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Abstract. Coupled hydrologic and hydraulic models repre-
sent powerful tools for simulating streamflow and water lev-
els along the riverbed and in the floodplain. However, input
data, model parameters, initial conditions, and model struc-
ture represent sources of uncertainty that affect the reliabil-
ity and accuracy of flood forecasts. Assimilation of satellite-
based synthetic aperture radar (SAR) observations into a
flood forecasting model is generally used to reduce such un-
certainties. In this context, we have evaluated how sequential
assimilation of flood extent derived from SAR data can help
improve flood forecasts. In particular, we carried out twin
experiments based on a synthetically generated dataset with
controlled uncertainty. To this end, two assimilation methods
are explored and compared: the sequential importance sam-
pling method (standard method) and its enhanced method
where a tempering coefficient is used to inflate the posterior
probability (adapted method) and reduce degeneracy. The ex-
perimental results show that the assimilation of SAR proba-
bilistic flood maps significantly improves the predictions of
streamflow and water elevation, thereby confirming the ef-
fectiveness of the data assimilation framework. In addition,
the assimilation method significantly reduces the spatially
averaged root mean square error of water levels with respect
to the case without assimilation. The critical success index of
predicted flood extent maps is significantly increased by the
assimilation. While the standard method proves to be more
accurate in estimating the water levels and streamflow at the

assimilation time step, the adapted method enables a more
persistent improvement of the forecasts. However, although
the use of a tempering coefficient reduces the degeneracy
problem, the accuracy of model simulation is lower than that
of the standard method at the assimilation time step.

1 Introduction

Floods represent one of the major natural disasters with a
global annual average loss of USD 104 billion (UNISDR,
2015). The extent of flood damages have risen over the last
few years due to climate-driven changes and an increase in
the asset values of floodplains (Blöschl et al., 2019). This em-
phasizes the need for reliable and cost-effective flood fore-
casting models to predict flood inundations in near real time.
Hydrologic and hydraulic models represent useful tools for
simulating flood extent, discharge, and water levels in the
riverbed and on the floodplain. However, both the models and
the observations used as inputs for running, calibrating, and
evaluating the models are affected by uncertainty.

Data assimilation (DA) aims at improving model predic-
tions by updating model states and/or parameters based on
observations (Moradkhani et al., 2005). It optimally com-
bines observations with the system state derived from a nu-
merical model accounting for both model and observation
errors.
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Ideally, in situ data are systematically assimilated into
flood forecasting models, but these observations are not al-
ways available (e.g., in un-gauged catchments) and only
provide space-limited information (Grimaldi et al., 2016).
Therefore, satellite Earth observation (EO) data, and in par-
ticular synthetic aperture radar (SAR) images, represent a
valuable complementary dataset to in situ observations due
to their capacities to provide frequent updates of flooded ar-
eas at a large scale. In addition, as the corresponding EO data
archives are growing fast, historical observational data span-
ning an extended period of time can be assimilated into large-
scale hydrodynamic models.

SAR sensors are able to acquire images of flooded areas
and permanent water bodies during day and night almost
regardless of weather conditions. The backscattered signal
depends on the dielectric properties of the imaged objects.
Smooth surfaces, such as open water bodies, interact with
the transmitted pulse so that a very limited part of the signal
is backscattered to the satellite resulting in dark areas in the
acquired image.

Different information about water extent can be extracted
from a SAR image and used to improve the forecasts us-
ing DA techniques. Directly assimilating flood extent maps
is not straightforward because these do not correspond to
a state variable of the model. Therefore, some studies sug-
gested transforming the SAR backscatter information into a
state variable prior to the assimilation. For instance, several
studies have used EO-derived water levels to improve flood
forecasts (e.g., Andreadis et al., 2007; García-Pintado et al.,
2015; Matgen et al., 2010; Revilla-Romero et al., 2016; Gius-
tarini et al., 2011; Hostache et al., 2010). The water levels
are estimated by merging pre-selected flood extent limits ex-
tracted from the SAR satellite imagery with a digital eleva-
tion model (DEM). This step requires precise flood contour
maps and high-resolution DEMs, which are not always avail-
able (Hostache et al., 2018).

In the existing literature only a few studies have used DA
for directly assimilating flood extent maps into flood fore-
casting models (e.g., Lai et al., 2014; Revilla-Romero et al.,
2016; Cooper et al., 2019, 2018; Hostache et al., 2018).
Among the advantages of a direct use of the SAR backscatter
values is that it reduces the data processing time, which is a
key element in near-operational applications.

Cooper et al. (2018) have used an ensemble Kalman fil-
ter to update a 2D hydrodynamic model. In this case, the
backscatter values are directly assimilated into the model
without being transformed into state variables of the flood
forecasting system. The dry and wet pixels of the simu-
lated binary flood map are converted into equivalent SAR
backscatter values corresponding to the spatial mean of the
SAR backscatter observations. Cooper et al. (2018) showed
that the SAR backscatter-based assimilation method per-
forms well compared to the assimilation method where the
SAR backscatter is transformed into water levels.

Hostache et al. (2018) used a variant of the particle fil-
ter (PF) with sequential importance sampling (SIS) to assim-
ilate probabilistic flood maps (PFMs) derived from SAR data
into a coupled hydrologic–hydraulic model with the assump-
tion that rainfall is the main source of uncertainty together
with SAR observations.

Their study showed that the assimilation of PFMs is bene-
ficial: the number of correctly predicted flooded pixels in-
creases as compared to the case without any assimilation,
hereafter called open loop (OL). Forecast errors are reduced
by a factor of 2 at the assimilation time and improvements
persist for subsequent time steps up to 2 d. However, the im-
provements are not systematic: for some cases the updated
hydraulic output deviates from the observations. One of the
reasons for such outliers could be the assumption that rain-
fall represents the dominating source of uncertainty together
with satellite observation errors, thereby excluding other pos-
sible sources of uncertainty in the model system such as input
data, model parameters, initial conditions, and model struc-
ture. Even though the assumption seems to be rather realis-
tic and suitable in operational cases, given that rainfall un-
certainty has been generally identified as one of the major
causes of poorly performing models (Koussis et al., 2003;
Pappenberger et al., 2005), coupled models may have addi-
tional sources of uncertainty affecting the results.

The present study is a follow up of the real-world experi-
ment by Hostache et al. (2018) and carries out a similar ex-
periment in a controlled environment that considers the es-
timated rainfall together with SAR observations as the only
sources of uncertainty.

Hostache et al. (2018) also highlighted that degeneracy
may be a major issue for PFs: after the assimilation, the
number of particles with high weights reduces to a few or
only one particle so that the ensemble loses statistical signif-
icance. To overcome this issue, Hostache et al. (2018) used
a site-dependent tempering coefficient that inflates the pos-
terior probability. In our study, we propose to adopt an en-
hanced tempering coefficient as a function of the desired ef-
fective ensemble size (EES) after the assimilation.

Moreover, in Hostache et al. (2018), speckle errors in
the SAR observations are taken into account through the
Bayesian approach introduced by Giustarini et al. (2016).
However, no conclusions are drawn concerning the effect of
misclassified pixels. In fact, for some particular cases such
as densely vegetated areas, the detection of floodwater from
SAR imagery is known to be prone to errors. Detecting and
removing such errors represents one of the main scientific
challenges of using SAR data for a systematic, fully auto-
mated, large-scale flood monitoring (and prediction).

The main objective of the present study is to assess the
strengths and the limitations of the DA framework previously
proposed by Hostache et al. (2018). To do that we evaluate
the DA framework in a fully controlled environment via syn-
thetic twin experiments as this shall allow us to draw un-
ambiguous and comprehensive conclusions. In addition, we
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conduct a sensitivity analysis of the DA framework with re-
spect to the critical tempering coefficient that was recently
introduced for tackling degeneracy more efficiently. We also
aim to evaluate the effect of misclassified SAR pixels on DA.
Therefore, errors are artificially added within the SAR im-
age with the aim of getting a better understanding on how
robust the proposed method is with respect to these types
of errors. The results are evaluated not only locally but also
over the entire flood domain and for subsequent time steps
to the assimilation. To carry out the experimental study we
apply the DA framework to a forecasting system consist-
ing of a loosely coupled hydrologic model (SUPERFLEX)
and hydraulic model (LISFLOOD-FP). The meteorological
data that are used to run the experiments are derived from
the ERA5 archive with a spatial resolution of 25 km and a
temporal resolution of 1 h. The SAR data are synthetically
generated with a pixel spacing of 75 m.

2 Methods

The proposed methodology is based on numerical experi-
ments conducted with synthetically generated data as illus-
trated in the flow chart given in Fig. 1. In this framework, the
following data inputs and models are employed:

1. True rainfall time series are used to generate the true
hydrologic–hydraulic model simulation.

2. Synthetic SAR observations are generated from the true
model run (i.e., from the simulated flood extent map).

3. The true rainfall time series are randomly perturbed and
used as inputs of the hydrologic model. The simulated
discharge data are then used as boundary conditions to
produce an ensemble of hydraulic model runs.

4. The synthetic SAR observations are assimilated into the
coupled hydrologic–hydraulic model via different vari-
ants of the particle filter (PF).

The three conducted experiments are summarized as fol-
lows:

a. An application of the standard PF where degeneracy oc-
curs.

b. An application of the adapted PF where a tempering co-
efficient is used to reduce degeneracy. We also investi-
gated the sensitivity of the DA results to different values
for the tempering coefficient, corresponding to the EES
of 5 %, 10 %, 20 %, and 50 %.

c. An application of both proposed methods with artifi-
cially introduced known errors into the SAR image clas-
sification in order to evaluate the impact of these errors
on the DA performance metrics.

Figure 1. Flow chart of the synthetic experiment. The true rainfall
is perturbed. The same flood forecasting model structure composed
of a hydrologic model and a hydraulic model is used to obtain the
probabilistic flood map and the ensemble of binary flood maps. The
probabilistic flood map is assimilated into the ensemble of binary
flood maps via the particle filter to obtain the weights with which
the expectation of water levels, streamflow, and flood extents are
computed.

2.1 Coupled hydrologic–hydraulic model: synthetic
truth and ensemble

The coupled modeling system consists of a hydrologic model
coupled with a hydraulic model. The hydrologic model is
used to compute the runoff at the upstream boundaries of the
hydraulic model. The hydrologic model used in this study
is SUPERFLEX, which is a framework for conceptual hy-
drologic modeling introduced by Fenicia et al. (2011). The
model structure is a combination of generic components:
reservoirs, connection elements, and lag functions. In this
study, a lumped conceptual model and its structure as a com-
bination of three reservoirs are used: an unsaturated soil
reservoir with storage SUR, a fast-reacting reservoir with stor-
age SFR, and a slow-reacting reservoir with storage SSR. A
lag function has been added at the outlet of the slow- and
fast-reacting reservoirs.

https://doi.org/10.5194/hess-25-4081-2021 Hydrol. Earth Syst. Sci., 25, 4081–4097, 2021
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The hydraulic model is based on LISFLOOD-FP (Bates
and Roo, 2000; Neal et al., 2012) and simulates flood ex-
tent, water levels, and streamflows along the river and on
the floodplain. A sub-grid 1D kinematic solver is used for
the channel flow. When the storage capacity of the river is
exceeded, the water spills into the floodplain and a 2D dif-
fusion wave scheme neglecting the convective acceleration
(de Almeida and Bates, 2013; Bates et al., 2010) is used for
the floodplain flow simulation.

The true meteorological data (i.e., temperature and rain-
fall) are used as input for the hydrologic–hydraulic model
to simulate streamflow and water level time series and to
provide binary flood maps, where each pixel is classified as
flooded (with value 1) or non-flooded (with value 0) at each
assimilation time step. These computational results represent
the synthetic truth that will be used to evaluate the perfor-
mance of the proposed assimilation framework. The true bi-
nary flood maps are also used to generate the synthetic SAR
observations as described in the next section.

2.2 Synthetic observations

In the proposed synthetic experiment, we generate synthetic
SAR images at each assimilation time step. The SAR im-
ages are generated with the same spatial resolution of the
LISFLOOD-FP maps. Similarly to the Van Wesemael (2019)
study, we make use of a real SAR image, acquired during
a flood event in the past, and of the LISFLOOD-FP model
to generate true binary flood maps. The histogram of the
SAR image backscatter values can be approximated with two
Gaussian curves relative to the flooded and non-flooded pixel
classes. Generally, the class of flooded pixels is often repre-
sented just by a fraction of the SAR image scenes. There-
fore, to identify and characterize areas where the flooded and
non-flooded classes are more balanced, the hierarchical split-
based approach (HSBA; Chini et al., 2017) is applied to the
selected SAR image. The parameters of the Gaussian PDFs
are determined by fitting the histogram values of the HSBA
selected areas.

Then, random backscatter values, derived from the cali-
brated Gaussian PDFs, are associated with the pixels of the
true binary flood map indicating the presence of water and
no-water areas. Once the synthetic SAR images are gener-
ated, the Giustarini et al. (2016) procedure is applied and syn-
thetic PFMs are derived. The probability of being flooded,
given the recorded backscatter values for each pixel of a SAR
image p(F |σ 0), is obtained via the Bayes’ theorem:

p
(
F |σ 0

)
=
p
(
σ 0
|F
)
p(F)

p
(
σ 0
)

=
p
(
σ 0
|F
)
p(F)

p
(
σ 0|F

)
p(F)+p

(
σ 0|F

)
p(F)

. (1)

In Eq. (1), p(σ 0
|F) and p(σ 0

|F) represent, respectively, the
probability of the backscatter values of the flooded and non-

flooded pixels, p(F) is the prior probability of a pixel be-
ing flooded, and p(F) is the prior probability of a pixel be-
ing non-flooded before any backscatter information is taken
into account. The conditional probabilities are derived from
the histogram of the backscatter values estimated from the
synthetically generated SAR image. The prior probabilities
can be estimated from the flood extent model output or
through visual interpretation of aerial photography in real
cases. However, in general such information is not always
available and the prior probabilities are unknown. Conse-
quently, Giustarini et al. (2016) set the prior probability of
Eq. (1) to 0.5 so that both flooded and non-flooded pixels are
equally likely. While this study is based on a synthetic ex-
periment, true binary flood extent maps are available. There-
fore, the assimilation is realized using both the estimated
prior probability (as the ratio between the flooded area and
the total area) and the prior probability equal to 0.5. Given
the similarity of the results for both cases, in the following
sections we only discuss the experiment using the estimated
prior probability.

The method proposed by Giustarini et al. (2016) aims
to characterize the speckle-induced uncertainty. However,
it does not consider any other phenomena leading to a
wrong classification in SAR-based flood maps. Particular at-
mospheric conditions (e.g., wind, snow, and precipitation),
water-lookalike areas (e.g., asphalt, sand, and shadow), or
obstructing objects (e.g., dense canopy and buildings), as
mentioned in Giustarini et al. (2015), can lead to a wrong
classification in the flood maps. Therefore, the areas where
such errors could occur should be masked out from the SAR-
based flood maps in order to provide reliable flood detection.

In the first part of this study, SAR observations are consid-
ered without errors. In the second part, these kinds of errors
are integrated in the synthetic SAR observations to evalu-
ate their effect on the DA. Specifically, the pixels along the
flood edge of each particle are selected. From this set, a given
number of those pixels effectively flooded in the true binary
flood map are artificially corrupted so that they belong to dry
pixels. The number of corrupted pixels depends on the mag-
nitude of the error that we want to introduce in the SAR ob-
servations.

2.3 Ensemble generation

In a PF, the prior and posterior PDFs are approximated by a
set of particles. Here, we hypothesize that rainfall is the only
source of uncertainty affecting the model-based flood extent
simulations. For this reason, an ensemble of rainfall time se-
ries is used as input for the coupled hydrologic–hydraulic
model. Each rainfall time series is obtained by perturbing,
with a multiplicative random noise from a log-normal error
distribution, the true rainfall time series following the ap-
proach proposed in Hostache et al. (2018). Via the hydrologic
model, 128 rainfall time series are obtained and forwarded in
time.

Hydrol. Earth Syst. Sci., 25, 4081–4097, 2021 https://doi.org/10.5194/hess-25-4081-2021
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It is important to note that the same hydrologic–hydraulic
model in terms of structure, initial conditions, and parame-
ters is used for all model runs. The reliability of the rainfall
ensemble is verified with the statistical metrics proposed by
De Lannoy et al. (2006). According to the verification mea-
surement VM1 in Eq. (2):

VM1 =
< ensk>
< ensp>

≈ 1. (2)

The ensemble spread in Eq. (3) (where xk,n represents the
value of the variable x at time k for each pixel n)

enspk =
1
N

N∑
n=1

(
xk,n− xk

)2 (3)

has to be close to the ensemble skill (Eq. 4)

enskk = (xk − yk) , (4)

which is the difference between the mean xk over the N par-
ticles of the ensemble and the observation yk at time k. VM2
(Eq. 5) verifies that the truth is statistically indistinguishable
from the random samples of the ensemble.

VM2 =
< ensk>
<mse>

≈
(N + 1)

2N
(5)

with “mse” estimated as:

msek =
1
N

N∑
n=1

(
xk,n− yk

)2
. (6)

VM1 and VM2 are used to assess the quality of the discharge
ensemble at the output of the hydrologic model.

2.4 Data assimilation framework

The DA framework consists of two main steps: prediction,
i.e., model simulations, and analysis, i.e., update of parti-
cle probabilities when an observation is available. The prior
probability of the model state x at a given time k is repre-
sented by a set of N independent random particles xn sam-
pled from the prior probability distribution p(x) as

p(x)=
1
N

N∑
n=1

δ (x− xn) , (7)

where δ is the Dirac delta function. In this study, the prior
probability distribution is assumed to be uniform. The obser-
vations of flooded or non-flooded pixels y are related to the
true state xt according to the following equation:

y =H
[
xt
]
+ ε, (8)

where H is the observation operator that maps the state vec-
tor into the observation space and ε represents the observa-
tion errors. According to the Bayes’ theorem, the observa-
tions are assimilated by multiplying the prior PDF p(x) and

the likelihood p(y|x), which is the probability density of the
observation given the model state, and dividing by the total
probability p(y), resulting in

p(x|y)=
p(y|x)

p(y)
p(x), (9)

which is the posterior probability p(x|y), i.e., the probability
density function of the model state given the observations.
By inserting Eq. (7) into Eq. (9) we obtain the following for-
mula:

p(x|y)≈

N∑
n=1

Wnδ (x− xn) , (10)

where Wn represents the relative importance in the probabil-
ity density function (i.e., global weight) given by

Wn =
p(y|xn)

N ·p(y)
=

p(y|xn)

N ·
∫
p(y|x)p(x)δx

≈
p(y|xn)∑
p
(
y|xj

) . (11)

In this study, the likelihood (global weight, Wn) is rep-
resented by the product of the pixel-based likelihood (local
weight, wi), assuming the L pixel observation errors are in-
dependent from each other. At time k of the observation, lo-
cal weights wi,n are defined for each particle n and for each
pixel i according to Hostache et al. (2018):

wi,n = pi (F |σ0)Mi,n+
[
1−pi (F |σ0)

](
1−Mi,n

)
. (12)

wi,n is equal to the probability of a pixel being flooded
as derived from the synthetically generated SAR image.
Mi,n is equal to 1 if the model predicts the pixel as flooded,
whereas Mi,n is equal to 0 if the model predicts the pixels as
non-flooded. We convert the model-based water depth maps
into binary flood extent maps by considering that a pixel is
flooded if its water level is above 10 cm. pi(F |σ0) equals the
probability of a pixel being flooded according to the obser-
vations, on conversely 1−pi(F |σ0) equals the probability
of not being flooded. By applying Eq. (12) we assign higher
probabilities to those pixels where model predictions and ob-
servations agree. Next, Wn is estimated for each particle by
the normalization of the product of the local weights ensur-
ing that the sum of the global weights is equal to 1 (Eq. 13;
standard method).

Wn =

L∏
i=1
wi,n

N∑
n=1

L∏
i=1
wi,n

(13)

The expectation of the OL is equivalent to the mean of the
ensemble because the relative importance of each particle is
the same. The global weights are used to compute the expec-
tation of the streamflows (Q) and water levels (h) at time (k)
and per pixel (i) after the assimilation (see Eqs. 14 and 15).

https://doi.org/10.5194/hess-25-4081-2021 Hydrol. Earth Syst. Sci., 25, 4081–4097, 2021
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hi =

N∑
n=1

Wn ·hi,n (14)

Qi =

N∑
n=1

Wn ·Qi,n (15)

The particles keep these global weights until the next as-
similation time. The particles are then set to the same equal
weight before a new analysis step is performed.

Unless the number of particles increases exponentially
with the dimension of the system state, the particle filter is
likely to degenerate because high probability is assigned to
a single particle while all other members will result in small
weights (van Leeuwen et al., 2019). PFs are often subject to
degeneracy issues when, due to computational reasons, the
number of particles is not sufficiently high (Zhu et al., 2016).
After the application of the standard PF, the variance of the
weights tend to increase and only a few particles of the en-
semble have a non-negligible weight. To mitigate this prob-
lem, in Hostache et al. (2018), the global weight defined in
Eq. (13) has been adapted using a tempering coefficient (α, as
described by the following Eq. 16).

Wn(α)=

L∏
i=1
wi,n

α

N∑
n=1

L∏
i=1
wi,nα

(16)

Since α and weights values are lower than 1, adding the
power of α in the weights formula allows for shifting all
weight values closer to 1. This therefore decreases the vari-
ance of the weights and inflates the posterior probability. Af-
ter the assimilation, the number of particles with significant
weight depends on the α value. The smaller the α, the higher
the variance of the posterior PDF. Consequently, as argued
in Hostache et al. (2018), when the α coefficient is small
enough, this adaptation of the PF helps reduce the degener-
acy of the ensemble. While in the previous study by Hostache
et al. (2018) the α value was defined so that the worst model
solution would have had a non-zero global weight, in this
study we propose to define α based on the desired effective
ensemble size (EES). The coefficient α in Hostache et al.
(2018) is site-dependent as it relies on the number of flooded
pixels, whereas in this study α is a function of the EES, which
is a measure of degeneracy based on the global weights (Aru-
lampalam et al., 2002):

EES(α)=
1

N∑
n=1

(Wn(α))
2
·

1
N
· 100. (17)

The EES is lower than N and its value indicates the level of
degeneracy. α is equal to 1 when the standard method is used.
Decreasing the α coefficient leads to an increase of the EES.

2.5 Performance metrics

To carry out the evaluation of the PFM statistics we have
used reliability plots. The results of the different assimilation
scenarios are evaluated on a spatiotemporal scale with the
following performance metrics:

– contingency maps and the confusion matrix

– critical success index (CSI)

– root mean square error (RMSE)

– discharge and water level time series.

2.5.1 Reliability plots

Reliability diagrams are employed to statistically evaluate
the synthetically generated PFMs. In such diagrams, the
probability range [0; 1] is subdivided into intervals of aver-
age probability Pi and width 1Pi . We identify the pixels �i
having a probability value of Pi±1Pi in the PFM. The frac-
tion of �i pixels effectively flooded in the binary truth map
are identified with Fi . The reliability diagram plots Pi on the
x axis and Fi on the y axis. A reliability diagram indicating
an alignment of data points close to the 1 : 1 line means that
the PFM is statistically reliable.

2.5.2 Contingency maps and confusion matrix

First, we use contingency maps to graphically compare the
expected flood map with the synthetic truth map at each as-
similation time step. Pixel classification errors can be of two
types: overprediction (type error I), when the pixels in the
truth map are non-flooded but are predicted as flooded, and
underprediction (type error II) in the opposite case. Then, the
confusion matrix numerically summarizes the results of the
contingency map. It is a 2 rows by 2 columns matrix that
reports the number of false positives (type I error), false neg-
atives (type II error), true positives, and true negatives.

2.5.3 CSI

The CSI evaluates the goodness of fit between the truth map
and the predicted flood extent map (Bates and Roo, 2000):

CSI=
A

A+B +C
. (18)

It represents the ratio between the number of pixels correctly
predicted as flooded (A) over the sum of all the flooded pixels
including the false positives (B; overdetection) and false neg-
atives (C; underdetection). The CSI ranges between 0 and 1
(best score). We also used it to evaluate the results at the as-
similation time step and the effect of the assimilation at sub-
sequent time steps. It has been also used to evaluate perfor-
mance when errors are added in the SAR observations.
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Figure 2. Study area: river Severn (UK). Only the boundary condition in Bewdley is taken into account. Within the sub-catchment upstream
of Bewdley a lumped hydrologic model is used to determine the input for the hydraulic model along the river Severn downstream. The dots
represent the existing gauging stations where the performance of the DA framework is evaluated. The black square is the hydraulic domain
where LISFLOOD-FP runs.

2.5.4 RMSE

The RMSE is considered an excellent error metric for numer-
ical predictions. The RMSE measures the square root of the
average square error of the predicted water levels (hp

k) against
the truth (ht

k) per pixel k over the total number of pixels L of
the flood domain.

RMSE=

√√√√√√ L∑
i=1

(
h

p
i −h

t
i

)
L

2

(19)

In this study, the RMSE is a measure of the global accu-
racy of the flood forecasting model predictions of water lev-
els, allowing us to compare prediction errors of the different
assimilation scenarios over the flood domain. The RMSE is
evaluated at the assimilation time and also at subsequent time
steps. It has been also used to evaluate performance when er-
rors are added in the SAR observations.

3 Study area and data

Our synthetic experiment is grounded on a real test site and
an actual storm event: the river Severn in the mid-west of
the UK (Fig. 2) and the July 2007 flood event, respectively.
This area has experienced several floods along the river val-
leys (Environment Agency, 2009) generally due to intense
precipitation.

While seven upstream catchments contribute to the flow
along the river Severn, in our study only one upstream catch-
ment is considered: the river Severn at the Bewdley gauging
station. Our first objective is to evaluate whether the model
correctly predicts the output in the simplest case, i.e., when
a unique runoff input to the hydraulic model determines the
flood extent and no additional contributing tributaries inter-
fere.

The ERA5 dataset (Hersbach et al., 2018) referring to
the period of July 2007 has been used in this experiment.
ERA5 is a global atmospheric re-analysis dataset provided
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF). Rainfall and 2 m air temperature at a spa-
tial resolution of approximately 25 km and a temporal reso-
lution of 1 h are used as input to the hydrologic model. The
true rainfall time series is used to generate the true runoff
before being perturbed in order to obtain 128 different parti-
cles as inputs to the hydrologic model. The boundary condi-
tion of the hydraulic model is imposed in the corresponding
red dot in Fig. 2. Channel width, channel depth, slope of ter-
rain, friction of the flood domain, and channel bathymetry
are defined in each cell of the model domain as described
in Wood et al. (2016). A uniform flow condition is imposed
downstream. No lateral inflow in the hydraulic model is as-
sumed. Finally, at each time step a stack of 128 wet/dry maps
is obtained. Discharges and water levels recorded at different
gauging stations (corresponding to the existing ones; dots in
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Fig. 2) along the river are used to evaluate the performance
of the DA.

4 Results

4.1 Synthetic SAR and ensemble generation and
evaluation

The virtual satellite acquisition dates are aligned with the ac-
tual Sentinel-1 acquisition frequency. The revisit time over
Europe, considering both ascending and descending orbits, is
around 3–4 d, meaning that on average two satellite images
are available per week. In order to adopt a realistic Sentinel-
1-like observation scenario we chose to assimilate four syn-
thetic observations over a period of 10 d.

In Figs. 3 and 4, the area corresponds to the hydraulic
model domain. The hydrologic model, covering the upstream
catchment, is used to compute the input boundary conditions
of the hydraulic model. The results are computed and com-
pared within the hydraulic model domain. The synthetic SAR
observations are shown in Fig. 3. The corresponding PFMs
are shown in Fig. 4 and reliability plots are provided in Fig. 5.
In the reliability plots, the points aligned along the 1 : 1 line
indicate a statistically reliable PFM.

The verification measurements VM1 and VM2 (Eqs. 2
and 5) of the ensemble discharge in Bewdley (Fig. 6) are
equal to 1.047 and 0.527, respectively. These values are close
to the ideal values of 1 and 0.5.

4.2 Evaluation of the flood extent map estimated at the
assimilation time

The CSI is computed over the entire hydraulic model domain
at each assimilation time step.

The general trend of the assimilation effect is positive, as
errors tend to decrease at all the assimilation steps with dif-
ferent assimilation methods. Even though the CSI is already
high with the OL, the assimilation further improves the re-
sults and this becomes particularly clear at the last assimila-
tion time step. From Table 1 it can be noticed that the CSI,
approximately equal to 0.80 with the OL in the worst case
(assimilation of the IV image), exceeds 0.96 for the different
assimilation types and reaches the maximum value of 0.99
with the standard method. In Fig. 7, we provide the contin-
gency maps of the OL and of the 5 % EES approach (results
of the standard method are similar to those of the 5 % EES
approach and therefore not shown). For each pair of images,
we show on the left the results of the OL and on the right the
results obtained after the assimilation.

In this study, it can be observed that the OL has a tendency
to overdetection; the number of red pixels is higher than the
number of black pixels and after the assimilation the num-
ber of overdetected pixels decreases, confirming the results
obtained with the CSI.

The confusion matrix given in Table 2 provides more de-
tails on the fourth assimilation time step. On one hand, the
number of pixels wrongly predicted as flooded in the OL
is 1196 and more than 90 % of these are correctly classified
as non-flooded after the assimilation for both the standard
and 5 % EES methods. On the other hand, a few pixels cor-
rectly predicted as flooded in the OL are classified as non-
flooded after the assimilation. However, it can be argued that
the number of 201 wrongly classified pixels after the assimi-
lation is rather low compared to the 1253 px of the OL.

4.3 Evaluation of the flood map estimated in time

The flood is simulated using an hourly time step. Conse-
quently, it is possible to evaluate the evolution of the per-
formance metrics CSI (Fig. 8).

This figure shows that the OL’s performance is consis-
tently poor and the standard assimilation performs best com-
pared to the other assimilation runs at all the assimilation
time steps.

The assimilation runs with different EES values lie within
these two extremes. It can be noted that the more particles
that are neglected, which is equivalent to saying the lower
the EES, the higher is the performance at the assimilation
time step.

Moreover, markedly different CSI time series for the dif-
ferent assimilation experiments are shown in Fig. 8.

After 27 h from the first assimilation, the performances of
the standard and 5 % EES methods, which perform better
than the other methods, start decreasing. The lowest values
are reached 54 h after the assimilation. One explanation is
that the weights assigned to the particles at the first assim-
ilation time are no longer valid when hydraulic conditions
change and need to be recomputed.

However, things change after the second assimilation,
when the performances of the standard and the 5 % EES as-
similation methods remain stable until the end of the simula-
tion time.

The decrease in performance attributed to the standard and
5 % assimilation methods after the first time step is due to
a drastic change in the flood extent. The total number of
flooded pixels reduces from 8539 to 5494 because the flood
started receding.

The spread of the posterior PDF with the standard and 5 %
EES methods is small, meaning that only a few particles re-
tain significant importance weight. Consequently, when the
flood extent changes and particles evolve in time, it may
happen that the uncertainty bounds of the posterior PDF
do not encompass the true model state after several time
steps. On the contrary, when more particles are considered
(higher EES), more particles are used to draw the posterior
PDF. This gives more chances for the ensemble to encom-
pass the synthetic truth and increases the overall robustness
of the method. This becomes particularly relevant when the
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Figure 3. Detail of the synthetic SAR images corresponding to the four assimilation time steps. Darker pixels correspond to lower backscatter.

Figure 4. Details of the synthetic probabilistic flood maps are derived from synthetic SAR images. The probabilities of being flooded given
the SAR backscatter values go from low values (yellow) to high values (blue).

Table 1. Critical success index values at each assimilation time step. The open loop (Fig. 6) where no assimilation is computed is compared
with the standard method and the adapted method with an increasing effective ensemble size (EES).

Assimilation Open Assimilation

times loop Standard 5 % EES 10 % EES 20 % EES 50 % EES

I image 0.9573 0.9887 0.9914 0.9866 0.9805 0.9779
II image 0.9202 0.9873 0.9800 0.9758 0.9658 0.9645
III image 0.9437 0.9921 0.9753 0.9690 0.9622 0.9636
IV image 0.7976 0.9881 0.9754 0.9638 0.9577 0.9610

Table 2. Confusion matrix of the OL and of the 5 % EES assimi-
lation at the fourth assimilation time step (OF= observed flooded
pixels in the truth map, ON= observed non-flooded pixels in the
truth map, PF= predicted flooded pixels, and PN= predicted non-
flooded pixels).

Assimilation
Open loop Standard (5 % EES)

PF PN PF PN PF PN

OF 4826 57 4748 135 4815 68
ON 1196 264 833 66 265 963 41 265 988

hydraulic boundary conditions change and no new observa-
tion is available.

4.4 Evaluation of the water levels in time over a global
scale

The RMSE, reported in Table 3 decreases by factors larger
than 2 and 3 with the standard assimilation and the 5% EES
assimilation, respectively. After the first assimilation, car-
ried out close to the flood peak in Saxons Lode, the accu-
racy of the water level is improved by approximately 20 cm
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Figure 5. Example of the reliability plots for the verification of the synthetic probabilistic flood maps of the first two synthetic SAR images.
On the x axis is the probability range (Pi ) and on the y axis is the fraction of pixels within the probability range of the probabilistic flood
map observed as flooded in the true binary flood map (Fi ). The probabilistic flood maps are statistically reliable because the points align
along the 1 : 1 line.

Figure 6. Streamflow time series (a) and water elevation time series (b) at the gauge station in Bewdley. Black lines represent the 128 particles
while the red line corresponds to the synthetic truth.

over the entire flood domain. The assimilation of the sec-
ond and fourth images has a negative effect when the adapted
method 50 % EES of the assimilation particle filter is applied;
the RMSE increases compared to the OL. As already shown
in Table 3, the standard assimilation and 5 % EES predic-
tions of water levels provide more accurate results (Fig. 9).
When moving away from the first assimilation, the RMSE
of the best performing assimilation methods increases. For
instance, after 54 h the RMSE of the standard method is in-
creased by 65 % compared to the RMSE of the OL. When
different values of EES are considered, the RMSE values
fluctuates significantly in between two assimilations and it
becomes difficult to draw any general conclusions. As the
number of important particles increases, water levels vary
significantly, especially in the area close to the flood edge
even though the flood extent does not change too much from
one particle to another.

4.5 Evaluation of discharge and water level time series

The different assimilation runs are also compared consider-
ing the discharges and water levels at different gauge sta-
tions along the river Severn. In the right panels of Figs. 10
and 11 the different assimilation experiments are compared
against the synthetic truth (red line). In the left panels of
Figs. 10 and 11 the standard method and the 5 % EES as-
similation with the important particles and the synthetic truth
are shown. The plotted important particles represent 5 % of
the ensemble with the largest weight. All 128 particles are
equally weighted until the first observation is assimilated.
After the first assimilation the number of important parti-
cles decreases. At the second assimilation time step, weights
are recomputed and the new important particles are selected
again and so on. The assimilation of the PFMs improves
the predictions of water levels and streamflow at specific
points of the river Severn, as in Bewdley and in Saxons
Lode (Figs. 10 and 11), for the majority of the assimilation
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Figure 7. Contingency maps before (open loop) and after assimilation at 5 % EES at each time step. Two types of errors can be distinguished:
overdetection (red pixels) when the model predicts the pixel as flooded but the pixel is observed as non-flooded and underdetection (black
pixels) when the contrary occurs. When the model and observations agree, pixels are correctly classified as non-flooded (white pixels) and
flooded (blue pixels).

Table 3. Root mean square error (RMSE [m]) at each assimilation time step. The open loop (Fig. 6) where no assimilation is computed is
compared with the standard method and the adapted method with an increasing effective ensemble size (EES).

Assimilation Open Assimilation

times loop Standard 5 % EES 10 % EES 20 % EES 50 % EES

I image 0.2608 0.0742 0.0608 0.0785 0.1501 0.1762
II image 0.1246 0.0526 0.1046 0.1278 0.1553 0.1704
III image 0.1604 0.0645 0.1103 0.1665 0.2154 0.2270
IV image 0.1702 0.0541 0.0619 0.1084 0.1899 0.2205

time steps in both underprediction and overprediction cases.
The standard method and similarly the 5 % EES assimila-
tion method are the most accurate in forecasting the values
of water levels and streamflows. The improvements due to
the assimilation persist for a long time: up to 27 h after the

first assimilation predictions are still close to the synthetic
truth. The local results of water levels suggest that the inac-
curacy of the global RMSE values in time is likely due to the
evaluation over the entire flood domain.
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Figure 8. Time series of the CSI of flood extent values for the different assimilation methods: open loop (green), standard assimilation
(black), assimilations with 5 % EES (blue), 10 % EES (cyan), 20 % EES (purple), and 50 % EES (orange).

Figure 9. Time series of root mean square error (RMSE [m]) values for the different assimilation experiments: open loop (green), standard
assimilation (black), assimilations with 5 % EES (blue), 10 % EES (cyan), 20 % EES (purple), and 50 % EES (orange).

4.6 Impact assessment of errors in SAR observations

In the previous section, speckle uncertainty in SAR obser-
vations is considered. However, in reality, SAR observations
are also susceptible to errors due to the misclassification of
wet/dry pixels caused by features on the ground as already
mentioned. Therefore, errors are added to the synthetic SAR
observations as described in the methodology to investigate
the impact on the DA assimilation framework. Figure 12
shows the RMSE and the CSI obtained at different assim-
ilation time steps. The best performing assimilation meth-
ods (i.e., standard and 5 % EES) with no error in the obser-
vations are compared with those where error is introduced.
With the misclassification of 20 % of the pixels, the assim-

ilation still has beneficial effects: the CSI increases at each
assimilation time step with respect to the OL. The RMSE
values also tend to be satisfactory after each assimilation.
With an increase in the error of 40 %, the performance of
the DA framework starts decreasing. The assimilation of the
first image still has a positive effect on the predictions. In
fact, the CSI and RMSE are improved with respect to the OL
even through the improvements are not as significant as in
the previous cases. The explanation is arguably to be found
in the high number of flooded pixels. It is large enough to
counterbalance the misclassified pixels in the SAR image.
Performance decreases with the assimilation of the remain-

Hydrol. Earth Syst. Sci., 25, 4081–4097, 2021 https://doi.org/10.5194/hess-25-4081-2021



C. Di Mauro et al.: Assimilation of probabilistic flood maps from SAR data 4093

Figure 10. Water level time series at Saxons Lode. (a) Assimilation runs with an EES of 5 % (blue), 20 % (cyan), and 50 % (orange) as well
as OL (green) and standard assimilation (black). (b) Particles carrying significant weight after the assimilation at 5 % EES (gray). Dashed
lines correspond to the assimilation times.

Figure 11. Streamflow time series at Bewdley. (a) Assimilation runs with an EES of 5 % (blue), 20 % (cyan), and 50 % (orange) as well as
OL (green) and standard assimilation (black). (b) Particles carrying significant weight after the assimilation at 5 % EES (gray). Dashed lines
correspond to the assimilation times.

ing SAR observations when the number of flooded pixels is
reduced by half.

5 Conclusions

Satellite images provide valuable information about flood ex-
tent that can complement or substitute in situ measurements.
The fact that several space agencies provide free access to
high-resolution satellite Earth observation data paves the way
for improving Earth Observation-based flood forecasting and
reanalyses worldwide. This study represents a follow-up of
the previous real-world case study by Hostache et al. (2018)
with the objective to further proceed in the evaluation of
the proposed DA framework once the assumptions are ef-
fectively satisfied. This study has been set up in a controlled
environment using a synthetically generated dataset in order
to make sure that the rainfall and SAR observations are the
only source of uncertainty. A common issue in particle filters
is degeneracy: the ensemble could collapse after the assimi-
lation because higher probabilities are assigned to a limited
number of particles. The tempering coefficient can be used

to reduce degeneracy because it inflates the posterior prob-
ability and reduces the peak of the likelihood. In this study,
we have evaluated the effect of variations of the α tempering
coefficient on the DA performance. Different PFs are com-
pared with the OL and the synthetic truth: the SIS (with only
a few particles from the ensemble potentially carrying non-
negligible weights) and the adapted method with 5 %, 10 %,
20 %, and 50 % EES (with the number of particles with non-
negligible weights increasing with the EES). This methodol-
ogy leads to slightly biased estimates because the observation
is down-weighted. In addition, we investigated the impact
of errors in the observations (i.e., errors in the SAR derived
PFMs due to dry water-lookalike pixels or emerging objects)
on the assimilation. Indeed, the main issue of using SAR
observations in flood forecasting models is the difficulty of
detecting the flooded area for specific cases (e.g., urban or
vegetated areas). At first, following the study from Hostache
et al. (2018), only speckle uncertainty of the SAR image is
taken into account in the PFMs. In a second step, an error to
reproduce misclassified pixels is introduced in the synthetic
SAR observations.
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Figure 12. The CSI values (a) and RMSE (b) after the standard assimilation of SAR observations free of errors (black), with 20 % errors
(gray), and with 40 % errors (light gray) as well as after the 5 % EES assimilation free of errors (blue), with 20 % errors (light blue), and with
40 % errors (cyan).

The following key conclusions can be drawn from our ex-
periments:

1. The best performing method is the standard method
(i.e., SIS). Importance weights are assigned to a limited
number of particles that better agree with the observa-
tions. At the time of the assimilation, results tend to be
very accurate: the forecasts move close to the synthetic
truth. The main weakness of the standard filter is that it
significantly suffers from degeneracy.

2. The 5 % effective ensemble size assimilation (mean-
ing that only the 5 % of the ensemble will have a non-
negligible weight after the assimilation) is slightly less
accurate at the time of the assimilation but it has the
advantage of reducing the degeneracy problem. Even
though a larger effective ensemble size prevents degen-
eracy, the results are less accurate and the performance
of the predictions are degraded.

3. Our study further shows that it is important to character-
ize and mask out errors in the SAR observations. A large
number of misclassified pixels substantially degrades
the DA performance. In our case study, results suggest
that an improvement of model simulations (i.e., water
level and streamflow) in terms of the CSI and RMSE
performance metrics is achieved as long as errors in the
observations are rather limited, i.e., when no more than
20 % of the pixels are affected. However, if the misclas-
sification goes beyond 40 % of the affected pixels, the
assimilation has no effect and may even lead to a degra-
dation of the model predictions.

6 Discussion

The results of our study confirm the effectiveness of the pro-
posed DA framework when the hypothesis of the rainfall
as the main source of uncertainty is verified. Consequently,

for those cases where rainfall represents the main source of
uncertainty, more obviously but not only in poorly and un-
gauged catchments and when using medium-range forecast-
ing models, our study results indicate that the application of
the approach described in this paper may lead to improved
results of the model simulations. For those cases where the
uncertainty of other sources becomes more relevant and may
even be dominant, it is clear that such sources need to be
taken into account explicitly. However, the required adapta-
tions of the proposed DA framework still need to be devel-
oped. In this context it is also worth mentioning that the limi-
tations identified in the previously published real-world case
study by Hostache et al. (2018) were explained by additional
sources of uncertainties not taken into account.

Using probabilistic flood maps or backscatter values in-
creases the number of observations to be assimilated when
compared to a method that only derives the flood edge from
satellite observations as reported in Cooper et al. (2018).
Moreover, the nearly direct use of the SAR information en-
ables faster end-to-end processing from the acquisition of the
image to the assimilation of the SAR data into the model,
which is beneficial for operational usage.

In our experiments, the improvements of model forecasts
of water level and streamflow are significant at the assimila-
tion time step and the improvements persist over subsequent
time steps (for example up to 27 h after the first assimilation
the model results outperform the open loop simulation). The
persistence of these improvements depends on the flashiness
of the flood event (i.e., the rapidity with which hydrologic
conditions change). More frequent image acquisitions could
help keep model predictions on track, especially when the
system is highly dynamic. The update of a state variable of
the forecasting model could as well increase the persistence
of the improvements. In our study none of the model state
variables is updated as only the particle weights are com-
puted, based on the SAR observations and on the simulated
flood extent maps, and used to calculate the expectation of
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water levels and streamflow. In previous studies (Andreadis
et al., 2007; Matgen et al., 2010; Cooper et al., 2019), inflow
updating was identified as a condition leading to more per-
sistent improvements. For instance, one of the conclusions
from the study by Matgen et al. (2010) was that updating
the fluxes at the upstream boundary conditions, rather than
the water levels, is more effective because of the high uncer-
tainty of the inflow due to the poorly known rainfall distribu-
tion over the catchment. Therefore, as a future perspective,
we aim to update hydrologic model states because it might
have a positive impact on the long-term runoff simulations
and consequently on the persistence of DA benefits.

Some modifications of the DA framework are still required
to fully overcome the issue of degeneracy. Although the use
of a smaller tempering coefficient leads to a larger effective
ensemble size (e.g., 50 %) and helps avoid degeneracy, the
results are less accurate compared to the standard method
or the adapted method with 5 % EES. As described in Neal
(1996) and in van Leeuwen et al. (2019), the tempering pro-
cedure consists of several steps, but in this study the tem-
pering coefficient is applied only to flatten the likelihood,
therefore down-weighting the observations. This most likely
explains why the data assimilation performs better when the
effective ensemble size (the number of non-negligible parti-
cles after the assimilation) is smaller. As already mentioned,
the present study has the aim of assessing and validating the
method proposed by Hostache et al. (2018) in a synthetic en-
vironment. Our DA framework can be applied to a variety
of flood inundation forecasting chains. In fact, the forecast
updating is carried out via sequential importance sampling
only (i.e., importance weights). Only the particle weights are
updated based on the observations and used to compute the
expectation (i.e., weighted mean) of the augmented state vec-
tor including hydraulic state variables of water depth plus
the flood extent and boundary conditions. In this study, the
hydrologic and hydraulic models are loosely coupled with
a one-way transfer of information as in many other studies
(e.g., Peckham et al., 2013; Hoch et al., 2017; Rajib et al.,
2020). The weights define the relative importance of the par-
ticles and thus of the inherent streamflow and stage along the
entire river. We acknowledge that the observed flood extent
is more closely linked to the past boundary conditions rather
than the boundary conditions corresponding to the assimila-
tion time steps. In spite of this limitation we argue that in this
synthetic experiment, the particles that performed best in the
past are also those that reach the highest performance level
at the time of the assimilation. This is illustrated in Figs. 10
and 11 where the use of updated weights is shown to enable
the correction of the state variables of the hydraulic model
both upstream and downstream. However, we recognize that
further improvements could be developed to address issues
such as spurious relations that may occur between SAR ob-
servations and model variables due to a rather small ensem-
ble size. Enlarging the ensemble size could be necessary if
this occurs.

We also argue that the method used in this paper has
the potential to support EO-based modeling at large scale.
This potential is particularly high in large, natural floodplains
where flood inundation remains present over long time peri-
ods. In spite of the increased frequency of satellite observa-
tions, the persistence of a flood over many days increases the
chance of its detection and mapping by satellite sensors. An-
other condition that needs to be satisfied is that there should
be an unambiguous relationship between the flood extent ob-
served by the spaceborne sensors and river discharge. This
also means that areas where backscatter variations are not
impacted by the appearance of floodwater (e.g., densely veg-
etated floodplains) should be rather small. Indeed, these con-
straints must be satisfied to enable a successful application of
the proposed framework and to take advantage of the analy-
sis carried out in this paper. Based on the above elements,
we argue that our approach is valid regardless of the type of
model coupling that is performed and is thus applicable to
many different forecasting systems. However, more research
is needed to fully understand the role of floodplain and water
basin characteristics and SAR data properties on the DA per-
formance. In a future study it is envisaged that to avoid de-
generacy and keep a larger effective ensemble size, the full
tempering scheme will be applied. Possible ways to adapt
and advance the proposed DA framework are currently un-
der development (e.g., updating a state variable of the model
and using an enhanced version of the adapted filter).
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