound given by (15) yields the tightest bound in this setting. Although the
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(a) (b) (c) (d)

(i) (j) (k) (l)

(e) (f) (g) (h)

F I G U R E 3 Bounds and value of 𝜅(Ŝ) for (a, e, i) H1, (b, f, j) H2, (c, g, k) H3, and (d, h, l) H4 as a function of LR. Blue dashed lines denote
the bounds given by (15), red dot-dashed lines denote the upper bound and first term in the lower bound of (25). The solid black line denotes
the value of 𝜅(Ŝ) calculated using the cond command in Matlab 2018b.40 The different rows correspond to different values of LB. For (j) and
(k) the upper and lower bounds of (15) are equal to 𝜅(S) for all values of LR by the result of Corollary 4, and hence appear as a single line

bounds given by (15) represent the behavior of 𝜅(Ŝ) well, we note that the numerical framework considered here has a
very specific structure that is unlikely to occur in practice. Observation operators are likely to be much less smooth and
have less regular structure, for example, observations may not occur at the location of state variables, observation and
state variables may not be evenly spaced, data may be missing, leading to different observation networks at different times
or time windows. This may make a difference to the performance of both sets of bounds.

We now consider how altering the data assimilation system affects the convergence of a conjugate gradient method
for the problem introduced in Section 4.2. Figure 4 shows how convergence of the conjugate gradient problem changes
with LB, LR, and H. For all choices of H the largest number of iterations occurs when LR is large and LB is small. Similarly
to the unpreconditioned case27, we see that for many cases 𝜅(Ŝ) is a good proxy for convergence: for H2, H3, and H4
reductions in 𝜅(Ŝ) and the number of iterations required for convergence occur for the same changes to LR and LB. The
main difference in behavior is seen for H1, where increasing LR increases 𝜅(Ŝ) for all choices of LB, but makes no difference
to the number of iterations required for convergence for LB ≥ 0.4.

This difference can be explained by considering the full distribution of the eigenvalues of Ŝ rather than just the condi-
tion number. Convergence of the conjugate gradient method depends on the distribution of the entire spectrum, and we
expect faster convergence to occur where eigenvalues are clustered (see [12, theorem 38.4; 15, theorems 38.3, 38.5]). The
eigenvalues of the full Hessian are given by 1 + 𝜆(B1∕2HTR−1HB1∕2), and N − p further unit eigenvalues. Figure 5 shows
the nonzero eigenvalues of the low-rank update to the identity, B1∕2HTR−1HB1∕2, for LB = 0.1 and LR = 0.1, 0.4, 0.7, 1. For
all choices of H increasing LR leads to an increase in the maximum eigenvalue of the product. Additionally, the spectrum
is distributed smoothly with few clusters, meaning that the condition number is a good indicator for convergence of a
conjugate gradient method. This explains why increasing LR for LB = 0.1 leads to an increase in the number of iterations
required for convergence for all choices of H.

Figure 6 shows the nonzero eigenvalues of the low-rank update to the identity, B1∕2HTR−1HB1∕2, for LB = 0.5 and
LR = 0.1, 0.4, 0.7, 1. Although the maximum eigenvalue of the product gets larger with increasing LR for all choices of H,
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(a) (b)

(c) (d)

F I G U R E 4 Number of iterations required for a conjugate gradient method to converge for changing values of LR and LB for (a) H1,
(b) H2, (c) H3, and (d) H4. Note the difference in the y-axis values for each of the subplots

(a) (b)

(c) (d)

F I G U R E 5 Nonzero eigenvalues of B1∕2HTR−1HB1∕2 for LB = 0.1 and LR = 0.1 (crosses), LR = 0.4 (circles), LR = 0.7 (diamonds), and
LR = 1 (squares) for (a) H1, (b) H2, (c) H3, and (d) H4. Note the x-axis is plotted with a logarithmic scale
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(a) (b)

(c) (d)

F I G U R E 6 Nonzero eigenvalues of B1∕2HTR−1HB1∕2 for LB = 0.5 and LR = 0.1 (crosses), LR = 0.4 (circles), LR = 0.7 (diamonds), and
LR = 1 (squares) for (a) H1, (b) H2, (c) H3, and (d) H4. Note the x-axis is plotted with a logarithmic scale

we see increased clustering of the remaining eigenvalues about 1 for H1,H2, and H3. Therefore, for these parameter
choices the condition number of the Hessian does not represent convergence of a conjugate gradient method well. For
H4 no such clustering is observed, which explains why increasing LR for all values of LB leads to slower convergence of
the conjugate gradient method for this observation operator. The clustering occurs due to the very regular structures of
H1,H2, and H3. Therefore if the observation operator is less regular, as may be expected in realistic observing networks,42

the condition number is more likely to be a good proxy for convergence of a conjugate gradient method in this setting.
We conclude that in this framework changing LB has a larger effect on convergence of a conjugate gradient method

than changing LR. This contrasts with the unpreconditioned case, where changes to both LB and LR had a large impact on
convergence.27 For all choices of observation operator, small values of LB lead to poor convergence. Although changing
LR impacts 𝜅(Ŝ), due to an increase in clustered eigenvalues these changes do not always affect the convergence of a
conjugate gradient method. Overall the condition number is a good proxy for convergence in this framework.

6 CONCLUSIONS

The inclusion of correlated observation errors in data assimilation is important for high resolution forecasts,22,23 and to
ensure we make the best use of existing data.19,20,43 However, multiple studies have found issues with convergence of
data assimilation routines when introducing correlated OEC matrices.16,24,44 Earlier work considers the preconditioned
data assimilation problem in the case of uncorrelated OEC matrices.14 In this article we study the effect of introduc-
ing correlated OEC matrices on the conditioning and convergence of the preconditioned variational data assimilation
problem. This extends the theoretical and numerical results of a previous study by Tabeart et al.27 that considered the use
of correlated OEC matrices in the unpreconditioned variational data assimilation framework.

In this article, we developed bounds on the condition number of the Hessian of the preconditioned variational data
assimilation problem, for the case that there are fewer observations than state variables. We then studied these bounds
numerically in an idealized framework. We found that:

• As in the unpreconditioned case, decreasing the observation error variance or increasing the background error variance
increases the condition number of the Hessian.

• The minimum eigenvalue of the OEC matrix appears in both the upper and lower bounds. This was also true for the
unpreconditioned case.
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• For a fixed lengthscale of the observation (background) error covariance matrix, L, the condition number of the Hessian
is smallest when the lengthscale of the background (observation) error covariance matrix is also equal to L. This is in
contrast to the unpreconditioned case, where for a fixed lengthscale of the observation (background) error covariance
matrix, the condition number of the Hessian is smallest when the lengthscale of the background (observation) error
covariance is minimized.

• Our new lower bound represented the qualitative behavior better than an existing bound for some cases. The upper
bound from Haben14 was shown to be tight for all parameter choices. We proved that under additional assumptions
the upper and lower bounds from Haben14 are equal.

• For most cases the conditioning of the Hessian performed well as a proxy for the convergence of a conjugate gradient
method. However in some cases, clustered eigenvalues (induced by the specific structure of the numerical framework)
meant that convergence was much faster than predicted by the conditioning.

We remark that our findings about clustered eigenvalues occur as our numerical framework has very specific struc-
tures. In particular, the eigenvectors of the background and OEC matrices are strongly related. Other experiments not
presented in this article considered the use of the Laplacian correlation function for either or both of the observation
and background error covariance matrices.14 Qualitative conclusions were very similar to those shown in Section 5, even
though the negative entries of the Laplacian correlation function do not satisfy the additional assumptions required for
the bounds to be equal. In applications, we are likely to have more complicated observation operators, and the back-
ground and OEC matrices are less likely to have complementary structures. Satellite observations for NWP often have
interchannel correlation structures that are different from the typical spatial correlations of background error covariance
matrices.17,19 We also note that our state variables were evenly distributed and homogeneous, which will not be the case
for nonuniform grids.

In the unpreconditioned case using a similar numerical framework Tabeart et al.27 found that improving the con-
ditioning of the background or OEC matrix separately would always decrease 𝜅(Ŝ). The preconditioned system is more
complicated; in some cases decreasing the condition number 𝜅(B) or 𝜅(R̂) increases the condition number 𝜅(Ŝ). We expect
the relationship between each of the constituent matrices to be complicated for more general problems. This is relevant
for practical applications, as estimated OEC matrices typically need to be treated via reconditioning methods before they
can be used.16,24 Currently the use of reconditioning methods is heuristic,28 meaning that there may be flexibility to select
a treated matrix that will result in faster convergence in some cases. However, popular reconditioning techniques work
by increasing small eigenvalues of the OEC matrix. In the preconditioned setting, such techniques will not automati-
cally reduce the value of 𝜅(Ŝ), due to the multiplication of background and observation error covariances. This means
that reconditioning techniques may perform differently for the preconditioned data assimilation problem than in the
unpreconditioned setting.

Although the numerical experiments in this article consider a limited choice of matrices and parameters, we note that
the theory and bounds presented in this work are general and apply to any choice of covariance matrices B and R, and any
linear observation operator (or generalized observation operator in the case of 4D-Var). We could consider the numerical
results presented here as a “best case” due to the circulant structure of both covariance matrices. For more general choices
of B and R any eigenvalue clustering is likely to be less extreme, and hence conditioning may be more influential for
the convergence of a conjugate gradient method. Increased eigenvalue clustering occurred for observation operators with
regular structure, whereas in practice the “randomly observed” experiment is more realistic. For the 4D-Var problem the
generalized observation operator Ĥ also accounts for model evolution, and hence the structure of the linearized model
is also expected to be important when considering clustering and convergence of a conjugate gradient problem. Previous
work has also shown that for the unpreconditioned problem, the qualitative behavior of an operational system25 largely
followed the linear theory.27 Similarly, for the case of uncorrelated OEC matrices, the behavior of preconditioned 4D-Var
experiments broadly coincided with theory from the linear setting.14,26 This indicates that conclusions arising from the
study of linear data assimilation problems can often provide insight for a wider range of practical implementations, even
if theoretical results are not directly applicable.
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18. Janjić T, Bormann N, Bocquet M, Carton JA, Cohn SE, Dance SL, et al. On the representation error in data assimilation. Q J R Meteorol

Soc. 2018;144(713):1257–78.
19. Stewart LM, Dance SL, Nichols NK. Data assimilation with correlated observation errors: experiments with a 1-D shallow water model.

Tellus A Dyn Meteorol Oceanogr. 2013;65:19546 (14pp).
20. Simonin D, Waller JA, Ballard SP, Dance SL, Nichols NK. A pragmatic strategy for implementing spatially correlated observation errors

in an operational system: an application to Doppler radar winds. Q J R Meteorol Soc. 2019;145(723):2772-2790. https://doi.org/10.1002/
qj.3592

21. Stewart LM, Dance SL, Nichols NK. Correlated observation errors in data assimilation. Int J Numer Methods Fluids. 2008;56(8):1521–7.
22. Fowler AM, Dance SL, Waller JA. On the interaction of observation and prior error correlations in data assimilation. Q J R Meteorol Soc.

2018;144(710):48–62.
23. Rainwater S, Bishop CH, Campbell WF. The benefits of correlated observation errors for small scales. Q J R Meteorol Soc.

2015;141:3439–45.

https://orcid.org/0000-0001-6806-8608
https://orcid.org/0000-0001-6806-8608
https://orcid.org/0000-0003-1690-3338
https://orcid.org/0000-0003-1690-3338
https://orcid.org/0000-0002-3016-6568
https://orcid.org/0000-0002-3016-6568
https://orcid.org/0000-0003-1133-5220
https://orcid.org/0000-0003-1133-5220
https://orcid.org/0000-0002-7783-6434
https://orcid.org/0000-0002-7783-6434
https://doi.org/10.1002/qj.3592
https://doi.org/10.1002/qj.3592


TABEART et al. 19 of 19

24. Weston P. Progress towards the implementation of correlated observation errors in 4D-Var met office forecasting research technical report,
560; 2011.

25. Tabeart JM, Dance SL, Hilton F, Lawless AS, Migliorini S, Nichols NK, et al. The impact of using reconditioned correlated observation
error covariance matrices in the Met Office 1D-Var system. Q J R Meteorol Soc. 2020;146(728):1372-1390. https://doi.org/10.1002/qj.3741

26. Haben SA, Lawless AS, Nichols NK. Conditioning of incremental variational data assimilation, with application to the met office system.
Tellus A Dyn Meteorol Oceanogr. 2011;64(4):782–92.

27. Tabeart JM, Dance SL, Haben SA, Lawless AS, Nichols NK, Waller JA. The conditioning of least squares problems in variational data
assimilation. Numer Linear Algebra Appl. 2018;25(5):e2165.

28. Tabeart JM, Dance SL, Lawless AS, Nichols NK, Waller JA. Improving the conditioning of estimated covariance matrices. Tellus A Dyn
Meteorol Oceanogr. 2020;72(1):1–19.

29. Bannister RN. A review of operational methods of variational and ensemble-variational data assimilation. Q J R Meteorol Soc.
2017;143(703):607–33.

30. Wang B, Zhang F. Some inequalities for the eigenvalues of the product of positive semidefinite Hermitian matrices. Linear Algebra Appl.
1992;160:113–8.

31. Harville DA. Matrix algebra from a statistician’s point of view. New York, NY: Springer-Verlag; 1997.
32. Bernstein DS. Matrix mathematics: theory, facts, and formulas. 2nd ed. Princeton, NJ: Princeton University Press; 2009.
33. Davis PJ. Circulant matrices. New York, NY: Wiley; 1979.
34. Gray RM. Toeplitz and circulant matrices: a review. Found Trends Commun Inf Theory. 2006;2(3):155–239.
35. Mei Y. Computing the square roots of a class of circulant matrices. J Appl Math. 2012;2012:647623. https://doi.org/10.1155/2012/647623
36. Daley R. Atmospheric data analysis. Cambridge, MA: Cambridge University Press; 1991.
37. Johnson C. Information content of observations in variational data assimilation [PhD thesis]. Department of Mathematics and Statistics,

University of Reading; 2003
38. Gaspari G, Cohn SE. Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc. 1999;125:723–57.
39. Jeong J, Jun M. Covariance models on the surface of a sphere: when does it matter. Stat. 2015;4:167–82.
40. MATLAB (R2018b) The MathWorks Inc; 2018. https://www.mathworks.com/help/matlab/
41. Waller JA, Dance SL, Nichols NK. Theoretical insight into diagnosing observation error correlations using observation-minus-background

and observation-minus-analysis statistics. Q J R Meteorol Soc. 2016;142:418–31.
42. Guillet O, Weaver AT, Vasseur X, Michel Y, Gratton S, Gürol S. Modelling spatially correlated observation errors in variational data

assimilation using a diffusion operator on an unstructured mesh. Q J R Meteorol Soc. 2019;145(722):1947–67.
43. Michel Y. Revisiting Fisher’s approach to the handling of horizontal spatial correlations of the observation errors in a variational

framework. Q J R Meteorol Soc. 2018;144(716):2011–25.
44. Campbell WF, Satterfield EA, Ruston B, Baker NL. Accounting for correlated observation error in a dual-formulation 4D variational data

assimilation system. Monthly Weather Rev. 2017;145(3):1019–32.

How to cite this article: Tabeart JM, Dance SL, Lawless AS, Nichols NK, Waller JA. New bounds on the
condition number of the Hessian of the preconditioned variational data assimilation problem. Numer Linear
Algebra Appl. 2021;e2405. https://doi.org/10.1002/nla.2405

https://doi.org/10.1002/qj.3741
https://doi.org/10.1155/2012/647623
https://www.mathworks.com/help/matlab/
https://doi.org/10.1002/nla.2405
https://doi.org/10.1002/nla.2405
https://doi.org/10.1002/nla.2405

