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Abstract
Infrasound waves travelling through atmospheric channels are affected by the
conditions they encounter along their path. The shift in the back azimuth angle
of a wavefront detected at the reception site depends on the cross-winds it
encountered. Estimating the original field from this integrated measurement is
an (ill-posed) inverse problem. By using a prior, this can be converted into a
Bayesian estimation problem. In this work, we use the (ensemble) Kalman fil-
ter (EnKF) to tackle this problem. In particular, we provide an illustration of the
setup and solution of the problem in a two-dimensional grid, depending on both
across-track distance and height, which has not been done in previous works.
We use a synthetic setup to discuss the details of the method. We show that one
of the effects of along-track averaging (done in previous studies to simplify the
problem) is to overestimate the magnitude of the analysed values, and propose
that this will be a source of model error. We also illustrate the process with real
data corresponding to nine controlled ammunition explosions that took place
in the summer of 2018. In these cases, the real infrasound waves we study sel-
dom reach higher than 40 km in height. However, the use of covariance-based
methods (e.g., the EnKF) allows for updates in higher regions where the wave
did not travel and where traditional observations are sparse. In fact, the larger
impacts from observations in these cases are in the region of 40–60 km, in agree-
ment with previous works. This study contributes to paving the way towards the
ultimate goal of assimilating information derived from infrasound waves into
operational numerical weather forecasting. More studies in quality control of
the observations and proper validation of the results are urgently needed.
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atmospheric infrasound acoustics, data assimilation, ensemble Kalman filter, infrasound
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1 INTRODUCTION

Infrasound waves can be generated by natural sources
such as earthquakes, volcanoes and ocean microbaroms,
and also from human activities such as mining and
controlled detonations of old ammunition. Under cer-
tain atmospheric conditions, infrasound waves gener-
ated at the surface of the Earth can propagate through
atmospheric wave-guides over large distances, potentially
reaching up to high levels of the atmosphere before being
reflected or refracted back towards the surface, where they
can be detected by ground-based stations (Georges 1972;
Garces et al., 1998). The characteristics of a given wave
are modified as it crosses the atmosphere, with variables
such as wind, temperature and humidity affecting both the
speed and orientation of the detected wavefront as mea-
sured at a receiving station. Hence, the received wave con-
tains integrated information on the atmospheric regions it
encountered along its path. This was recognised quite early
(Groves, 1956; Donn and Rind, 1972; Rind et al., 1973).
However, trying to infer these atmospheric characteristics
from an integrated observation such as the back azimuth
angle of the incoming wavefront is an ill-posed inverse
problem. Making use of a prior renders a Bayesian esti-
mation problem, therefore providing an avenue to provide
solutions (sometimes suboptimal yet still useful) to this
problem (see e.g., Stuart, 2010; Ash et al., 2016).

Information derived from detected infrasound waves
can prove valuable in constraining winds and temper-
atures in the atmosphere, especially in poorly observed
upper regions such as the stratosphere and mesosphere.
The top of current numerical weather prediction models
extends well into the mesosphere (Polavarapu et al., 2005).
It is recognised that processes in both the mesosphere
and stratosphere, and their connection to the troposphere,
are important for both numerical weather prediction and
climate prediction (Orsolini et al., 2011; Charlton-Perez
et al., 2013; Kidston et al., 2015). However, the observa-
tional coverage of these two layers is nowhere near as
dense as that of the troposphere. Some of the largest uncer-
tainties in current reanalyses occur in these levels, lead-
ing the wind representation of mesospheric winds to lag
behind other areas (Baker et al., 2014; Korhonen et al.,
2019). For instance, Duruisseau et al. (2017) compared
high-altitude (pressure less than 20 hPa) ERA-Interim val-
ues against wind measurements taken from a balloon
radiosonde and noted that the standard deviations of the
differences were greater than 5 m⋅s−1 in some cases. Le
Pichon et al. (2018) conducted a similar study compar-
ing multiple reanalysis products against measurements
from multiple ground-based instruments, finding that the
standard deviation of the mean zonal wind difference
at times could be larger than 20 m⋅s−1 when looking

specifically at heights of 40–60 km. It is therefore clear that
any extra information that can be used to constrain such
estimations better is of paramount value, as well as the
methodology to extract this information in an adequate
manner.

The present work is one of several studies paving the
way to the assimilation of atmospheric infrasound data
into numerical weather prediction models. Assink et al.
(2019) provide a review on this ultimate goal. We fol-
low on the steps of Blixt et al. (2019), Amezcua et al.
(2020), and Vera-Rodriguez et al. (2020). These works
make use of a data set resulting from controlled ammuni-
tion detonations at the Hukkakero site in Finland. These
explosions generate infrasound waves that are detected
by an array of powerful micro-barometers at the ARCES
ground-based site in Karasjok, Norway. A series of daily
detonations are performed over several days every sum-
mer, yielding observational over the course of the last two
decades (Drob et al., 2003; Gibbons et al., 2007). These
data have two desirable qualities. First, since waves are
generated from controlled explosions, we know exactly
the locations of the source and receiver of the wave, as
well as the time of detonation and reception, the latter
two within some error margin. Second, the event can be
considered an individual pulse, which is not the case, for
instance, with continuous sources in a general region (e.g.,
microbarom sources near Iceland), in which it is almost
impossible to disentangle individual waves. The second
is the proximity between the source at Hukkakero and
the receiver at Karasjok, which is approximately 179 km,
where the ARCES array of micro-barometers has been
located since 1987 (Mykkeltveit et al., 1990). This means
that the infrasound waves travel for around 10 min, so the
whole process can be considered instantaneous against
synoptic-scale variability. This is not a feasible approxi-
mation, for instance, for waves generated by microbaroms
near Iceland and detected in Norway, where the distance
is an order of magnitude larger (around 2,000 km).

Blixt et al. (2019) used the ARCES data set to
derive effective cross-wind velocities, which they com-
pared with the ERA-Interim reanalysis data (Dee et al.,
2011). The authors tried different vertical averages of
the along-track-averaged cross-wind to approximate the
effective wind inferred from the observations. They also
performed ray-tracing (e.g., Hedlin and Walker, 2013)
for the different explosions to derive plausible tracks
and maximum vertical penetration heights, and com-
pute vertical sensitivities to the ray. Vera-Rodriguez et al.
(2020) increased the scope of the estimation problem.
While still working in the along-track average setting,
they estimated three variables: tail- and cross-winds,
as well as temperature, and used three observations:
travel time, back azimuth angle and apparent velocity.
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F I G U R E 1 Sample two-dimensional atmospheric slab used in this work. The horizontal axis corresponds to the along-track distance,
and the vertical axis to height. The red line shows the trajectory of an infrasound wave from emission, being reflected at some maximum
height, and travelling back and being detected at the surface. The blue-shaded grid boxes are those touched by the ray, and the intensity of the
colour is proportional to the distance travelled by the ray inside the grid boxes [Colour figure can be viewed at wileyonlinelibrary.com]

The authors performed an inversion using a heuris-
tic algorithm developed by Vera-Rodriguez (2019). This
algorithm relies on a smoothness constrain (as a regulari-
sation strategy) to estimate these variables at 137 vertical
levels. They used the ERA-5 EDA (ensemble data assimi-
lation) ten-member reanalysis data to provide a departure
point for the inversion algorithm and to identify ensemble
members with values close to those estimated from obser-
vations (e.g., Simmonds et al., 2020). One of the limitations
they recognised is the fact that they could not estimate val-
ues at those levels above the maximum height reached by
the infrasound waves, which is often around 40 km.

Amezcua et al. (2020) performed off-line data assimila-
tion (DA) with the observed back azimuth angles from dif-
ferent explosions. They used the deterministic ensemble
Kalman filter (DEnKF, Sakov and Oke, 2008) to estimate
along-track-averaged cross-wind values at different levels
of the atmosphere. As background values, they used wind
values coming from the ten-member ERA-5 EDA reanal-
ysis. Once more, the cross-wind values were considered
constant along the whole 179-km track of the infrasound
wave, but vertical variations were permitted. The esti-
mation was not done, however, at all the 137 (unevenly
spaced) vertical levels of the reanalysis, but instead on 6
(evenly spaced) layers of the atmosphere. The use of sam-
ple covariances coming from the background ensemble
allowed the determination of upper-level winds, which
were also the most uncertain in the reanalysis product.
To make the DA successful, the authors used domain
localisation and inflation in the EnKF. All the mentioned
works considered a one-dimensional (1D) setting, which

required along-track averaging. This is a major restriction
that is overcome herein.

The main objective of this work is to provide a
setup to perform DA with infrasound measurements
on a two-dimensional (2D) grid, that is, allowing for
along-track variations of the cross-wind for different
numbers of along-track sections. As an illustration, con-
sider Figure 1. A 2D atmospheric slab of La = 200 km
(along-track distance) and Lz = 60 km (vertical distance)
is discretised into Na along-track sections, and Nz vertical
levels, in this case with sizes da = 5 km and dz = 2 km. An
infrasound wave is emitted at the point (0, 0) km, travels
to a maximum height attained in the middle of the hor-
izontal domain at the point (100, 35) km, and is reflected
back towards the surface, where it is detected at the point
(2,000) km. The trajectory followed by the infrasound wave
is shown by a red line, forming an isosceles triangle. A
grid point is coloured white if the ray does not touch it,
and in a shade of blue if the ray touches it. The shade of
blue (labelled weight) is proportional to the distance the
wave travels inside the grid box divided by the length of
the total trajectory (more on this in the next section). The
problem is then to use the integrated observation to update
the cross-wind variable at the Na × Nz grid points.

In Section 2, we briefly discuss the geometric limit for
the propagation of infrasound waves in the atmosphere,
which is the setup used in this and previous works. Per-
haps the most important point of this section is to define
the observation operator which acts in the DA problem.
Section 3 discusses the Kalman filter and the ensemble
implementation we use in this work. It also helps define

http://wileyonlinelibrary.com
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F I G U R E 2 Simple schematic showing the geometric setup for infrasound transmission. (a) Effect of a cross-wind on a wave travelling
from a source S to a receptor R. The cross-wind advects the wavefront and creates an apparent source S′. (b) Modification of the observed
back azimuth angle of the wavefront at the reception site. (c) Discretisation of the process into Na segments in the along-track direction of
propagation [Colour figure can be viewed at wileyonlinelibrary.com]

the role of the elements defined in Section 2 in the DA
process. Section 4 is, in our opinion, the most impor-
tant of the work. Using a synthetic setup, we demonstrate
the assimilation process under ideal conditions, in par-
ticular illustrating how the presence of correlations in
the background wind field allow for updates beyond the
wave path. In this section we also illustrate the effects
that along-track averaging of the original fields (as used
in previous works to simplify the problem) can lead to
inaccurate results unless a source of representation error
(e.g., Janjić et al., 2018) is considered. In Section 5 we per-
form the DA process using data from nine explosions that
took place in 2018 at Hukkakeiro. The sample covariances
coming from a ten-member ensemble prove to be very
noisy, and we propose a way to ameliorate this. Finally,
Section 6 contains a summary and discussion about this
work. Furthermore, there are many areas that still need to
be tackled before proceeding to operational assimilation of
infrasound waves for NWP. We discuss these in detail and
provide ideas for the future.

2 GEOMETRIC PERSPECTIVE OF
THE PROPAGATION OF
INFRASOUND WAVES IN THE
ATMOSPHERE

The main phenomenon exploited in this study is that a
background wind affects the propagation of an infrasound
wave. More specifically, the wavefront of an infrasound
wave can be advected by any cross-wind it encounters. The
opposite is not true, meaning that an infrasound wave has
a negligible effect on the background winds.

For the following explanation we rely on Figure 2.
Panel (a) illustrates a wave originating at a source S and
received at a receiver R some distance away. A cross-wind
W c (constant for now) is present along its path. If W c = 0,
the infrasound wave arrives at the receiver unaltered and
can be traced back to its true source. If the wavefront, how-
ever, is translated by a cross-wind W c ≠ 0, then it can be
traced back to an apparent source S′. A right-angled tri-
angle is then formed between S, R and S′. The distance
between S and R is called the along-track ground distance
and is denoted by da, whereas the distance from S to S′ is
called the cross-track distance and is denoted by dc.

When a wave is detected, one can measure the back
azimuth angle 𝜃, that is, the angle of the incoming ray
with respect to north, as shown in panel (b). The bending
caused by W c leads to a measured angle back azimuth 𝜃′.
The effect of the cross-wind W c is related to the difference
between these angles (Diamond 1964):

Δ𝜃 = 𝜃′ − 𝜃, (1)

where if W c > 0 then Δ𝜃 < 0, and if W c < 0 then Δ𝜃 > 0.
To relate W c and Δ𝜃, one uses the concept of celerity 𝜈,
that is, the along-track distance da divided by the total
propagation time T:

𝜈 = da

T
, (2)

where T is a known quantity, since we know the times of
both explosion and detection. W c can be directly related
to dc using the fact that, by construction, the cross-wind is
parallel to dc. Therefore,

dc = W c T. (3)

http://wileyonlinelibrary.com
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From our geometric setup, the angle shift Δ𝜃 can be writ-
ten as

Δ𝜃 = − arctan
(W c

𝜈

)
. (4)

So far, W c has been constant in time and space. When
considering the explosions used in this study, we have
that da ≈ 179 km, so assuming a constant W c is not real-
istic. The next step is to consider W c as a variable that
changes with position along da, thus becoming wc (ra, t),
where ra and rc denote the directions that da and dc face,
respectively. This is shown in panel (c) of Figure 2. If we
consider the waves generated at the source to be spherical,
we always have a wavefront at da. Therefore, we always
focus on the cross-wind along this line, and there is no rea-
son to consider variation in the rc direction. In the rest of
this work, we continue to consider the wind fields to be
time invariant. Since, in our setting, the whole infrasound
transmission process lasts about 10 min, this is not a bad
approximation. The general case with time-varying fields
is more complicated and is not explored in this article.

Returning to Figure 2, in panel (c) we divide the dis-
tance da into Na sections such that da =

∑Na
na=1dna . In the

nth
a section, we can still apply Equation (3) to obtain the

cross-wind shift dc
na

as

dc
na

= wc
na

Tna , (5)

where wc
na

is the cross-wind value in the nth
a section in the

along-track direction, and Tna is the time the wavefront
spends in this section. It should be clear that T =

∑Na
na=1Tna .

To calculate each Tna , we can relate the along-track
distance ground segment length, da

na
, with the along-track

speed for each ground segment denoted by wa
na

and the
adiabatic speed of sound denoted by C, namely

Tna =
da

na

C + wa
na

. (6)

In reality, C is a function of temperature and atmospheric
water content, but is considered constant here. Substitut-
ing Equation (6) into (5) and adding over all segments
yields the apparent cross-wind displacement as

dc =
Na∑

na=1

da
nwc

na

C + wa
na

. (7)

To use (4) we can define an average cross-wind velocity
W c by dividing (7) by the total time T. We can write (4) in
this more general case as

Δ𝜃 = − arctan
⎛⎜⎜⎝
∑Na

na=1𝛼na wc
na

𝜈

⎞⎟⎟⎠ , (8)

with the weights being

𝛼na =
da

na

T
(

C + wa
na

) . (9)

These weights take into account the time spent within each
section along da

na
. They can also be written as

𝛼na =
Tna

T
, (10)

which implies that they are normalised.
The problem we are solving includes the wave trav-

elling to a given height and being reflected back, whilst
also travelling in the along-track direction. In Figure 1,
the maximum vertical penetration is 35 km. Therefore,
we introduce height as another dimension along which
the wind fields vary. Note that, when projecting the tra-
jectory onto the horizontal plane, our analysis for the
relationship between the back azimuth and the effective
cross-wind remains valid. We split the vertical distance
into Nz sections, such that

zmax =
Nz∑

nz=1
znz , (11)

where zmax is the maximum height reached by a
given wave. For every grid position {na,nz} in this
two-dimensional setting, there is an associated cross-wind
value given by wc

na,nz
. Multiplying these winds by associ-

ated weights and summing over both Na and Nz produces
the weighted average cross-wind as

W c =
Na∑

na=1

Nz∑
nz=1

𝛼na,nz wc
na,nz

. (12)

The values 𝛼na,nz are the weights for each grid box. The
weight is zero for grid boxes within which the wave
does not propagate, and non-zero if it does. As done in
the case of 1D propagation, Equation (12) can used to
relate the cross-wind to the deviation in the back azimuth
angle as

Δ𝜃 = − arctan

(
1
𝜈

Na∑
na=1

Nz∑
nz=1

𝛼na,nz wc
na,nz

)
. (13)

For our experiments, the weights 𝛼na,nz are obtained
as a product of two factors. The first is the length of the
wave trajectory in a given grid box, and the second factor
is the vertical sensitivity to the wave transmission. This is
obtained from a ray-tracing technique as done in Blixt et al.
(2019).
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3 SOLVING THIS PROBLEM
WITH THE (ENSEMBLE) KALMAN
FILTER

3.1 The setup of the problem in KF
terms

DA techniques include two steps: forecast and analysis. As
in Amezcua et al. (2020), in this study we perform off-line
assimilation; that is, we only do the analysis step. The anal-
ysis is not fed back into the forecast model as improved
initial conditions, hence there is no cycling in this study. In
this section, we discuss the analysis step of the DA method
that we use to approach the problem. We also relate the
elements of the previous sections to those needed in the
DA process. We choose the stochastic ensemble Kalman
filter (SEnKF – Burgers et al., 1998; van Leeuwen, 2020).
The reason behind this choice will become evident when
discussing covariance localisation.

The Kalman filter (KF, Kalman, 1960; Kalman and
Bucy, 1961) relies on forecasting the first two moments
of the state variables, and uses observations to update the
values from background (or forecast) to analysis. The back-
ground value xb ∈ RNx is considered to come from a multi-
variate Gaussian distribution (MGD) with mean 𝝁

b ∈ RNx

and covariance matrix B ∈ RNx×Nx . An important fact that
becomes useful in Section 4 is that a covariance matrix can
be decomposed as

B = 𝚺1∕2C𝚺1∕2, (14)

where 𝚺 ∈ RNx×Nx is a diagonal matrix with the variance
of the variables along the main diagonal, and C ∈ RNx×Nx

is a correlation matrix. A correlation matrix has 1’s along
the main diagonal, while all the off-diagonal elements are
bounded between −1 and 1.

In the analysis step of the KF, the information com-
ing from observations is incorporated. An observation y ∈
RNy is a linear transformation of the state variable via
an observation matrix H ∈ RNy×Nx , and contaminated by
observational error. Explicitly,

y = Hx + 𝜼, (15)

where 𝜼 ∈ RNy is observational error coming from an MGD
with zero mean (unbiased) and observational error covari-
ance R ∈ RNy×Ny . In our problem, Ny = 0.

The difference between the observation and the map-
ping of the background mean into observation space is
known as the innovation dob ∈ RNy . Explicitly,

dob = y − H𝝁
b. (16)

The analysis step updates the 𝝁 and B into their corre-
sponding analysis values using the equations

𝝁
a = 𝝁

b + Kdob (17a)

A = (I − KH)B. (17b)

Note that the equation for the analysis mean is extremely
simple to interpret: it is a linear combination of the back-
ground mean and the innovation. The weights in the lin-
ear combination are given by the rectangular matrix K ∈
RNx×Ny , the so-called Kalman gain, explicitly

K = BHT𝚪−1 (18a)

𝚪 = HBHT + R. (18b)

The Kalman gain can be regarded as the multivariate ver-
sion of a ratio of variances: the background (co)variance in
the numerator, and the total (co)variance 𝚪 (background
plus observation) in the denominator. The KF equation for
the analysis covariance can be interpreted as a contraction
of the background covariance.

There can be complications with respect to the frame-
work we just described. For instance, it can be difficult
to obtain robust estimators for the mean 𝝁

b and covari-
ance B of the state variables. Instead, we have access to
a sample of realisations of the state variable, called an
ensemble, whose size is often considerably smaller than
the number of state variables. Another complication is
that observations can involve nonlinear transformations
of the state variables. A Monte Carlo implementation
of the KF known as the ensemble Kalman filter solves
this problem. While the KF is optimal when the obser-
vation operator is linear, the ensemble alternative can
provide suboptimal yet still useful estimators (Evensen,
2009). There are many implementations of the EnKF, from
which we choose the stochastic ensemble Kalman filter
(SEnKF; Burgers et al., 1998; van Leeuwen, 2020) in this
work.

Let us write our problem in terms of the notation used
for the KF. The state vector x ∈ RNx is the collection of
cross-wind values in the grid, concatenated in any order
as long as one is consistent throughout all the steps of the
method. We choose the following order (first vertical, then
along-track):

x =
[

wc
1,1, … ,wc

1,Nz
, … , … ,wc

Na,1
, … ,wc

Na,Nz

]T
, (19)

where Nx = NaNz. Consider that we have a background
sample of Ne elements. This is labelled as background
ensemble Xb ∈ Nx×Ne and can be written explicitly as the
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matrix
Xb =

[
xb

1, xb
2, … , xb

Ne

]
. (20)

Now let us look at the observational side. Defining the
sensitivity coefficients for each grid point following the
same order as for (19), we have the vector 𝜶 ∈ RNx ,

𝜶 =
[
𝛼1,1, … , 𝛼1,Nz , … , … , 𝛼Na,1, … , 𝛼Na,Nz

]T
. (21)

Many of the elements of this vector will be zero, since they
correspond to grid points where the ray does not travel. We
can finally write the (nonlinear) observation equation as

y = − arctan
(
𝜶

Tx
𝜈

)
+ 𝜼. (22)

In this case we have Ny = 1, that is, a single integrated
observation from Nx state variables. Furthermore, h ∶
RNx → RNy is a nonlinear function. Nonetheless, it is
not too far from linear as long as the argument of the
arc-tangent is relatively smaller than unity, since the Tay-
lor expansion of this function is

arctan(𝜉) = 𝜉 + (𝜉)3. (23)

In our case, the argument of the arc-tangent is a fraction
with an effective wind speed in the numerator and celerity
in the denominator. The typical values of the denomina-
tor are 101 m⋅s−1, whereas the celerity in the denominator
is close to C, which is around 300 m⋅s−1. Therefore the
(nondimensional) value of the argument in the arc-tangent
is around 10−1. The linearisation of the observation opera-
tor around xref = 0 is labelled as Ĥ ∈ RNy×Nx . This becomes
important later in this section, and is simple to write down
as

Ĥ = −1
𝜈
𝜶

T. (24)

The analysis step of the SEnKF is quite simple to imple-
ment since it performs the update for each one of the
ensemble members separately, by repeatedly applying the
KF analysis equation for the mean. The analysis value of
the nth

e ensemble member is

xa
ne
= xb

ne
+ Kedob

ne
. (25)

The perturbed innovations for each ensemble member
dob

ne
∈ RNy are computed as follows (van Leeuwen, 2020):

dob
ne

= yo −
(

h
(
xb

ne

)
+ 𝜼ne

)
. (26)

The term 𝜼ne
∈ RNy is a realisation of the observational

error, which is added to the mapping of the state variables
into observation space (hence the word ŞstochasticŤ in

SEnKF). It is easy to ensure that the Ne perturbations are
centred in zero. We have written Ke to denote that the gain
is computed with the ensemble covariance Pb, which is an
estimator of B. The ensemble-based gain is then

Ke = PbĤT𝚪−1
e (27a)

𝚪e = ĤPbĤT + R. (27b)

Ĥ ∈ RNy×Nx is the linearisation of the observation opera-
tor, which we found in Equation (24). There are ways to
compute Ke that do not require the linearisation of the
observation operator, but instead map all members into
observation space, compute perturbation matrices in both
state and observational space, and perform outer prod-
ucts (e.g., Hunt et al., 2007; Sakov and Oke, 2008). We
do not go down this path. The reason for our choice has
to do with the use of model-space localisation and hav-
ing an integrated observation operator, which is explained
next.

3.2 Implementing localisation

The Kalman gain has the important role of spreading
the impact from observations to state variables. In our
problem, this is particularly crucial since we have a sin-
gle observation whose integrated information has to be
distributed to Nx state variables. The quality of Pb is vital
to the quality of K and therefore to the accuracy of the
result of the DA process. Small samples are can lead to
spurious covariances as a result of sampling noise. Local-
isation is a method to ameliorate this problem. It involves
artificially modifying the sample covariances to reduce
the magnitude of (and sometimes completely eliminate)
undesired elements. There are several ways to implement
localisation (see e.g., Sakov and Bertino, 2011). Here we
only discuss the so-called B-localisation, which is adequate
when dealing with observations which include integrated
information; see for example Greybush et al. (2011) for the
differences between B- and R-localisation.

B-localisation involves directly modifying Pb or its par-
tial or total mapping into observation space, that is, PHT

and HPHT. The latter is useful when the computation of
the full Pb is not feasible, but this is not an issue in our
case. The simplest form of B-localisation occurs in model
space (see e.g., Slyeva et al., 2019). This requires directly
replacing the sample covariance matrix for a modified ver-
sion, that is, Pb → Pb

loc. Model-space localisation requires
the linearisation of the observation operator to perform the
products ĤPb

locĤT and Pb
locĤT required in the Kalman

gain (Shlyeva et al., 2019). Fortunately, in our case we have
this readily available in Equation (24).
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The localised background covariance matrix Pb
loc ∈

RNx×Nx is often obtained by Schur (element-wise) multipli-
cation of the original Pb with a tapering matrix L ∈ RNx×Nx ,
that is,

Pb = Pb◦L. (28)

This tapering matrix is prescribed, and its design can
come from our knowledge of the physical system, or
using length scales coming from a tuning process to
optimise (under some metric), the performance of the
DA system.

Another option to modify Pb is to perform the decom-
position indicated in Equation (14), trust the sample vari-
ances, and focus on modifying the sample correlation
matrix C. The ensemble correlation raised to a power
(ECORAP; Bishop and Hodyss, 2007; ECORAP; Bishop
and Hodyss, 2009) is a method which aims to “sharpen”
the structures present in C. In its simple implementation,
it involves raising all and every element of the correlation
matrix to a power p:

Ci,𝑗 ←
(

Ci,𝑗
)psign

(
Ci,𝑗

)
, (29)

where the sign function ensures that the sign of the orig-
inal element is not lost when k is even. The rationale
behind this method is that correlations will become more
ŞpeakedŤ. If the correlation value is exactly equal to 1 it
remains exactly so, values close to 1 remains close, while
values close to 0 fade in magnitude after being raised
to a power. The method we use in this work is a slight
modification of ECORAP.

3.3 Evaluating the effects of the DA
process

To quantify the effects resulting from the DA process, con-
sider some derived quantities. We write these in terms of
the elements of the KF. When using the ensemble imple-
mentation, the corresponding sample estimators need to
be substituted.

dab = 𝝁
a − 𝝁

b (30a)(
rab)2 = diag (A) ÷ diag (B) . (30b)

The first is the so-called analysis increment, that is, the
difference of the analysis mean 𝝁

a minus the background
ensemble mean 𝝁

b. This can take both positive and nega-
tive values, with a value of zero meaning the observation
does not have any effect. The second quantity is the ratio of
the analysis variance of each state variable and its respec-
tive background variance. This ratio is bounded between

zero and one, and the smaller the value, the more the
observation reduces the uncertainty of the estimator of a
given variable.

In our problem, we only have one (integrated) obser-
vation for each DA instant. As a consequence, both the
observational departure dob and the total covariance 𝛾2

become scalars. Using these facts and Equation (24), the
analysis increments are simply

dab = − dob

𝜈𝛾2 B𝜶. (31)

Therefore, any spatial variation of the analysis increments
is a result of either (a) spatial variations in the observa-
tional weights, or (b) spatial variations in the covariance
matrix. This is illustrated in Section 4

It is also useful to look at quantities in observation
space, in particular when in our problem everything is
a scalar in that space, making comparisons simple. We
denote the equivalent angle coming from the background
mean, and its standard deviation, as

yb = h
(
𝝁

b) (32a)

𝜎b
y =

√
ĤBĤT

. (32b)

The same can be done for the analysis:

ya = h
(
𝝁

a) (33a)

𝜎a
y =

√
ĤAĤT

. (33b)

4 SYNTHETIC EXPERIMENTS
WITH THE KALMAN FILTER

4.1 Setup

To illustrate the DA process, we perform idealized experi-
ments with prescribed background settings and a synthetic
observation. In this section we use the linearised version
of the observation operator Ĥ as the true observation oper-
ator H. In this way we can use the exact KF and directly
study the exact updates in the mean and covariance of the
state variables, without the effects of nonlinearity and lim-
ited ensemble size. The experiments in this section use the
2D grid of Figure 1, which was first mentioned in Section 1.
Recall that the domain is 200 km in the horizontal and
60 km in the vertical. It is discretised into Nz = 30 verti-
cal levels centred at z = {2, 4, … , 60} km, and Na = 41
along-track sections centred at ra = {0, 5, … , 200} km.
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T A B L E 1 Background elements for the synthetic
experiments

Background
mean

Background
variances

Background
correlation
matrix

Constant Space dependent Diagonal

Constant Space dependent Non-diagonal

Space dependent Constant Diagonal

Space dependent Constant Non-diagonal

This yields a total of 1,230 grid points, and the same num-
ber of state variables. The wave trajectory is shown by
the red isosceles triangle with vertices at (0, 0), (100, 35)
and (200, 0) km, touching 65 out of 1,230 grid points,
which is only around 5%. We consider uniform sensi-
tivity in the vertical to the wave propagation. Hence,
the weights in the observation operator are only pro-
portional to the length travelled by the ray in different
grid boxes.

We now need to prescribe background mean and
covariance values. Table 1 presents a summary of the set-
tings used. We study the separate effect of the spatial struc-
ture of the covariance and the magnitude of the variances.
For this we use Equation (14) and prescribe two correla-
tion matrices. The first one is simply the identity, which
means that the background error is completely uncorre-
lated and innovations only occur at grid points through
which the ray travels. The second correlation matrix has
non-zero off-diagonal elements. This renders a case that
is much more interesting, and also more realistic as we
find in Section 5. The prescribed correlation matrix C ∈
RNaNz×NaNz for the non-diagonal case is

C = Ca ⊗ Cz, (34)

i. e., a Kronecker product of two matrices: Ca ∈ RNa×Na

for the along-track correlations and Cz ∈ RNz×Nz for the
vertical correlations. We choose these to be Toeplitz
symmetric matrices. The first row of each one of
these matrices uniquely defines each matrix. These
rows are

Ca[1, ∶] = exp
(
− ra

25

)
(35a)

Cz[1, ∶] = exp
(
−(z − 2)

10

)
cos

(
𝜋(z − 2)

15

)
. (35b)

These matrices are illustrated in Figure 3. The left panel
is for the vertical correlations, the middle panel for the
along-track correlations, and the right panel is the result-
ing 2D correlation matrix. This last one participates in
the DA process, after being scaled by the variances as in
Equation (14). Note that we have allowed for both positive
and negative vertical correlations but only positive hori-
zontal ones. This is to mimic the real situations we found
in Section 5.

For the observation side, we fix the celerity as 𝜈 =
300m⋅s−1. This is in line with the values from real obser-
vations in Section 5. We also repeated the experiments
with different values from 𝜈 = 260 to 𝜈 = 340m⋅s−1, and
the results were qualitatively similar (not shown). We con-
sider an observation with a given value and prescribed
error standard deviation given as

Δ𝜃 = −0.5◦ = −0.0087 rad
𝜎o = R1∕2 = 0.1◦ = 0.0017 rad. (36)

The standard deviation of the error is large, about 10% of
the observation value, but agrees with the literature.

F I G U R E 3 Prescribed correlation matrix used in the synthetic experiments. It is generated by the Kronecker product of a vertical
correlation matrix (left) and an along-track correlation matrix (middle), to yield the 2D correlation matrix (right) [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 4 Summary of synthetic experiments using the KF to assimilate a single observation. The first row shows the background
mean field (zero in this case) and the background standard deviation (variable in space). The rows show the results when using a diagonal B
and a non-diagonal B. The columns show the results in observation space (left), and analysis increments (middle) and variance reduction
(right) in the model space [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Results under two settings

The setup and results of the first set of experiments (first
two rows of Table 1) are shown in Figure 4. The first row
in the figure shows the background mean (middle panel)
and background standard deviation (right panel) for each
grid point. These quantities are plotted as 2D maps. We
set the background mean to be zero in all the domain. We
allow, however, for spatial variations in the background
wind variance. The top right panel illustrates the increase
from the bottom left corner to the upper right corner. More
precisely, the spatial variation is generated by the proposed
expression

𝜎b(ra, z) =

(
1 +

√
8 − 1
200

ra

)(
1 +

√
5 − 1
58

(z − 2)

)
,

(37)
that is, a product of a linear increase in the horizontal
direction and a linear increase in the vertical direction.
The results of assimilating this observation are shown in
the middle and bottom rows of Figure 4. The left pan-
els show comparisons of the actual observations (red) and
the equivalent angles from background (blue) and analy-
sis (magenta) in observation space, as defined in Equation
(32) and (33), respectively. The middle panels show the

analysis increments for each grid point, and the right pan-
els show the variance ratios.

The results of using a diagonal B are shown in the
middle row. We start with the elements in observation
space. Since 𝝁

b is zero everywhere, the resulting back-
ground angle is yb = 0. The observed angle is negative,
which implies a positive equivalent cross-wind encoun-
tered by the wave, as discussed after Equation (1). In obser-
vation space, the filter is doing exactly what is expected:
the analysis angle ya lies between the background value
and the observation. Furthermore, 𝜎a

y is smaller than both
𝜎b

y and 𝜎o. Now, we move to model space. Since B is diago-
nal, there are non-zero increments only at the grid points
where the ray travelled, with the magnitudes of these
increment being larger for those grid points that contain
longer ray segments. Furthermore, the magnitude of the
analysis increments is not symmetric with respect to the
midpoint of the ray trajectory; in fact, it increases towards
the top right, which is expected since 𝜎b(ra, z) in Equation
(37) increases in the same direction. This agrees with the
discussion on Equation (31). In this example, the largest
analysis increments are around 1 m⋅s−1. For the variance
reduction from background to analysis, once more only
the grid points where the ray travels are affected. The vari-
ances are reduced up to about 0.95 at most. As expected,

http://wileyonlinelibrary.com
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F I G U R E 5 As in Figure 4, but for the case of variable background mean and constant background standard deviation [Colour figure
can be viewed at wileyonlinelibrary.com]

the points along the trajectory closest to the top right area
of the domain see the greatest reduction.

The bottom row of Figure 4 shows the results when
using the non-diagonal B generated by Equations (34) and
(37). In this case 𝝁

b is still zero, so we still have yb = 0.
However, 𝜎b

y is larger than that coming from the diag-
onal B. As a consequence, the analysis mean is closer
to the observation value. The analysis increments are no
longer limited to those grid points where the ray travels,
since the non-zero covariances are able to communicate
the effect of the observations to those grid points that the
ray does not touch at all. There is a large area of pos-
itive increments (the expected sign) centred around the
ray trajectory. These increments go up to around 4 m⋅s−1.
However, there are also regions of negative increments
reaching around −1.4 m⋅s−1, which are just above and
below the ray trajectory, and are a direct consequence of
the negative correlations we prescribed in the vertical. The
variance reduction is also not constrained to those grid
points touched by the ray. The reduction of variances is
larger than for the diagonal B case, with grid points reach-
ing a ratio of around 0.8. As in the case with diagonal B,
in both the analysis increments and variance ratio there is
strong spatial dependence with larger effects towards the
right and top of the domain.

The setup and results of the second set of experi-
ments (last two rows of Table 1) are shown in Figure 5.
In this case, 𝜎b = 4 m⋅s−1 in the whole domain. 𝝁b, how-
ever, changes over the 2D grid from −20 to 20 m⋅s−1,
according to

𝜇b(ra, z) = 20
(

1 − z
60

− ra

200

)
. (38)

This variation was chosen such that the mean over the
whole domain vanishes. This is not a realistic wind
field, but it allows to prove some points in the following
subsection.

Once more, we start with the results for the diagonal
B. In observation space, yb ≠ 0; it is in fact negative, with a
larger magnitude than that of yo. Once more, ya is between
yb and the ya, so the DA is working. This time, the innova-
tion dob is positive, so we expect a negative analysis incre-
ment. This is indeed what we find in the middle panel:
the analysis increment is negative, with maximum incre-
ments of about 2.22 m⋅s−1. The increments are restricted
to the grid points touched by the ray, and their magnitude
is just dependent on the associated weight in each grid
box, since 𝜎b(ra, z) is constant at all grid points. The spa-
tial variation of 𝜇b(ra, z) coming from Equation (38) does
not result in a spatial variation of either the analysis incre-
ments. The variance ratio reduction is limited to the grid
points touched by the ray, any variation depends only on
the weights of the grid points, and the minimum value of
the ratio is about 0.96.

The bottom row shows the results of using a
non-diagonal B. In observation space, yb is exactly the
same as with the diagonal B (as it should be since B plays
no role in the computation of this yb), but 𝜎b

y is larger.
Hence, the observation has a larger impact in the assimi-
lation, with ya closer to yo than in the diagonal B case. The
analysis increments are larger in magnitude than with a

http://wileyonlinelibrary.com
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diagonal B, this time reaching close to 4 m⋅s−1 for some
grid points. These are not restricted to the grid points
touched by the ray; instead the non-zero covariance ele-
ments communicate the information to the grid points
surrounding the ray. There are some negative increments
in the area above the maximum height reached by the
ray. Since the background variance is fixed in the whole
domain, the spatial pattern of the increments depends
only on the weights in the grid points and the prescribed
correlations. The variance ratio can take values as low as
0.83, and it is not limited to the grid boxes in which the
ray travels.

4.3 The effects of spatial averaging

Consider that the grid in Figure 1 represents the true res-
olution of the atmospheric model in which we want to
perform DA. The objective of the DA process is to find anal-
ysis values at the same resolution, which implies finding
values for a total of Nx = NaNz state variables (when we
only have one physical variable per grid point). This is a
difficult goal when using a single observation and imper-
fect information coming from a limited ensemble size. For
this reason, one may be tempted (or plainly need) to reduce
this problem to a 1D setting. One option is to perform
along-track averaging. This was in fact done in Blixt et al.
(2019), Amezcua et al. (2020) and Vera-Rodriguez et al.
(2020). In these works the cross-wind was only allowed to
vary with height, reducing the number of state variables to
Nz (a different actual number for each work). The next dis-
cussion details along-track averaging, although the same
steps apply for vertical averaging, and in fact we do both in
experiments.

Averaging has two effects. The first effect is quite obvi-
ous: the size of the problem is reduced at the cost of losing
information. We move from a 2D background field to a 1D
background field. The resulting analysis is therefore also a
1D field. There is no way to (uniquely) transform this anal-
ysis back into a 2D field. The second effect is less obvious,
and is particularly important given that our observation is
an integrated quantity. To explain this, let us denote the
along-track-averaged background mean as �̃�

b ∈ RNz , and
the corresponding weights for the observation operator as
�̃� ∈ RNz . These elements are related to the original ones by

�̃�
b = 1

Na
𝚽𝝁

b (39a)

�̃� = 𝚽𝜶, (39b)

where the role of the matrix 𝚽 ∈ RNa×NaNz is to perform
sums. For the particular concatenation order we chose in
Equations (19) and (21), 𝚽 is a block-row matrix with Nz

repetitions of the Na × Na identity matrix:

𝚽 =
[
INa INa … INa

]
. (40)

The innovations in observation space are still scalars, and
they can be written as

d̃ob = yo − 1
Na

H𝚽T𝚽𝝁
b, (41)

where N−1
a 𝚽T𝚽 ∈ RNaNz×NaNz is an idempotent matrix. In

general,
d̃ob

≠ dob
. (42)

In fact, only under very limited circumstances do the inno-
vations obtained from averaged inputs coincide with the
innovations obtained from the full fields. One trivial case
where they coincide is if the whole background field is
equal to zero.

The analysis mean coming from the averaged data is

�̃�
a = �̃�

b + K̃d̃ob
, (43)

with the gain

K̃ = 1
N2

a
𝚽B𝚽T𝚽HT�̃�−1 (44a)

�̃� = 1
N2

a
H𝚽T𝚽B𝚽T𝚽HT + R. (44b)

In general,
�̃�

a ≠ N−1
a 𝚽𝝁

a. (45)

Namely, doing DA using the original 2D field and then tak-
ing the along-track average of the result is not the same
as doing DA using the 1D field as an input. The differ-
ence arises both in the innovations and in the way in
which these innovations are spread back to the state space.
Finally, the analysis increments resulting from �̃�

a and �̃�
b

are
d̃ab = K̃d̃ob

, (46)

which is not the same as the average of the analysis incre-
ments resulting from using the 2D fields; that is, in general,

d̃ab
≠ N−1

a 𝚽dab
. (47)

We revisit the experiments from Table 1 to explore
these effects. We start by performing a comparison in
observation space in Figure 6. This figure has four pan-
els. The top row corresponds to the case of fixed 𝝁 and
space-dependent 𝜎b, while the bottom row corresponds
to the case of a space-dependent 𝝁 and constant 𝜎b.
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F I G U R E 6 Effects of doing DA using summarised data. For different combinations of background mean and standard deviations
(rows), and correlation matrices (columns), we show the equivalent angles coming from the background (blue lines), the observation (red)
and the analysis (pink lines) [Colour figure can be viewed at wileyonlinelibrary.com]

The columns correspond to using a diagonal B (left) and
a non-diagonal B (right). Each panel shows the equiva-
lent values coming from the background (blue colours),
the actual observation (in red) and the analysis (pink/pur-
ple colours). This time, for background and analysis we
have three values: one coming from the full 2D field (cir-
cle), one coming from along-track-averaged data (down
triangle) and one coming from vertically averaged data (up
triangle). The value coming from the 2D field is the exact
one, against which the other two should be compared.

Let us start with the case when 𝝁 = 0 and 𝜎b is space
dependent. In this case all the background angles coincide,
for diagonal and non-diagonal B. Also, the values for 𝜎b

y
coming from the averaged data are smaller than those com-
ing from the original 2D field. This is understandable if we
think of the effect of averaging in the standard deviation of
a random variable. The standard deviations are larger for
the case of the non-diagonal B, as expected. Now we look
at the analysis angles. In the case of a diagonal B, there is a
large difference between the analysis coming from the 2D

http://wileyonlinelibrary.com
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F I G U R E 7 Effects of doing DA using summarised data, for different combinations of background mean and standard deviations
(rows), in the case of vertical averages (left column) and along-track averages (right columns). In each panel we show analysis increments for
two types of correlation matrices (line style), coming from using 2D fields in the DA (pink lines) and from using averaged data (purple lines)
[Colour figure can be viewed at wileyonlinelibrary.com]

field and the analyses coming from the summarised data
(either along-track or vertical averages). In fact, the impact
of the observation in both averaged cases is very small. This
impact is larger in the case of the non-diagonal B, and the
difference with respect to the analysis angle is smaller.

Now we move to the case of a space-dependent 𝝁
b

and fixed 𝜎b. In this case the difference in the background
angles coming from the 2D and the averaged fields can be
quite large depending on the way the averaging is done.

For the vertically averaged case, the equivalent angle is
zero. This can be understood given the symmetry of the
background mean wind field, and realising that the ray
covers the whole along-track distance, but not all the ver-
tical distance. The same differences are present in the
angles corresponding to the analysis wind fields. The effect
of the observation is larger in the case of the 2D field
since the associated background standard deviations are
larger. As in other cases, the values of 𝜎b

y are larger in

http://wileyonlinelibrary.com
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the case of non-diagonal B. After looking at observation
space, we move to model space and look at the differences
between N−1

a 𝚽dab () and d̃ab (). These results are plotted in
Figure 7. The rows have the same order as in Figure 6. The
columns, however, show separately the cases for the ver-
tical (left) and along-track (right) averages. In each panel
we have four lines: the pink lines correspond to N−1

a 𝚽dab,
and the purple lines to d̃ab. The solid lines correspond to
a diagonal B, and the dotted lines to a non-diagonal B.
The largest analysis increments correspond to the case of
having non-diagonal B. In fact they are close to zero when
N−1

a 𝚽dab is computed either along-track or vertically. This
is expected if we remember that only around 5% of the
grid points are directly touched by the ray. The increments
differ little between the two rows (i.e., with different com-
binations of background mean and variances), and also
the error made when using averaged fields for the DA is
small. This is not the case, however, for non-diagonal B.
In this case the values of N−1

a 𝚽dab are large. In the ver-
tical, they are not limited to the levels travelled by the
ray, as is evident in the right column. In this case the
difference between N−1

a 𝚽dab and d̃ab is quite noticeable,
with the latter overestimating the magnitude of the for-
mer in all cases. The mismatch is particularly bad for
the case of variable 𝜇b(ra, z) and constant 𝜎b, where the
sign of d̃ab is opposite to that of N−1

a 𝚽dab in the verti-
cally averaged case. This is also the case for diagonal B,
albeit barely noticeable due to the small magnitude of the
increments.

The difference between �̃�
a and N−1

a 𝚽𝝁
a is an example

of representation error; see for example Janjić et al. (2018)
for a nice discussion. This is something that has to be
further studied and taken into consideration if the goal of
assimilating infrasound wave angles into operational mod-
els involves large differences in the resolutions of the orig-
inal grid and that used for the ray-tracing and ultimately
the DA process.

5 DATA ASSIMILATION
EXPERIMENTS WITH REAL
OBSERVATIONS

Now that we have illustrated the method in a synthetic
setting, as well as the issues that may arise, we move to
the assimilation of real observations, and using the ERA-5
EDA product as background.

5.1 Observations

As outlined above, the data set used in this study con-
tains observations related to contained explosions of

ammunition at Hukkakero, Finland. While the infrasound
waves generated by these explosions are received at mul-
tiple locations, we use data recorded by the ARCES array
in Karasjok, Norway. Blixt et al. (2019) comment on the
advantages that this site has over others, but a primary rea-
son relates to the geographic setup that Hukkakero and
Karasjok provide. The distance da is close to being par-
allel to the north pointing line, which implies that the
cross-winds are similar to the eastward winds, which Blixt
et al. (2019) note as being the dominant wind force for
middle atmospheric winds (Drob et al., 2003).

The infrasound waves caused by the explosions take
approximately 10 min to arrive at the receiver. For each
explosion, Blixt et al. (2019) performed ray-tracing simula-
tions in an attempt to model the propagating waves. These
simulations use data from ERA-Interim. The ray-tracing
analysis yields vertical sensitivities for the computation of
the effective cross-winds.

In this work we focus on the nine explosions which
occurred in August 2018. Table 2 presents the dates and
times of each explosion and three quantities. The first is
the back azimuth angle (in radians), which is directly mea-
sured, where we consider an unbiased additive error fol-
lowing a normal distribution with a standard deviation of
1

20
◦ (about 1

100
rad. Blixt et al. (2019) or Szuberla and Olson

(2004) give details on the estimation of observational error
in this case. The second quantity is the celerity (in m⋅s−1),
which is straightforwardly computed since the along-track
distance is known and the travel time is measured. The
travel time is considered to be perfectly measured, yield-
ing exact celerity values, but this need not be the case. In
fact, Vera-Rodriguez et al. (2020) considered errors in the
travel time. Finally, we have the maximum height (in km)
retrieved using the ray-tracing routine described before.
This maximum height is also considered to be perfect, but
this is not necessarily the case. Note that all the observed
angles are negative, and all of them have magnitudes equal
to or smaller than 10−2 rad, so we do not expect nonlin-
earity in the observation operator to be an issue. The sign
indicates that the equivalent cross-wind, as seen by the
observations, is positive, that is, with a positive westerly
component.

5.2 Background values from ERA-5
EDA

NORSAR has kindly provided the background cross-winds
for this study. They have taken the zonal and meridional
winds of the ten-member ERA-5 ensemble data assimi-
lation (EDA) product and interpolated them to produce
cross-winds along the great circle connecting Hukkakero
and the ARCES site. These are provided at the 137 native
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T A B L E 2 Observation values used in our experiments for each of the explosions in August 2021

Time of explosion
Back azimuth
angle (rad) Celerity (m⋅s−1)

Maximum
height (km)

August 18, 2018, 09:59 −0.0234049 290.474 36.8918

August 19, 2018, 10:59 −0.0356222 289.066 36.9371

August 20, 2018, 11:29 −0.0164235 285.834 37.4525

August 21, 2018, 11:00 −0.0076969 284.019 37.8886

August 22, 2018, 10:59 −0.0181689 280.019 41.6721

August 23, 2018, 12:59 −0.0094422 287.672 36.8179

August 24, 2018, 13:00 −0.0268955 280.019 46.8186

August 26, 2018, 14:00 −0.0391128 297.229 33.2536

August 27, 2018, 09:59 −0.0181689 291.896 35.3863

Note: The back azimuth angle is measured directly within some error, the celerity is computed from knowing the along-track
distance and using the observed travel time, and the maximum height is retrieved using a ray-tracing routine.

vertical levels of ERA-5 (which are not equidistant), and at
four equidistant points starting at the source and finishing
at the receiver. The horizontal distance between points cor-
responds to about 60 km in the horizontal direction, which
is very close to the native resolution of the ERA-5 EDA
product of about 62 km.

In Amezcua et al. (2020) the vertical resolution was
reduced by averaging native vertical levels into equidistant
vertical layers. Following the discussion in Section 4 on the
effects of averaging, we avoid averaging and perform DA at
the native resolution. However, we eliminate levels above
60 km since the separation between levels is too large. We
stop at the last level with thickness below 2 km, leaving a
total of Nz = 131 vertical levels. With the Ny = 4 horizontal
points, we have a total of 524 state variables.

When matching the background and observation
times, the observations do not fall in “valid” reanalysis
times. Figure 8 illustrates (in a rather qualitative way) this
mismatch. The horizontal axis represents time. In the bot-
tom row, the black dots show the times of four explosions
on August 18, 19, 20 and 21, 2018, respectively, and in the
upper row, the times for which the reanalysis values are
valid. The time step of ERA-5 EDA is 3 hrs. We select and
show the two closest times before and the two closest times
after the explosion takes place. For all ensemble members,
we perform linear interpolation to obtain background val-
ues at observation times. Figure 9 shows the background
mean (left column) and the background standard devia-
tions (middle columns) for each of the grid points in the
2D domain, for the first three explosions (rows). In each
one of the panels we have sketched the trajectory of the
wave up to the maximum height reached. Note that the
situation is very similar for these days: lower-level west-
erlies and upper-level easterlies. The magnitudes of the
cross wind, however, vary considerably, and on occasions

can exceed 30 m⋅s−1. There is little variation along the hor-
izontal direction. This is not surprising given that we are
representing variations of a synoptic-scale variable over a
rather short distance. In terms of the standard deviation,
we see that it often reaches 1 m⋅s−1 in the highest regions
of the domain, especially above 50 km. Nonetheless, there
are other instances where high standard deviations are
also present at lower levels. Once more, the variation with
height is much more pronounced than the variation in the
along-track direction. The right column of 9 shows the ver-
tical sensitivity obtained by Blixt et al. (2019) using the
ray-tracing routine, after multiplying by the length of the
trajectory at each height, and normalising. This is consid-
ered to be dependent only on height, but in general it could
depend on along-track direction and hence be different for
the ascending and descending legs of the ray. The sensi-
tivity is larger at lower levels, but the uncertainty is larger
at higher levels. Therefore, it is not trivial to infer whcih
regions will be more impacted by observations.

Having only Ne = 10 ensemble members for
Nx = 524 state variables means that the sample covari-
ance matrix likely suffers from considerable sampling
errors. As explained in Section 3, the sample covariance
matrix can be modified to eliminate spurious elements
with localisation. We construct the tampered matrix
Pb

loc using the decomposition in Equation (14), that is,
treating variances and correlations separately. For the
variances, we use those corresponding to the observation
times. These values are shown in the middle column of
Figure 9. The instantaneous correlation matrices for the
first three explosions are shown in the left column of
Figure 10. These are block matrices. The four blocks in
the main block-diagonal correspond to the vertical cor-
relation matrices for each one of the Na = 4 across-track
sections. The blocks outside the main block-diagonal are
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F I G U R E 8 Timings of the
ERA-5 EDA reanalysis values (red
dots) and the explosions (black dots)
for five detonations in the summer
2018. The reanalysis time series is
interpolated to the explosion time to
get the background mean and variance
fields for the assimilation. The four
closest times to a given observation are
used to create a correlation matrix with
low sampling noise [Colour figure can
be viewed at wileyonlinelibrary.com]

correlations between along-track points at all different
vertical levels. As expected, these matrices are noisy. To
improve them, we do two things. First, we take the four
times of ERA-5 EDA closest to the explosion time (as in
Figure 8), and for each of them we compute the sample
correlation matrix. Then, we take the average of these four
correlation matrices, and consider this correlation matrix
to be valid at the observation time. Basically we assume
that the spatial structures quantified by the correlations
evolve slowly, and the average structures are fixed within
a window of 9 hrs centred roughly at the explosion time.
The time-averaged correlation matrices are shown in the
second column of Figure 9 for the first three explosions.
These correlation matrices are considerably less noisy than
the instantaneous one. Some features of the instantaneous
matrices have been accentuated, like the positive elements
on the main diagonals of each of the blocks. Being conser-
vative and doubting the elements with small magnitude,
we apply the ECORAP step described in Section 3. We
choose the power k = 2. The matrices obtained in this
way are shown in the third column of Figure 10. There are
features that still resemble those appearing in the instan-
taneous matrices, but these tapered and averaged matrices
are much cleaner. Also, note that there are features that
definitely vary from one explosion to another, so these
matrices do contain flow-dependent information. These
matrices are used for the DA experiments.

As a final comparison, the panels in the right column of
Figure 10 show histograms of the values of the elements in
the different matrices: instantaneous correlations (black),
averaged correlations (grey) and ECORAP averaged corre-
lations (green). In all cases there are almost no negative
values, pointing to the fact that in these experiments the
majority of the increments will have the same sign. As
different steps are performed, more correlations of inter-
mediate value are transformed into values closer to zero.
However, notice that the frequencies for correlation values
of around 0.85 and larger do not change much, suggesting

that we are not eliminating strong correlations (likely com-
ing from dynamics) when trying to eliminate the sampling
noise.

5.3 Results

Due to the absence of a proper verification, these results
should be considered illustrative and a step towards a more
systematic and controlled assimilation. Figure 11 shows
the observation space for the assimilation process corre-
sponding to August 26, 2018. We have three groups of
elements: blue dots corresponding to yb

ne
, that is, the map-

ping into observation space of each one of the background
ensemble members, a red dot and line representing the
observed angle and its standard deviation, and pink dots
corresponding to ya

ne
, that is, the mapping into observa-

tion space of the analysis members. We have included
two sets of pink points (different shades), corresponding
to the analysis coming from instantaneous correlations
and those corresponding to the analysis which uses the
ECORAP time-averaged correlations. As we can see, the
difference in observation space is barely noticeable. We
chose this date because it is the one with the largest dif-
ferent between the background angles and the observed
one, and even in this case the values are remarkably close,
within 0.02 rad. The analysis ensemble members fall closer
to the observation, and the spread is reduced.

Figure 12 shows the results for the first three explo-
sions, on 18, 19 and 20 August. This figure has three
columns. The first column shows, for each ensemble
member, the difference between the given observation and
the corresponding value coming from background and
analysis; This is, it shows yo − yb

ne
in blue and yo − ya

ne

in red. From now on we only discuss the analysis com-
ing from using the localised correlation matrices (using
instantaneous correlations leads to very noise fields in
model space). For each and every one of the ensemble

http://wileyonlinelibrary.com
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F I G U R E 9 Cross-wind background mean (left panel) and background standard deviations (middle panel) for the explosions on
August 18, 19 and 20, 2018. In each panel we show the guessed trajectory of the infrasound wave. The right column shows the vertical
sensitivities needed for the observation operator. These depend on height [Colour figure can be viewed at wileyonlinelibrary.com]

members, |yo − ya
ne
| < |yo − yb

ne
|, which implies that the

assimilation is achieving its purpose. Note that, for differ-
ent rows, the vertical axis changes to show positive values
(first row) and negative values (second and third row). In
all our experiments, the maximum differences between|yo − yb

ne
| are on the order of 10−3 − 10−2 rad.

The middle panel of Figure 12 shows the anal-
ysis increments for these explosions. There is strong

horizontal correlation in the increments, meaning that
similar increment often happen in all horizontal sections
in a given vertical level, with small variations in mag-
nitude. There are very few cases, however, where incre-
ments of different sign happen in the same vertical level.
The top and bottom row show the typical behaviour we
found in the DA process: analysis increments of around
10−1 m⋅s−1, also coinciding with the magnitude found in

http://wileyonlinelibrary.com
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F I G U R E 10 Sample correlation matrices computed from the ERA-5 EDA reanalysis for a grid of Na = 4 horizontal points, and the
lowest Nz = 131 vertical levels of the native resolution. For three times (rows), we show the instantaneous correlation matrix (left column),
the averaged correlation matrix from the nearest four points in time (middle) and the averaged correlation matrix after being post-processed
using ECORAP (right). The rightmost column shows the histogram for the values of the elements of the three correlation matrices [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 Equivalent angles in observation space for the
explosion on 26 August. This date was chosen since it is one of the
cases with largest difference between the background angles (blue
dots, one for each ensemble member) and the observed angle (red).
In two shades of pink we show the corresponding analysis angles,
obtained when using the instantaneous correlation matrix and the
post-processed one [Colour figure can be viewed at
wileyonlinelibrary.com]

Amezcua et al. (2020), even when that work used
averaged data. The middle row, however, shows a
case in which we found unexpectedly large incre-
ments, with magnitudes frequently up to 1.2–1.5 m⋅s−1.
This was one of the cases with the largest differ-
ences between equivalent background angles and the
observed angle. One requires increments verification to
see if these increments are right. Nonetheless, cases like
this stress the need for quality control of observations,
which is routinely done for conventional observations
in operational DA (see e.g., Chen and Kalnay, 2020).

Finally, the right panel of the figure shows the vari-
ance ratio. We see localised reductions in the variance,
sometimes of 0.9 in the three explosions. There are large
regions where the ratio is close to 1, which means the
reduction in variance is negligible. This was also found in
Amezcua et al. (2020), and considering what we observed
in observation space (Figure 11), it is expected.

We end this section with a summary provided in
Figure 13. We plot the analysis increments for the four
along-track grid points, corresponding to each one of the
panels from the leftmost (centred at the emission point)
to rightmost (centred at the reception point). In each

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 12 Results of the DA process for the explosions on August 18, 19 and 20, 2018. The left column shows the difference between
the observation and background angles (blue) and the observation and analysis angles (magenta), for each of the ensemble members. The
middle column shows the analysis increments for different grid points, and the right column shows the value of the variance ratio. In these
two columns we show the guessed trajectory of the wave [Colour figure can be viewed at wileyonlinelibrary.com]

panel, we plot the analysis increments for the Nz = 131
vertical levels. There are several lines in each panel. The
blue vertical line indicates the value of zero, and the grey
dotted thin lines correspond to the profiles for each one
of the nine explosions. The thick black line is the aver-
age analysis increment, and the red line is the median.
These two summary statistics are computed over the
nine explosions. We note a lot of variability over the nine
explosions and height, although for the four horizontal
sections the analysis increments tend to be positive. When

taking the mean, the increments do tend to be positive
as well, with especially large values around 5–15 km and
30–45 km in height. However, it seems that most of the
contributions to these mean values come from outliers
(maximum absolute values of around 1.5 m⋅s−1), includ-
ing the explosions of 19 and 26 August. The median is
therefore a more robust metric to asses the impact. The
median is closer to zero for all vertical levels, but there are
noticeable non-zero regions, especially in the 30–45 km
region.

http://wileyonlinelibrary.com
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F I G U R E 13 Summary of the analysis increments obtained for the nine explosions from 2018 for the Na = 4 horizontal points (panels)
and the Nz = 131 vertical levels (vertical axis in each panel). We show results for the individual explosions by grey dotted lines, the average
increments over time in solid black and the median in solid red [Colour figure can be viewed at wileyonlinelibrary.com]

6 SUMMARY AND FUTURE
WORK

When an infrasound wave travels through the atmosphere,
it is affected by the atmospheric conditions it encounters.
The detection of these waves can provide useful infor-
mation to help constrain values of atmospheric variables.
This information, however, is not available in a straight-
forward manner but rather as an integrated quantity. A
single change in back azimuth angle can be the result
of non-unique combinations of cross-winds in different
sections along the wave propagation. This makes inversion
a practically impossible problem. Bayesian estimation, and
in our case Kalman-filter-based data assimilation, can help
solve this problem by using prior (or background) infor-
mation. This problem is not too different, for instance,
from that of retrieving satellite observations, which also
measure integrated quantities (e.g., Lei et al., 2015). The
information coming from infrasound waves can be help-
ful for better estimating the winds in the stratosphere and
mesosphere, where some of the largest uncertainties in
models exist, and where observations are less frequent and
less dense than in the troposphere.

In this article we have performed the following: First
we explained and illustrated how observed back azimuth
angles can be assimilated (using the Kalman filter and
its ensemble implementation) to generate updates to a
2D cross-wind field. We illustrated this with synthetic

experiments and different options for the background ele-
ments. Since it is sometimes necessary to summarize the
input background fields, we explored how this averaging
(either along-track or vertically) affects the results. We
illustrated how this is a source of model error and can
affect the results, particularly in the case of non-diagonal
background correlations and for particular configurations
of the background mean field.

We then moved to using real data for both background
and observations. Expanding on the work of Amezcua
et al. (2020), we used as background the ERA-5 EDA
ten-member wind interpolated to the line joining the emis-
sion and reception sites of data collected from controlled
explosions at Hukkaeiro. We use the native resolution of
the reanalysis data in a 2D setting, about 60 km in the
horizontal, and the lowest Nz = 131 (out of 137) vertical
levels. Having only Ne = 10 ensemble members to repre-
sent covariance for Nx = 524 variables leads to very noisy
estimators. To ameliorate this problem we did two things.
We started by separating the covariance into correlation
structures and standard deviations. The standard devia-
tions come from the ERA-10 EDA members interpolated
to the observation time (the same being true for the mean).
For the correlations, we took the four reanalysis times clos-
est to the observations, obtained the correlation matrix
for each of those times, then took an average. Basically,
we assume that the correlation structures evolve slowly
over a 9-hr period centred roughly at the time of the

http://wileyonlinelibrary.com
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observation. To reduce the remaining small correlations,
we used the method of ensemble correlation raised to
a power. The results of the experiments with real data
show that increments of the same sign often occur at all
along-track points for a given vertical levels, with varying
magnitude. In very few cases, we find analysis increments
of different signs for a given vertical level. The variabil-
ity over the vertical direction is much larger. The variance
reduction is small and localised at some grid points, rarely
yielding a ratio below 0.95. Finally, we provided a sum-
mary of the analysis increments for all horizontal points
and all vertical levels. Analysis increments tend to be pos-
itive, and the mean analysis increment (over the nine
explosions) is large in two regions: 5–15 km and 30–45 km.
However, it seems that the magnitude of the mean is
largely affected by two explosions (19 and 26 August) in
which the observed angle differed from the analysis angles
by around 10−2 rad, whereas for the other explosions this
difference was close to 10−3. We took the median analysis
increment (again over the nine explosions), which resulted
closer to zero, except for the region 30–45 km.

We identify four ways to improve this study. The first
and obvious one is that we need to validate the DA results
against independent observations, that is, those which
have not been assimilated. Furthermore, in this study we
have shown that quality control of the back azimuth angle
may be necessary, since we found some cases with anoma-
lously large analysis increments. A plausible source for
independent observations for upper regions of the atmo-
sphere are the wind lidars in the AEOLOUS satellite,
launched in 2018 by the European Space Agency. The wind
estimates from this instrument, based on work by Tan
et al. (2008), have recently been validated by Witschas et al.
(2020) and Khaykin et al. (2020). Johan Kero, Daniel Bow-
man and Joseph Eli Bird are working on infrasound trans-
mission in the shadow zone observed on balloons in the
lower stratosphere (Kero, personal communication). We
are looking into using the winds detected in said balloons
for validation.

The next two are methodological improvements which
are applicable even in this situation where the distance
travelled by the wave is relatively small. To begin with,
we can expand our scope and use the three observations
of Vera-Rodriguez et al. (2020), that is, back azimuth,
apparent velocity and propagation time with their respec-
tive uncertainties. In order to use these observations, we
need to relate them to the state variables; that is, we
need to write down adequate observation operators. The
aim of the problem would grow from only estimating
cross-wind, to estimating tail-wind and temperatures as
well for every grid point. In some cases these variables
can be related in very nonlinear ways, as for instance
in Equation (7). Though challenging, this is a feasible

target for the type of method and setup we have used
in this article. The third issue has to do with the way
we have used the observation operator, in particular the
weights in Equation (12) needed to compute the equiva-
lent wind field. In a way, we are treating these weights
as retrievals, since they are pre-processed; see for example
Migliorini (2012) for the concept of assimilating retrievals
versus raw observations and observation operators in the
context of satellite DA. In our case, we are using a retrieved
observation operator. Namely, the weights in the observa-
tion operator came from the vertical sensitivities generated
by Blixt et al. (2019) using the ERA-Interim wind fields
(a single-trajectory estimator) for the different explosions
in the study. We used these weights for all the ensem-
ble members coming from ERA-5. Being strict, the cor-
rect way to proceed with the problem is to perform the
ray-tracing technique independently for each ensemble
member. These would lead to different weights for each
ensemble member.

The final challenge is one that will inevitably arise
when studying transmission over longer length scales,
on the order of thousands of kilometres. For instance,
an infrasound wave travelling 2,000 km will roughly take
almost 2 hrs to reach the detector from the source. This
is over 3 hrs. Such an event can no longer be consid-
ered instantaneous with respect to synoptic variations, so
the background wind field can no longer be considered
static. How to introduce this time variation is the next
goal.
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APPENDIX A. GLOSSARY

This manuscript contains a myriad of terms, symbols and equations. We therefore present a glossary of the most important symbols to aid
the reader.

Geometric setup for infrasound propagation

Symbol Meaning

S, S′,R Source, apparent source, receiver

rc, ra Cross-direction, along-track direction

zmax , znz
Maximum vertical penetration of the infrasound wave, height of the nth

z vertical level (m)

dc, dc
na
, dc

nz
, dc

na ,nz
Cross-distance: total, for the nth

a along-track section, for the nth
z vertical level, for the (na,nz) box of

a 2D grid (m)

da, da
na
, da

nz
, da

na ,nz
Along-track distance: total, for the nth

a along-track section, for the nth
z vertical level, for the (na,nz)

box of a 2D grid (m)

W c,wc
na
,wc

nz
,wc

na ,nz
Cross wind: constant, at the nth

a along-track section, at the nth
z vertical level, at a the (na,nz)

coordinate of a 2D grid (m⋅s−1)

W a,wa
na
,wa

nz
,wa

na ,nz
Along-track wind: constant, at the nth

a along-track section, at the nth
z vertical level, at the (na,nz)

coordinate of a 2D grid (m⋅s−1)

T,Tna
Travel time: total, for the nth

a along-track section, for the nth
z vertical level, for the (na,nz) box of a

2D grid (s).

𝛼na
, 𝛼nz

, 𝛼na ,nz
Weight: at the nth

a along-track section, at the nth
z vertical level, at the (na,nz) coordinate of a 2D grid

(m⋅s−1)

𝜶 ∈ RNaNz Concatenation of the weights for the 2D grid. This becomes a vector.

𝜃, 𝜃′,Δ𝜃 Back azimuth angle in the absence (’ presence) of cross-wind, change in back azimuth angle (rad)

𝜈,C Celerity, adiabatic speed of sound (m⋅s−1)

Data assimilation

Symbol Meaning

x ∈ RNx Vector of Nx state variables. In our problem Nx = NaNz

y ∈ RNy Vector of Ny observations. In our problem, Ny = 1

𝜼 ∈ RNy ,R ∈ RNy×Ny Additive observation error and observational error covariance matrix

H ∈ RNx×Ny Linear observation operator (matrix)

h ∶ RNx → RNy , Ĥ ∈ RNx×Ny Nonlinear observation operator and its linearisation

𝝁
b ∈ RNx , xb ∈ RNx Background mean and its ensemble estimator

𝝁
a ∈ RNx , xa ∈ RNx Analysis mean and its ensemble estimator

B ∈ RNx×Nx ,Pb ∈ RNx×Nx Background error covariance matrix and its ensemble estimator

A ∈ RNx×Nx ,Pa ∈ RNx×Nx Analysis error covariance matrix and its ensemble estimator

Xb ∈ RNx×Ne ,Xa ∈ RNx×Ne Background and analysis ensemble matrices

K ∈ RNx×Ny ,Ke ∈ RNx×Ny Exact Kalman gain and its ensemble estimator

𝚪 ∈ RNx×Ny ,𝚪e ∈ RNx×Ny Total covariance and its ensemble estimator

𝚺 ∈ RNx×Nx ∈ RNx×Nx Diagonal matrix of variances, correlation matrix

dob ∈ RNy Observation innovations

dab ∈ RNx Analysis increments

(rab)2 ∈ RNx Ratio of analysis and background variances


