A survey of 25 years’ transpolar voltage data from the SuperDARN radar network and the Expanding-Contracting Polar Cap model

Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1029/2021JA029554

Publisher: American Geophysical Union

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.
www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
A Survey of 25 Years' Transpolar Voltage Data From the SuperDARN Radar Network and the Expanding-Contracting Polar Cap Model

Mike Lockwood¹ and Kathryn A. McWilliams²

¹Department of Meteorology, University of Reading, Reading, UK, ²Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada

Abstract We use 214,410 hourly observations of transpolar voltage, Φ_{PC}, from 25 years' observations by the Super Dual Auroral Radar Network radars to confirm the central tenet of the expanding-contracting polar cap model of ionospheric convection that Φ_{PC} responds to both dayside and nightside reconnection voltages (Φ_D and Φ_N). We show that Φ_{PC} not only increases at a fixed level of the nightside auroral electrojet AL index with increasingly southward interplanetary magnetic field (IMF) (identifying the well-known effect of Φ_D on Φ_{PC}) but also with increasingly negative AL at a fixed southward IMF (identifying a distinct effect of Φ_N on Φ_{PC}). We also study the variation of Φ_{PC} with time elapsed since the IMF last pointed southward, Δt, and show that low/large values occur when $(-AL)$ is small/large. Lower numbers of radar echoes, n_e, mean that the "map-potential" reanalysis technique used to derive Φ_{PC} is influenced by the model used: we present a sensitivity study of the effect of the threshold of n_e required to avoid this. We show that for any threshold n_e, Φ_{PC} falls to about 15 kV for Δt greater than about 15 h, indicating any viscous-like voltage Φ_V is considerably smaller than this. It is shown that both Φ_{PC} and $(-AL)$ increase with increased solar wind dynamic pressure p_{SW}, but not as much as the midlatitude geomagnetic index AM. We conclude p_{SW} increases both Φ_D and Φ_N through increasing the magnetic shear across the relevant current sheet but has a larger effect on midlatitude geomagnetic indices because of the effect of additional energy stored in the tail lobes.

Plain Language Summary Large-scale circulation of the ionized upper atmosphere over the poles is driven by the solar wind flow by the process of magnetic reconnection that interconnects the magnetic field of Earth with that embedded in the solar wind flow. In long-term averages, the rate at which this "open" magnetic flux is transferred away from the Sun and in the polar ionospheres is the same, but on shorter timescales the field can stretch between the two locations and this decouples the transfer rates. The expanding-contracting polar cap model has been very useful in predicting the faster changes that can occur in the ionosphere, changes that can have an influence on a wide range of modern operational systems from satellites to power grids. Two key concepts that the model is based on were obtained from only very small data sets and here we use 214,410 hourly observations from 25 years of observations by the Super Dual Auroral Radar Network to show that the concepts do apply all the time.

1. Introduction

This paper studies the expanding-contracting polar cap (ECPC) model of ionospheric convection excitation (Cowley & Lockwood, 1992) using an unprecedentedly large data set of observations of the transpolar voltage Φ_{PC}, also known as the cross-cap potential difference. The ECPC model predicts that Φ_{PC} at any one instant depends on the reconnection voltage in the cross-tail current sheet Φ_N as well as that at the dayside magnetopause Φ_D.

One specific aim is to recreate two scatter plots from surveys of Φ_{PC} that have been of great importance to our understanding of the excitation of ionospheric solar convection by the solar wind flow, but here using a much larger data set of observations. The first of these scatter plots shows the dependence of Φ_{PC} on the northward component B_Z of the interplanetary magnetic field (IMF) in the geocentric solar magnetospheric (GSM) reference frame (Boyle et al., 1997; Cowley, 1984; Hairston et al., 1998; Liu et al., 2019; Milan, 2004; Reiff et al., 1981). The second scatter plot shows the dependence of Φ_{PC} during northward IMF ($B_Z > 0$) on...
the time elapsed since the IMF was last southward (Wygant et al., 1983). We also aim to use the large data set, which covers more than a whole Hale solar magnetic cycle, to extend our understanding of the separate effects of reconnection in the magnetopause and the cross-tail current sheet by comparisons with the behavior of the AL auroral electrojet index (Davis & Sugiura, 1966), and to investigate the separate effects of solar wind dynamic pressure on Φ_D and Φ_N.

1.1. Transpolar Voltage, Steady State, and Non-Steady-State Convection

Magnetospheric convection (the circulation of plasma and frozen-in magnetic field) is at the heart of our understanding of the response of geomagnetic activity and terrestrial space weather to the transfer of energy from the solar wind into the magnetosphere. Directly driven geomagnetic responses, historically called “Disturbance Polar-2” or “DP-2,” are usually dominated by eastward currents in the afternoon sector polar auroral ionosphere and detected as positive enhancements of the AU auroral electrojet index (Davis & Sugiura, 1966). DP-2 currents correlate highly with solar wind forcing at short response delays (Etemadi et al., 1988; Lockwood et al., 1986; Nishida, 1968a, 1968b; Todd et al., 1988). These are driven responses to magnetic reconnection in the dayside magnetopause current sheet, which generates open magnetospheric field lines (Consolini & De Michelis, 2005; Echer et al., 2017; Finch et al., 2008), the voltage Φ_D being the magnetic flux transfer rate from the closed to open magnetospheric field-line topology. The open field lines generated are swept into the geomagnetic tail by the solar wind flow where they accumulate, storing energy there. These open field lines in the tail are subsequently reclosed in bursts of reconnection in the cross-tail current sheet, giving the storage-release responses of geomagnetic activity (“DP-1”) after a longer lag time than for the DP-2 response (Baker et al., 1983; Finch et al., 2008; Klimas et al., 1992, 1994; McPherron et al., 1998). The DP-1 response is dominated by the effects of the westward auroral electrojet current across midnight in the substorm current wedge and seen as negative perturbations of the AL auroral electrojet index (Davis & Sugiura, 1966). The voltage Φ_N is the magnetic flux transfer rate from the open to the closed magnetospheric field-line topology. The storage-release response is often described in terms of the magnetospheric substorm cycle (e.g., Baker et al., 1997; McPherron et al., 1998). A review of the development of our understanding of the relationship of magnetospheric flux transport, the Dungey convection cycle, and substorms has been given by McPherron (2020) and a review of the associated energy flow through the magnetosphere has been given by Lockwood (2019).

Being at the foot of magnetospheric field lines and, like the magnetosphere, being of high magnetic Reynolds number, the frozen-in flux theorem applies to the polar ionospheric F-region and topside ionosphere. Hence, these regions reflect the circulation of frozen-in flux in the magnetosphere (ionospheric convection). However, there is one key difference between the flows in the magnetosphere and in the ionosphere. The magnetosphere is compressible, a fact that the storage-release system depends upon. On the other hand, the ionosphere is incompressible, in the sense that the magnetic field there is constant to within a very small factor, such that even a very large geomagnetic disturbance is only a very small fraction of the intrinsic geomagnetic field (for example, 1,000 nT is less than a 2% perturbation). The reason for this is the ionosphere’s close proximity to the currents in the Earth’s interior that generate the geomagnetic field. This difference means that during substorm growth phases, when energy is accumulating in the near-Earth lobes of the magnetospheric geomagnetic tail because the field there is growing (and to some extent also because the lobes are expanding in cross-sectional area as the tail flares), the ionospheric footprint of the open field lines in the lobes (the open polar caps) must be expanding in area (Holzer et al., 1986; Huang et al., 2009; Lockwood & Cowley, 1992; Lockwood et al., 1990; Milan et al., 2003, 2009, 2012). Siscoe and Huang (1985) showed how expanding “adiaromic” segments of the polar cap boundaries (meaning “not flowing across,” i.e., not mapping to a magnetospheric reconnection site) would influence the pattern of ionospheric convection. This concept was used by Cowley and Lockwood (1992) to show how ionospheric convection is driven by both the generation and destruction of open flux (the ECPC model). This is different to the magnetosphere, where flows are driven by the solar wind flow, pressure balance, and the magnetohydrodynamic (MHD) curvature force that acts to straighten bent field lines. The ECPC concept is supported by detailed comparisons between theory and observations of how patches of newly opened flux, generated by magnetopause reconnection bursts, evolve poleward (Cowley, Freeman, et al., 1991; Lockwood et al., 1993, 2006; McWilliams et al., 2000; Throp et al., 2005). The result of these considerations is that ionospheric convection is not, in general, a straightforward image of the magnetospheric circulation and the two are decoupled by
induction effects—changes in the magnetic field between the magnetosphere and the ionosphere which, by Faraday's law, give a curl in the electric field (Lockwood & Cowley, 1992; Lockwood & Morley, 2004; Lockwood et al., 1990). In steady state, the electric field becomes curl-free and electrostatic potentials do map down magnetic field lines. In addition, in steady state the adiabatic boundaries are not moving. Steady state applies when data are averaged over a long enough timescale; however, theory of substorm growth and expansion predicts that it will not apply to the timescales of a few substorm cycles or less. That is not to say that balanced reconnection events, when dayside and nightside reconnection voltages are approximately equal, do not occur (DeJong et al., 2008; Lockwood et al., 2009): these can occur by chance but, probably more often, they occur because changes in the dayside reconnection voltage are sufficiently slow, such that it is never greatly different to the lagged nightside voltage response (Milan et al., 2021). Surveys by Lockwood et al. (2009) and Milan et al. (2021) have looked at the relative occurrence of substorm cycles and quasi-balanced reconnection. Note that the ECPC model is the general case as it can predict quasi-steady, quasi-balanced reconnection (if the interplanetary conditions driving dayside reconnection vary slowly enough) as well substorm cycles. On the other hand, balanced reconnection is not the general case as it cannot predict substorm cycles (nor is there any known mechanism that can act to balance the reconnection rates at any one instant). Lockwood (1991) pointed out that the motion of adiabatic convection reversals boundaries means that they are smoothed out in average patterns of convection. On timescales shorter than the substorm cycle of polar cap expansion and contraction, ionospheric convection reflects both the DP-2 and DP-1 current systems and displays the response delays associated with both (respectively a few minutes and 30–60 min). In addition, because of a combination of ionospheric incompressibility and the antisunward motion of open field lines, the direct response delay to IMF changes varies with location, increasing with distance away from noon (Lockwood et al., 1986; Lopez et al., 1999; Morley & Lockwood, 2005; Saunders et al., 1992).

Convection is often quantified by the transpolar voltage Φ_{PC} between convection reversal boundaries (CRBs) in the ionosphere on the dawnside and the duskside of the polar cap (Boyle et al., 1997; Cowley, 1984; Hairston et al., 1998; Liu et al., 2019; Reiff et al., 1981). This parameter is measured by a spacecraft in high-inclination, low-earth orbit (LEO) by integration of the observed “along-track” component of the electric field along the satellite path between the two dominant CRBs. That electric field can either be directly measured or derived from observations of the vector magnetic field, \mathbf{B} and the plasma flow \mathbf{V} and using the equation of ideal MHD $\mathbf{E} = - \nabla \times \mathbf{B}$ which applies to a very high degree of accuracy even in the F-region ionosphere because of the high magnetic Reynold’s number (Hanson et al., 1993). Hence, by integrating the along-track electric field (corresponding to the cross-track drift) between the two main CRBs, the transpolar voltage Φ_{PC} is measured for that satellite path. The quantity Φ_{PC} is often accurately called the “polar cap potential drop,” but also frequently (but inaccurately) referred to as the “cross-cap potential” or “polar cap potential.” Strictly speaking, it is a potential difference, that is, a voltage and this semantic point has real physical significance to understanding because, by Faraday’s induction law, a voltage is synonymous with magnetic flux transfer rate whereas a potential is not. Hence, we here use the term “transpolar voltage” for Φ_{PC} and note that it is the rate at which magnetic flux is transferred across the polar cap. One convention that can be used is that positive transpolar voltage means that the dawnside CRB potential exceeds the duskside CRB potential (i.e., the electric field is from dawn to dusk), and this applies most of the time be

Due to the complex nature of the ionosphere and magnetosphere, the convection patterns are often quantified using the transpolar voltage, which measures the rate of magnetic flux transfer across the polar cap boundary. This parameter helps in understanding the dynamics of the ionosphere during different solar wind conditions. The transpolar voltage is calculated by integrating the electric field along the satellite path between the two dominant convection reversal boundaries (CRBs). This parameter is crucial for studying the effects of solar wind conditions on the ionosphere, including the growth and decay of substorms.
the cross-tail current sheet (in green, the voltage across which is \(\Phi_N \)) that recloses open field lines. This is included here because in the expanding-contracting polar cap model (Cowley & Lockwood, 1992), it contributes to the ionospheric transpolar voltage \(\Phi_{PC} \) at any one time by adding to the effect of the reconnection voltage \(\Phi_D \) along the dayside magnetopause X-line (in red), which generates open field lines. The third source of \(\Phi_{PC} \) is “viscous-like” momentum transfer across the magnetopause onto closed field lines that generates a total antisunward magnetic flux transfer of closed flux of voltage \(\Phi_V \) in the low latitude boundary layers (LLBL).

Figure 1. Schematic of three convection drivers in the magnetosphere and ionosphere, adapted from Cowley (1982) with the addition of a reconnection X-line in the cross-tail current sheet (in green, the voltage across which is \(\Phi_N \)). This X-line recloses open field lines and is included here because in the expanding-contracting polar cap model (Cowley & Lockwood, 1992), it contributes to the ionospheric transpolar voltage \(\Phi_{PC} \) at any one time by adding to the effect of the reconnection voltage \(\Phi_D \) along the dayside magnetopause X-line (in red), which generates open field lines. The third source of \(\Phi_{PC} \) is “viscous-like” momentum transfer across the magnetopause onto closed field lines that generates a total antisunward magnetic flux transfer of closed flux of voltage \(\Phi_V \) in the low latitude boundary layers (LLBL).

The presence of lobe stirring cells during northward IMF, or lobe field line reclosure by reconnection at the sunward edges of both the lobes (e.g., Lockwood & Moen, 1999), means that northward IMF is inherently a non-steady-state situation because, by Faraday’s law, the electric field has a curl with dawn-to-dusk electric field associated with reconnection in the cross-tail current sheet but dusk-to-dawn electric field along the lobe reconnection site(s) at the sunward edge(s) of the lobe magnetopause (Lockwood, 2019). Hence, during the 50% of time that the IMF points northward (Hapgood et al., 1991; Lockwood et al., 2017, 2019b) the magnetosphere is generally quiet but also inherently in a non-steady state because of the slow decay of open flux (see review by Lockwood, 2019).
Figure 3 gives two schematics of a northern hemisphere convection pattern that we would expect during northward IMF; specifically, if the IMF has (a) components $B_Z > 0$ and $B_Y = 0$ and, (b) $B_Z > 0$ and $B_Y > 0$ in the GSM reference frame. Figure 3a shows the case of lobe reconnection (Φ_L) driving symmetric lobe circulation cells in the open polar cap, as well as the effects of reconnection voltages Φ_D and Φ_N and a viscous-like voltage Φ_V. In Figure 3b, the magnetic curvature force on newly reconfigured open field lines for the large positive IMF B_Y causes the dawn lobe cell to dominate: note in this case how the poleward contraction of the (dusk) adiabatic open polar cap boundary causes the sunward flowing portion at lower potentials of this one lobe convection cell to merge with the main dusk cell.

Because here we survey a very large data set, we need to automate the scaling of transpolar voltage and we found that automated algorithms to distinguish and identify lobe cells from the cells driven by Φ_D, Φ_N, and Φ_V were not reliable, particularly given that the merging of lobe and main flow cells illustrated in Figure 3b is often seen for northward IMF conditions. To enable automated scaling, here we define Φ_{PC} by

$$\Phi_{PC} = \Phi_{max} - \Phi_{min}$$

We apply this, irrespective of the locations at which the maximum (ϕ_{max}) and minimum (ϕ_{min}) of the potential pattern occurs. This is good for investigating the ECPC model because it allows for the sunward and antisunward shifts of the locations of both ϕ_{max} and ϕ_{min} caused by dominant Φ_D and Φ_N, respectively (see Figures 2b and 2c). The maximum potential ϕ_{max} is usually the potential at the center of the main convection cell on the dawn flank of the polar cap (ϕ_{dawn1} in Figure 3) and the ϕ_{min} is usually the potential at the center of the main cell on the dusk flank of the polar cap (ϕ_{dusk1} in Figure 3). However, if the lobe reconnection voltage Φ_L is large enough, ϕ_{max} can become ϕ_{dusk2} and/or ϕ_{min} can become ϕ_{dawn2}, where ϕ_{dusk2}
and $\phi_{\text{dawn}2}$ appear across the ends of the footprint of the lobe reconnection X-line and are also defined in Figure 3. Hence if $\phi_{\text{dusk}2} > \phi_{\text{dawn}1}$ and $\phi_{\text{dawn}2} < \phi_{\text{dusk}1}$, our definition means that $\Phi_{\text{PC}} = \phi_{\text{dusk}2} - \phi_{\text{dawn}2} = \Phi_L$.

We will call Φ_{PC} in this case a “lobe-dominated” value of Φ_{PC}: note that it is a positive value even though the dominant flow in the central polar cap is now sunward. If neither lobe cell sets ϕ_{\min} or ϕ_{\max} then Φ_{PC} is the voltage associated with antisunward convection over the polar cap set by Φ_D, Φ_N, and Φ_V. We note below that this is the most common situation and hence we call the resulting $\Phi_{\text{PC}} = \phi_{\text{dusk}1} - \phi_{\text{dusk}2}$ a “conventional” value. There is a third possibility where $\phi_{\text{dusk}2} > \phi_{\text{dawn}1}$ or $\phi_{\text{dawn}2} < \phi_{\text{dusk}1}$ but not both. In either of these two cases, Φ_{PC} will be somewhat larger than the conventional value and we call this a “hybrid” value as Φ_D, Φ_N, and Φ_V can all contribute to Φ_{PC}.

Wilder et al. (2008) have surveyed Super Dual Auroral Radar Network (SuperDARN) data and shown that the lobe reconnection voltage in the ionosphere Φ_L saturates at about 15–20 kV. This means that voltages above 20 kV are almost all “conventional” values associated with dominant antisunward transfer of flux over the polar cap and set by Φ_D, Φ_N, and Φ_V. However, for $\Phi_{\text{PC}} < 20$ kV we need to remain aware that Φ_D, Φ_N, Φ_V, and Φ_L can all contribute to Φ_{PC} for the hybrid cases and that for the lobe-dominated cases $\Phi_{\text{PC}} = \Phi_L$. For our definition, the viscous-like voltage Φ_V would only equal the Φ_{PC} value if all the three reconnection voltages Φ_D, Φ_N, and Φ_L were zero.

Milan et al. (2021) surveyed 1-year of data and found that roughly 20% of all antisunward magnetospheric flux transfer was during quiet periods, 43% during non-steady-state phases (20.8% substorm growth, 9.8% substorm expansion, 3.3% substorm recovery, 1.2% recovery bays, and 8% multiple intensifications). The remaining 37% was during intervals they classed as “driven”—these include extended substorm growth phases and periods when dayside and nightside reconnection are close to being balanced ($\Phi_D = \Phi_N$). This driven state was found for 18.2% of the time, compared to 27.2% of the time for the non-steady phases. Together, these make up the 50% of time for which the IMF points southward and, as noted above, northward...
IMF is inherently non-steady and so non-steady conditions are present 77.2% of the time. Hence, in both time and resulting flux transfer, non-steady conditions are the dominant magnetospheric response. However, we introduce steady state into our view of the coupled magnetosphere-ionosphere system at all times if we average data together. In steady state, the rate of flux transfer across the polar cap, Φ_{PC} equals the rate at which field lines are opened by reconnection in the dayside magnetopause (the dayside reconnection voltage Φ_d) and the rate at which open field lines are closed by reconnection in the cross-tail current sheet (the nightside reconnection voltage Φ_n), plus any non-reconnection “viscous-like” voltage, Φ_V (i.e., $\Phi_{PC} = \Phi_d + \Phi_v = \Phi_n + \Phi_v$). The balanced reconnection ($\Phi_d = \Phi_n$) needed for steady state can occur at any one moment by chance or could be the result of a mechanism that maintains it. As yet, no such mechanism has been defined. Furthermore, there are reasons to believe that no such mechanism can be present: for it to operate, information about the magnetopause reconnection voltage at any one time Φ_d would have to be able to reach the nightside reconnection site so the mechanism can modulate Φ_n. Because of propagation delays, at the nightside reconnection site there can be no information about the instantaneous value of Φ_d at the dayside reconnection site, and so $\Phi_d = \Phi_n$ cannot happen as a matter of course, maintained by a balancing mechanism. Faraday’s law applied to the open-closed field line boundary gives the general behavior:

$$\frac{dF_o}{dt} = B_i \cdot dA_o / dt = \Phi_d - \Phi_n$$

where F_o is the open magnetospheric flux, A_o is the area of the open field line polar cap in the ionosphere and B_i is the magnitude of the field in the ionosphere (in this equation, B_i is assumed to be constant). Note that Equation 2 can be thought of as the continuity equation for the open flux F_o. Hence, steady state requires $\Phi_d = \Phi_n$ and $\frac{dF_o}{dt} = \frac{dA_o}{dt} = 0$ and the fact that the polar cap area varies shows that non-steady conditions apply (Holzer et al., 1986; Milan, 2004; Milan et al., 2003). The results of Lockwood et al. (2009) and Milan et al. (2021) show that non-steady state is a common situation, which is to be expected because of the variability in the IMF orientation (and hence Φ_v) and the fact that the transfer of information from the dayside magnetopause reconnection site to that in the cross-tail current sheet takes time and hence Φ_{PC} can only respond after a lag. How common balanced convection ($\Phi_d \approx \Phi_n$) events are found to be is a matter of definition (see McWilliams et al., 2008) and they will be less common if tighter limits are placed on the maximum ($\Phi_d - \Phi_n$) used to define them. For a large averaging timescale τ, the time derivatives in Equation 2 tend to be zero because long-term trends in F_o and A_o are negligibly small. So, for large enough τ

$$\langle \Phi_{PC} \rangle_{\tau} \approx \langle \Phi_V \rangle_{\tau} = \langle \Phi_D \rangle_{\tau} = \langle \Phi_N \rangle_{\tau}$$

even though this condition only applies relatively rarely at any one instant of time.

The voltage Φ_V is generated by any non-reconnection process transferring momentum from the flow of the shocked solar wind in the magnetosheath to closed field lines (e.g., Farrugia et al., 2001). The ECPC model predicts that Φ_V is small and that most of what had previously been thought to be voltage driven by viscous-like processes is, in fact, due to the nightside reconnection voltage Φ_n, which always persists because the geomagnetic tail never completely erodes away and so there is always magnetic shear in the center of the tail (Lockwood, 1991; Lockwood et al., 1990; Milan, 2004; Wygant et al., 1983). Numerical simulations have confirmed that Φ_n contributes to transpolar voltage Φ_{PC} in addition to Φ_0 (e.g., Gordeev et al., 2011).

Lockwood (1991) pointed out that a consequence of the ECPC model is that Φ_{PC} for a given Φ_d, Φ_n, and Φ_V will depend on the shape of the open polar cap and how it changes and only for an open polar cap that remains circular at all times is the voltage across the center of the polar cap equal to $\Phi_V + (\Phi_d + \Phi_n)/2$. Hence, in general, for the duration of each polar cap traversal by a LEO satellite, we need to consider non-steady conditions, and that each Φ_{PC} value observed will depend on Φ_d, Φ_n, and Φ_V and on how the polar cap is changing shape (i.e., the motion of the adiabatic boundaries which reflect the potential distribution along the boundary) and, critically, on the satellite path. Some changes in the polar cap shape are an integral part of the ECPC flow excitation mechanism proposed by Cowley and Lockwood (1992), specifically the equatorward expansion around noon caused by sudden increases in Φ_d and the poleward contraction around midnight caused by sudden increases in Φ_n. However, other polar cap shape distortions are likely. Examples include the effects of changes in the IMF B_y component (Cowley, Morelli, & Lockwood, 1991; Lockwood, 1991) or transient and propagating filamentary field aligned currents in traveling convection vortices induced by solar wind dynamic pressure pulses (e.g., Lühr et al., 1996). In addition, prolonged northward IMF can lead to open flux collecting toward midnight, giving a more triangular open flux region.
characteristic of the “horse-collar” pattern in global auroral images (Birn et al., 1991; Hones et al., 1989); it has been proposed that this is enhanced by lobe reconnection taking place in both the hemispheres which removes dayside open flux (Milan et al., 2020). Hence, the use of a circular open polar cap in Figures 2 and 3 is illustrative only. Nevertheless, in general, satellite passes of the dayside polar cap will reflect the influence of Φ_F to a greater extent and for passes over the nightside polar cap the influence of Φ_N will be greater.

The question then arises as to what is the minimum averaging timescale τ required to make Equation 3 apply to a good approximation? Clearly, τ smaller than about 3 h is inadequate as it is comparable to the timescales of the substorm cycle over which the open polar cap expands and contracts (Holzer et al., 1986; Huang et al., 2009; Lockwood & Cowley, 1992; Lockwood et al., 1990; Milan et al., 2003, 2009, 2012). Imber et al. (2013) show that over the sunspot cycle the polar cap area is remarkably constant, making dF_o/ dt negligible over timescales τ of order years. Both modeling (e.g., López et al., 2001) and observational studies (e.g., Mishin & Karavaev, 2017) show that F_o rises during the initial phases of large geomagnetic storms but F_o, like Φ_{PC} (e.g., Kubota et al., 2017), appears to saturate establishing a temporary quasi-steady state, before falling again as the storm declines. These “balanced reconnection intervals” (BRI) are related to the phenomenon of “steady magnetospheric convection” (SMC) (McWilliams et al., 2008) events but do not necessarily start with a substorm growth phase nor end with a substorm expansion phase (DeJong et al., 2008); however, because in general there is a long-term variation in F_o around both BRI and SMC events (Lockwood et al., 2009; Milan et al., 2021), they cannot be considered a steady-state phenomenon on timescales shorter than their duration. However, we note that some BRI and SMC events probably can occur without prior, or subsequent, major change in F_o and these would be chance occurrences of matched Φ_N and Φ_F variations or because the rate of change in Φ_F has been slow enough for Φ_N to respond despite the propagation lag. Note also that the high variability of IMF orientation, and hence power input into the magnetosphere, gives this a lower occurrence frequency than that of non-steady conditions (Lockwood et al., 2019b, 2019c).

In general, we need τ to exceed storm durations for steady state to fully apply. Haines et al. (2019) have surveyed geomagnetic storms in the homogeneous $a a$ index, a_{aa} (Lockwood, Chambodut, et al., 2018; Lockwood, Finch, et al., 2018) since 1868, defining storms as when a_{aa} exceeded its overall 90th percentile: of the 105 storms defined by this threshold, none lasted more than 3 days. Hence $\tau \geq 3$ days should generally make steady state a valid assumption. We note that Weigel (2007) proposes that the time constant is considerably longer than this, such that non-steady conditions and solar wind history even means that the time of year influences the variation; however, as demonstrated by Lockwood et al. (2016), this would generate an “axial-like” time-of-day/time-of-year pattern and we can discount this proposal.

1.2. SuperDARN Transpolar Voltage Data and Potential Patterns

The studies of transpolar voltage discussed in the previous section were made using observations of electric fields and plasma flows by LEO satellites as they passed over the polar caps. One problem with this is that the satellite path will not generally intersect the points of maximum and minimum potential and so the difference between them, the full transpolar voltage Φ_{PC}, will be systematically underestimated. In addition, because there is no information of the potential pattern away from the satellite path, there is no way of checking if, or by how much, any one value is an underestimate. Studies have generally used passes that are close to the dawn-dusk meridian to try to minimize this problem, but the ECPC model predicts that this will only work for steady state conditions. This is because, as illustrated by Figures 2b and 2c, for dominant magnetopause reconnection ($\Phi_F > \Phi_N$), both the maximum and minimum of the potential pattern will be shifted toward noon and for dominant tail reconnection ($\Phi_N > \Phi_F$) they are shifted toward midnight. In this study, we use values derived from the SuperDARN coherent radar arrays (see review by Chisham et al., 2007). By imaging the convection pattern, the points of maximum and minimum potential can be identified and the problem inherent in the spacecraft data avoided. As discussed in Section 1.1, we adopt the definition of Φ_{PC} given in Equation 1 and use an automated algorithm to compute it from patterns of the ionospheric potential, ϕ.

However, there are some other important points to note about the transpolar voltage data from the SuperDARN radars. The radars monitor the line-of-sight component of the flow of F-region plasma by measuring the Doppler shift of coherent echoes that have reflected off convecting ionospheric irreg-
ularities embedded in the bulk plasma flow. The most accurate method for generating two-dimensional field-perpendicular convection velocity vectors from the SuperDARN radar data is by combining the line-of-sight measurements within a common field-of-view of pairs of radars (e.g., Greenwald et al., 1995). However, because of the aspect sensitivity of echoes with respect to the structures causing the scatter, for much of the time when echoes are recorded by one radar, they are not detected by the twin radar looking in a different direction and so opportunities to make these “bistatic” observations are relatively rare. Hence, methods to find the functional form for the distribution of electrostatic potential Φ that was a best fit to all the line-of-sight velocity measurements were developed (Cousins et al., 2013; Ruohoniemi & Baker, 1998). The most widely used of these is the “map-potential” technique (a form of reanalysis using data assimilation), which performed well when tested against available bistatic vectors (Provan et al., 2002). However, lack of radar coverage and/or of the required scattering irregularities mean that line-of-sight data are not available at all the locations in the polar regions and so the velocity data are supplemented with predictions by a statistical model, driven by the IMF conditions observed by an upstream monitor. From each derived map-potential pattern the transpolar voltage Φ_{pc} can be scaled (Bristow et al., 2004; Wilder et al., 2011). A review of the development and application of this technique has been presented by Chisham et al. (2007).

The statistical model predictions used in the map-potential technique are weighted to minimize their impact for a given number of available radar echoes, n_e (Shepherd & Ruohoniemi, 2000). At times there are sufficient numbers and wide enough spatial distribution of echoes for the potential pattern to be determined from the radar data alone; on the other hand, in extreme cases with no echoes ($n_e = 0$), the pattern is determined purely by the model and hence by the observed upstream interplanetary conditions. Tests of flow velocities derived using the SuperDARN radars have been made by comparing the map-potential flow estimates with data from the Defense Meteorological Satellite Program, DMSP (e.g., Drayton et al., 2005; Xu, Koustov, et al., 2007; Xu, Xu, et al., 2007) and Swarm (Koustov, Lavoie, et al., 2019) spacecraft. In addition, transpolar voltage data from the SuperDARN map-potential data have been compared to those derived by the AMIE (Assimilative Mapping of Ionospheric Electrodynamics) technique that uses a variety of sources, particularly magnetometers (Gao, 2012). Given that there is a tendency for flow speeds defined by SuperDARN to be about 30% lower than seen by satellites (Drayton et al., 2005; Koustov, Lavoie, et al., 2019; Xu, Xu, et al., 2007), but that CRB locations in the two data sets are very similar, we would expect SuperDARN values of Φ_{pc} to be well correlated with the satellite values but typically 30% lower. From the detailed comparison shown in part (c) of Figure A1, allowing for the effect of the number of data echoes Φ_{pc} and the proximity of the satellite pass, we find a similar result but the best fit regressions (linear and nonlinear) show that the radar values are typically 20% lower.

In this paper, we use a variety of threshold values n_{min} of the number of radar echoes n_e to investigate the effect of low n_e on our results. All Φ_{pc} values based on $n_e < n_{min}$ echoes were discarded, and we varied n_{min} to determine the sensitivity of our results to the choice of n_{min}.

The use of a $n_e > n_{min}$ selection criterion has an important but subtle implication for biases in the data because considerably fewer echoes are received during summer. This is probably due to a combination of causes acting together including: sporadic E-blanketing of F-region radar returns; interference from enhanced ground echoes; and a smoother ionosphere when photoionization rate is high and the effects of radar transmitter frequency selection (Koustov, Ullrich, et al., 2019 and references therein). Here, we only use potential maps from the northern hemisphere radar array with its greater number of stations and the means of n_e are consistently about 200 around the June solstice (summer) whereas they are typically between 500 and 600 around the December (solstice) winter. This means that hourly values that meet, for example, a $n_e > n_{min} = 255$ criterion are quite rare in summer and atypical (around 2–3 per day, whereas there are typically 20–24 per day in winter).

The other factor that we need to be aware of is that the occurrence of echoes also increases with the plasma velocity (Koustov, Ullrich, et al., 2019). This means that although we want to avoid samples with low n_e to minimize the role that the data assimilation statistical convection model plays in the Φ_{pc} value, we do not want to eliminate too many samples because that would preferentially remove low-flow (and hence low-Φ_{pc}) samples.
The ECPC model has been used quantitatively to match to map-potential SuperDARN observations of
the evolution of the convection pattern and \(\Phi_{PC} \) following individual events of southward and northward
turnings of the IMF (Lockwood et al., 2006), events that were also quantitatively compared with the
associated signatures of magnetopause reconnection in cusp proton precipitation and aurora (Lockwood
et al., 2003; Throp et al., 2005). Here, we make a statistical study of the \(\Phi_{PC} \) data from SuperDARN using data
from 25 years—more than a full Hale solar magnetic cycle.

2. Data Employed

In this paper, we make use of 214,410 hourly observations of the ionospheric transpolar voltage \(\Phi_{PC} \), as
defined by Equation 1, derived from map potential \(\phi \) patterns obtained by the northern-hemisphere Su-
perDARN radar network between 1995 and 2020. These data are generated by applying the map potential
technique to data from 2-min integration periods and the 30 values of \(\Phi_{PC} \) and \(n_{i} \) in each hour were then
averaged together. The processed data have been checked using comparisons with dawn-dusk passes by
DMSP satellites from 2001 to 2002 for which the SuperDARN convection patterns show potential minima
and maxima close to the satellite path (see Appendix A).

We compare with data on the north-south component of the IMF in the GSM frame, \(B_{z} \) (defined positive
northward), and the solar wind dynamic pressure, \(p_{SW} \), both taken from the OMNI data set, compiled
and maintained by NASA’s Goddard Space Flight Center (King & Papitashvili, 2005). We also compare with the
\(AL \) auroral electrojet geomagnetic index compiled and maintained by the World Data Centre for Geomag-
netism, Kyoto. We use 1-min values of \(B_{z} \), \(p_{SW} \) and \(AL \). Because we are not sure of the precise propagation
lags of these parameters relative to the \(\Phi_{PC} \) data, we take running (boxcar) means over a timescale \(\tau \) which
we then interpolate to the mid-point of the hour over which \(\Phi_{PC} \) data are averaged, minus a nominal prop-
gagation lag \(\delta t \). We repeated all studies using two values of \(\tau \), \(\tau = 1 \) h to match the averaging timescale of the
\(\Phi_{PC} \) data and \(\tau = 15 \) min: plots for the two were almost identical and we use \(\tau = 15 \) min in the plots shown.
For IMF \(B_{z} \), we use a lag \(\delta t = 5 \) min, to allow for propagation across the magnetosheath to the dayside mag-
etopause reconnection X-line and then down geomagnetic field lines to the ionosphere, because we are in-
terested in the effect of IMF \(B_{z} \) on the dayside reconnection voltage \(\Phi_{B} \). For \(p_{SW} \), we have tried two different
values of \(\delta t \): to search for an effect of \(p_{SW} \) on \(\Phi_{B} \), we use \(\delta t = 5 \) min as for IMF \(B_{z} \), and to search for an effect
of \(p_{SW} \) on \(\Phi_{N} \) we use \(\delta t = 75 \) min (derived below). The latter effect is expected from squeezing of the near-
Earth tail, as recently observed and modeled by Lockwood, McWilliams, et al. (2020), Lockwood, Owens,
et al. (2020), and Lockwood et al. (2021). Because of the persistence (i.e., a high and broad autocorrelation
function) in the \(p_{SW} \) data series, the results are similar for the two \(\delta t \) values; however, slightly clearer effects
are seen for \(\delta t = 75 \) min and that is the value employed in the plots presented here. For \(AL \), we use \(\delta t = 0 \)
as both \(AL \) and the \(\Phi_{N} \) value are used as an indicator of signatures in the nightside auroral ionosphere. We
compute \(p_{SW} = m_{SW} N_{SW} V_{SW} \) from 1-min values of the solar wind mean ion mass \(m_{SW} \), number density \(N_{SW} \),
and speed \(V_{SW} \); in the case of \(m_{SW} \), these are linearly interpolated from 5, 15 min or hourly observations if
1-min values are unavailable.

We note that a great many papers derive propagation delays \(\delta t \) between solar wind features and responses
in the magnetosphere and ionosphere. These are not always comparable because different solar wind
features and different responses are considered. In addition, some effects call for the IMF orientation to
be considered whereas others do not. In addition, the solar wind speed varies and alters the \(\delta t \) values.
Some studies use correlations to define the peak response whereas others use the timing of the first
detectable response. A detailed and extensive statistical study of the delay between changes in the IMF
\(B_{z} \) component and their effect appearing in the near-Earth tail lobes and plasma sheet was presented by
Browett et al. (2017). They found optimum delays of 1 h for southward IMF but up to 5 h for northward
IMF conditions. Because these are the times for the magnetic curvature force to take effect in the tail,
they relate to field-aligned Alfvén wave propagation times as well as solar wind propagation times and so
are not directly comparable with, for example, the propagation time for dynamic pressure change effects
in the tail. We note that the value of \(\delta t = 75 \) min that we here derive and use, is slightly longer than the
60 min that Browett et al. (2017) derive for southward IMF but much shorter than 300 min that they find
sometimes derived for northward IMF.
3. Results

3.1. Effect of Number of Radar Echoes, \(n_e \)

Figure 4 shows the cumulative probability distribution of the hourly means of the number of radar echoes, \(n_e \), used in compiling the convection patterns, and hence the transpolar voltage \(\Phi_{PC} \) estimates, in the data set employed here of 214,410 \(\Phi_{PC} \) hourly mean values obtained from the Super Dual Auroral Radar Network radar array using the map potential technique between 1995 and 2020. The vertical lines are various threshold values \(n_{\text{min}} \) used in this paper in which \(n_e \) must exceed for the \(\Phi_{PC} \) value obtained to be considered valid. The vertical-colored lines are at \(n_{\text{min}} \) of \([100:100:900]\) and the black dashed line is at 255. The condition \(n_e > n_{\text{min}} = 255 \) was found to be optimum in a comparison with 2-year data from satellite passes (for 2001 and 2002, see Appendix A) and which yields \(N = 60,653 \) valid \(\Phi_{PC} \) estimates which is close to 30% of all the observations. The colored thresholds are here used in a sensitivity study to understand the effect of the adopted \(n_{\text{min}} \) threshold.

Figure 4. Cumulative probability distribution of the number of radar echoes, \(n_e \), used in compiling the convection patterns, and hence the transpolar voltage \(\Phi_{PC} \) estimates, in the data set employed here of 214,410 \(\Phi_{PC} \) hourly mean values obtained from the Super Dual Auroral Radar Network radar array using the map potential technique between 1995 and 2020. The vertical lines are various threshold values \(n_{\text{min}} \) used in this paper in which \(n_e \) must exceed for the \(\Phi_{PC} \) value obtained to be considered valid. The vertical-colored lines are at \(n_{\text{min}} \) of \([100:100:900]\) and the black dashed line is at 255. The condition \(n_e > n_{\text{min}} = 255 \) was found to be optimum in a comparison with 2-year data from satellite passes (for 2001 and 2002, see Appendix A) and which yields \(N = 60,653 \) valid \(\Phi_{PC} \) estimates which is close to 30% of all the observations. The colored thresholds are here used in a sensitivity study to understand the effect of the adopted \(n_{\text{min}} \) threshold.

To further define an optimum value for \(n_{\text{min}} \), we have carried out a comparison with dawn-dusk passes by DMSP satellites for the years 2001 and 2002.

Figure 5. Probability density functions giving the normalized distributions of the \(\Phi_{PC} \) values for threshold values for the number of echoes \(n_e \) required of \(n_{\text{min}} = [100:100:900] \). The resulting total number of \(\Phi_{PC} \) values in the data set meeting that requirement, \(N \), is given in each case.

\(n_e > 100, N = 137,633 \)
\(n_e > 200, N = 85,078 \)
\(n_e > 300, N = 52,501 \)
\(n_e > 400, N = 32,646 \)
\(n_e > 500, N = 20,378 \)
\(n_e > 600, N = 12,866 \)
\(n_e > 700, N = 8,032 \)
\(n_e > 800, N = 4,958 \)
\(n_e > 900, N = 3,134 \)
3.2. Variation of Φ_{PC} With IMF B_z and the AL Index

Figure 6 analyses the optimum propagation lags needed for this study. The black line is the lag correlogram (linear correlation coefficient as a function of lag) for Φ_{PC} and the IMF-B_z value (in the GSM frame). The peak correlation is with Φ_{PC} lagging behind B_z by $\delta t = 20$ min. This is longer than the response time for dayside magnetopause reconnection (Etemadi et al., 1988; Todd et al., 1988): from the propagation delay to cross the magnetosheath, this is expected to be about 5 min, which is the typical response time seen in the observational studies discussed in Section 1.1. The propagation of the enhancement to the center of the polar cap was modeled using the ECPC model by Morley and Lockwood (2005) and a value of 20 min from the nose of the bow shock is broadly consistent with their predictions. Figure 2b shows that if the nightside reconnection voltage Φ_n is small, the transpolar voltage Φ_{PC} is approximately equal to Φ_n, and if we also fold in a nonzero viscous voltage this becomes $\Phi_{PC} \approx \Phi_n + \Phi_n$. In addition, Figure 2b shows that this voltage appears between maximum and minimum potentials at points that are close to the ends of the ionospheric footprint of the magnetopause reconnection X-line. In this case, the response of Φ_{PC} to IMF B_z would be after the short lag with which Φ_n responds (i.e., $\delta t \approx 5$ min). The AL index is expected to be a good proxy for the nightside voltage Φ_n, becoming more negative as Φ_n increases. Hence, a subset of the data selected for a small $-\text{AL}$ should give Φ_{PC} values dominated by Φ_n and hence show a small response lag. For the subset of data, when the AL index is above 100 nT (i.e., $-\text{AL} < 100$ nT), shown by the blue line in Figure 6, the observed lag of Φ_{PC} lag after B_z of $\delta t = 5$ min is therefore consistent with the ECPC model and low Φ_n. A notable feature of all the correlograms in Figure 6, except those for Φ_{PC} and B_z (in blue and black), is that the peaks are asymmetric with higher correlations at a given time after the peak than for the same time before it. This shows that higher auroral activity (i.e., larger negative AL) are responses over longer time constants and that time constant is variable. The orange line shows that the optimum lag for the AL index after B_z is $\delta t = 35$ min, but the peak is lower and broader indicating there is considerable variability in that lag. The green line gives the lag of the AL index after Φ_{PC} of $\delta t = 25$ min, which yields a total lag of $25 + 20 = 45$ min and compared the transpolar voltage derived, $[\Phi_{PC}]_{\text{DMSP}}$, with the simultaneous SuperDARN map potential estimates, $[\Phi_{PC}]_{\text{S.DARN}}$. We computed the root mean square deviation, $(\langle \Delta \Phi_{PC}^2 \rangle)^{1/2}$ (where $\Delta \Phi_{PC} = [\Phi_{PC}]_{\text{DMSP}}-[\Phi_{PC}]_{\text{S.DARN}}$) as a metric of agreement. In general, we found $\Delta \Phi_{PC}$ tended to be positive, consistent with the studies discussed in Section 1.2. We used the Nelder-Mead search to find a minimum in $(\langle \Delta \Phi_{PC}^2 \rangle)^{1/2}$ as a function of n_{min} and the maximum allowed geocentric angular separation of the satellite and radar potential maxima and minima, δ. This yielded an optimum n_{min} of 255 and for the optimum maximum δ of 30°. The use of $n_{\text{min}} = 255$ gave a peak correlation between $[\Phi_{PC}]_{\text{DMSP}}$ and $[\Phi_{PC}]_{\text{S.DARN}}$ of 0.85 with and r.m.s. deviation $(\langle \Delta \Phi_{PC}^2 \rangle)^{1/2} = 18.5$ kV, compared to a correlation of 0.82 for $n_{\text{min}} = 0$, for which $(\langle \Delta \Phi_{PC}^2 \rangle)^{1/2} = 21.2$ kV (see Appendix A). Hence, the agreement was most improved by adopting $n_{\text{min}} = 255$, which is a value small enough not to greatly change the shape of the overall distribution of $[\Phi_{PC}]_{\text{S.DARN}}$ values, as shown by Figure 5. We also used this survey to calibrate the SuperDARN estimates: where comparisons are made, we here correct the systematically higher values (by a factor of 20%) from the satellite observations using the linear regression of the $[\Phi_{PC}]_{\text{DMSP}}$ and $[\Phi_{PC}]_{\text{S.DARN}}$ data for $n_{\text{min}} = 255$ and $\delta < 30^\circ$ (see Appendix A).

In Sections 3.2–3.4 of this paper, we employ the selection criterion $n_t > n_{\text{min}} = 255$ (which gives us 60,653 samples). However, in Section 3.5, we return to using all the n_{min} values used in Figures 4 and 5 in a sensitivity study to show that our conclusions are not influenced by the value of n_{min} adopted.
after IMF B_z which is 10 min longer than the value obtained from the direct correlation between AL and IMF B_z. The mauve line shows the correlation between Φ_{PC} and solar wind dynamic pressure p_{SW}, which is considerably weaker than the other correlations, as expected because Φ_{PC} depends primarily on Φ_N and Φ_{N}, which are not expected to be as strongly modulated by p_{SW} as they are by B_z. However, this Φ_{PC} versus p_{SW} correlogram does show a broad, weak peak with a maximum at a lag of $\delta t = 120$ min. This suggests that if p_{SW} is exerting an influence on Φ_{PC} it is mainly through a modulation of Φ_{N} through squeezing the near-Earth cross-trail current sheet. This will be discussed further in Section 3.3. The correlation between Φ_{PC} and p_{SW} was also examined for northward and southward IMF conditions separately by selecting data when the B_z data simultaneous with p_{SW} was positive and negative, giving the cyan and gray correlograms, respectively. For southward IMF, the peak effect is soon after that of the peak response to IMF B_z and so this appears to show an influence of p_{SW} on the dayside reconnection voltage Φ_{0}. On the other hand, the peak response for northward IMF is at a lag of $\delta t = 75$ min and because of the absence of large Φ_{N} in these cases, this appears to show a response of Φ_{0} to increased p_{SW} in these cases (see discussion by Lockwood, 2013). In our studies, we used δt of 5, 75, and 120 min for the optimum lag between p_{SW} and terrestrial responses: because of the high persistence in the p_{SW} data series the results were very similar in the three cases, and we here show values for $\delta t = 75$ min.

A great many studies have presented scatter plots of Φ_{PC} as a function of IMF B_z (or dawn-dusk interplanetary electric field $V_{SW}B_z$, but the radial solar wind speed V_{SW} explains very little of the scatter) and shown that Φ_{PC} increases approximately linearly with $-B_z$ for $B_z < 0$ but has approximately constant and small values for $B_z > 0$. Figure 7a shows that the SuperDARN data set used here also confirms this behavior by comparing a scatter plot of the Φ_{PC} values as a function of IMF B_z (black points) with the corresponding scatter plot from the survey of Cowley (1984) using data from a variety of LEO spacecraft (mauve points).

Figure 7. (a) Scatter plots of transpolar voltage estimates Φ_{PC} as a function of the IMF B_z component. The black points are for the survey of Super Dual Auroral Radar Network presented here (for $n_n > 255$) and the mauve points are from the survey of data from various spacecraft by Cowley (1984). (b) The fraction of samples $n_n/\Sigma n$ (on a logarithmic scale) in bins that are $\Delta B_z = 0.5$ nT wide in interplanetary magnetic field (IMF) B_z (in the geocentric solar magnetospheric [GSM] frame of reference) and $\Delta \Phi_{PC} = 2$ kV wide in the Φ_{PC}, as a function of B_z and Φ_{PC}. The IMF B_z data are 15-min boxcar running means of 1-min observations and for the optimum lag found in Figure 6. (c) The simultaneous mean negative AL index $-\langle AL \rangle$ in the same bins as used in part (b). In both the panels, only Φ_{PC} values based on $n_n > 255$ radar echoes are used and bins with no samples are shaded black. Part (d) shows the same data as part (c), fitted with contour levels. Note, in relation to part (a), Cowley (1984) presented the data in terms of the dawn-to-dusk interplanetary electric field, $E_y = V_{SW}B_z$, whereas here we use an x-axis of $B_z = E_y/V_{SW}$. Also, the satellite Φ_{PC} data have been scaled to the radar values using the best-fit linear regression shown in part (c) of Figure A1.
Note that the satellite Φ_{PC} values have been reduced by the 20% factor found from comparisons with 2 years' passes by the DMSP satellites (see Appendix A). Because there are so many samples in our study, a scatter plot loses a great deal of information because so many points are plotted on top of each other. Hence in Figure 7b, we color-code the fraction of samples ($n \div \Sigma n$, on a logarithmic scale) in bins of narrow width in both Φ_{PC} and B_z. The bins used were $\Delta B_z = 0.5$ nT wide in IMF B_z and $\Delta \Phi_{PC} = 2$ kV wide in the Φ_{PC}. The plot shows the features that are familiar from other plots. Two important features to note are that: (a) for southward IMF there is a considerable spread in Φ_{PC} at a given B_z, and (b) for northward IMF that spread decreases with increasingly positive B_z. The plot also shows that Φ_{PC} values increase slightly with increasingly positive B_z which implies that the lobe reconnection voltage Φ_L increasingly becomes a factor, as discussed in relation to Figure 3.

In the ECPC model, the spread at a given IMF B_z is expected because in non-steady state both Φ_D and Φ_N contribute to Φ_{PC}. From long-term averages (for which $\Phi_{PC} = \Phi_D + \Phi_N$), we know that $(\Phi_D + \Phi_N)$ varies approximately linearly with $-B_z$ for $B_z < 0$. It is also known that the auroral electrojet indices AE and AL vary approximately linearly with Φ_{PC}, again with considerable scatter (Weimer et al., 1990). In this paper, we investigate the nightside auroral electrojet index AL as a proxy for the nightside voltage, Φ_N, which is consistent with its use as a substorm expansion phase identifier in substorm cycles. Lockwood et al. (2009) used satellite passes to show that, statistically, polar cap flux decayed (i.e., Φ_N is enhanced) during substorm expansion phases when $-AL$ is enhanced. Hubert, Milan, et al. (2006), Hubert, Palmroth, et al. (2006), and Milan et al. (2009) used auroral images to also infer the loss of open flux during substorm expansion phases, which also implies a relationship between $-AL$ and Φ_N. The variation of Φ_L inferred from time-constants by Laundal et al. (2020) shows a strong variation with $-AL$, as does the analysis of the polar cap boundary location by Aikio et al. (2013).

Figure 7c shows the mean simultaneous AL values in the same bins as used in Figure 7b whereas Figure 7d shows contours of these mean AL data. Note, that these contours can only be fitted in areas where the data are not sparse (identified by Figure 7b). It can be seen that the spread in Φ_{PC} at a constant B_z is indeed associated with the spread in AL, as predicted by the ECPC model.

Figure 8a plots the variation of the occurrence of combinations of the AL index and lagged IMF B_z using the same bins in B_z as used in Figures 7b and 7c and bins of AL that are 10 nT wide. Figure 8b shows the mean Φ_{PC} in the same bins as used in Figures 8a whereas Figure 8c shows the fitted contours of mean Φ_{PC} from the same data. The tilt of the contours toward the diagonal in 8c clearly shows that Φ_{PC} depends on both B_z and AL: at constant AL, Φ_{PC} increases with increasingly negative B_z (moving horizontally to the left of the plot) but importantly, Φ_{PC} also increases with increasingly negative AL at constant B_z for $B_z < 0$ (moving vertically up the left-hand half of the plot). Hence, Φ_{PC} increases with increases in both IMF $-B_z$ and $-AL$.

3.3. Evolution of Φ_{PC} During Northward IMF With Time Since the IMF Turned Northward

A second scatter plot that was important verification of the ECPC model was presented in Figure 6 of Wygant et al. (1983). The plot looked at Φ_{PC} values during northward IMF, as a function of time Δt since the lagged IMF last had a southward component. Shortly after a northward turning (small Δt), Wygant and coworkers found that almost the same range in Φ_{PC} was present as had been seen during the prior periods of southward IMF. However, with increased time after the northward turning (larger Δt), this range decreased because the largest observed Φ_{PC} declined exponentially. This decline continued until after about 10 h, only low values of Φ_{PC} were seen. This behavior is uniquely explained by the ECPC model, which predicts that the larger values of Φ_{PC} seen when the IMF is northward are because there is a large Φ_N (despite Φ_D being small because the IMF was northward). Large Φ_N can still be present because of the large open flux that had been produced in the growth phase prior to the northward turning of the IMF, there being a delay before that flux is fully appended to the near-tail lobe by the solar wind flow. The inference was that the longer the IMF remained northward, the more events of higher Φ_N had depleted the open flux and so the maximum of subsequent events was reduced.

The Wygant et al. plot contained only 28 datapoints, it is here reproduced in Figure 9a for the 29,373 datapoints available from our survey for IMF $B_z > 0$ and $n_i > 255$. To evaluate the time since the IMF had a southward component, we here use 6-min boxcar running means of IMF B_z to avoid periods of northward
IMF being interrupted by just a brief interval of southward IMF. For each northward-IMF \(\Phi \) value observed at time \(t_o \), we evaluate the time at which the lagged IMF turned northward in these 6-min running means, \(t_n \), and hence \(\Delta t = t_o - t_n \). We did also try using running means over 15 and 60 min and Figure 9 was not substantially changed other than the appropriate resolution in \(\Delta t \) was lowered. Again, because of the large number of samples, we color code the fraction of samples \(n/\Sigma n \) (on a logarithmic scale) and all panels of Figure 9 uses bins in \(\Phi_N \) and -\(AL \). Bins with no samples are shaded black. Only \(\Phi_{PC} \) values based on \(n_i > 255 \) radar echoes are used. Part (c) shows the same data as part (b), fitted with contour levels.

Figure 8. Plots on lagged interplanetary magnetic field (IMF) \(B_z \) component and \(AL \) index axes of (a) the fraction of samples \(n/\Sigma n \) (on a logarithmic scale) and (b) mean transpolar voltage \(<\Phi_{PC}> \) in bins that are \(\Delta B_z = 0.5 \) nT wide in IMF \(B_z \) (in the geocentric solar magnetospheric [GSM] frame of reference) and \(\Delta AL = 10 \) nT wide in the \(AL \) index, as a function of \(B_z \) and -\(AL \). Both \(B_z \) and \(AL \) data are 15-min boxcar running means of 1-min observations. Bins with no samples are shaded black. Only \(\Phi_{PC} \) values based on \(n_i > 255 \) radar echoes are used. Part (c) shows the same data as part (b), fitted with contour levels.

IMF being interrupted by just a brief interval of southward IMF. For each northward-IMF \(\Phi_{PC} \) value observed at time \(t_o \), we evaluate the time at which the lagged IMF turned northward in these 6-min running means, \(t_n \), and hence \(\Delta t = t_o - t_n \). We did also try using running means over 15 and 60 min and Figure 9 was not substantially changed other than the appropriate resolution in \(\Delta t \) was lowered. Again, because of the large number of samples, we color code the fraction of samples \(n/\Sigma n \) (on a logarithmic scale) and all panels of Figure 9 uses bins in \(\Phi_{PC} \) that are 2 kV wide (as in Figures 7 and 8) and in \(\Delta t \) that are 6 min wide. The near-exponential decay of the largest \(\Phi_{PC} \) found by Wygant and coworkers is clear in Figure 9a and the time constant for that decay is very similar, with \(\Phi_{PC} \) reduced to almost constant value by \(\Delta t = 15 \) h. The ECPC model predicts that the larger \(\Phi_{PC} \) values at a given \(\Delta t \) will be due to larger \(\Phi_N \) and hence greater -\(AL \).
Figure 9b confirms that this is indeed the case by color-coding the mean of $-AL$ in the same bins as used in Figure 9a. Wilder et al. (2008) have used SuperDARN data to show that the lobe reconnection voltage in the ionosphere saturates at about 15–20 kV. From this, we deduce that the voltages shown in Figure 9 for Δt greater than about 15 h after the IMF turned northward are consistent with the effects of lobe reconnection. On the other hand, the values above 20 kV at Δt below about 10 h (when AL is also enhanced) are not and we attribute these to enhanced Φ_N.

Because we are belatedly reproducing the highly significant plot by Wygant et al. (1983), it is worth making a direct comparison. This is done as two superposed scatter plots of Φ_{PC} as a function of time since the IMF was last southward Δt in the top panel of Figure 10. The black dots are from the present survey, the mauve dots are the data of Wygant et al. (1983). As in Figure 7, the satellite Φ_{PC} values have been reduced by the 20% found in the comparison in Figure A1c. It can be seen that the trend inferred by Wygant et al. from
Figure 10. Detail of Figure 9 at small times since the interplanetary magnetic field (IMF) turned northward, $\Delta t = (t_n - t_o)$, where t_o is the time of the Φ_{PC} observation and t_n is the time at which the IMF turned northward. The black dots in the top panel form a scatter plot of the Φ_{PC} data as a function of Δt from the present survey. The mauve dots are the satellite Φ_{PC} data from Wygant et al. (1983), which have been scaled to the radar values using the best-fit linear regression shown in part (c) of Figure A1. The lower panel shows contours of the mean AL index for the data points of the present survey (and so is a contoured version of Figure 9b for small Δt).

3.4. Effect of Solar Wind Dynamic Pressure, p_{SW}

In this section, we investigate the effect of solar wind dynamic pressure p_{SW} on the magnetosphere. From Figure 6, we use p_{SW} values taken $\delta t = 75$ min before the corresponding AL and Φ_{PC} observation to allow for a propagation lag δt through the magnetosheath from the nose of the magnetosphere to sufficient distances down the tail to squeeze the tail reconnection site and so modulate the tail reconnection voltage Φ_N. The analysis was also carried out for $\delta t = 5$ min for the propagation from the nose of the magnetosphere to the dayside magnetopause and $\delta t = 120$ min that gives the peak correlation between p_{SW} and Φ_{PC}. The autocorrelation function of p_{SW} only falls to 0.5 at a lag of 6 h and because of this great persistence in the p_{SW} data series, essentially the same features as shown here were observed for all the three δt values used.

Figure 11 looks at the dependence on IMF B_Z and the solar wind dynamic pressure (normalized by the mean, i.e., $p_{SW}/\langle p_{SW} \rangle$) of (top) the midlatitude am geomagnetic range index (Mayaud, 1980), (middle) the mean $-AL$ and (bottom) the mean transpolar voltage Φ_{PC}. In the left-hand panels, averages are given in bins that are $\Delta B_Z = 0.5$ nT wide in IMF B_Z and 0.1 wide in $p_{SW}/\langle p_{SW} \rangle$. The right-hand panels show fitted contours to these data and highlight the gradients (but unlike the mean values contours cannot be plotted in areas where the data are sparse). For all the panels, values increase as we move to the left, that is, with increasingly southward IMF. This is seen at all $p_{SW}/\langle p_{SW} \rangle$ values. All the parameters show an increase with $p_{SW}/\langle p_{SW} \rangle$, at a given IMF B_Z for $B_Z > 0$ and for all the three parameters this increase decreases as the IMF becomes increasingly southward (i.e., the tilted contours become progressively more vertical). For the am index, we see clear increases with increasing p_{SW} at all IMF B_Z, although they are weaker for more strongly southward IMF. This effect of p_{SW} on am has recently been identified and modeled by Lockwood, McWilliams, et al. (2020), Lockwood, Owens, et al. (2020), and Lockwood et al. (2021) as being the effect of p_{SW} in squeezing the near-Earth tail. For both $-AL$ and Φ_{PC}, on the other hand, the contours become vertical for strongly southward IMF and the effect of enhanced p_{SW} is no longer present. We infer AL and Φ_{PC} respond to increased Φ_N caused by the squeezing effect of p_{SW} on the magnetic shear across near-Earth cross tail current sheet, for northward IMF and for weakly southward IMF. From the studies of Lockwood, McWilliams, et al. (2020), Lockwood, Owens, et al. (2020), and Lockwood et al. (2021), we believe am also responds to the enhanced energy density stored in the tail lobes because of the same squeezing effect of p_{SW}. Figure 12 confirms the trends to higher values at higher p_{SW} by showing the mean values, averaged over all IMF B_Z, with error bars of plus and minus one standard deviation: these are large because of the large variation introduced by B_Z. The upward trend is seen in all the three parameters but noticeably the gradient of the third-order polynomial fit decreases at larger p_{SW} for both AL and Φ_{PC}. The gray areas in Figure 12 are bounded by plus and minus 1-sigma error in the polynomial fit.

Figure 9c shows that the p_{SW} effect does play a role in the behavior during northward IMF. This plot is the same as 9a and 9b but shows the mean values of p_{SW} in the bins. It can be seen that the larger values of Φ_{PC} at a given time since the IMF turned northward tend to be at larger p_{SW}.

3.5. A Sensitivity Study of the Effects of the Availability of Radar Echoes

In the above sub-sections, all the plots shown are for the number of radar echoes $n_e > n_{min} = 255$. We have also generated all the plots using all of the 9 n_{min} values given by the colored lines in Figure 4. The trends in
Figure 11. The left-hand plots show mean values in bins and the right-hand plots the same data fitted with contours. The top plots (a) and (b) are for the midlatitude am geomagnetic range index (Mayaud, 1980); the middle plots (c) and (d) are for the mean negative AL index; and the bottom plots (e) and (f) are for the mean transpolar voltage Φ_{PC}. All are a function of the lagged north-south IMF component (B_z, defined as positive northward) in the GSM frame of reference and the normalized solar wind dynamic pressure, $p_{SW}/<p_{SW}>$, where $p_{SW} = m_{SW}N_{SW}V_{SW}^2$ is the mean ion mass, m_{SW} the number density and V_{SW} the speed of the solar wind and the normalizing factor $<p_{SW}>$ is the mean for all data in the 1995–2020 period of this study. The AL, Φ_{PC}, and p_{SW} are all 15-min boxcar running means of 1-min data whereas the am data are linearly interpolated to the time of the Φ_{PC} sample from the raw 3-hourly am data. Bins are $\Delta B_z = 0.5$ nT wide in IMF B_z and 0.1 wide in $p_{SW}/<p_{SW}>$. Bins with no samples are shaded black in the left-hand panels and given areas of gray on the right where the data are too sparse for contours to be fitted. The am, $-AL$, and Φ_{PC} values used were for times of Φ_{PC} samples that are based on $n_e > 255$ radar echoes.

all the plots are the same, the main effect being to change the absolute values in the means of Φ_{PC}. Figure 13 compares the variations of Φ_{PC} with IMF B_z for the thresholds n_{min} of [100:100:900] (i.e., between 100 and 900 in steps of 100), shown in Figure 13b with that for $n_{min} = 255$ shown in Figure 13a. In Figure 13a, the mean values and standard deviations are given for each B_z bin as well as the sixth-order polynomial fit (solid line). In Figure 13b, only the polynomial fits are plotted to avoid overplotting the multiple cases. It can be seen that the same behavior is seen at all n_{min} values, the main difference being that Φ_{PC} values are systematically higher for larger n_{min} at all values of IMF B_z. This is expected because removal of values based on low numbers of echoes systematically removes low Φ_{PC} samples, as shown by Figure 5. We note that this effect is seen for both northward and southward IMF samples, except for the very largest (positive) B_z when the mean Φ_{PC} is close to 25 kV, irrespective of the n_{min} used.

Figure 14 makes the equivalent comparisons of the average variations of Φ_{PC} for $B_z > 0$ with time elapsed Δt since the IMF turned northward. Again, the clear trend is to larger Φ_{PC} at larger n_{min}. However, this is not true for all Δt as the effect declines in amplitude at $\Delta t > 5$ h and is not seen at all at $\Delta t > 10$ h, such that at the largest positive B_z all n_{min} thresholds give a near constant Φ_{PC} of 15 kV.

We emphasize that all the plots presented in Sections 3.2–3.4 have been generated using all 9 n_{min} thresholds of n_e used in Figures 4, 5, 13 and 14. In every case, the form of the plot is essentially the same, the main effect being that there are fewer samples available and so the plots cover smaller ranges of the parameters as noise due to lack of samples becomes a greater issue in the tails of the distributions.
Figure 12. Mean values (with uncertainty bars of plus and minus one standard deviation) of (a) the am geomagnetic range index, (b) the negative AL index, and (c) the transpolar voltage Φ_{PC} as a function of the normalized solar wind dynamic pressure $p_{SW}/<p_{SW}>$ in bins that are 0.1 wide in $p_{SW}/<p_{SW}>$. The black line is the best third-order polynomial fit to the mean values and the gray area around it is bound by plus and minus the 1-sigma error in the fit. The am, −AL, and Φ_{PC} values used were for times of Φ_{PC} samples that are based on $n_e > 255$ radar echoes.

Figure 13. (a) Mean values (with uncertainty bars of plus and minus one standard deviation) of the transpolar voltage Φ_{PC} as a function of interplanetary magnetic field (IMF) B_Z (in the geocentric solar magnetospheric [GSM] frame of reference) in bins that are $\Delta B_Z = 0.5$ nT wide for Φ_{PC} samples that are based on $n_e > 255$ radar echoes. The solid line is a sixth-order polynomial fit to the mean values. (b) Analysis of the effect on part (a) of the threshold required for the number of radar echoes, n_e. The colored lines are sixth-order polynomial fits to the mean values of Φ_{PC} for n_e thresholds of $n_{\text{min}} = [100:100:900]$ that were also used in Figures 4 and 5.

4. Discussion and Conclusions

4.1. The Dependence of Transpolar Voltage on Magnetic Reconnection in Both the Magnetopause and the Cross-Tail Current Sheet

We have regenerated two scatter plots that formed an important basis for the space physics community’s understanding of magnetospheric and ionospheric convection. The plots of transpolar voltage as a function of the IMF B_Z (for example, by Boyle et al., 1997; Cowley, 1984; Hairston et al., 1998; Reiff et al., 1981) were generated using typically less than 100 satellite passes. The plot by Wygant et al. (1983) of transpolar voltage as a function of time since the IMF was last southward was generated from just 28 data points. Here, we increase those numbers of data points by factors of over 1,000 using convection patterns derived from the SuperDARN array of ground-based coherent radars.

We have used the AL auroral electrojet index to show that the scatter in these plots is well explained by the effect of the nightside voltage caused by reconnection in the cross-tail current sheet, as predicted by the ECPC model (Cowley & Lockwood, 1992), and as was postulated in discussion and application of the model (e.g., Lockwood & Cowley, 1992; Lockwood & Morley, 2004; Lockwood et al., 2006; Milan, 2004; Milan et al., 2003, 2021). This has not been illustrated as clearly before now.

4.2. Estimates of Voltage due to Viscous-Like Interaction Across the Magnetopause

We have demonstrated that the residual transpolar voltage after a period of southward IMF decays away with time elapsed since the IMF has been northward. After about 24 h, the voltage has decayed to $\Phi_{PC} \approx 15$ kV and although in general Φ_{PC} values are slightly sensitive to our choice of how many echoes are required (n_{min}) to yield a valid Φ_{PC} estimate, we have shown that this is not true for this estimate of the residual Φ_{PC} after long (~1 day) intervals of northward IMF. There are some points that should be noted about this value. From the above discussion, if both Φ_N or Φ_D could be considered to be zero at these times, then we get a maximum estimate of the viscously like voltage $\Phi_N < \Phi_{PC} \approx 15$ kV.

Viscously driven flows, by definition, appear in the region of closed field lines on the flank of the magnetosphere called the LLBL (see Figure 1). One problem is defining what are closed field lines and Fuselier et al. (1999) have pointed out that some of the particle flux signatures traditionally used to identify closed field lines are actually best explained as open field lines. Mozer (1984) surveyed 24 LLBL crossings and found the voltage across the LLBL on one flank ranged between 0 and 16 kV, with an average of 6–8 kV. Mozer et al. (1994) surveyed 41 such crossings and found an average value of 4 kV. If such a voltage existed on both the flanks simultaneously, this implies a viscous voltage Φ_V in the range 0–32 kV with a mean value of 6–8 kV. These values are obtained by integrating the long-track electric field seen by magnetospheric spacecraft as they pass through the LLBL. Hapgood and Lockwood (1993) pointed out that an assumption in these measurements is that the LLBL is stationary and that the satellite moves through it so that the LLBL thickness is the speed of the satellite times the time it resides in the LLBL. However, in general, a better approximation would be that the satellite be considered...
stationary and the boundary moves over it and that large estimates in LBL thickness and \(\Phi_v \) can arise from a boundary that happens to be moving with the craft. They used plasma characteristics in the LBL to show that for some cases of apparently large viscously driven voltage the true value was, in fact, only about 3 kV on one flank: if the same applied on the other flank \(\Phi_v \) would be 6 kV. In theory, we should be able to use multi-spacecraft missions that pass through the LBL to resolve boundary motions and compute LBL thickness and voltage. Such missions include Active Magnetospheric Particle Tracer Explorer (AMPTE), Cluster, Magnetospheric Multiscale Mission (MMS) and Time History of Events and Macroscale Interactions during Substorms (THEMIS). Although we can find several examples of the use of these spacecraft to determine LBL thickness, a literature search has not revealed any further estimates of LBL voltage. However, we note that Lockwood and Hapgood (1997) did use the AMPTE-IRM and AMPTE-UKS pair to show that the analysis of Hapgood and Lockwood (1993) was correct.

A detailed study of convection reversals in the ionosphere near dawn and dusk indicates that sometimes the plasma motion across them exceeds the motion of the boundary, implying they are not just moving adiabatic and there is a genuinely viscous-like process at work (Chen & Heelis, 2018; Lockwood et al., 1988); however, in such cases, the true boundary motion and orientation are very difficult to determine accurately and uncertainties are large making accurate determination of \(\Phi_v \) by integrating along the boundary almost impossible. Newell et al. (1991) and Sundberg et al. (2008) used LEO observations of electric fields and particle precipitations to infer the voltage across the low-altitude footprint of the LBL and find values mainly below 10 kV with a few values over 20 kV. There are two problems with this which may explain the larger estimates of \(\Phi_v \). First, the identification of closed LBL field lines from the particle precipitations is not definitive. Second, the ECPC model predicts that antisunward flow on closed field lines in the ionospheric projection of the LBL can be generated by nightside reconnection and polar cap contraction because the CRB can be shifted from the open-closed field line boundary by the conductivity distribution in the ionosphere.

From the above, a mean value of \(\Phi_v \) of around 8 kV is appropriate and so the estimate of \(\Phi_v \leq 15 \) kV derived here from Figure 14, is somewhat higher than we would expect for an average value of past estimates. However, we stress here that this is a maximum value for \(\Phi_v \) because it is derived assuming \(\Phi_v = 0 \) and \(\Phi_{nc} = 0 \) with lobe reconnection voltages lower than \(\Phi_v \). There are reasons to believe that none of these assumptions are valid. First, it has been shown from outward fluxes of ionspheric ion species that opening of field lines continues between the magnetic cusps at a low level even when the IMF points northward (Chandler et al., 1999; Fuselier et al., 2000) and observations of simultaneous “double” cusps have been interpreted as subaural reconnection continuing even though the IMF is northward and lobe reconnection is simultaneously taking place (Lockwood & Moen, 1999; Lockwood et al., 2003; Pitout et al., 2002). Thus far, we have only a limited number of such observations and so cannot say how common this situation is. Hence, although \(\Phi_{nc} \) is small during northward IMF, it may be larger than zero some or all of the time. Second, as pointed out by Lockwood (2019), the tail lobes have never been seen to vanish, no matter how long the IMF remains northward. This means there is always a cross-tail current sheet with magnetic shear across it at which we would expect nightside reconnection to occur, even if the resulting \(\Phi_v \) is small. Third Wilder et al. (2008) use SuperDARN data to show that the lobe reconnection voltages in the ionosphere saturates at about 15–20 kV and hence the voltages seen at large times since the IMF turned northward are likely to be caused by lobe reconnection than by viscous-like interaction.

Our definition of \(\Phi_{nc} \) means that a lobe reconnection voltage \(\Phi_l \) would, if large enough either increase (the “hybrid” case) or set the value of \(\Phi_{nc} \) (the lobe-dominated case) such that its effect in the ionosphere
exceeded Φ_v (see Section 1.1). Figure 7 shows that northward IMF Φ_{PC} increases up to 15 kV as the IMF approaches its largest positive values, which is a behavior expected of Φ_d rather than Φ_v. Hence, the 15 kV is consistent with being a “lobe dominated” Φ_{PC} value set by lobe reconnection and not a “conventional” or “hybrid” viscous-like voltage to which Φ_v could have contributed. As a consequence, we must treat 15 kV as an upper limit to the average value of Φ_v and it is very likely to be very considerably lower than this.

4.3. The Effect of Dynamic Pressure

There are physical reasons to expect both Φ_d and Φ_n to be increased by increased solar wind dynamic pressure p_{SW}. In both the cases, the compression brought about by greater p_{SW} should increase the magnetic shear across the current sheet and so enhance the reconnection rate. One caveat to this idea is that the nightside reconnection must be taking place at a GSM X-coordinate at which the tail is still flaring (i.e., the radius increases with increasingly negative X) and so the dynamic pressure can squeeze the tail lobe and so increase the lobe field (Caan et al., 1973) and the cross-tail current (Lockwood, 2013). At larger $-X$ coordinates, further down the tail, the tail radius asymptotically reaches its maximum value and the component of the dynamic pressure perpendicular to the magnetopause falls to zero: in this case, the lobe field and magnetic shear across the cross-tail current sheet are set by the static pressure in the interplanetary medium.

Using the am geomagnetic index as a proxy indicator of magnetopause reconnection, Scurry and Russell (1991) inferred statistically that dayside reconnection voltage Φ_d was indeed enhanced by increased p_{SW}. However, much of the evidence for such an effect comes from transient responses to individual events in which p_{SW} increases suddenly (e.g., Boudouridis et al., 2007). The problem with these events is that there will be a number of transient responses, of which the effect of p_{SW} on Φ_d is one and isolating just that one effect is difficult.

An important effect of p_{SW} on the tail was demonstrated directly by Karlsson et al. (2000) who showed that near-Earth tail energy content was reduced if p_{SW} decreased and that such sudden decreases caused quenching of any substorm expansion that had recently begun. This strongly suggests reduced p_{SW} can reduce the nightside voltage, Φ_n. Conversely, increases in p_{SW} have been seen to trigger onsets of full substorm expansion phases (Kokubun et al., 1977; Schieldge & Siscoe, 1970; Yue et al., 2010) and have been identified as a cause of a rise in Φ_n (Boudouridis, Lyons, et al., 2008). In some cases, the rise in Φ_n has been inferred from a loss of open flux as aurora expands into what appears to be open flux (Hubert, Palmroth, et al., 2006).

Various observational studies suggest that increases in p_{SW} cause enhanced general magnetospheric convection and field-aligned current systems as well as enhanced geomagnetic activity (e.g., Boudouridis, Zesta, et al., 2008; Hubert, Milan, et al., 2006; Lee et al., 2004; Lukianova, 2003; Stauning & Troshichev, 2008). This phenomenon has been modeled using global MHD models of the magnetosphere as being caused by rises in both Φ_d and Φ_n (Connor et al., 2014; Lockwood, Owens, et al., 2020; Ober et al., 2006; Palmroth et al., 2004).

Figure 15 looks at the implications for any influence of p_{SW} on Φ_d and Φ_n of the correlations between p_{SW} and the auroral electrojet indices for both northward and southward IMF. It also compares the correlograms with those for p_{SW} and Φ_{PC} for northward and southward IMF that were shown in Figure 6. The blue and orange lines are for AU and AL, respectively, for southward IMF ($B_z < 0$). Both show a rapid response, although the correlation does not decay away for large positive lags as quickly for AU as it does for AL. Note, that correlations are lower for the southward IMF data than for northward IMF (shown by the mauve and green lines) because the controlling influence of IMF B_z is much greater for southward IMF. The mauve and green lines are for AU and AL, respectively, and for northward IMF we see that AL responds to p_{SW} after a long lag, consistent with the squeezing of the tail by increased p_{SW} increasing Φ_n. From the peak correlation, this appears to be a relatively weak effect compared to the peaks for AU: however, it must be remembered that the lag for the dayside effect is short and much less variable than for any effect on the nightside and so we should expect a broad, but relatively low, peak for the effect on AL. Also, note the peak for AU at short lags for northward IMF implies that the dayside reconnection is not only enhanced by increased p_{SW} when the IMF is southward, but that it may still present and be enhanced by p_{SW} when the IMF is northward. Finch et al. (2008) and Lockwood, McWilliams, et al. (2020) found that the effect of p_{SW} on midlatitude range indices was through the nightside substorm current wedge. These authors also showed that the effect was associated with Φ_n and was the origin of the equinoctial time-of-day/time-of-year pattern.
in geomagnetic activity through the effect of the dipole tilt. The modeling analysis of Lockwood, Owens, et al. (2020) found the influence of p_{SW} through both Φ_N and the energy stored in the tail lobe. The results presented here show an effect of p_{SW} on Φ_{PC}, but that the effect is smaller than for am: this indicates that the effect of energy stored in the tail may be a larger factor for midlatitude range indices such as am.

Since submitting the present paper, an article by Boudouridis et al. (2021) has been published, presenting an observation and modeling case study on enhancements in Φ_D and Φ_N, and hence Φ_{PC}, induced by enhanced p_{SW}. As mentioned above, the studies of transient responses do not necessarily reveal the dependence of Φ_D and Φ_N, and hence Φ_{PC}, on p_{SW} because of other transient responses although they do show a connection. We here have shown that there is a connection on a statistical basis. One potential problem is that p_{SW} has many parameters in common with the power input into the magnetosphere (Lockwood et al., 2019a), but Lockwood, McWilliams, et al. (2020), Lockwood, Owens, et al. (2020), and Lockwood et al. (2021) have demonstrated that it has a separate and distinct influence on the am midlatitude, range geomagnetic activity index. We here have demonstrated that p_{SW} has a similar influence on the nightside auroral AL index and the transpolar voltage Φ_{PC}.

Appendix A: Analysis and Calibration of the Radar Data

The Super Dual Auroral Radar Network (SuperDARN) data used here were processed at the Institute of Space and Atmospheric Studies, University of Saskatchewan, using the SuperDARN Radar Software Toolkit (RST) 4.3 (2019) developed and maintained by the SuperDARN Data Analysis Working Group and available from the Github URI https://zenodo.org/record/3401622#.YNulbUwo-1k.

The reference for this version of the RST is: SuperDARN Data Analysis Working Group. Participating members; Thomas, E. G.; Sterne, K. T.; Shepherd, S. G.; Kotyk, K.; Schmidt, M. T.; Ponomarenko, P. V.; Bland,
To allow reproduction of the data set, note that all the RST (version 4.3) defaults were used to create the potential maps, except the following:

1. fitacf-version 3.0 was used instead of fitacf-version 2.5
2. -tl 60 (scan time 60 s)
3. -c (concatenate grid files)
4. -minrng 10 (include data from minimum range gate 10)
5. use -cn a, b, c, d for channel fitacf files (a, b, c, d in the filename), or -cn_fic A, b for fitacfs with twofound for channel 0 and 1 for A and channel 2 for B
6. -xtd for extra variable spectral width and SNR
7. -stime 00:00 to give start time at 00:00
8. -vemax 10000 to exclude any data above velocity value of 10,000 ms^{-1}
9. -l 50 to set map minimum latitude to 50°
10. -if OMNI.txt to use OMNI data set to drive re-analysis model
11. -d 00:10 for 10 min delay on the input OMNI data. Note that the results were not sensitive to this value and Figure 6 of the main paper shows that the observed lag between Φ_{PC} and IMF B_z is 20 min and set by the observed radar Doppler shifts and not the model
12. -o 8 for harmonic order 8
13. -d l for low doping level. The doping level sets the relative weight given to the model compared to the data and can be set to light, medium and heavy. As we wish the maps to be strongly data-driven, we have set the model doping to light

Figure A1 presents an overview plot of the comparisons between SuperDARN and Defense Meteorological Satellite Program (DMSP) transpolar voltages (respectively $\Phi_{PC,\text{S.DARN}}$ and $\Phi_{PC,\text{DMSP}}$) referred to in the text.
(The full analysis will appear in the paper Lockwood, M., K.A. McWilliams, and M.R. Hairston, Semiannual and Universal Time variations in magnetospheric convection: 1. Transpolar Voltage Data, to be submitted to J. Geophys. Res.). These comparisons are for data from 2001 and 2002 and are for dawn-to-dusk DMSI passes only and consider the effects of both the proximity of the satellite path of the diameter of the cap giving the transpolar voltage in the SuperDARN data (quantified by the parameter δ_{max}) and the number of echoes, n_e, involved in computing $\Phi_{\text{PCIS.DARN}}$.

Acknowledgments
The authors acknowledge the use of data from the SuperDARN project. SuperDARN is a collection of radars funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, United Kingdom, and the United States of America. The work presented in this paper was supported by a number of grants. Mike Lockwood is supported by STFC consolidated grant number ST/M000885/1 and by the SWIGS NERC Directed Highlight Topic Grant number NE/P016928/1. Funding for RAM at the University of Saskatchewan was provided by the Canadian Foundation for Innovation (CFI), the Province of Saskatchewan, and a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada. Initial work by Kathryn A. McWilliams for this paper was carried out at the University of Reading on sabbatical leave from the University of Saskatchewan. The authors thank Evan Thomas, Kevin Sterne, Simon Shepherd, Keith Kotyk, Marina Schmidt, Pasha Ponomarenko, Emma Bland, Maria-Theresa Walach, Ashton Reimer, Angeline Burrell, and Daniel Billett for the SuperDARN radar processing toolkit used to analyze the radar data. The authors are also grateful to the staff of: the Space Physics Data Processing toolkit used to analyze the radar data. The authors are also grateful to the staff of: the Space Physics Data Facility, NASA/Goddard Space Flight Center, who prepared and made available the OMNII2 data set used: these interplanetary data were downloaded from the World Data Center for Geomagnetism, Kyoto who generate and make available the AI index from http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html and the staff of L’École et Observatoire des Sciences de la Terre (EOST), a joint project of the University of Strasbourg and the French National Center for Scientific Research (CNRS) and the International Service of Geomagnetic Indices (ISGI) for making the am index data available from http://isgi.unistra.fr/data_download.php.

References

