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Abstract
Using a high degree of parallelism is essential for the efficient performance
of data assimilation. The state formulation of the incremental weak constraint
four-dimensional variational data assimilation method allows parallel calcula-
tions in the time dimension. In this approach, the solution is approximated by
minimising a series of quadratic cost functions using the conjugate gradient
method. To use this method in practice, effective preconditioning strategies that
maintain the potential for parallel calculations are needed. We examine approx-
imations to the control variable transform (CVT) technique when the latter is
beneficial. The new strategy employs a randomised singular value decomposi-
tion and retains the potential for parallelism in the time domain. Numerical
results for the Lorenz ’96 model show that this approach accelerates the min-
imisation in the first few iterations, with better results when CVT performs
well.

K E Y W O R D S

conjugate gradients, data assimilation, preconditioning, randomised methods, sparse symmetric
positive definite systems, time-parallel 4D-Var, weak constraint 4D-Var

1 INTRODUCTION

The ever increasing resolution of weather models
enhances the importance of parallelisation in data assim-
ilation. Higher potential for parallel computations can be
achieved by using suitable data assimilation methods. The
state formulation of the weak constraint 4D-Var method,
which allows for the model error, is such a method. In its
incremental version, a series of quadratic cost functions is
minimised via solving a series of linear systems containing
the Hessian of the linearised cost function. These are

solved with the conjugate gradient (CG) method (e.g., Saad
2003), where the most computationally expensive part is
integrating the tangent linear model and its adjoint. It has
been shown that these calculations can be parallelised in
the time dimension (Fisher and Gürol 2017).

However, CG needs preconditioning for fast conver-
gence. Efficient preconditioning for the state formulation
of incremental weak constraint 4D-Var, which also pre-
serves the potential for parallel-in-time calculations, is
still an open question. By analogy with the standard pre-
conditioning technique (also known as a control variable
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transform or first-level preconditioning) used in strong
constraint 4D-Var, Fisher and Gürol (2017) suggested
using approximations of the tangent linear model. Their
search for a suitable approximation was unsuccessful. Our
investigation in this paper reveals that preconditioning
using the exact tangent linear model can be detrimental to
the minimisation in some cases. We focus on approxima-
tions in the case when using the exact tangent linear model
works well.

In the light of the growing popularity of randomised
methods and examples of their use in data assimilation
(Bousserez et al., 2020, Daužickaitė et al., 2021), we pro-
pose using a randomised singular value decomposition
(RSVD; Halko et al., 2011) to approximate the tangent
linear model. RSVD is a block method that is easy to par-
allelise in the sense that it requires calculating matrix
products with blocks of vectors. Because Lawless et al.
(2008) showed that it is important to take into account
the information on the background errors when using
model reduction techniques in data assimilation, we also
examine an approach where we approximate the tangent
linear model in interaction with the background- and
model-error covariance matrices.

We formulate the incremental weak constraint 4D-Var
problem and discuss its preconditioning in Section 2.
Our idea for randomised preconditioning is presented
in Section 3. Numerical experiments exploring precon-
ditioning using the exact tangent linear model and its
low-rank approximation obtained using RSVD are pre-
sented in Section 4 and we summarize our findings and
suggest future directions in Section 5.

2 INCREMENTAL WEAK
CONSTRAINT 4D-VAR

In data assimilation, the prior estimate of a model tra-
jectory is combined with observations over a time win-
dow to obtain an improved estimate of the state (anal-
ysis) xa

0, x
a
1, … , xa

N at times t0, t1, … , tN . The prior esti-
mate of the state at t0 is called the background and is
denoted by xb ∈ Rn and the observations at time ti are
denoted by yi ∈ Rpi . The state variables xi are mapped
to the observation space using an observation opera-
tor i. The nonlinear dynamical model i describes
the state evolution from time ti to ti+1. It is assumed
that the background, observations and model have Gaus-
sian errors with zero mean and covariance matrices B ∈
Rn×n, Ri ∈ Rpi×pi , and Qi ∈ Rn×n, respectively. We assume
that the observation and model errors are uncorrelated
in time.

In the state formulation of weak constraint 4D-Var, the
analysis is the minimiser of the nonlinear cost function

J(x0, x1, … , xN) =
1
2
||x0 − xb||2B−1 +

1
2

N∑
i=0

||yi −i(xi)||2R−1
i

+ 1
2

N−1∑
i=0

||xi+1 −i(xi)||2Q−1
i+1
, (1)

where ||a||2A = aTAa (Trémolet (2006)).
The minimiser of (1) can be approximated using an

inexact Gauss–Newton algorithm (Gratton et al., 2007).
In this incremental approach, the (𝑗 + 1)th approxi-

mation x(𝑗+1) =
(

x(𝑗+1)T
0 , x(𝑗+1)T

1 , … , x(𝑗+1)T
N

)T
∈ R(N+1)n of

the state is
x(𝑗+1) = x(𝑗) + 𝛿x(𝑗), (2)

where the update is 𝛿x(𝑗) =
(
𝛿x(𝑗)T

0 , 𝛿x(𝑗)T
1 , … , 𝛿x(𝑗)T

N

)T
∈

R(N+1)n. Mi and Hi are the model and observation opera-
tors linearised at xi; they are known as the tangent linear
model and tangent linear observation operator, respec-
tively. We define the following matrices (following Gratton
et al., 2018a)

L(𝑗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I
− M(𝑗)

0 I
−M(𝑗)

1 I
⋱ ⋱

− M(𝑗)
N−1 I

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

(N+1)n × (N+1)n, (3)

H(𝑗) = diag(H(𝑗)
0 ,H(𝑗)

1 , … ,H(𝑗)
N ) ∈ R

p × (N + 1)n, (4)

D = diag(B,Q1, … ,QN) ∈ R
(N+1)n × (N + 1)n, (5)

R = diag(R0,R1, … ,RN) ∈ R
p×p, (6)

where I ∈ Rn×n is the identity matrix, diag(⋅) denotes a
block diagonal matrix and p = ΣN

i=0pi is the total number
of observations. We use the following notation for vectors

b(𝑗) =

⎛⎜⎜⎜⎜⎜⎝

x(𝑗)
0 − xb

0(x(𝑗)
0 ) − x(𝑗)

1

⋮

N−1(x(𝑗)
N−1) − x(𝑗)

N

⎞⎟⎟⎟⎟⎟⎠
∈ R

(N+1)n, (7)

d(𝑗) =

⎛⎜⎜⎜⎜⎜⎝

y0 −0(x(𝑗)
0 )

y1 −1(x(𝑗)
1 )

⋮

yN −N(x(𝑗)
N )

⎞⎟⎟⎟⎟⎟⎠
∈ R

p. (8)
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The update 𝛿x(𝑗) is the minimiser of

J𝛿(𝛿x(𝑗)) =1
2
||L(𝑗)𝛿x(𝑗) − b(𝑗)||2D−1

+ 1
2
||H(𝑗)𝛿x(𝑗) − d(𝑗)||2R−1 . (9)

Because (9) is a quadratic cost function, 𝛿x(𝑗) can be
found by solving the following large linear systems with
the Hessian A(𝑗) of J𝛿(𝛿x(𝑗)):

A(𝑗)𝛿x(𝑗) = (LT)(𝑗)D−1b(𝑗) + (HT)(𝑗)R−1d(𝑗), (10)

where A(𝑗) = (LT)(𝑗)D−1L(𝑗) + (HT)(𝑗)R−1H(𝑗). (11)

It is assumed that p ≪ (N + 1)n, thus (HT)(𝑗)R−1H(𝑗) is
symmetric positive semi-definite. Because (LT)(𝑗)D−1L(𝑗) is
symmetric positive definite, A(𝑗) ∈ R(N+1)n × (N+1)n is sym-
metric positive definite. Hence the method of choice for
solving (10) is CG. Each iteration of CG requires one
matrix–vector product with A(𝑗), which is expensive due to
the tangent linear model and its adjoint in L(𝑗) and (LT)(𝑗),
respectively. Fisher and Gürol (2017) noted that the struc-
ture of L(𝑗) allows the matrix–vector products with A(𝑗) to
be parallelised in the time dimension, that is, computa-
tion of L(𝑗)z, where z ∈ R(N+1)n, can be parallelised for the
model linearised at different times. In the rest of this paper,
the superscript (𝑗) is omitted for ease of notation.

In general, CG needs preconditioning for fast con-
vergence. Efficient preconditioning maps the system to
another system that can be solved faster and the solution
of the original problem can be easily recovered from the
solution of the preconditioned problem. Choosing a suit-
able preconditioner is highly problem-dependent. Given
the possibility of parallel computations in matrix–vector
products with (11), the preconditioner should keep this
potential.

2.1 Preconditioning

We consider an extension of the control variable transform
(also known as first-level preconditioning), which is used
in 3D-Var where the model evolution is omitted, and in the
strong constraint formulation of 4D-Var where the model
is assumed to have no error (e.g., Lorenc et al., 2000, Rawl-
ins et al., 2007, Lawless 2013). The idea is to apply the
preconditioner so that the first term of the preconditioned
Hessian is equal to identity. Then the preconditioned Hes-
sian is a sum of the identity matrix and a low-rank sym-
metric positive semi-definite matrix with rank at most p.
Its smallest eigenvalue is equal to 1 and it has at most p
eigenvalues that are larger than 1. The latter can impair CG

convergence if they are not well separated (a more general
discussion appears in, e.g., Nocedal and Wright 2006 and
Liesen and Strakoš 2012).

Applying this kind of preconditioning to the state for-
mulation of weak constraint 4D-Var requires precondition-
ing with L−1D1∕2, where

L−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I
M0,0 I
M0,1 M1,1 I
⋮ ⋮ ⋱ ⋱

M0,N−1 M1,N−1 … MN−1,N−1 I

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(12)

and Mi,𝑗 = M𝑗 … Mi denotes the linearised model inte-
gration from time ti to t𝑗+1. Matrix–vector products with
L−1 are sequential in the time dimension, that is,

L−1z = [zT
0 , (M0z0 + z1)T, {M1(M0z0 + z1) + z2}T , … ,

{MN−1(MN−2 … M0z0 + MN−2 … M1z1

+ · · · + zN−1) + zN}T ]T,

where z = (zT
0 , z

T
1 , … , zT

N)
T. Fisher and Gürol (2017) sug-

gested using an approximation L̃
−1

of L−1 in the precondi-
tioner. Then the preconditioned system to be solved is

Apr𝛿x̃ = D1∕2L̃
−T
(LTD−1b + HTR−1d), (13)

where Apr = D1∕2L̃
−T
(LTD−1L + HTR−1H)L̃

−1
D1∕2,

(14)

L̃
−1

D1∕2𝛿x̃ = 𝛿x. (15)

With an appropriate choice of L̃
−1

, Apr is symmet-
ric positive definite. L̃

−1
should be chosen so that it can

be applied in parallel. Fisher and Gürol could not find a
suitable approximation that would guarantee good conver-
gence. Gratton et al., (2018a,2018b) discussed using L̃

−1

where Mi is set to zero or to the identity matrix in (12),
which may be useful if the model state does not change
significantly from one time step to the next. This may be
unrealistic. In the next section we propose a new approxi-
mation strategy that avoids this assumption.

3 RANDOMISED
PRECONDITIONING

Randomised methods for low-rank matrix approximations
have attracted a lot of interest in recent years because they
require matrix products with blocks of vectors that can
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be easily parallelised, and it has been shown that good
approximations for matrices with rapidly decaying sin-
gular values can be obtained with high probability (e.g.,
Halko et al., 2011, Martinsson and Tropp 2020). These
methods have been explored in data assimilation when
designing solvers for strong constraint 4D-Var (Bousserez
et al., 2020) and preconditioning for the forcing formula-
tion of the incremental weak constraint 4D-Var (Daužick-
aitė et al., 2021).

A low-rank approximation of L−1 cannot be used in
(13), because it would make (14) low rank and thus singu-
lar. Hence, we suggest exploiting the structure of L−1 when
generating the preconditioner. We write

L−1 = I + P, (16)

where P is a strictly lower triangular matrix (with 0 on
the diagonal). We propose using a rank k approximation
P̃ = U𝚺VT, where k is small compared to (N + 1)n and
U,V ∈ R(N + 1)n × k, 𝚺 ∈ Rk×k is a truncated singular value
decomposition, that is, 𝚺 is diagonal with approximations
to the k largest singular values of P on the diagonal, and the
columns of U and V are approximate left and right singular
vectors, respectively. Then a non-singular L̃

−1
is

L̃
−1

= I + P̃ = I + U𝚺VT. (17)

An RSVD can be used to obtain P̃. RSVD is essen-
tially one iteration of a classic subspace iteration method
(Gu 2015). To increase the probability of success, the ran-
domised methods work with larger subspaces than the
required rank of the approximation. This is called over-
sampling. Halko et al. (2011) indicate that setting the
oversampling parameter l to 5 or 10 generally gives good
results. We present the RSVD in Algorithm 1. The entries
of the Gaussian random matrix are independent stan-
dard normal random variables. Note that we remove the
smallest l computed singular values and the corresponding
singular vectors. In this way the oversampling increases
the cost of generating the preconditioner (in particular,
the cost of the matrix–matrix products in steps 2 and
4), but not of its application. RSVD needs two expen-
sive matrix–matrix products with P (steps 2 and 4 in
Algorithm 1), where P is multiplied with a matrix of
size (N + 1)n × (k + l). For efficiency, these can be paral-
lelised. These matrix–matrix products consist of products
with Mi,𝑗 . Hence, the cost of generating the preconditioner
depends on the cost of integrating the tangent linear model
over the assimilation window sequentially.

Lawless et al. (2008) showed that including the
background-error covariance matrix when using model
reduction methods may lead to better results. Hence, we
also explore using an approximation of

Algorithm 1. Randomised singular value decomposition
(RSVD)

Input: matrix A ∈ Rs×s, target rank k, an oversam-
pling parameter l

Output: orthogonal U ∈ Rs×k and V ∈ Rs×k whose
columns are approximations to left and right singular vec-
tors of A, respectively, and diagonal 𝚺 ∈ Rk×k with approx-
imations to the largest singular values of A.

1: Form a Gaussian random matrix G ∈ Rs×(k+l).
2: Form a sample matrix Y = AG ∈ Rs×(k+l).
3: Orthonormalize the columns of Y to obtain orthonor-

mal Z ∈ Rs×(k+l).
4: Form K = ZTA ∈ R(k+l)×s.
5: Form SVD of K∶K = Û𝚺VT, where Û,𝚺 ∈

R(k+l)×(k+l),V ∈ Rs×(k+l).
6: Remove last l columns and rows of𝚺, so that𝚺 ∈ Rk×k.
7: Remove last l columns of Û and V, so that Û ∈

R(k+l)×k,V ∈ Rs×k.
8: Form U = ZÛ ∈ Rs×k.

S = L−1D1∕2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

B1∕2

M0,0B1∕2 Q1∕2
1

M0,1B1∕2 M1,1Q1∕2
1 Q1∕2

2

⋮ ⋮ ⋱ ⋱

M0,N−1B1∕2 M1,N−1Q1∕2
1 … MN−1,N−1Q1∕2

N−1 Q1∕2
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

(18)

As when approximating L−1, we write

S = D1∕2 + W, (19)

where W is strictly lower triangular. An approximation
S̃ = D1∕2 + W̃ can be obtained by using RSVD to generate
a low-rank approximation of W. The system to be solved is
(13) with L̃

−1
D1∕2 replaced by S̃.

4 NUMERICAL RESULTS

We test preconditioning using L−1 and the approximations
L̃
−1

and S̃ in (13) numerically. Preconditioning using the
exact L−1 is considered so that we understand when pre-
conditioning using L̃

−1
or S̃ may be effective, but this is

not regarded as a practical approach when parallelisation
in the time dimension is desired. Identical twin experi-
ments are performed. The background state xb is generated
by adding random, Gaussian noise with covariance B to
xt

0, where xt
i is the reference state at time ti. We use direct
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F I G U R E 1 The values of the quadratic cost function at every PCG iteration when using no preconditioner and when preconditioning
using exact L−1. Values of 𝜎o and the number of observations p for cases 1, 2 and 3 are given in the text [Colour figure can be viewed at
wileyonlinelibrary.com]

observations that are obtained by adding random, Gaus-
sian noise with covariance Ri to i(xt

i).
The nonlinear Lorenz ’96 model (Lorenz 1996) is used,

where the dynamics of xi = (X1, … ,Xn)T are described by
a set of n coupled ODEs:

dX𝑗

dt
= −X𝑗−2X𝑗−1 + X𝑗−1X𝑗+1 − X𝑗 + F, (20)

with conditions X−1 = Xn−1,X0 = Xn and Xn+1 = X1 and
F = 8. We use a fourth-order Runge–Kutta scheme
(Butcher 1987). We consider the system with n = 100 and
N = 149, so Apr is a 15,000 × 15,000 matrix. The time step
is set toΔt = 2.5 × 10−2 and the grid point distance isΔX =
1∕n.

The covariance matrices are B = 0.22Cb, Qi = 0.052Cq,
where Cb is a second-order autoregressive (SOAR; Daley
1993) matrix and Cq a Laplacian (Johnson et al., 2005)
correlation matrix with length-scales 2ΔX and 0.75ΔX ,
respectively. We consider Ri = 𝜎2

oI and vary 𝜎o.
The computations are performed with Matlab R2019b

and the linear systems are solved with the Matlab
preconditioned conjugate gradient (PCG) implementation
pcg.

4.1 Preconditioning with exact L−1

We have noticed that the effectiveness of the exact pre-
conditioner L−1 depends on how much of the system is
observed and the interaction between the model and obser-
vation errors. There are observations at every 10th time
step, ensuring that there are observations at the final time.
We consider the following cases regarding the observation
error variance 𝜎o and the total number of observations p:

1. 𝜎o = 1.5 × 10−1, p = 300 (observing 2% of the system);
2. 𝜎o = 4.5 × 10−1, p = 300;
3. 𝜎o = 1.5 × 10−1, p = 60 (observing 0.4% of the system).

In Figure 1, we show that preconditioning using L−1 is
not useful in case 1 but can be effective if the observation
error variance is increased while keeping the same number
of observations (case 2), or if the number of observations
is reduced while 𝜎o is unchanged (case 3).

Note that we compare the value of the quadratic
cost function at every PCG iteration without taking into
account the cost of the computation, which can be
evaluated in terms of runtime or energy consumption and
depends on how much parallelism can be achieved (e.g.,

http://wileyonlinelibrary.com
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F I G U R E 2 Largest singular values of (a) P (blue) and (b) W (blue) and their approximations given by RSVD when using rank k = 30
(black), k = 60 (green) and k = 90 (red). The largest singular values and their approximations coincide [Colour figure can be viewed at
wileyonlinelibrary.com]

Carson and Strakoš 2020). If matrix–vector products with
L can be parallelised, then PCG iterations when solving
the unpreconditioned system can be performed faster than
with preconditioning. Then, in terms of the runtime, pre-
conditioning in case 1 can be even worse than indicated by
comparing the quadratic cost function at every PCG itera-
tion. In the same manner, preconditioning using exact L−1

in cases 2 and 3 may not be as effective as displayed. In the
following section, we test preconditioning using L̃

−1
and S̃

in cases 2 and 3.

4.2 Preconditioning with randomised
low rank approximation

We generate L̃
−1

and S̃ by using rank k ∈ {30, 60, 90}
approximations of P and W in (16) and (19), respec-
tively. The oversampling parameter is set to l = 5. We
found that using l = 10 or l = 15 does not make a signifi-
cant difference to the results (not shown). RSVD produces
high-quality approximations of the singular values of both
P and W. The largest singular values and their approxima-
tions are shown in Figure 2, where the same random seed
is used to generate the random matrix G for all k values.
The matrices P and W do not depend on whether case 2 or
3 is considered, because the cases differ in the observation
terms. In each case, we run the RSVD algorithm one hun-
dred times with different Gaussian matrices G and solve
the systems with the resulting preconditioners. The spread
is illustrated in Figure 3 for S̃. In both cases, the variation
in the values of the cost function is small during the early
iterations. This shows that our results are not very sensi-
tive to the choice of G and, in practice, it is only necessary
to run the RSVD algorithm once.

The means of the quadratic cost function in cases 2
and 3 are shown in Figure 4. Higher-rank approxima-
tions in both cases and using S̃ in case 3 result in faster
minimisation. Notice that, in the first few iterations of
PCG, preconditioning gives the same improvement regard-
less of the rank of approximation and whether L̃

−1
or S̃

is used. Preconditioning is more useful in case 3, which
has fewer observations. The approximations used to gen-
erate L̃

−1
and S̃ are very low rank compared to the size

of the system and there is a good improvement over the
unpreconditioned case when the number of observations
is low, especially in the beginning of the iterative pro-
cess, which is the most relevant in practical settings. In
the case with more observations (case 2), the randomised
preconditioning is useful if a small number of PCG itera-
tions is run. Since in an operational context we run only
a small number of iterations, we are more likely to be
in this regime. In cases 2 and 3, using exact L−1 results
in a modest (case 2) and a rapid (case 3) decrease of the
cost function in the first PCG iterations (Figure 1). Our
proposed preconditioners replicate such behaviour and if
larger k is used then the performance of exact L−1 is fol-
lowed for more PCG iterations. In case 3, the quadratic cost
function value is reduced by a factor of 2 after five PCG
iterations when using exact L−1 in the preconditioner; the
same result is obtained after eight (k = 30) and six (k = 60
and k = 90) PCG iterations using L̃

−1
, and six (k = 30) and

five (k = 60 and k = 90) PCG iterations using S̃. In case 2,
the quadratic cost function is reduced only by a factor of 1.7
in 100 PCG iterations when preconditioning with the exact
L−1. When using our preconditioners, the values of the
quadratic cost function after 100 PCG iterations are larger
than when using exact L−1 or no preconditioning. This
can be addressed by using a larger rank approximation,
computational resources permitting.
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Case 3, k = 30
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Case 2, k = 60
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Case 3, k = 60
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Case 2, k = 90
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Case 3, k = 90
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F I G U R E 3 Values of the quadratic cost function at every PCG iteration when using no preconditioner (blue solid line) and
preconditioning using S̃ (dotted lines) which are constructed using rank k ∈ {30, 60, 90} approximation. One hundred realisations of the
randomised preconditioner are shown. Values of 𝜎o and the number of observations p in cases 2 and 3 are given in the text [Colour figure can
be viewed at wileyonlinelibrary.com]
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Case 3

F I G U R E 4 Mean values (over one hundred realisations) of the quadratic cost function at every PCG iteration when using no
preconditioner (blue solid) and when preconditioning using L̃

−1
(dashed) and S̃ (dotted) that are constructed using rank k = 30 (black),

k = 60 (green) and k = 90 (red) approximations. Values of 𝜎o and the number of observations p in cases 2 and 3 are given in the text [Colour
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 5 As Figure 4, but the model error covariance matrix is Qi = 0.12Cq and Cq has length-scale 2ΔX [Colour figure can be
viewed at wileyonlinelibrary.com]

4.2.1 Large model error

We explore how the preconditioning using approximations
of L−1 and L−1D1∕2 compare when the model error is large.
The numerical experiments are performed using the same
set-up as before, but now we set Qi = 0.12Cq and Cq has
length-scale 2ΔX . The means over one hundred runs are
presented in Figure 5. There is a clear separation between
the minimisation using L̃

−1
and S̃ in the preconditioner

after the first few PCG iterations, with the latter result-
ing in faster minimisation. Notice that the preconditioning
using both approximations remains useful for more PCG
iterations than in the set-up with a smaller model error.
This can be expected because the increase of length-scales
of Qi has a detrimental effect on the conditioning of the
unpreconditioned Hessian (e.g., Chapter 6 of El-Said 2015)
and hence preconditioning can be more efficient.

5 CONCLUSIONS

We have considered preconditioning for the state formula-
tion of incremental weak constraint 4D-Var, which closely
follows the control variable transform (first-level precon-
ditioning) strategy for the strong constraint formulation.
We have shown that such preconditioning may not be use-
ful even when using the exact L−1, which also makes the
matrix–vector products with the Hessian sequential in the
time dimension. In the cases where such preconditioning
is useful, a good preconditioner can be obtained by using
randomised singular value decompositions to approximate
L−1 or L−1D1∕2. These preconditioners are cheap to com-
pute and apply and do allow for parallelization in the time
dimension. They can improve the solution of the exact
inner loop problem, resulting in a greater reduction of the

quadratic cost function in the same number of iterations
compared to using no preconditioning or obtaining the
same quadratic cost function value in fewer iterations. The
effect of the accuracy of the inner loop solution on the anal-
ysis has been studied by, for example, Lawless and Nichols
(2006).

Our results call for caution when designing precondi-
tioning approaches that focus on approximating L−1, espe-
cially when the number of observations is high. In practical
NWP settings, around 1% of the system is observed, hence
approximating L−1 may be useful. Using randomised
approximations of L−1 or L−1D1∕2 should be tested using
large and more realistic systems, where meaningful eval-
uations of the runtime and energy consumption can be
obtained. A more detailed investigation on when precon-
ditioning with L−1 gives good results would also be useful.
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