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Abstract

Teleconnection patterns affect the weather and climate on both interannual

and decadal timescales which in turn affects various socio-economic sectors

such as agriculture. We use three climate indices based on E-OBS data from

the INDECIS dataset (growing season onset [ogs10], growing season rainfall

[gsr] and growing season temperature [ta_o]) to assess the interannual vari-

ability and trends over 1950–2017 associated with four teleconnection pat-

terns (North Atlantic Oscillation [NAO], East Atlantic pattern [EA],

Scandinavian pattern [SCA] and East Atlantic/West Russia pattern [EAWR])

using linear regression to extract the signal of each teleconnection pattern

and their contribution to interannual variability. Trends towards an earlier

growing season onset are found across most of Europe in low-lying regions.

The NAO dominates interannual variability in northwest Europe where an

NAO index of 1 is associated with earlier ogs10 of about 10 days and the EA

dominates the continent with a trend towards the positive EA phase driving

an earlier growing season onset of 1.1–1.7 days�decade−1 in five regions

(Great Britain and Ireland, France, Italy, Poland and North Germany, Hun-

gary, Balkans). The EA and SCA gsr signals have north/south splits of orien-

tation: positive EA is linked to increased gsr in northern regions and reduced

gsr in southern Europe, and vice versa for SCA. Correlations between gsr

interannual variability and the teleconnection contributions are strongest in

the Mediterranean regions and south Scandinavia with maxima of 0.41 and

0.46, respectively. Decreasing ta_o trends in Romania are explained by poor

data coverage causing problems with the EOBS gridding algorithm when

new stations are incorporated from 1961. The net effect is that Romanian

ta_o is about 1.5�C cooler than expected compared to trends from surround-

ing countries. Improved spatial and temporal data coverage will benefit the

EOBS dataset and prevent such erroneous trends.
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1 | INTRODUCTION

Agriculture is strongly affected by weather and climate with
up to 80% of variability in crop production linked to
weather conditions (Hoogenboom, 2000). For example, crop
yields are sensitive to teleconnection patterns and provide
advance notice to farmers regarding adaptation and mitiga-
tion for potential losses during the growing season
(Gonsamu and Chen, 2015; Ceglar et al., 2017). The agricul-
ture sector must therefore adapt to climate change since the
type and yield of crops will be affected by the increased risk
of heatwaves and droughts (Olesen et al., 2011; Zhu and
Troy, 2018) and hydrological changes such as floods
(Falloon and Betts, 2010). Increasing temperatures will also
cause the northward movement of crop zones (Beck
et al., 2018; Ceglar et al., 2019) with longer growing seasons
in northern Europe due to warmer winters and the
increased likelihood of droughts in southern Europe (Bindi
and Olesen, 2011). Climate indices relevant to the agricul-
ture sector are therefore likely to be very useful in under-
standing how the growing season has been affected by
climate change over the past seven decades and how it is
affected by teleconnection patterns. An improved under-
standing of the link between teleconnection patterns and
agriculture indices will also be useful seasonal forecasting
in the agriculture sector (Soares and Dessai, 2015; Nobre
et al., 2019) which can make use of seasonal forecasting of
teleconnection patterns (Lled�o et al., 2020). Here we exploit
a new dataset to evaluate changes and variability in grow-
ing season indices over Europe.

Climate indices are standardized metrics for assessing
climate change based on various meteorological variables,
often using daily data (Frich et al., 2002; Zhang et al., 2011).
Some climate indices are used to detect extremes in temper-
ature and precipitation, such as the 27 core indices devel-
oped by the Expert Team on Climate Change Detection and
Indices (ETCCDI). However, many more indices are used
for socio-economic sectors such as agriculture, tourism,
health and energy. The INtegrated approach for the Devel-
opment across Europe of user oriented Climate Indicators
for GFCS high-priority Sectors (INDECIS) project compiled
125 sector-relevant indices for Europe (Dominguez-Castro
et al., 2020; Peña-Angulo et al., 2020), including those from
ETCCDI.

The trends in these indices can show where and how
rapidly climate change is occurring. Peña-Angulo et al.
(2020) have catalogued the climatologies and trends of the
INDECIS climate indices in the European Climatology and
Trend Atlas of Climate Indices (ECTACI). Linking the vari-
ability in climate indices to teleconnection patterns can also
help us to understand how various aspects of the climate
are changing in response to changes in atmospheric circula-
tion. There have been several studies linking indices to

teleconnection patterns in parts of Europe, such as temper-
ature and precipitation indices in Serbia (Kneževi�c
et al., 2014; Arsenovi�c et al., 2015), extreme precipitation in
Finland (Irannezhad et al., 2017) and seasonal precipitation
in northern Scandinavia (Marshall et al., 2020). These stud-
ies have tended to focus on particular countries or regions
rather than all of Europe, but the release of the INDECIS
dataset (Dominguez-Castro et al., 2020) has facilitated the
study of climate indices on the pan-European scale and the
role of teleconnection patterns in their trends and
variability.

We have focused on three growing season metrics rel-
evant to the agriculture sector in this study: growing sea-
son onset, growing season precipitation and mean
growing season temperature. Previous studies have
linked some aspects of the growing season to tele-
connection patterns in various parts of Europe but have
all focused on specific countries or regions. For example,
Ylhäisi et al. (2010) and Irannezhad and Kløve (2015)
looked at growing season parameters across Finland,
Tomcyzk et al. (2019) and Tomczyk and Szyga-
Pluta (2019) focused on Poland and Popotova et al. (2015)
examined a specific region of the Czech Republic which
produces a large amount of farmed vegetables. There
have also been several studies applying growing season
precipitation and mean growing season temperature to
viticulture (wine production) in parts of Europe: the Ibe-
rian Peninsula (Blanco-Ward et al., 2007; Ramos
et al., 2008; Santos et al., 2012; Moral et al., 2015; Blanco-
Ward et al., 2017; Blanco-Ward et al., 2019), France
(Neethling et al., 2012), England (Nesbitt et al., 2016) and
Hungary (Kovacs et al., 2017). Only Santos et al. (2012),
Irannezhad and Kløve (2015) and Tomcyzk et al. (2019)
have linked the growing season indices to teleconnection
patterns, although Cornes et al. (2019) linked the growing
season onset and end to circulation patterns with the
European Climate Assessment & Dataset (ECA&D)
blended station data for all of Europe.

The aim of this study is to assess the role of four
teleconnection patterns relevant to European climate
in the interannual variability of three growing season
indices and their contribution to trends in the indices
since 1950 compared to the residual climate change
trend. This is achieved using a linear regression
method outlined in section 2.4 which can be used to
extract the signal of each teleconnection from the
growing season indices time series. The overall trends
are split into the trends associated with each tele-
connection (circulation changes) and the residual
trends associated with climate change in various parts
of Europe. Some of the trends are also compared to the
underlying station data to assess their reliability in
section 4.
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2 | DATA AND METHODS

2.1 | INDECIS dataset

The ERA4CS INDECIS project produced a dataset of 125 cli-
mate indices across eight broad categories (temperature,
precipitation, bioclimate, wind, aridity/continentality, snow,
cloud/radiation, drought) spanning Europe from 1950 to
2017 (Dominguez-Castro et al., 2020). The 27 core indices
from the ETCCDI were included in this dataset (Frich
et al., 2002). The data were constructed from the ECA&D
E-OBS gridded dataset (Cornes et al., 2018) and the ERA5
reanalysis (Hersbach et al., 2020). The E-OBS data are taken
from quality controlled meteorological records and ERA5
was used to supplement the observations. The indices were
produced at a horizontal resolution of 0.25� to match the
resolution of ERA5 and have been made available at
monthly, seasonal and annual time scales (http://indecis.
eu/indices.php). The domain of this dataset covers Europe
including Iceland but not the European part of Turkey and
western Russia due to a lack of data availability. Any blank
regions in eastern and southern Europe shown in figures in
this paper are a result of missing data.

2.2 | Growing season indices

INDECIS has various temperature- and precipitation-
based indices related to the agriculture sector
(Dominguez-Castro et al., 2020). For example, growing
season onset (ogs6, ogs10), growing season length (gsl),
growing season rainfall (gsr), non-growing season rainfall
(ngsr), growing degree days (gdd) and mean growing sea-
son temperature (t_ao, t_ms) are all included in the
dataset. In this study, we focus on three of these indices:
growing season onset, growing season rainfall and mean
growing season precipitation. It is important to note that
these indices are intended to represent a range of crops
and growing conditions since they are calculated from
gridded datasets so cannot replicate exact conditions at
field scale or incorporate local microscale features.

INDECIS provides two definitions of thermal growing
season onset: one using the first 6 day span with each daily
mean temperature above 5�C (ogs6) (Klein Tank et al., 2009;
Zhang et al., 2011; Popotova et al., 2015) and another using
the first 10 day spanwith each dailymean temperature above
5�C (ogs10). We have used ogs10 because synoptic scale tem-
perature events which influence growing season onset typi-
cally last around 10 days (Cornes et al., 2019). This removes
subsynoptic-scale variability which is problematic when
using gridded datasets as 0�C may not cause frost damage
across an entire grid cell. Using the longer span of days above
5�C also avoids any unusually early growing season onsets

followed by late frosts to which the early growing season will
become increasingly susceptible to as the onset gets earlier
with climate change (Wypych et al., 2017; Liu et al., 2018;
Ceglar et al., 2019). The units for ogs10 provided by INDECIS
are simply the day of year (Dominguez-Castro et al., 2020)
which is also referred to as JulianDays (Ati et al., 2002).

INDECIS provides the total growing season rainfall (gsr)
as the cumulative total precipitation during the warm season
between April and October (Ramos et al., 2008) using E-OBS
data and beginning in 1950 (Dominguez-Castro et al., 2020),
which we use in this study. Some previous studies using
European gsr that have focused on wine production in the
Iberian Peninsula (e.g., Blanco-Ward et al., 2007; Ramos
et al., 2008; Santos et al., 2012; Moral et al., 2015; Blanco-
Ward et al., 2019) or Hungary (Kovacs et al., 2017) have used
slightly different timespans over which to calculate gsr
(April–October, April–September orMay–September).

There are two versions of the mean growing season
temperature in INDECIS: the April-to-October mean (ta_o)
and the May-to-September mean (tm_s). Here, we focus on
ta_o to maintain a consistent timespan with gsr. So far,
there have been few studies using the mean growing season
temperature for Europe and, like gsr, they are linked to viti-
culture in France (Neethling et al., 2012), England (Nesbitt
et al., 2016) and Portugal (Blanco-Ward et al., 2017).

2.3 | Teleconnections

The interannual variability and trends in some of the
indices are linked to four Northern Hemisphere atmo-
spheric circulation patterns relevant to European weather
and climate: the North Atlantic Oscillation (NAO),
the Scandinavian pattern (SCA), the East Atlantic
Pattern (EA) and the East Atlantic/Western Russia
pattern (EAWR). The monthly time series of each tele-
connection index were obtained from the National Oce-
anic and Atmospheric Administration's (NOAA) Climate
Prediction Center (https://www.cpc.ncep.noaa.gov/data/
teledoc/telecontents.shtml). These teleconnection pat-
terns are identified using Rotated Principal Component
Analysis (RCPA; Barnston and Livezey, 1987) applied to
the monthly mean standardized 500 mb height anomalies
between 20�N and 90�N. The teleconnection indices are
calculated from the rotated leading modes of variability
with a least squares solution. Composite anomalies of
ERA5 500 hPa and 10 m winds are shown in Figures 1
and 2 over the 1950–2017 over which the indices dis-
cussed in section 2.2 are calculated.

The NAO is generally understood as the difference in
sea level pressure (SLP) between the Azores and Iceland.
In winter, the positive phase (NAO+) occurs when the
pressure gradient is increased due to strengthening of the
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Icelandic Low and Azores High, and the negative phase
(NAO−) occurs when the pressure gradient reduces due to
a weakening of these centres of action (Hurrell
et al., 2001). During NAO+ westerly winds are stronger
(Figure 1a) with increased storm track activity and

precipitation across northwest Europe, and during NAO−
winters the storm track has a zonal orientation which
causes increased precipitation over southern Europe.
The NAO is weaker in summer (Figure 2a,b) and influ-
ences a smaller region which is further north than in

FIGURE 1 Anomalies of 1950–2017 ERA5 JFM 500 hPa geopotential height and 10 m winds for extreme positive (left column) and

negative (right column) phases of the JFM NAO (a, b), EA (c, d), SCA (e, f ) and EAWR (g, h). Geopotential height units are in metres and

wind speeds are in m�s−1 [Colour figure can be viewed at wileyonlinelibrary.com]
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winter, but does have notable impacts on European
precipitation, temperature and cloudiness (Folland
et al., 2009).

The SCA consists of three centres of action with a
strong positive height anomaly over Scandinavia and two
weaker negative anomalies over eastern Russia and

FIGURE 2 Anomalies of 1950–2017 ERA5 April-to-October 500 hPa geopotential height and 10 m winds for extreme positive (left

column) and negative (right column) phases of the April-to-October or growing season (GS) NAO (a, b), EA (c, d), SCA (e, f) and

EAWR (g, h). Geopotential height units are in metres and wind speeds are in m�s−1 [Colour figure can be viewed at

wileyonlinelibrary.com]
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western Europe (Barnston and Livezey, 1987; Crasemann
et al., 2018). The positive phase (SCA+) is associated with
reduced precipitation over Scandinavia and increased
precipitation over the Northeast Atlantic due to
corresponding anticyclonic and cyclonic anomalies (Figures
1e,f and 2e,f) (Bueh and Nakamura, 2007; Marshall
et al., 2020). In winter, negative temperature anomalies also
occur over northern Europe during SCA+ (Sui et al., 2020)
with warmer temperatures over western Europe during the
negative phase (SCA−) (Vihma et al., 2020).

The EA is defined by a dipole across the North
Atlantic with a centre of action at 55�N, 20–35�W
(Figures 1c,d and 2c,d) and a band spanning the sub-
tropics across the Mediterranean Sea (Barnston and
Livezey, 1987; Bastos et al., 2016) although other stud-
ies have used SLP to identify an EA with a different
pattern (Comas-Bru and McDermott, 2013; Comas-Bru
and Hern�andez, 2018; Mellado-Cano et al., 2019). We
use the NOAA EA index based on the Barnston and
Livezey (1987) method for consistency with the other
teleconnection indices used since they are orthogonal.
This EA index is associated with enhanced westerly
winds from the Atlantic in the positive phase (EA+)
(Figures 1c and 2c) and northerly wind anomalies over
western Europe in its negative phase (EA−)
(Figures 1d and 2d). Various studies have highlighted
the relationship between the EA and NAO (Moore
et al., 2011; Moore and Renfrew, 2012; Comas-Bru and
McDermott, 2013; Comas-Bru et al., 2016) as they both
interact to influence the latitude and strength of the
eddy-driven jet (Woolings et al., 2010). Mellado-Cano
et al. (2019) showed that EA+ shifts the jet stream
north and EA− shifts it south. Hall and Hanna (2018)
found positive correlations with United Kingdom sum-
mer and winter rainfall, and negative correlations with
summer temperature.

The EAWR has four centres of action with two of
the same sign over the North Sea (Figures 1g,h and 2g,
h) and Mongolia and two of the opposite sign over the
central North Atlantic and western Russia north of the
Caspian Sea (Barnston and Livezey, 1987; Lim, 2015).
In the positive phase (EAWR+) the North Sea and
Mongolian height anomalies are positive and the North
Atlantic and western Russia height anomalies are neg-
ative. This corresponds to a meridional circulation over
eastern Europe with southerly wind anomalies in win-
ter (Figure 1g,h) and northerly wind anomalies
between April and October (Figure 2g,h). Ionita (2014)
showed that EAWR is strongest in winter with EAWR+
associated with dry conditions in southern Europe and
stronger rainfall over Scandinavia, and increased tem-
peratures across northern and central Europe but
cooler temperatures over southern Europe. Lim (2015)

also showed that the negative phase (EAWR−) is
linked to cooler temperatures over western Europe and
warmer temperatures over parts of eastern Europe.

2.4 | Regression method

To investigate the relationship between the
growing season indices and four teleconnection pat-
terns, the teleconnection signal (S) is removed from
the growing season index time series (X) using the
method described by Bhend and von Storch (2008)
and Iles and Hegerl (2017). The detrended growing sea-
son index time series (bX , where b� denotes a detrending) is
regressed on the detrended teleconnection index
time series (bτ) at each grid point and the resulting slope
(dbX=dbτ) gives S. The teleconnection's contribution to
the interannual variability in X is simply the product of
the signal and the teleconnection index time series,
defined:

c=sτ: ð1Þ

This produces a time series of C which can be com-
pared to the time series of X . Note that we have not
detrended τ when calculating C since our aim is to quan-
tify how changes in teleconnection patterns influence
both the variability and trend in each of the indices.
Trends in teleconnection pattern could reflect multi-
decadal internal variability but potentially also a response
of the atmospheric circulation to greenhouse gas and
aerosol forcing. Therefore, it is difficult to disentangle cli-
mate change signals from trends in teleconnection pat-
terns. The trend in the teleconnection contribution is
represented by dC=dt, where t is time. The residual vari-
ability (R) represents the variability when the variability
associated with each teleconnection pattern is removed
and is simply calculated as the difference between the
growing season index time series and the teleconnection's
contribution to the variability,

R=X−C: ð2Þ

The residual trend, dR=dt, shows the remaining
changes potentially associated with climate change after
circulation changes associated with trends in the four
teleconnection patterns have been removed. Statistical
significance is calculated for each trend using a Wald test
(Wald, 1943) with a t-distribution of the test statistic. Cor-
relations between each C and X are also calculated with
a Student's t test showing that all correlation coefficients
greater than 0.239 are statistically significant for a sample
size of 68. The statistically significant correlation
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coefficients presented are all positive even if their respec-
tive teleconnection signals are negative. This is because
the teleconnection patterns are orthogonal (Barnston and
Livezey, 1987) so there are no strong peaks in C of oppos-
ing sign to X .

3 | SIGNALS AND TRENDS IN
GROWING SEASON INDICES

3.1 | Growing season onset

Growing season onset (ogs10) is earliest in southern
and western Europe, and later towards the north and
east with mountainous regions also showing late onset
(Figure 3a). Some of these regions are less relevant to
agriculture as they are mainly occupied by forests (Rega
et al., 2020) and do not have a suitable climate for
growing crops (Metzger et al., 2005; Beck et al., 2018).
The most variable regions are Ireland, south England,
north France through Belgium and Holland into north
Germany where standard deviation exceeds 30 days.
Very low variability is seen in the rest of Europe and
especially in Portugal and south Spain where the grow-
ing season is likely to last all year (Figure 3b). There is
a general trend towards earlier onset over Europe
which is strongest around the eastern end of the
English Channel (Figure 3c) where ogs10 has moved
earlier by at least 4 days�decade−1. Arnell and Free-
man (2021) identified similar values for south England
with the growing season onset advancing by about
30 days over the 21st century projections relative to the
1981–2010 average. Most of eastern Europe, which has
late onset and low variability, has a weaker but statisti-
cally significant trend towards earlier onset of around
2 days�decade−1.

We focus on the JFM (January–February–March) NAO
and EA teleconnections as the mean ogs10 for the main
agricultural regions of Europe is generally within the first
90 days of the year (Figure 3a) and these two teleconnection
patterns have the strongest signals with widespread statisti-
cal significance (Figure 4a,b). Positive phases in the JFM
NAO and EA generally result in an earlier growing season
(Figure 4) due to westerly wind anomalies advecting
warmer air towards western Europe during NAO+ and
southerly wind anomalies across the Mediterranean in EA+
(Figure 1a,b). The EA signal is strong across much of conti-
nental Europe with a statistically significant negative signal
(earlier onset) over France, Germany, Italy and southeast
Europe (Figure 4d). The NAO signal is strongest over south-
ern England and northern France (Figure 4a). Over conti-
nental Europe, the NAO signal is much weaker than the
EA signal although there is a region of statistically

significant NAO signal over Hungary. In general, the influ-
ence of the NAO on ogs10 decreases further away from the
Atlantic coast (Scheifinger et al., 2002; Wypych et al., 2017)
as confirmed by the weaker signal (Figure 4a) and correla-
tions (Figure 5b–g) across the continent.

The SCA has also been included as the signal is of
opposite sign to the NAO and EA (Figure 4c) and has
some statistically significant correlations with ogs10 inter-
annual variability (Figure 5b,e). Easterly wind anomalies
associated with the anticyclonic anomaly centred over
northwest Russia during SCA+ (Figure 1e) advect cold air
across Europe thus delaying the growing season onset.
The SCA signal does not have widespread statistical sig-
nificance but some isolated regions of significance are

FIGURE 3 (a) The 1950–2017 mean ogs10, (b) the trend in

ogs10 over 1950–2017 where stippling indicates statistical
significance at the 95% level using a Wald test with a t-distribution

of the test statistic, and (c) the standard deviation of ogs10 across

1950–2017 [Colour figure can be viewed at wileyonlinelibrary.com]
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found in Ireland, Great Britain, Denmark and Romania.
The EAWR signal is not included as it is weaker across
Europe and has limited statistical significance.

To investigate the role of the teleconnections in ogs10
interannual variability, six regions with statistically sig-
nificant signals for one or more of the teleconnections

FIGURE 4 Relationships between the 1950–2017 JFM (January–February–March) NAO, EA and SCA teleconnection indices and ogs10.

The top row shows the teleconnection signals and the bottom row shows the residual trends when the teleconnection patterns are removed:

(a, d) show the NAO signal and residual trend, (b, e) show the same for the EA, (c, f ) show the same for the SCA. The teleconnection signals

have the units days�index−1 and each dR=dT has the units days�decade−1. Green contours indicate a reduction in ogs10 (earlier onset) and

brown contours indicate an increase in ogs10 (later onset). Stippling indicates statistical significance at the 95% level using a Wald test with a

t-distribution of the test statistic [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 (a) Regions over which the JFM NAO and EA ogs10 signals from Figure 4 are averaged; (b–g) yearly ogs10 anomalies (black

lines) with the yearly NAO (red lines), EA (blue lines) and SCA (gold lines) components; and (h) the NAO, EA and SCA indices averaged

across JFM. In (b–g) negative values represent an earlier growing season onset and positive values represent a later growing season onset.

The coloured numbers in the bottom left corner are the statistically significant Pearson correlation coefficients between the teleconnection

components and the ogs10 time series where statistical significance is calculated from a t-distribution [Colour figure can be viewed at

wileyonlinelibrary.com]
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were selected (Figure 5a): Great Britain and Ireland
(GBI); France; Italy; Poland and North Germany; Hun-
gary; the Balkans. Hungary has been kept separate from
the Balkans as it has strong and statistically significant
signals from both the NAO and EA (Figure 4). The JFM
teleconnection signals were averaged over these regions
and compared to the area-averaged anomalies from the
ogs10 climatology (Figure 5b–g). Years with particularly late
or early growing season onsets can therefore be linked to
one or more teleconnection component of interannual vari-
ability. Some of the interannual variability and anomalies
in ogs10 (ogs100) can therefore be visibly linked to one of
the teleconnection components (Figure 5b–g).

For example, the GBI NAO component closely fol-
lows the ogs10 variability in the late 1950s and from 2010
to 2013 (Figure 5b). The trend towards an earlier onset
has been accompanied by a trend towards a positive
NAO index with the extreme and persistent NAO− in
2010 (Cattiaux et al., 2010) causing a later onset
(Figure 5h), although the NAO component exceeds
ogs100 magnitude by about 5 days (Figure 5b). The SCA
component has a statistically significant, albeit weak, cor-
relation with ogs10 interannual variability over GBI.
However, the contribution to ogs100 from the SCA com-
ponent is generally weaker than the NAO component
and any notable SCA contributions to ogs100 occur infre-
quently (e.g., 1989 and 1990).

Interannual variability in the EA components of the
five continental regions corresponds well with the ogs10
variability, particularly for Italy and the Balkans
(Figure 5d,g) which have the strongest correlations. The
trend towards a positive EA index (Figure 5g) has also
contributed to the trend towards an earlier onset. Many
ogs100 are clearly linked to the EA component such as
the negative ogs100 over Hungary in 1977 which is mat-
ched almost exactly by the EA component (Figure 5f)
and the positive ogs100 in 2005 and 2006 over the Balkans
(Figure 5g). However, the EA component often cannot
explain the entire ogs100. The Poland and north Germany
region provides an extreme example of this in 2002 and
2007 with ogs100 of nearly −60 days compared to EA
components of about −10 days in each year (Figure 5e).
Both of these years had high EA indices (>1, Figure 5h)
which are associated with ogs100 of at least 9 days in
parts of this region (Figure 4d) but since ogs10 is nor-
mally around mid-March (Figure 1a) there may have
been a role for weather patterns in December of the pre-
ceding years for these early onset events.

Five of the six regions in Figure 5a have statistically
significant trends in ogs10, apart from the Balkans, with
the NAO and EA dC=dt all negative or zero (Figure 3b
and Table 1). The dC=dt maps are not shown for brevity
since they essentially reflect the maps of signal

(Figure 1a–c) multiplied by the trend in teleconnection
but area-averages of dC=dt are presented in Table 1. The
NAO and EA dC=dt therefore have the same spatial pat-
terns as the signals (positive trends in NAO and EA) and
SCA dC=dt has the opposite spatial pattern to its signal
(negative trend in SCA). All six regions have statistically
significant NAO and EA trends with most of the overall
GBI trend coming from the NAO component and a negli-
gible EA component.

Circulation changes therefore explain most of the
trends towards an earlier ogs10 across Europe, but in
the Balkans, circulation changes are opposed by dR=dt
which implies a trend towards a later ogs10. This is
particularly notable when removing the EA signal since
dR=dt is positive (later onset) across most of the region
and exceeds 3 days�decade−1 in some places (not shown).
The strongest overall trend is across the Poland and
north Germany region (−3.0 days�decade−1) which also
has the strongest trend from the EA component
(−1.7 days�decade−1; Table 1).

3.2 | Growing season rainfall

The annual mean April-to-October gsr (Figure 6a) has a
similar spatial pattern to the April-to-September gsr (Santos
et al., 2012) with the highest rainfall totals in mountainous
regions and the west coasts of the Iberian Peninsula, Scot-
land and Norway, and the driest regions (below 200 mm) in
the south of the Iberian Peninsula, Italy and Greece. The
trends since 1950 are mainly towards a wetter growing sea-
son of up to 30 mm�decade−1 in Scandinavia, greater than
40 mm�decade−1 in the Alps and less than 2 mm�year−1
across much of eastern Europe, and are statistically signifi-
cant over much of Scandinavia, parts of Poland and the Bal-
kans, the Eastern Alps, southern Portugal, Wales and West
Scotland (Figure 6b). The coefficient of variation shows that
although regions with the most variability in gsr have the
wettest growing seasons, their standard deviation is only
15–20% of the mean gsr and the drier areas with low vari-
ability, such as southern Spain, have standard deviations
around 50% of the mean gsr (Figure 6c). The coefficient of
variation is shown in Figure 6c instead of standard devia-
tion because precipitation data are not normally distributed
so it is more informative to use the coefficient of variability
to show the absolute variability relative to the mean.

The April-to-October average of the NAO, EA and
SCA indices have statistically significant gsr signals in
various parts of Europe (Figure 7). A more positive NAO
is associated with less precipitation across continental
Europe, GBI and Scandinavia but more precipitation
along the northern fringes (e.g., Norwegian coast, north-
west Scotland) and southern Europe (Folland et al., 2009;
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Bladé et al., 2012). The EA signal has a north/south split
with statistically significant negative signal around the
Mediterranean Sea and in eastern Europe around Mol-
dova, with positive across parts of France and Germany,
Denmark, GBI and Scandinavia. The SCA signal also has
a north/south split of opposite sign to the EA signal:
southern Europe has positive signal and some isolated
regions of northern Europe have negative signal, which
reflects the 500 hPa geopotential height anomalies with
opposite cyclonic and anticyclonic anomalies between
the extreme SCA phases (Figure 2e,f). The EAWR signal
is not shown as it has only small, isolated regions of sta-
tistical significance in agricultural regions and its main
region of statistical significance is in Finland and north-
ern Sweden, where EAWR+ leads to a drier growing sea-
son (Irannezhad et al., 2016).

Six regions which have strong and statistically signifi-
cant signals for at least one of the teleconnections shown
in Figure 7 are GBI, south Scandinavia, France, the Ibe-
rian Peninsula, Poland and Italy and the Adriatic (ItAd)
(Figure 8a). The ItAd region was chosen instead of sepa-
rate regions for Italy and the Balkans (Figure 5a) because,
for the Balkans, the SCA signal is only strong and statisti-
cally significant in the west along the coast of the
Adriatic Sea (Figure 7g) and the gsr signals of all three
teleconnections are generally of the same sign for the
western Balkans and Italy. The interannual variability of
the NAO, EA and SCA components are compared to the
yearly gsr anomalies (gsr0) in Figure 8b–g.

Few of the gsr0 peaks can be explained by the tele-
connection components, particularly when gsr0 > 100 mm,
and the statistically significant dC=dt correlation coeffi-
cients are all below 0.5 with south Scandinavian gsr cor-
relation with EA dC=dt (0.46) the strongest (Figure 8).
South Scandinavia is also the only region to have statisti-
cally significant correlations between gsr and three of the
dC=dt. The strongest example of any of the tele-
connection components matching gsr0 is in 1960 when

TABLE 1 Area-averaged trends for

all six regions shown in Figure 5a
Actual NAO EA SCA EAWR dR=dt

Great Britain and Ireland −2.8 −2.3 0.0 −0.1 0.0 −0.4

France −2.3 −1.2 −1.5 −0.0 0.0 0.4

Italy −2.4 −0.6 −1.1 −0.0 0.0 −0.8

Poland and north Germany −3.0 −1.0 −1.7 −0.1 0.0 −0.2

Hungary −2.2 −1.5 −1.6 −0.0 0.0 0.9

Balkans −0.8 −0.5 −1.6 −0.0 0.0 1.3

Note: The actual trend is the ogs10 trend from Figure 3a, the NAO, EA, SCA and EAWR columns represent
the trends in the teleconnection component (dC=dt) of ogs10, and dR=dt (Figure 4d–f) is the remaining
trend when changes associated with the teleconnections are removed. Negative trends indicate an earlier
growing season onset and positive trends indicate a later growing season onset. Units are days�decade−1 and
numbers in bold are statistically significant at the 95% level.

FIGURE 6 (a) The 1950–2017 annual mean gsr (cumulative

total over April–October), (b) the trend in gsr over 1950–2016
where stippling indicates statistical significance at the 95% level

using a Wald test with a t-distribution of the test statistic, and

(c) the coefficient of variation of gsr across 1950–2017 [Colour
figure can be viewed at wileyonlinelibrary.com]
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SCA> 1 (Figure 8h): the SCA component almost exactly
matches the Iberian Peninsula gsr0 (Figure 8e) and
exceeds the ItAd gsr0 (Figure 8g). Under such conditions

gsr increases across these two regions, particularly in the
northwest of each region (>100mm; Figure 7e). This is
caused by anomalous convergence of the surface winds

FIGURE 7 Relationships between the 1950–2017 April-to-October NAO, EA and SCA teleconnection indices and gsr (cumulative total

from April to October). The top row shows the teleconnection signals, and the bottom row shows the residual trends when the

teleconnection patterns are removed. (a, d) show the NAO signal and residual trend, (b, e) show the same for the EA, (c, f) show the same

for the SCA. The teleconnection signals have the units mm�index−1 and each dR=dT has the units mm�decade−1. Blue contours indicate an
increase in gsr and red contours indicate a decrease in gsr. Stippling indicates statistical significance at the 95% level using a Wald test with a

t-distribution of the test-statistic [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 (a) Regions over which the GS NAO, EA and SCA gsr signals from Figure 7 are averaged; (b–g) yearly gsr anomalies

(cumulative totals from April to October, black lines) with the yearly NAO (red lines), EA (blue lines) and SCA (gold line) components; and

(h) the NAO, EA and SCA indices averaged across the GS. In (b–g) negative values represent a decrease in gsr and positive values represent

an increase in gsr. The coloured numbers in the bottom right corner are the statistically significant Pearson correlation coefficients between

the teleconnection components and the gsr time series where statistical significance is calculated from a t-distribution [Colour figure can be

viewed at wileyonlinelibrary.com]

CRAIG AND ALLAN 11

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


across southern Europe (Figure 2e). Interannual variabil-
ity of the SCA component corresponds fairly well with
gsr0 around 1990 and 2000, and it combines with the EA
component in the 1970s for south Scandinavia and ItAd
when the teleconnection indices are consistently of
opposing sign (Figure 8h).

The overall gsr trends are generally towards a wetter
growing season across Europe (Figure 6b) although the
Iberian Peninsula is an outlier with a weak area-averaged
drying trend (−1.5 mm�decade−1; Table 2). South Scandi-
navia has the strongest increasing overall trend at
9.8 mm�decade−1 and is the only statistically significant
overall gsr trend which is almost exactly matched by the
trend in the EA component. However, the strong dR=dt
(−7.0mm�decade−1) offsets the smaller contributions
from the other three components There is a clear north/
south split in each dC=dt with the EA (same spatial pat-
tern as its signal) and SCA (opposite spatial pattern to its
signal) trends contributing to increased gsr over some
northern regions and reduced gsr further south.

Changes to gsr associated with changes to the atmo-
spheric circulation have the opposite north/south split to
the residual trends. The dR=dt are negative in the north-
ernmost regions (−9.8mm�decade−1 for GBI) but positive
further south and particularly strong around the Mediter-
ranean (Table 2). The ItAd region has the strongest
dR=dt of 17.5mm�decade−1 which mostly occurs in the
northeastern Alpine areas and on the east Adriatic coast
around Bosnia (Figure 6b). The opposing dC=dt and
dR=dt lead to some cancellation and relatively weak over-
all gsr trends which are not statistically significant at the
95% level.

3.3 | Growing season temperature

Across much of southern Europe ta_o exceeds 20�C with
milder temperatures further north and temperatures
below 6�C at high latitudes and altitudes which are

unsuitable for agriculture (Figure 9a). All of Europe
shows a statistically significant increasing trend in ta_o
apart from a striking negative trend in Romania which
crosses the border into northern Bulgaria. (Figure 9b).
There are also some small areas in Greece, north Mace-
donia, Norway, Sweden and northwest Spain which have
weak decreasing trends (<0.1�C�decade−1). Romania also
has a remarkably high standard deviation (>1�C for most
of the country) compared to the rest of Europe which
generally has standard deviations below 1�C (Figure 9c)
and this is investigated in section 4.

The April-to-October averages of all four
teleconnections have statistically significant ta_o sig-
nals in various parts of Europe (Figure 10a–d). The EA
signal is positive across continental Europe and some
of Scandinavia and generally has the strongest correla-
tions with area-averaged ta_o in the six regions chosen
in Figure 11. The Balkans region has the strongest sta-
tistical relationship with the EA of about 1�C increase
in ta_o per unit of the EA index. Kneževi�c et al. (2014)
also found warmer April-to-September temperatures in
Serbia associated with EA+.

Statistical significance in the EAWR signal is confined
to eastern Europe (Figure 10d) close to the centre of
action over Siberia and affected by northerly wind anom-
alies bringing cooler air (Figure 2g,h). The region of sta-
tistical significance spans from the high latitudes in
Lapland to the Mediterranean on the south coasts of Italy
and Greece, but north of the Mediterranean regions the
strongest EAWR signal is found east of 20�E (Putnikovi�c
et al., 2018). In Romania, the EAWR signal has strong
negative relationships which exceed −1�C per unit of the
EAWR index. Arsenovi�c et al. (2015) found that EAWR+
is linked to cooler summer and autumn temperatures at
stations across Serbia, and Irannezhad et al. (2016) found
negative correlations between the EAWR and growing
season temperature at Finnish stations.

There is a clear north/south split in the SCA signal
with positive and statistically significant relationships

TABLE 2 Area-averaged trends for

all six regions shown in Figure 8a
Actual NAO EA SCA EAWR dR=dt

Great Britain and Ireland 4.3 2.1 9.9 1.7 0.4 −9.8

South Scandinavia 9.8 1.3 9.7 3.3 2.5 −7.0

France 1.5 1.3 3.0 −2.0 −0.3 −0.5

Iberian Peninsula −1.5 −0.2 −5.5 −5.2 −0.9 10.4

Poland 8.1 2.3 −1.7 −3.0 0.6 9.8

Italy and the Adriatic 4.0 −0.5 −7.5 −6.2 0.9 17.1

Note: The actual trend is the gsr trend from Figure 6a, the NAO, EA, SCA and EAWR columns represent the
trends in the teleconnection component (dC=dtÞ of gsr, and dR=dt (Figure 7d–f) is the remaining trend
when changes associated with the teleconnections are removed. Negative trends indicate a decrease in gsr
and positive trends indicate an increase in gsr. Units are mm�decade−1 and numbers in bold are statistically

significant at the 95% level.
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across Scandinavia and Britain, and negative relation-
ships around the Mediterranean consistent with the SCA
geopotential height anomalies (Figure 2e,f). The NAO
has the weakest ta_o signal with statistical significance
confined to a small region of weak, positive relationship
in the northernmost region of Scandinavia and negative
relationships in parts of southern Europe, mainly the Bal-
kans. The weak role of the NAO in the variability of ta_o
is likely a direct consequence of the summer NAO having
a much weaker impact on European weather than its
winter counterpart (Folland et al., 2009) and the April-to-
October NAO index's tendency to remain in NAO+ or
weak NAO− (Figure 8h) which give weak geopotential
height and surface wind anomalies (Figure 2a,b).

The EA component most closely matches the inter-
annual variability of ta_o for the Iberian Peninsula
(r = 0.65) and ItAd (r = 0.71) regions, particularly in the
1970s (Figure 11d,e). The periods where the Iberian Pen-
insula and ItAd EA components most closely match the
ta_o variability are also periods of strong EA− or EA+
(Figure 8h). The trend in the April-to-October EA index
represents a transition from the northerly wind anoma-
lies in the 1970s causing cooler temperature to southerly
wind anomalies advecting warmer air towards southern
Europe (Figure 2c,d). During the period of persistent
EA− in the 1970s, there also appears to be some small
contributions from the SCA component towards Iberian
Peninsula ta_o0 since the persistent SCA+ conditions
cause cooler temperatures over this region (Figure 10c).

The EAWR component has very weak variability and
does not contribute to any ta_o0 peaks in western Europe
but it has a very strong impact in eastern Europe
(Putnikovi�c et al., 2018). For example, the negative Roma-
nian ta_o0 peaks in 1985 and 1997 are substantially
explained by the EAWR component during EAWR+
(Figure 11g,h). Ukraine and Belarus has the strongest corre-
lation with the EAWR component with the negative ta_o0

peaks in 1965 and 1997 receiving substantial contributions
from the EAWR component. However, when ta_o0 becomes
positive the EAWR component struggles to match it despite
the trend towards EAWR− since 1995 (Figure 11h).

In five of the six regions presented in Figure 11a the
area-averaged ta_o are increasing and statistically significant
(Table 3) with Romania's decreasing trend being the outlier
(Figure 9b). There is a north/south split regarding the domi-
nant contribution to the overall trend between dR=dt and
EA dC=dt, which is the only dC=dt to have the same spa-
tial pattern as its signal (not shown). In GBI and south
Scandinavia, dR=dt dominates the actual ta_o trend with
EA dC=dt balanced or exceeded by negative SCA dC=dt.
The EA dC=dt dominates the actual ta_o trend in
Ukraine and Belarus, the ItAd region and the Iberian
Peninsula where each EA dC=dt exceeds 0.1�C�decade−1.
Therefore, temperature changes associated with changes
to the atmospheric circulation dominate the ta_o trends
in southern and eastern Europe, but temperature changes
in northern regions are linked to other factors not
directly included in the teleconnection indices.

Romania has the strongest EA trend (0.22�C�decade−1)
and its dR=dt is larger and of opposite sign which would
imply that, when circulation changes are removed, the
trend in Romanian ta_o is negative. This is extremely
unlikely since the rest of Europe has increasing ta_o in
line with observed increases in global temperatures and
is caused by the large positive ta_o0 in the 1950s which
mask the recent increase in ta_o (Figure 11g). This is dis-
cussed further in section 4. The EA-linked changes in

FIGURE 9 (a) The 1950–2017 annual mean ta_o, (b) the trend

in ta_o over 1950–2017 where stippling indicates statistical

significance at the 95% level using a Wald test with a t-distribution

of the test statistic, and (c) the standard deviation of ta_o across

1950–2017 [Colour figure can be viewed at wileyonlinelibrary.com]
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southern and eastern Europe are therefore associated
with a trend towards EA+ since the 1970s (Figure 8h).
These parts of Europe have therefore experienced more
positive geopotential height anomalies and southerly sur-
face wind anomalies (Figure 2c). This in turn results in
advection of warmer air towards Europe and anticyclonic
conditions with reduced clouds cover which leads to
increased temperatures in the April–October period.

4 | USING STATION DATA TO
ASSESS ROMANIAN TEMPERATURE
TRENDS

In Romania there is a striking feature in the ta_o trends
where the trend is of opposite sign to the rest of Europe
and statistically significant (Figures 9 and 10). To deter-
mine the cause of this, we have used the ECA&D station

FIGURE 10 Relationships between the 1950–2017 April-to-October NAO, EA, SCA and EAWR teleconnection indices and ta_o. The

top row shows the teleconnection signals and the bottom shows the residual trends when the teleconnection patterns are removed. (a, e)

Show the NAO signal and residual trend, (b, f) show the same for the EA, (c, g) show the same for the SCA, and (d, h) for EAWR. The

teleconnection signals have the units �C�index−1 and each dR=dT has the units �C�decade−1. Red contours indicate an increase in ta_o and

blue contours indicate a decrease in ta_o. Stippling indicates statistical significance at the 95% level using a Wald test with a t-distribution of

the test statistic [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 (a) Regions over which the GS NAO, EA, SCA and EAWR ta_o signals from Figure 10 are averaged; (b–g) yearly gsr
anomalies (black lines) with the yearly NAO (red lines), EA (blue lines), SCA (gold line) and EAWR (pink line) components; and (h) the

EAWR index averaged across the GS. The time series of the NAO, EA and SCA indices are shown in Figure 8h. In (b–g) positive values
represent an increase in ta_o and positive values represent an increase in ta_o. The coloured numbers in the bottom right corner are the

statistically significant Pearson correlation coefficients between the teleconnection components and the ta_o time series where statistical

significance is calculated from a t-distribution [Colour figure can be viewed at wileyonlinelibrary.com]
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data for Romania and the surrounding countries
(Figure 12). The daily station data are available from the
ECA&D website (www.ecad.eu) in non-blended and
blended formats. The blended time series are constructed
by merging the data from two stations that are within
12.5 km of each other and have a height difference of no
more than 25 m, and the non-blended data are simply
the underlying series at each station with no merging
applied. In Figure 12a, blended stations were chosen for
Ukraine and Moldova because there are multiple time
series for some stations. However, the Romanian, Hun-
garian and Serbian stations all have one time series for
each station so the non-blended data are identical to the
blended data. The ECA&D also does not make all
the daily station data publicly available such as the
Bulgarian stations highlighted in Figure 12a.

The most notable difference between Romanian ta_o0

and other parts of Europe is the large positive anomalies
in the 1950s which gradually decrease to negative anoma-
lies similar to the other regions (Figure 11). Only three
Romanian ECA&D stations have data in the 1950s (from
north to south: Baia Mare, Targu Jiu and Turnu
Magurele) but none of them show a steep decreasing
trend (Figure 12b). Instead, the addition of several sta-
tions in 1961, including three cooler high altitude stations
(from north to south: Ceahlau Toaca, Miercurea Ciuc
and Varfu Omul; Figure 12b), coincides with a sudden
negative shift when area-averaged ta_o for the surround-
ing countries (excluding Ukraine) all increase by about
1�C (Figure 12c). There appears to be no impact on area-
averaged Romanian ta_o when the three stations with
data in the 1950s terminate in 1993 (Figure 12b).

TABLE 3 Area-averaged trends for

all six regions shown in Figure 11a
Actual NAO EA SCA EAWR dR=dt

Great Britain and Ireland 0.154 −0.003 0.015 −0.025 −0.002 0.171

South Scandinavia 0.142 −0.005 0.046 −0.044 −0.001 0.147

Italy and the Adriatic 0.204 0.013 0.154 0.029 0.032 −0.023

Iberian Peninsula 0.243 0.010 0.114 0.031 0.009 0.079

Ukraine and Belarus 0.231 0.009 0.104 −0.005 0.057 0.066

Romania −0.066 0.025 0.217 0.023 0.093 −0.425

Note: The actual trend is the ta_o trend from Figure 9a, the NAO, EA, SCA and EAWR columns represent
the trends in the teleconnection component (dC=dt) of ta_o, and dR

dt (Figure 10e–h) is the remaining trend
when changes associated with the teleconnections are removed. Negative trends indicate a decrease in ta_o
and positive trends indicate an increase in ta_o. Units are �C�decade−1 and numbers in bold are statistically
significant at the 95% level.

FIGURE 12 (a) Map of the ECA&D stations in Romania and surrounding countries which provide non-blended (circles) or

blended (triangles) data. The data from the Bulgarian stations (triangles) are not publicly available. The coloured circles represent

the Romanian stations which have data from 1950 to 1993 and the red circles represent the three “cold” stations in Romania which

have data from 1961 or later. Panel (b) highlights these stations and also shows the time series of yearly ta_o (�C) at the other

Romanian stations in grey. Panel (c) shows the area-averaged yearly ta_o for Romania and the surrounding countries. The dashed

vertical lines in (b, c) highlight the years where most of the data is added for Romania (1961) and in which year the time series of

Romanian stations which have data from 1950 stop (1993) [Colour figure can be viewed at wileyonlinelibrary.com]
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The post-1961 time series for area-averaged Roma-
nian ta_o is therefore about 1.5�C cooler than expected
compared to Hungary, Bulgaria, Serbia and Moldova
(Figure 12c). Although Romanian ta_o is cooler than
expected, its year-to-year variability is consistent with
Ukraine's after 1961. However, Ukrainian ta_o is likely to
be heavily dependent on stations further east and there-
fore of little relevance to the temperature in Romania.
The negative shift between 1960 and 1961 has two possi-
ble explanations:

1. The three cooler stations (Figure 12b) have too much
influence on neighbouring stations in the EOBS
gridding algorithm.

2. Data sparsity before 1961 caused difficulties in train-
ing the 3D monthly thin-plate spline since altitude is
a covariate in the EOBS gridding algorithm (Cornes
et al., 2018).

Had it not occurred, area-averaged Romanian ta_o
would be about 1.5�C warmer and would have a weak
increasing trend across 1950–2017 like all the surround-
ing countries (Figure 9b). Romanian dR=dt should also
therefore be much smaller and possibly increasing like
some other parts of Europe (Table 3). Reduced Romanian
EA and EAWR dC=dt would also be expected without
the 1960–1961 temperature shift since the signals for both
teleconnections (Figure 10b,d) are stronger in Romania
than in surrounding countries and this is passed onto
both dC=dt (not shown) which are notably larger than
the areas-averaged dC=dt in the other regions considered
(Table 3).

A lack of data in mainland Greece and in north Mace-
donia also contributes to the weak increasing and
decreasing ta_o trends with no statistical significance
across the southern region of the Balkans peninsula
(Figure 9b). The ECA&D has only two stations which
provide daily average temperature with data for only one
(Prilep) made publicly available. Greece has nine stations
within the region where the ta_o trend data is plotted in
Figure 9b, but only Corfu (an island off the west coast)
and Larissa (east coast at about 39�N) have data as far
back as 1955. Improved spatial and temporal data cover-
age in ECA&D in this part of Europe is therefore
required to facilitate more realistic trends in ta_o.

Overall, the region of southeast Europe focused on
Romania appears to display artificial changes in surface
temperature since the 1950s which can be linked with limi-
tations in station coverage and regional representivity. Once
these artefacts are accounted for, the remaining changes
across Europe display consistency with the expectation of a
warming of climate and changing atmospheric tele-
connection patterns.

5 | SUMMARY

We have assessed three climate indices relevant to the
agriculture sector, specifically growing season onset
(ogs10), growing season rainfall (gsr) and mean growing
season temperature (ta_o). Their variability and trends
are related to four teleconnection patterns: North Atlan-
tic Oscillation (NAO), East Atlantic pattern (EA), Scandi-
navian pattern (SCA) and East Atlantic/West Russia
pattern (EAWR). This is the first study to link these indi-
ces to teleconnection patterns from a pan-European
gridded dataset as previous studies have looked at specific
regions in Europe (Irannezhad and Kløve, 2015; Tomcyzk
et al., 2019; Tomczyk and Szyga-Pluta, 2019) or at the
ECA&D station data (Cornes et al., 2019).

A linear regression method (Bhend and von
Storch, 2008; Iles and Hegerl, 2017) was used to remove
the teleconnection signals from the time series of each
growing season index. Our key findings are:

1. NAO+ and EA+ in JFM (January–February–March)
are both associated with early ogs10. The EA influ-
ences areas on the main continent and the NAO
affects Great Britain, Ireland and northern France
most strongly by a magnitude of about 10 days.

2. The EA component of interannual variability has a
statistically significant correlation with ogs10 in five
(France, Italy, Poland and north Germany, Hungary,
the Balkans) of six regions European regions consid-
ered. The NAO component correlates significantly
with ogs10 for all six regions although the EA domi-
nates in continental regions. Hungary has the best
combined statistical relationships between ogs10 and
the JFM NAO and EA.

3. The April-to-October NAO signal for gsr is mostly
negative (NAO+ causes a drier growing season) in a
wide band between 45�N and 60�N with a wetter
growing season along the Norwegian coast, western
Scotland and Italy. The EA and SCA signals are con-
fined to northern and southern Europe with EA+
associated with a drier growing season across much of
southern Europe, but SCA+ is linked to a wetter
growing season in the same regions.

4. The strongest correlations between the teleconnection
components and gsr are in south Scandinavia with the
EA (0.46), the Iberian Peninsula with SCA (0.41), and
Poland with the NAO (0.4). South Scandinavia is the
only selected region which has statistically significant
correlations with gsr for three teleconnection patterns.
Comparing the gsr and C time series shows that the
SCA component visibly explains some of the inter-
annual variability in southern Europe—particularly in
the 1970s.
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5. The April-to-October EA signal for ta_o is positive
(warmer growing season for EA+) for almost all of
Europe. A negative signal for EAWR (cooler growing
season for EAWR+) is confined to eastern Europe and
the NAO and EA teleconnections have far more local-
ized impacts on the fringes of Europe. Romania
appears as an outlier in both the overall and residual
trends for ta_o as it consistently has a cooling trend in
contrast to the warming trend everywhere else
in Europe.

6. EA variability correlates significantly with ta_o in six
regions around Europe and is strongest in the Italy
and Adriatic region and the Iberian Peninsula. Yearly
ta_o anomalies are also clearly explained by inter-
annual variability in the EA component with some
notable influence from the EAWR component in east-
ern Europe.

7. Romania has large positive ta_o anomalies in the
1950s which are not found elsewhere in Europe.
The ECA&D station data show a negative shift in
area-averaged ta_o when many new stations are
added in 1961 which is not seen in neighbouring
countries. This coincides with the introduction of
many new stations in Romania including three cooler
high altitude stations that are not representative of
the wider region. The negative shift in Romanian ta_o
may either be a result of the high altitude stations
exerting too much influence in the EOBS algorithm or
data sparsity causing problems with the spline used in
the algorithm.

Based on the findings in (7), data rescue efforts may
be required to improve the spatial and temporal distribu-
tion of stations in regions with erroneous temperature
trends in EOBS (Figure 9). Coll et al. (2019) recovered
temperature data from various stations in the former
Yugosloavian countries for EOBS, but there remain sub-
stantial gaps in coverage for some parts of Europe. The
lack of data in the Carpathian region (44–50�N, 17–27�E)
in the 1950s restricts the CARPATCLIM (Climate of the
Carpathian Region) dataset to beginning in 1961
(Antolovi�c et al., 2013), when many stations are added in
Romania (Figure 12b). A more accurate understanding of
the trends and variability of temperature-based climate
indices could be gained by improving the spatial and
temporal coverage of the underlying data from which
they are calculated. The various socio-economic sectors
that use these indices will therefore be better informed as
to how to adapt to climate change.

Although different types of crops depend on multiple
factors, such as sunlight and soil type and precursor con-
ditions in the months prior to planting and growth, here
we have focused on the basic direct relationship between

growing season onset, rainfall and temperature without
determining the direct impacts. For example, a warmer
growing season also poses the increased risk of heat stress
on plants, particularly in regions such as northern Britain
which have started from a lower base temperature
(Arnell et al., 2021), although these aspects are beyond
the scope of the present study. Examination of a more
comprehensive set of variables including meteorological
conditions prior to the growing season are clearly of
importance in future work and could be investigated in
future work using the INDECIS datasets. The findings
in this study may also provide a basis for seasonal fore-
casting in the agriculture sector regarding crop yields and
types to suit the expected weather conditions.
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