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Research Paper

Threatened neotropical birds are big, ecologically specialized, and
found in less humanized refuge areas
Ricardo A. Soto-Saravia 1,2, Carla M. Garrido-Cayul 2, Jorge Avaria-Llautureo 3, Alfonso Benítez-Mora 4, Cristián E. Hernández 2,5 and 
Manuela González-Suárez 1

1Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Whiteknights, Reading. United
Kingdom, 2Laboratorio de Ecología Evolutiva y Filoinformática. Departamento de Zoología, Facultad de Ciencias Naturales y
Oceanográficas, Universidad de Concepción. Concepción, Chile, 3Centro de Estudios Avanzados en Zonas Áridas, CEAZA,
Coquimbo, Chile, 4Universidad Bernardo O'Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS),
Santiago, Chile, 5Universidad Católica de Santa María, Arequipa, Perú. Universidad Católica de Santa María, Arequipa, Perú

ABSTRACT. Ecosystem anthropization is a main driver of biodiversity loss, but not all species are equally susceptible. Understanding
and preventing biodiversity loss is particularly important in rapidly changing and biodiversity-rich areas like the Neotropics and requires
exploring the role of both intrinsic and extrinsic vulnerability drivers. Here, we test how multiple potential intrinsic and extrinsic factors
explain vulnerability to extinction in neotropical birds to provide a first insight into what makes these species susceptible to extinction
and how they are responding to anthropization. Our analyses included data for 2268 neotropical birds. We characterized extinction
risk based on the IUCN Red List categorization and tested the predictive value of seven intrinsic and four extrinsic variables using
Bayesian MCMC Phylogenetic Generalized Least-Squares (PGLS) models. As hypothesized, we found higher intrinsic vulnerability
to extinction among bigger and more specialized species which have low reproductive output and occupy smaller distribution ranges.
Extrinsic drivers were also relevant predictors with more threatened species overlapping largely areas with fewer human activities (lower
night light levels and lower human population densities). Our results show that the extinction risk of neotropical birds is correlated
with both intrinsic and extrinsic factors. Intrinsic vulnerabilities were as expected associated with narrower, specialized niches and
slower life histories. However, risk was not higher in more humanized environments, but instead more at-risk species were found in less
disturbed areas that we suggest may represent refuges for birds that previously occurred in wider ranges and have now been excluded
from the more anthropized regions. Our results contribute to our understanding of vulnerability predictors in birds and provide a first
evaluation of neotropical birds that highlights the complex relationship between human pressure and biodiversity loss.

Les oiseaux néotropicaux menacés sont de grande taille, écologiquement spécialisés, et présents dans
des zones protégées moins peuplées
RÉSUMÉ. L'anthropisation de l'écosystème est un pilote majeur de la perte de la biodiversité, mais toutes les espèces n'y sont pas
autant susceptibles. Il est particulièrement important de comprendre et de prévenir la perte de la biodiversité dans des zones en
transformation rapide et riches en biodiversité comme les régions néotropicales. Il faut pour cela explorer le rôle des pilotes intrinsèques
et extrinsèques de la vulnérabilité. Nous testons ici la manière dont de multiples facteurs intrinsèques et extrinsèques potentiels explique
la vulnérabilité à l'extinction des oiseaux néotropicaux pour fournir un premier aperçu des raisons pour lesquelles ces espèces sont
menacées d'extinction et de leur réaction à l'anthropisation. Nos analyses incluaient des données portant sur 2 268 oiseaux néotropicaux.
Nous avons caractérisé le risque d'extinction en fonction du classement sur la liste rouge de l'UICN et testé la valeur prédictive de sept
variables intrinsèques et de quatre variables extrinsèques en utilisant des modèles MCMC bayésiens de Régression phylogénétique des
moindres carrés généralisés (PGLS). Selon les hypothèses utilisées, nous avons constaté une vulnérabilité intrinsèque supérieure à
l'extinction parmi les espèces plus grandes et plus spécialisées dont le rendement reproductif  est faible et qui occupent des territoires
de répartition moins étendus. Les pilotes extrinsèques étaient également des indicateurs pertinents, puisque davantage d'espèces menacées
occupent des zones de moindre activité humaine (aux niveaux de luminosité nocturne faibles et à la densité de population humaine
réduite). Nos résultats indiquent que le risque d'extinction des oiseaux néotropicaux est corrélé à la fois à des facteurs intrinsèques et
extrinsèques. Les vulnérabilités étaient comme prévu associées à des niches plus étroites et spécialisées et à des cycles biologiques plus
lents. Toutefois, le risque n'était pas plus élevé dans les environnements plus humanisés, mais davantage d'espèces à risque étaient
présentes dans des zones moins perturbées, qui selon nous, pourraient représenter des refuges pour des oiseaux qui occupaient auparavant
des territoires plus étendus, mais qui ont maintenant été exclus des régions les plus anthropisées. Nos résultats contribuent à notre
compréhension des indicateurs de vulnérabilité des oiseaux et fournissent une première évaluation des oiseaux néotropicaux qui met
en évidence la relation complexe entre la pression humaine et la perte de biodiversité.
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INTRODUCTION
The anthropization of the world’s ecosystems with
overexploitation of resources and extensive alteration and
fragmentation of natural habitats is leading to widespread
biodiversity loss (McKinney 2006, Barnosky et al. 2012, Green
et al. 2019). According to the IUCN, since 1750, more than 900
species of plants and animals, had become extinct, and more than
35000 are now categorized as threatened (IUCN 2020). However,
not all regions are equally affected. The Neotropics have the
lowest Ecological Human Footprint values globally (EHF, sensu
Sanderson et al. 2002) and contain some of the largest remaining
pristine natural areas (Pichorim et al. 2016, Rull and Vegas-
Vilarrúbia 2017, Weinzettel et al. 2018). However, many of these
areas are being rapidly transformed leading to habitat loss and
fragmentation which threatens biodiversity (Tabarelli et al. 2004,
Ribeiro et al. 2009). The Neotropics have high levels of
biodiversity and endemism (Orme et al. 2005, Harrison and Noss
2017), including many potentially vulnerable tropical species
(Baiser et al. 2012, Durán et al. 2020). Unfortunately, we have a
limited understanding of what factors predict extinction risk in
this area, even among well-studied groups like birds. Rapidly
expanding threats and the remaining high levels of biodiversity
make it critical and urgent to identify the key drivers of extinction,
so we can define more effective conservation policies and actions
to prevent further defaunation.  

Extinction does not occur randomly, but risk is affected by a
combination of external impacts, often anthropic, and intrinsic
vulnerabilities (Davidson et al. 2012, González-Suárez et al.
2013). Intrinsic vulnerability reflects traits and characteristics that
make some individuals, populations, and taxa more susceptible
to population declines and limit their capacity to recover. For
example, the size of a species geographical range is a key
vulnerability factor and is one of the criteria for listing species as
threatened in the IUCN Red List (IUCN 2020) and is negatively
associated with extinction risk (Lee and Jetz 2010, Davidson et
al. 2012, Gonzalez-Suarez et al. 2013). The smaller the range, the
higher the probability that disturbance and environmental change
will affect the species entirely leading to global extinction, and
also smaller ranges generally mean smaller total population size
which also increases risk (Gaston and Blackburn 2000). However,
how range size influences vulnerability depends on different
species’ traits as well. For example, susceptibility is particularly
noticeable for specialist species (Brown and Maurer 1989) which
have more limited niche requirements (Correll et al. 2016), often
have smaller population sizes and more limited dispersal
capabilities (Colles et al. 2009), and are more affected by edge
effects than generalists (Sodhi et al. 2009).  

Previous studies have identified several of these general
vulnerability traits in vertebrates including: large body size
(Gaston and Blackburn 1995), high energetic expenditure rates
(Geiser and Turbill 2009), slow reproduction associated with
lower gestation period, delayed sexual maturity and lower
fecundity (Fisher et al. 2001), reduced intraspecific trait
variability (González-Suárez and Revilla 2013), and niche
specialization (Sodhi et al. 2009). However, intrinsic
characteristics account for only a portion of the variation in
extinction risk (Purvis et al. 2005). Anthropogenic factors such
as human density, agricultural and urban land use, species
exploitation, introduced species including those associated with

disease, and anthropogenic climate change are strongly associated
with contemporary extinction risk (Forester and Machlist 1996).
For example, McKee et al. (2013), found that the relative number
of threatened species per unit area was best explained by human
population density, the proportion of agricultural land used, and
degree of endemism. Recently, some authors have called for also
considering variables like artificial night light (Chepesiuk 2009,
Dominoni 2017) that changes with land use and human
accessibility. Many studies have explored the impacts of artificial
light on individual organisms, but studies on the general impacts
across populations, communities, and ecosystems remain rare
(Gaston et al. 2015). In addition to capturing other impacts,
artificial night light intensity can itself  be a threat. Night light can
be six times higher in cities than in suburban and rural areas
(Davies et al. 2013, Isaksson 2018), threatening biological
processes associated with natural moonlight cycles (Kronfeld-
Schor et al. 2013, Dominoni 2017) possibly altering natural
circadian rhythms (Davies et al. 2012, Aubé et al. 2013), and can
pose a threat to nocturnally migrating birds (Cabrera-Cruz et al.
2018, Cabrera‐Cruz et al. 2019, Horton et al. 2019).  

While there is evidence that both intrinsic and extrinsic factors
are important, previous studies of extinction risk in birds have
generally addressed these separately, which limits our ability to
recognize their relative importance. There are some notable
exceptions that considered both drivers but these either focused
on particular threats or limited the analyses to relatively simple
two-variable models (Bennett and Owens 1997, Wang et al. 2017).
Here we present a comprehensive analysis evaluating the
individual and combined effects of multiple intrinsic and extrinsic
factors on the extinction risk of neotropical birds. Extinction risk
or conservation status of neotropical birds have been studied
before, but previous work primarily focused on specific species or
groups (e.g., Olah et al. 2016, Lees et al. 2021), localities (e.g.,
Stouffer et al. 2006, Lees and Peres 2008, Devenish et al. 2020),
or a few traits and factors (e.g., Lees and Peres 2008, Ferretti 2019,
Prieto-Torres et al. 2021). Collectively, previous work has
provided useful insights, but only by expanding the taxonomic
and geographic scales and testing diverse intrinsic and extrinsic
factors can we hope to gain a more holistic picture of generalized
patterns.  

Based on previous studies on other regions and taxa, we predict
larger species that are ecologically specialized and that have lower
reproductive rates will have higher risk of extinction. We also
expect risk to increase for species in areas with higher human
densities, higher levels of artificial night light, and more human
land use changes. However, we note that the opposite pattern has
been found in mammals with threatened species occurring in more
natural areas likely because they become restricted to these refuges
after being locally extirpated from modified regions (Polaina et
al 2018). Thus, an alternative prediction of lower risk associated
with impacted areas was also considered. We focus on birds
because they are a widespread group of conservation interest and
data are generally available for many species.

METHODS

Data
We defined endemic neotropical birds as those with >80% of their
distribution range located within the Neotropics region described
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Table 1. Description and reference sources of the intrinsic and extrinsic predictors analysed in this study.
 
Variable Type Variable Name Description Reference

Intrinsic Body Size† size measured in cm from the beak to the longest point of the bird, including tail
and legs.

(Billerman et al. 2020)

Maximum Clutch
Size†

Maximum observed number eggs in a single reproductive event (Billerman et al. 2020)

Neotropical Area† Distribution range area in km2 within the neotropical Ecoregion boundaries
defined by (Olson et al. 2001).

(BirdLife International 2020)

Diet Breath Levin's standardized index (Levins 1968) describing trophic niche breadth
calculated using data on dietary composition across 10 categories. The index
ranges from 0 to 1, where 0 indicates complete specialization - consumption of a
single diet category.

(Wilman et al. 2014)

Habitat Breadth Levin's standardized index (Levins 1968) describing habitat breadth based on
fourteen biomes. The index ranges from 0 to 1, where 0 indicates complete
specialization - present in a single habitat category.

(Olson et al. 2001)

Foraging Strategies
Breadth

Levin's standardized index (Levins 1968) describing foraging strategy breadth
based on nine ecategories describing types of foraging substrates. The index
ranges from 0 to 1, where 0 indicates complete specialization - using a single
foraging substrate.

(Wilman et al. 2014)

Extrinsic Natural Proportion Proportion of the neotropical distribution range area overlapping with areas
described as: "Wild forests”, “Sparse trees" or “Barren" categories” in the
anthropogenic regions of the world map

(Ellis & Ramankutty 2008)

Night Light †‡ Arithmetic mean of the light intensity levels within the neotropical distribution
range area.

(NOAA 2017)

Human †‡ Population Arithmetic mean of the human population density based on the Gridded
Population of the World V3.

(CIESIN 2000)

Human Footprint†‡ Arithmetic mean of the Global Human Footprint. We used V2 which was created
from nine global data set layers covering several spectra of human impact and
normalized by biome realm.

(WCS & CIESIN 2005)

†Log10
‡Arithmetic Mean

by Olson et al. (2001) and classified as Neotropical by The Cornell
Lab of Ornithology (Billerman et al. 2020). In addition, we
excluded migratory species that have their entire breeding
distribution area outside the Neotropics. To estimate distribution
overlap, we used range data from Birdlife International (BirdLife
International 2020) using polygons classified in the following
categories for origin: Native and Vagrant, presence: Extant and
Probably Extant, and season: Resident, Breeding Season, Non-
breeding Season, and Passage. All spatial data were analyzed
using a Cylindrical Equal Area projection. Details on the
collection and preparation of the range data are in Section 1 of
Appendix 1.  

We compiled information on potential intrinsic and extrinsic
drivers or predictors of extinction risk for the identified endemic
neotropical birds. Intrinsic drivers were represented by the
variables: mean adult body size, maximum clutch size, and three
descriptors of specialization based on diet, habitat, and foraging
strategies breadths (Table 1). Breadths were calculated using
standardized Levin’s indices (Levins 1968) defined as B’=B-1/k-1,
where is the number of possible resources (diet, habitat, or
foraging strategy categories) and B=1/ Σk

i =1 p
2
i., where pi is the

observed frequency of resource category i. Frequencies for diet
and foraging strategies were based on data from Wilman et al.
(2014) which provides semi-qualitative estimates (in 10%
intervals) of the percentage of each species diet represented by
items in each of ten diet categories and seven types of foraging
strategies. Frequencies for habitat were based on the proportion
of each of the 14 biomes defined by Olson et al. (2001) represented
within the neotropical distribution range of each bird species (the

range defined above). Diet type, foraging strategy, and biome
categories represent the possible resources (k in the equation
above). Details on the collection and preparation of the intrinsic
data are in Section 2 of Appendix 1.  

Values for extrinsic drivers of risk were calculated over each
species’ distribution range (within the Neotropics) to estimate:
mean night light, mean human population density, proportion of
natural area, and mean human footprint (Table 1). Night light
and human population density values were rescaled as suggested
by the data source authors to values of radiance of 0-63 and
0-10000 people/m2 respectively using the Raster Calculator tool
(ESRI 2014) (Section 3.3.2 of Appendix 1). Means were
calculated as arithmetic means of raster values using the Zonal
Statistic Plugin in QGIS 2.2 (Quantum GIS Development Team
2017). The area of the distribution range within the Neotropics
was also estimated for each species and included as a covariate in
the analyses. Details on the collection and preparation of the
extrinsic data are in Section 3 of Appendix 1.  

Some predictors were log10 transformed to best meet the linear
relationship assumption in our model and to reflect the expected
non-linearities in some relationships (e.g., increased risk due to a
1 g increase in body size would be different for a small vs a large
bird. Table 1). To facilitate comparison among predictors
measured in different units and scales all were scaled (subtracting
mean and dividing by the standard deviation) prior to analyses
(Section 4 Appendix 1). To address possible collinearity issues we
estimated correlations among variables using pairwise Spearman
tests, “cor” function in R (R Development Core Team 2016) and
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evaluated the covariation among coefficient estimates across
iterations after model fitting. We found strong correlations
(Spearman r>|0.80| Fig. A1.1) among some variables. Among
those, as expected, the human footprint index was highly
correlated with the other extrinsic factors (this index is, in fact,
calculated combining data from some of these indicators like
human population density and night light). Thus, we decided to
consider the human footprint separately in the analyses. We
maintained other correlated variables together in the analyses
because we found no strong covariation among coefficients
estimates across iterations.  

Our dependent variable or response was extinction risk based on
the IUCN Red List (IUCN 2017). Red List categories were
converted into numerical values as follows: Least concern (LC):
1; Near threatened (NT): 2; Vulnerable (VU): 3; Endangered
(EN): 4; Critically endangered (CR): 5. Converting ordinal status
into a numerical variable is necessary for the modeling approach
we used here and has been shown to be a robust approach in
comparative studies (Yee and Juliano 2007, Matthews et al. 2011).
Because our models included distribution range area as a
predictor of risk, we excluded species listed as threatened based
only on criterion B (small range size) to avoid circularity (Sodhi
et al. 2008, Machado and Loyola 2013). After data were analyzed
and the manuscript prepared the IUCN published an updated
Red List assessment (IUCN 2017). This update only affected 20
neotropical bird species (0.88% of the total) with both uplisting
(0.35%) and downlisting (0.53%). Given this minimal change and
to avoid time-consuming reanalyses we report results based on
the 2017 assessment.

Comparative Analysis
We predicted the dependent variable Red List status for all
neotropical birds as a function of the intrinsic and extrinsic
predictors described above by fitting Bayesian Phylogenetic
Generalized Least-Squares (PGLS) regression models implemented
in Bayestraits 3.0 (Pagel et al. 2004). In these models, each species
was represented by its Red List status and values for each
predictor. For each species we used a single value, ignoring
intraspecific variation (differences among individuals and
populations of the same species), this assumption was necessary
because estimates of variation are not available more most of the
species studied for which often just a single value was available.
Lack of data on intraspecific variation in comparative studies is
common (Ives et al. 2007). Given our large sample of species
expanding a wide range of variability in the predictors tested we
consider ignoring intraspecific variation is unlikely to
qualitatively affect results (because the considered interspecific
variability is much larger than the within-species variation). We
could have incorporated spatial variability within each species’
distribution range for extrinsic predictors but we opted for an
average to have similar descriptors of intrinsic and extrinsic
factors and to avoid issues related to spatial autocorrelation (Mets
et al. 2017).  

Species data do not represent independent observations as assume
by standard regression models because their characteristics and
biogeography are influenced by their ancestor-descendant
relationships. The approach we used (PGLSλ, sensu Revell 2010)
enabled us to account for this non-independence modifying the
variance-covariance matrix with a branch-scaling parameter λ.

This parameter was estimated in a Bayesian framework using a
sample of 1500 phylogenetic trees representing the ancestor-
descendant relationships of all neotropical birds. The trees were
obtained from BirdTree.org database (Jetz et al. 2012) using
“Ericson All Species: a set of 10000 trees with 9993 OTUs each”
(Appendix 1). Using a tree sample allowed us to incorporate
uncertainty in the ancestor-descendant relationships. All
regression models were run for 10x106 iterations, burning in the
first 1100 iterations and estimating λ.  

We fitted three separated regression models to explore the
importance of 1) only intrinsic, 2) only extrinsic, and 3) both types
of drivers. As mentioned above distribution range area was
included as a predictor in all analyses. We assess variable
importance based on the proportion (p) of the posterior
distribution of the estimated coefficient parameter (β) with signs
opposite from that of the median value, with proportions p < 0.1
interpreted as evidence of supported effects.

RESULTS
Models including intrinsic and extrinsic factors revealed higher
risk for species with larger body sizes, smaller maximum clutch
sizes, that are ecologically specialized (more limited foraging
strategies), and that occupied narrower ranges characterized by
lower night light and lower human population densities (Fig. 1c).
For models with intrinsic variables and human footprint as a
general descriptor of extrinsic impacts (this predictor was
analyzed separately due to its high correlation with others), higher
risk was associated with higher human footprint values, larger
body sizes, smaller maximum clutch sizes, and narrow ranges,
with a less clear role of specialization (Fig. A1.2). The proportion
of natural area in a species range was not a significant predictor
in any of the tested models.  

While we identified a total of 2485 endemic neotropical bird
species, data for all variables were not available for all species (Fig.
2). The main model with all predictors reported above included
1248 species but to explore consistency of results with as many
species as possible we fitted additional models for the 2268 species
for which only extrinsic variables were available (testing only these
factors), and the 1959 species with data on all predictors except
maximum clutch size (the most limiting variable). These
additional analyses show consistent results and are shown in
Appendix 1 (Figs. A1.3-A1.6). The neotropical bird species
considered in our analyses represented 70 taxonomic families and
24 orders (Fig. 2). While trait data were more limited for some
orders, the analyzed species were an overall representative sample
of all neotropical birds currently assessed by the IUCN (Fig
A1.7). In most orders, >50% of the species were classified as low
risk (Least Concern) category. However, risk was higher in some
groups (Accipitriformes, Galliformes, Phoenicopteriformes, and
Psittaciformes) with relatively high numbers of Endangered and
Critically Endangered species (Fig. 1; Table A1.1).  

The influence and effects of intrinsic and extrinsic factors were
supported in models that considered each type separately. Models
focused only on intrinsic variables showed higher risk associated
with larger body size, greater specialization (in this case
represented by narrower habitat breadth), smaller maximum
clutch size, and as expected narrower distribution ranges (Fig.1a).
Analyses focused on extrinsic variables also showed higher risk
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Fig. 1. Model results showing the effects (posterior distribution of the regression slope, β) of
different predictors in the response variable extinction risk (Red List status). Results represent three
models fitting with data from 1248 species for: a) only intrinsic predictors, b) only extrinsic
predictors, and c) both intrinsic and extrinsic predictors. Model fit described by estimated R2 is
provided for each model. Small numbers between 0 and 1 within panels represent the support of
each effect quantified by the proportion of estimates with signs equal to that of the median value.
We considered p < 0.1 (distributions shown with a red fill) indicates strong support for an effect. *
log10-transformed variables. †variables described as the arithmetic mean.

associated with less human impact described by lower human
densities (Fig. 1b) and with a lower human footprint (Figs. A1.5-
A1.6). Results were generally consistent with the alternative
models that considered fewer predictors to increase the sample
size (representing more neotropical bird species), although these
models identified as relevant different descriptors of ecological
specialization (narrow diet breadth and more limited foraging
strategies) and of human impact (lower night light levels. Figs.
A1.3-A1.4).

DISCUSSION
Our results reveal effects of both intrinsic and extrinsic drivers in
the extinction risk of neotropical birds. In general, risk of
extinction was higher for bigger and more specialized species, with
lower reproductive output, and that occupy smaller distribution
ranges in areas with fewer human activities (lower night light levels
and smaller human population densities). Species such as
Daptrius ater and Vultur gryphus with their larger size and
specialization have higher risk than smaller species such as
Troglodytes solstitialis and Sporophila minuta. In addition, species

with similar intrinsic traits such as Anthracothorax viridis and
Turdus infuscatus which overlap more anthropized areas have
lower risk than species such as Troglodytes monticola now found
largely in natural environments. The effects of intrinsic and
extrinsic were similar when tested together and independently,
suggesting both factors are important and need to be considered
together. However, we note the importance of the different
variables that describe ecological specialization did change
slightly, suggesting some possible covariation among predictors
(see Fig. A1.8-A1.10). As in previous work (Bennett and Owens
1997, Wang et al. 2017), we found that extinction risk is not
randomly distributed among bird taxa.  

The association between body size and vulnerability to extinction
has been found in previous studies (Bennett and Owens 1997, Lee
and Jetz 2010, Wang et al. 2017), and here we show it affects
neotropical birds too. This relationship may reflect different
mechanisms. First, larger species are more susceptible to some
threats, like direct exploitation (Owens and Bennett 2000,
Chichorro et al. 2019), therefore body size could be a direct
vulnerability factor. In addition, species with larger body sizes
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Fig. 2. Characterization of data availability and extinction risk categories for each avian taxonomic order included in the analyses.
Circular bars represent the percentage of bird species with data available for each of the different intrinsic variables considered (left
bars), and percentage of species in each IUCN Red List Categories (right bars). The central number over each bird silhouette is the
total number of species recognized in that order. Orders with left bars covering most of the left semicircle represent groups with
good data coverage (i.e., Pelecaniformes). Body Size and Habitat Breadth are not shown because data were available for all species.
LC=Least Concern, NT= Near Threatened, VU= Vulnerable, EN=Endangered, CR=Critically Endangered.

have slower reproductive rates (Gaston and Blackburn 1995), and
thus, less capacity to compensate for the direct losses produced
by anthropic activities which can increase their vulnerability to
extinction (Owens and Bennett 2000, Quesnelle et al. 2014).
Interestingly, in our analyses body size was a relevant predictor
even when including a direct descriptor of reproductive rate,
maximum clutch size. Reproductive rates in mammals are best
defined using two axes: output (how many) and timing (how often)
(Bielby et al. 2007). It is likely these two axes are also relevant for
birds, and maximum clutch size could represent the output axis
of reproductive speed. In that case, body size could have remained
an important predictor in our models because it captured the
effect of timing on reproductive rates (Lislevand et al. 2007).

Unfortunately, we could not directly test the role of reproductive
timing because data were not available for many of the species
analyzed here.  

Similarly, previous studies have also suggested that more
specialized species are less likely to be supported in humanized
environments (Gaston and Blackburn 1997, Altaf et al. 2018,
Garcia and Di Marco 2020). Although our analyses show a
consistent negative effect of specialization in neotropical birds,
interestingly, results for different datasets and variable
combinations identified different descriptors of specialization as
important. This highlights the importance of considering
multiple descriptors when representing complex characteristics
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like niche breadth, and the value of testing results across datasets
when information is limited. When data are missing, imputation
approaches may be used to fill gaps (Johnson et al. 2020).
However, trait data are often not missing at random (González-
Suárez et al. 2012) and imputation based on biased samples can
lead to errors (Johnson et al. 2020). A solution, we implemented
here, is to explore the available information by using different
subsets in separate analyses that are then compared. In this way,
one can maximize the use of existing trait data while also
representing as many species as possible in the different steps of
the analyses.  

Our results also revealed extrinsic factors as predictors of
extinction risk. We did not find a link between higher human
impacts and higher extinction risk, but instead evidence for what
we can call a refuge relationship. We hypothesize this may reflect
a process by which the most vulnerable species already
disappeared from impacted areas and now those that remain, do
so as threatened in more natural regions. A similar relationship
has been described with mammals in the Neotropics by Polaina
et al. (2018) who found that threatened mammals were more
abundant in areas with more forest cover and thus, less modified.
Interestingly in our analyses, we found no clear association of risk
with the proportion of natural areas overlapping a species range.
These natural areas are generally considered as important for
conservation and protection, it is possible these areas both offer
protection to some species which are then able to remain
unthreatened and act as refuges for those already impacted
elsewhere and likely threatened by those impact and range loss,
leading to a balance that in a macroecological analysis, such as
our study, would appear as no effect or benefit.  

Threatened birds concentrate on less modified environments, yet
these potential refuges could be soon compromised given the
predicted rapid development and urbanization of the Neotropics.
This is a worrying prediction. On the other hand, humanized
environments can offer advantages for adapted birds. For
example, Zenaida auriculata, has been noted for its ability to adapt
to agricultural areas even depending on them (Silva et al. 2018).
Phalcoboenus chimango, is widely known in South America as an
excellent model of adaptation and use of anthropized
environments, through its natural history, it went from being a
locally threatened species to a competitor with other
cosmopolitan urban birds such as Passer domesticus (Soto-
Saravia et al. 2017). Advantages may also be associated with some
specific factors, artificial night light influences reproductive
physiology (Dominoni et al. 2013, 2020) and breeding timing (de
Jong et al. 2015, Dominoni and Nelson 2018), which can increase
reproductive output and thus, lead to reduced risk in species able
to persist in modified habitats (Dominoni 2017). Similarly, areas
with higher population densities could provide habitat and food
resources for many species (Chace and Walsh 2006, Seress and
Liker 2015, Prestes et al. 2018). Overall, it is likely some species
will benefit from human activities, and future work on different
groups and areas will be needed to better understand how
urbanization will affect neotropical birds.  

For macroecological studies, a major limitation is often data
availability, especially for the most threatened species. For some
Neotropical birds (e.g., Troglodytes monticola, Celeus obrieni, or
Perija Thistletail), we only have the original description and

sporadic observations. Not only data are often missing for many
species, but the types of data that are available do not include all
potentially relevant types of predictors. For example, behavioral
data are often only available for a handful of species, and this
limitation generally prevents their consideration from broad
analyses such as ours, even though aspects such as nest habitat
selection or social interactions are likely important (Reed 1999,
Clavel et al. 2011, Ducatez et al. 2015, Case and Tarwater 2020,
Lees et al. 2020). Similarly, as mentioned above limited availability
of descriptors of reproductive timing preventing us from
exploring the role of aspect of life-history speed. This issue is not
limited to intrinsic predictors, for example, inconsistencies in the
criteria used to delimit urban areas in different regions prevented
us from considering level of urbanization in our study. Different
countries define urban areas based on distinct criteria such as
population density or the type and number of services available
(Lattes 2001, U.N 2018). In less developed areas large human
settlements with few services can occur in some regions, which
means these differences in criteria can affect the classification.
Similarly, inconsistencies in how socioeconomic development
indicators are collected across the Neotropics make it difficult to
test the role of these potentially important factors. Large-scale
analyses such as ours often highlight the importance of increasing
the availability of comprehensive and standardized data. Natural
history studies describing species behavior and characteristics
have become increasingly rare, yet this information is key to ensure
conservation assessment and management are done as effectively
as possible. Good, consistent descriptors of human pressure are
also key. For some variables new, high-resolution remote sensing
technology may offer an answer. For others, standardized
approaches and good data sharing policies would be required to
provide comparable information across large regions.

CONCLUSIONS
We found that risk of extinction in neotropical birds is associated
with several intrinsic and extrinsic factors. Our study contributes
to understanding extinction risk factors in the Neotropics in two
important ways. First, it provides a generalized, broad assessment
of risk for a wide region and taxonomic groups building on
previous local and taxa-specific findings and updating a previous
macroecological analysis completed 17 years ago that had not
considered anthropogenic impacts (Gage et al. 2004). Second, our
study offers a novel holistic view of risk for this area considering
both intrinsic and extrinsic factors. These contributions can be
useful for initial conservation management and prioritization. We
found identified intrinsic factors similar to those reported by other
regions and taxa, supporting a pattern of generalized
vulnerability for larger, slowly reproducing, and ecologically
specialized vertebrates that may be prioritized initially (or when
other information is not available) for monitoring, management,
and conservation actions. Our results also link risk to human
activities, showing that threatened species are currently found in
more natural refuges (less impacted, anthropized areas).
Protecting these less impacted refuges should be a priority, as they
host threatened species that could likely become extinct if  humans
continue to encroach on the natural habitats.

Responses to this article can be read online at: 
https://www.ace-eco.org/issues/responses.php/1948
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SUPPLEMENTARY MATERIAL 

1. DATA DISTRIBUTION COLLECTION PROTOCOL  
1.1. Data corresponding to 11120 bird species was downloaded from Birdlife International 

(BirdLife International 2020).  
1.2. To reduce the process overhead, 4185 listed species from The Cornell Lab of Ornithology 

was selected, (from now called list (A)) and assigned a unique number (any) as identifier 
for the next step.  

1.3. A “Joint function” between the list (A) and bird species from Birdlife was made in ArcGis 
10.1 (ESRI 2014). The resulting “Joint function” match the scientific name from BirdLife List 
and (A) list, adding identifier number in a new field in the attribute table. Then only those 
with the identifier number was selected and exported. 

1.4. Once exported, every shape was projected in to Cylindrical Equal Area, to avoid 
miscalculation in distribution area.  

1.5. Distributions maps contains Origin, Presence and Seasonal information categories with five 
codes for each specie 

1.5.1.  A “Merge Function” on Origin category was made, adding only Native and Vagrant 
codes.  

1.5.2.  A “Merge Function” on Presence category was made, adding only Extant and Probably 
Extant codes.  

1.5.3.  A “Merge Function” on Seasonal category was made, adding Resident, Breeding 
Season, Non-breeding Season and Passage codes. 

1.5.4.  Note: Probably Extant code is no longer in use for reasons of ambiguity (BirdLife 
International 2020) and for those species that possess it was not considered. 

1.6. The Neotropical Realm according to Olson (Olson et al. 2001) was downloaded and 
projected to Cylindrical Equal Area.  

1.7. A “Clip function” between species shape and Neotropical Realm was made.  
1.8. The differences between Total Area and Clip Area was obtained to establish the 

Neotropical Area and Non-Neotropical Area percentages.  
1.9. Only those species with more than 80% of Neotropical Area was chosen. 

 
2. INTRINSIC DATA COLLECTION PROTOCOL 

2.1. With 2485 species defined previously, data for Body Size, Maximum Clutch Size, Diet 
Breadth, Habitat Breadth and Foraging Strategies Breadth was searched.  

2.2. Body Size data was extracted one by one from the Birds of the World (HBW) series 
(Billerman et al. 2020), previous annual subscription. 

2.3. Maximum Clutch Size was extracted the same as the previous point.  
2.4. Diet and Foraging Strategies was extracted from EltonTraits 1.0 database (Wilman et al. 

2014). This dataset provides semi-qualitative estimates (in 10% intervals) of the 
percentage of each species diet represented by items in each of 10 diet categories (Diet-
Inv, Diet-Vend, Diet-Vect, Diet-Vfish, Diet-Vunk, Diet-Scav, Diet-Fruit, Diet-Nect, Diet-Seed, 
Diet-Plant), of the prevalence of each of several types of foraging strategies (ForStrat-
watbelowsurf, ForStrat-wataroundsurf, ForStrat-ground, ForStrat-understory, ForStrat-
midhigh, ForStrat-canopy, ForStrat-aerial). These percentages were used for pi in equation 
1 below. Specific details on how qualitative and quantitative data from the published 



literature were used to generate the species-level estimates in EltonTraits 1.0 are available 
in the metadata files of that publication (Wilman et al. 2014) available in 
https://figshare.com/collections/EltonTraits_1_0_Species-
level_foraging_attributes_of_the_world_s_birds_and_mammals/3306933  

2.5. Habitat Breath The habitat was extracted by calculating the percentage of overlap of each 
of the 14 biomes defined by Olson et al (2001), Tropical & Subtropical Moist Broadleaf 
Forest, Tropical & Subtropical Dry Broadleaf Forests, Tropical & Subtropical Coniferous 
Forests, Temperate Broadleaf & Mixed Forests, Temperate Conifer Forests, Boreal Forests 
/ Taiga, Tropical & Subtropical Grasslands, Savannas & Shrublands, Temperate Grasslands, 
Savannas & Shrublands, Flooded Grasslands & Savannas, Montane Grasslands & 
Shrublands, Tundra, Mediterranean Forests, Woodlands & Scrub and Deserts & Xeric 
Shrublands, Mangroves, with the range of distribution of each species. 
 

2.5.1.  Levin’s index (Levins 1968) for each variable was calculated as follows:  
 
 

! =	 !
∑ #!"#
!$%

			                  Eq. 1 

 
Where $ is the number of resources (Food, Habitat and Foraging Strategies 
categories) and % is the fraction of item in the categories that are resources 
categories. 
 

2.5.2.  Levin’s standardized index for each variable was calculated as follows:  

!$ = ! − 1
$ − 1 

Eq. 2 

2.5.3.  Diet Breadth, Habitat Breadth and Foraging Strategies Breadth variables was 
incorporated to the main database using Merge function from package “reshape2” 
(Wickham 2007) in R (R Development Core Team 2016). 
 

3. EXTRINSIC DATA COLLECTION PROTOCOL  
3.1. Using the neotropical bird distribution shape defined in 1.9.  
3.2. Night Light raster file was downloaded from 

https://ngdc.noaa.gov/eog/data/web_data/v4composites/F182013.v4.tar  (NOAA 2017).  
3.2.1.  The raster file was rescalated to the defined the author's values (0-63).  
3.2.2.  This procedure is strictly necessary, because the downloaded raster become like image 

file, with values of 8 bits (0-255). The rescaleted procedure was made using the Raster 
Calculator tool in ArcGis 10.1 as follows: 

 

()*+,-,./ 0(2 − 3%&') ∗ (6%()−6%&')(3%()−3%&')
7 + 6%&' 

Eq. 3 



Where	2 is the raster file selected in Raster Calculator tool, 3%&' is the minimum 
value from grid,  3%() the maximum value from grid, 6%&'the minimum scale value 
and 6%() the maximum scale value. Scale value from 0 to 63. Grid value from 0 to 
255 (8 bits).  

3.2.3.  Human Population Density raster file was downloaded from 
https://neo.sci.gsfc.nasa.gov/view.php?datasetId=SEDAC_POP  

3.2.3.1. Same prosedure descried in 3.2.1 and 3.2.2 was made. Sacale value from 0 to 
10000.  

3.2.4.  Human Footprint raster file was donwloaded from 
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-
geographic/data-download  

3.2.5.  Rescalated procedure not necessary.  
3.3. All raster files were projected to Cylindrical Equal Area projection.  
3.4. To obtain the Arithmetic Mean from the raster file from each specie distribution area, a 

Zonal Statistic Plugin was used, through QGIS 2.2 (Quantum GIS Development Team 2017).  
3.4.1.  As a raster layer Night Light, Human Population and Human Footprint was used, while 

as Polygon layer containing zones the bird distribution area was used.  
3.5. Anthromes data (Ellis and Ramankutty 2008) was downloaded from 

http://ecotope.org/files/anthromes/anthromes_v1.zip and projected to Cylindrical Equal 
Area. 

3.5.1.  A “Clip function” between species shape and Anthromes file was made.  
3.5.2.  A “Merge Function” on Anthromes for each specie was made and the final area 

calculated.  
3.5.3.  Natural Area Variable, is the sum of Wild Forest, Spare Tree and Barren areas.   
3.5.4.  Natural Area Proportion is the quotient between Natural Area (3.5.3) and Neotropical 

Area (1.9).  
3.5.5.  All previous data was added to main database using Merge function from package 

“reshape2” (Wickham 2007) in R (R Development Core Team 2016). 
 

4. FINAL TRANSFORMATION 
4.1. The variables transformed to log10 were those with biased distributions.  
4.1.1.  log10 (Body Size) 
4.1.2.  log10 (Maximum Clutch Size) 
4.1.3.  log10 (Neotropical Area) 
4.1.4.  log10 (Night Light+1) (avoid Indeterminate log (0)) 
4.1.5.  log10 (Human Population+1) (avoid Indeterminate log (0)) 
4.1.6.  log10 (Human Footprint+1) (avoid Indeterminate log (0)) 

4.2. All data were escalated through “scale” function on R (R Development Core Team 2016). 
4.2.1.  “scale” function, calculate the mean and standard deviation of the entire vector, then 

"scale" each element by those values by subtracting the mean and dividing by the 
standard deviation. 

 

 



 

 

 

 

 

Table S1. Number of species and percentage of threatened (VU-EN-CR) for each family and order.  

Order Family Species  Threatened% 
Rheiformes Rheidae 2 0.00 

Tinamiformes Tinamidae 47 12.77 
Anseriformes Anatidae 22 4.55 
Anseriformes Anhimidae 3 0.00 

Galliformes Cracidae 38 42.11 
 Odontophoridae 21 19.05 
 Phasianidae 1 0.00 

Podicipediformes Podicipedidae 2 50.00 
Phoenicopteriformes Phoenicopteridae 4 25.00 

Ciconiiformes Burhinidae 2 0.00 
Pelecaniformes Ardeidae 6 0.00 

 Threskiornithidae 1 0.00 
Accipitriformes Accipitridae 32 18.75 

 Cathartidae 4 75.00 
Euripygyformes Eurypygidae 1 0.00 

Gruiformes Aramidae 1 0.00 
 Cariamidae 1 0.00 
 Heliornithidae 1 0.00 
 Psophiidae 3 33.33 
 Rallidae 36 19.44 

Charadriiformes Charadriidae 4 0.00 
 Jacanidae 2 0.00 
 Laridae 4 0.00 
 Pluvianellidae 1 0.00 
 Rostratulidae 1 0.00 
 Scolopacidae 6 0.00 

Columbiformes Columbidae 32 9.38 
Opisthocomiformes Opisthocomidae 1 0.00 

Strigiformes Strigidae 40 7.50 
Apodiformes Apodidae 16 0.00 

 Trochilidae 300 10.67 
Caprimulgiformes Caprimulgidae 22 0.00 

 Nyctibiidae 7 0.00 
 Steatornithidae 1 0.00 

Table A1.



Order Family Species  Threatened% 
Trogoniformes Trogonidae 5 0.00 
Coraciiformes Alcedinidae 4 0.00 

 Momotidae 8 12.50 
Galbuliformes Bucconidae 24 0.00 

Piciformes Capitonidae 6 0.00 
 Galbulidae 13 15.38 
 Picidae 59 5.08 
 Ramphastidae 24 16.67 

Falconiformes Falconidae 16 12.50 
Psitaciformes Psittacidae 97 27.84 

Passeriformes Cardinalidae 22 18.18 
 Carduelidae 22 13.64 
 Conopophagidae 5 0.00 
 Corvidae 12 0.00 
 Cotingidae 33 33.33 
 Cuculidae 17 5.88 
 Emberizidae 109 11.01 
 Eurylaimidae 1 0.00 
 Formicariidae 33 15.15 
 Furnariidae 170 8.24 
 Hirundinidae 17 23.53 
 Icteridae 48 14.58 
 Mimidae 6 0.00 
 Motacillidae 7 14.29 
 Parulidae 25 20.00 
 Pipridae 38 10.53 
 Polioptilidae 9 0.00 
 Ptilogonatidae 1 0.00 
 Rhinocryptidae 31 19.35 
 Thamnophilidae 126 19.84 
 Thraupidae 159 8.81 
 Tityridae 21 14.29 
 Troglodytidae 61 8.20 
 Turdidae 42 2.38 
 Tyrannidae 304 8.55 
 Vireonidae 28 7.14 

 Total 2268 12.17 
 

 

 

 



 

 

 

 

 

Figure A1. Pairwise Spearman’s r correlation values among tested predictors. Significant 
correlations (p <0.05) are in coloured squares, with reds indicating negative correlations and blue 
positive associations.  

 

 

Figure A1.1.



 

Figure A2. Posterior distribution of the coefficient parameters (β) for tested intrinsic and extrinsic 
(represented by Human footprint here) variables associated with extinction risk (Red List status). 
Results for three fitted models: a) excluding maximum clutch size and using all species with data 
on remaining predictors (dataset C); b) full model (dataset B); c) model excluding maximum clutch 
size but using dataset B (to test for collinearity issues). Numbers within panels indicate the 
proportion of estimates (p) with sign equal from that of the median value 0 (p < 0.1 indicates 
support for an effect). 

Figure A1.2



 

Figure A3: Model results showing the effects (posterior distribution of the regression slope, β) of 
different predictors in the response variable extinction risk (Red List status). Results represent 
three models fitting for: a) full model; b) excluding maximum clutch size and using all species with 
data on remaining predictors and c) model excluding maximum clutch size but using dataset B. 
Model fit described by estimated R2 is provided for each model. Small numbers between 0 and 1 
within panels represent the support of each effect quantified by the proportion of estimates with 
sign equal from that of the median value. We considered p < 0.1 (distributions shown with a red 
fill) indicates strong support for an effect. * log10-transformed variables. †variables described as 
the arithmetic mean. 

 

 

 

 

 

Figure A1.3



 

Figure A4 Model results showing the effects (posterior distribution of the regression slope, β) of 
extrinsic predictors in the response variable extinction risk (Red List status). Results represent 
three models fitting with data from 2268, 1959 and 1248 species respectively for: a) all species; b) 
excluding maximum clutch size and using all species with data on remaining predictors and c) 
species with data for all intrinsic and extrinsic variables. Model fit described by estimated R2 is 
provided for each model. Small numbers between 0 and 1 within panels represent the support of 
each effect quantified by the proportion of estimates with sign equal from that of the median 
value. We considered p < 0.1 (distributions shown with a red fill) indicates strong support for an 
effect. * log10-transformed variables. †variables described as the arithmetic mean. 

 

 

Figure A1.4



 

Figure A5. Model results showing the effects (posterior distribution of the regression slope, β) of 
Human footprint predictor in the response variable extinction risk (Red List status). Results 
represent three models fitting with data from 2268, 1959 and 1248 species respectively for: a) all 
species; b) excluding maximum clutch size and using all species with data on remaining predictors 
and c) species with data for all intrinsic and extrinsic variables. Model fit described by estimated 
R2 is provided for each model. Small numbers between 0 and 1 within panels represent the 
support of each effect quantified by the proportion of estimates with sign equal from that of the 
median value. We considered p < 0.1 (distributions shown with a red fill) indicates strong support 
for an effect. * log10-transformed variables. †variables described as the arithmetic mean.  

 

 

 

 

 

Figure A1.5



 

Figure A6. Model results showing the effects (posterior distribution of the regression slope, β) of 
intrinsic predictors in the response variable extinction risk (Red List status). Results represent 
three models fitting for: a) all species; b) excluding maximum clutch size and using all species with 
data on remaining predictors and c) species with data for all intrinsic and extrinsic variables. Model 
fit described by estimated R2 is provided for each model. Small numbers between 0 and 1 within 
panels represent the support of each effect quantified by the proportion of estimates with sign 
equal from that of the median value. We considered p < 0.1 (distributions shown with a red fill) 
indicates strong support for an effect. * log10-transformed variables. †variables described as the 
arithmetic mean.

Figure A1.6



 

Figure A7. Percentage of species of each order included (Right bars) and excluded (Left bars) within the complete model and each of the IUCN 
Red List Categories. LC=Least Concern, NT= Near Threatened, VU= Vulnerable, EN=Endangered, CR=Critically Endangered. Grey circle indicates 
total numbers of species excluded and included.  
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5.  
6. Figure A8. Correlation matrix plot using Spearman Correlation test with pairwise complete 

observations among beta parameters from Intrinsic Model (Fig 2a) using “cor” function  in R (R 
Development Core Team 2016).  

7.  
8.  
9.  
10.  
11.  

 

 

 

Figure A1.8.



12.  

13.  
14. Figure A9. Correlation matrix plot using Spearman Correlation test with pairwise complete 

observations among beta parameters from Intrinsic Model (Fig 2b) using “cor” function  in R (R 
Development Core Team 2016).  

15.  
16.  

 

 

Figure A1.9.



17.  
18. Figure A10. Correlation matrix plot using Spearman Correlation test with pairwise complete 

observations among beta parameters from Intrinsic Model (Fig 2c) using “cor” function  in R (R 
Development Core Team 2016). MI3 

19.  
20.  

 

 

 

 

 

 

 

 

 

 

 

Figure A1.10.
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