
A particle flow filter for high dimensional ‐
system applications 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Hu, C. C. ORCID: https://orcid.org/0000-0002-3020-8975 and ‐
Van Leeuwen, P. J. ORCID: https://orcid.org/0000-0003-2325-
5340 (2021) A particle flow filter for high dimensional system ‐
applications. Quarterly Journal of the Royal Meteorological 
Society, 147 (737). pp. 2352-2374. ISSN 1477-870X doi: 
10.1002/qj.4028 Available at 
https://centaur.reading.ac.uk/99535/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1002/qj.4028 
To link to this article DOI: http://dx.doi.org/10.1002/qj.4028 

Publisher: Royal Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Received: 15 December 2020 Revised: 15 March 2021 Accepted: 16 March 2021

DOI: 10.1002/qj.4028

R E S E A R C H A R T I C L E

A particle flow filter for high-dimensional
system applications

Chih-Chi Hu1 Peter Jan van Leeuwen1,2

1Department of Atmospheric Science,
Colorado State University, Fort Collins,
Colorado, USA
2Department of Meteorology, University
of Reading, Reading, UK

Correspondence
Chih-Chi Hu, Department of
Atmospheric Science, Colorado State
University, Fort Collins, CO, 80526, USA.
Email: chihchi.hu@colostate.edu

Funding information
Cooperative Institute for Research of the
Atmosphere; H2020 European Research
Council, Grant/Award Number: 694509

Abstract
A novel particle filter proposed recently, the particle flow filter (PFF), avoids the
long-existing weight degeneracy problem in particle filters and, therefore, has
great potential to be applied in high-dimensional systems. The PFF adopts the
idea of a particle flow, which sequentially pushes the particles from the prior
to the posterior distribution, without changing the weight of each particle. The
essence of the PFF is that it assumes the particle flow is embedded in a repro-
ducing kernel Hilbert space, so that a practical solution for the particle flow is
obtained. The particle flow is independent of the choice of kernel in the limit
of an infinite number of particles. Given a finite number of particles, we have
found that a scalar kernel fails in high-dimensional and sparsely observed set-
tings. A new matrix-valued kernel is proposed that prevents the collapse of the
marginal distribution of observed variables in a high-dimensional system. The
performance of the PFF is tested and compared with a well-tuned local ensem-
ble transform Kalman filter (LETKF) using the 1,000-dimensional Lorenz 96
model. It is shown that the PFF is comparable to the LETKF for linear observa-
tions, except that explicit covariance inflation is not necessary for the PFF. For
nonlinear observations, the PFF outperforms LETKF and is able to capture the
multimodal likelihood behavior, demonstrating that the PFF is a viable path to
fully nonlinear geophysical data assimilation.

K E Y W O R D S

high-dimensional system, kernel embedding, non-Gaussian distribution, nonlinear data
assimilation, particle filters, particle flows

1 INTRODUCTION

The advancement of numerical weather prediction
depends mainly on two factors: a model that can well
depict the evolution of the system, and a desirable
representation of the initial condition in the model. The
importance of the latter can be significant if the underlying
system is chaotic, in which case a small perturbation in

the initial condition can grow rapidly in a short period
of time. Data assimilation is a way to improve the initial
state of the system.

To be more specific, the goal of the data assimilation
is to sequentially estimate the probability of each possible
model state given the information of the model forecast
and observations. This means that the model state vector
x (in Rnx , where nx is the dimension of the model space) is
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treated as a random vector. The goal is then to best describe
the probability density function (pdf) of this random vec-
tor x, given both the model forecast and the observations.
We thus need to know how the forecast, or prior, pdf is
updated with the information of the observations y. In
other words, we need to find the conditional probability of
the model state given the knowledge of the observations.
Using Bayes’ theorem, the conditional probability p(x|y)
can be written as

p(x|y) = p(y|x)
p(y)

p(x) (1)

where p(x) is called the prior, p(y|x) is the likelihood, and
p(x|y) is the posterior pdf.

To specify the prior, we need to evaluate the evolu-
tion of the pdf in the system. However, such evaluation
of the pdf in a high-dimensional and nonlinear system is
unachievable because of the high computational cost. A
typical numerical weather prediction model has over 109

prognostic variables, and assimilates over 107 observations
every 6–12 hr (Van Leeuwen et al., 2019). A clever way to
obtain the pdf is to adopt Monte Carlo methods. Monte
Carlo methods are ways to approximate the evolution of a
pdf given by the nonlinear system. First, randomly sample
the initial pdf, and let the nonlinear system propagate the
state of each sample. Then, use the subsequent distribution
of the samples as an approximation of the prior pdf. How-
ever, it is difficult to infer the mathematical form of the pdf
given a finite number of samples. An easy and useful way is
to assume the pdf is Gaussian, and infer the statistics (i.e.,
mean and covariance) from the finite samples, as routinely
done in ensemble Kalman filters (EnKF, Evensen, 1994;
Houtekamer and Mitchell, 1998; Burgers et al., 1998; see
also Van Leeuwen, 2020 for a modern interpretation of the
original EnKF).

The likelihood contains the relation between model
state and the observations. If the observation errors are
assumed to be Gaussian, as can often be done, and if
the observation operator that relates the model state to
the observations is linear, then the likelihood is Gaussian.
Combined with a Gaussian prior, this leads to a Gaus-
sian posterior, and its mean and covariance can be derived
analytically; see, for example, the Kalman filter. How-
ever, when the observation is nonlinearly related to the
model state (for example, in the case of satellite radiance
observations), the Gaussian assumption for the likelihood
fails.

One way to relax the Gaussian assumption on the like-
lihood is to use iterative methods such as a variational
method. Variational methods seek the most likely model
state in the posterior pdf by directly setting the gradient of
the logarithm of the posterior pdf equal to zero. However,
the underlying Gauss–Newton iterations can only find the

solution closest to the first guess state, often taken as the
prior mean, which is not the optimal solution if the poste-
rior is multimodal. In addition, variational methods do not
provide complete error estimates of the posterior, although
they can be used to obtain an approximation of the inverse
of the Hessian at the local mode. Hybrid methods, which
combine ideas from ensemble Kalman filters and varia-
tional methods, suffer from similar problems when the
posterior pdf is multimodal.

Although the posterior pdf can often be expected to be
unimodal, for example, at the large scales in atmospheric
models, related to the enormous amount of observations,
it is well known that it can be multimodal at smaller
scales. While recent studies have shown successes for
data assimilation experiments using the EnKF or hybrids
with the variational method even in convective scales
(e.g., Snyder and Zhang, 2003; Zhang et al., 2009; Jones
et al., 2016), many of them need several ad hoc settings,
such as different ways to do the localization and the infla-
tion to tackle the inappropriate assumptions. Some stud-
ies have come up with some clever ways to adaptively
deal with these ad hoc settings (e.g., Zhang et al., 2004;
Anderson, 2007; Whitaker and Hamill, 2012; Ying and
Zhang, 2015; Minamide and Zhang, 2019). Nevertheless,
it is unclear whether the existing EnKF and variational
methods based on the inappropriate assumptions are opti-
mal. In other words, it is suggested that improvements on
existing methods are in high demand in many geoscience
data assimilation applications, and indeed possible.

One method that is not limited by any constraints
in the prior distribution and linearity assumptions is the
particle filter. It has the potential to better describe the
full posterior pdf. However, the standard particle filter is
known to suffer from the problem of weight degeneracy in
high-dimensional problems (e.g., see Snyder et al., 2008;
Van Leeuwen, 2009 for details). This problem has made
the application of particle filters in geoscience models dif-
ficult. Recently, much progress has been made to deal with
the weight degeneracy problems, including the usage of
the proposal density (e.g., Van Leeuwen, 2010), the intro-
duction of localization in particle filters (e.g., Bengtsson
et al., 2003; Van Leeuwen, 2003; Poterjoy, 2016; Poterjoy
et al., 2019), and methods that try to transform the vari-
ables to Gaussian variables (Chorin et al., 2010; Morzfeld
et al., 2012). See Van Leeuwen et al., 2019 for a detailed
review of these methods.

The so-called particle flow filter (Daum and
Huang, 2011), a relatively new development in parti-
cle filtering, keeps all the particles at equal weight all
the time. The particles are iteratively transformed from
the prior to the posterior in state space, without the
need to resample or to reweight the particles. Liu and
Wang (2016) developed a static variant that is applicable
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to high-dimensional spaces by embedding the trans-
formation in a reproducing kernel Hilbert space. The
sequential version of the Liu and Wang (2016) algorithm
was developed by Pulido and van Leeuwen (2019). Pulido
et al. (2019) successfully assimilated nonlinear obser-
vations, or observations with bimodal likelihood in the
40-variable Lorenz 1996 system. Since the PFF avoids
the weight degeneracy problem, it has the potential to be
applied in a high-dimensional system.

The motivation of this study is to investigate how to
apply the PFF to high-dimensional nonlinear problems,
and to compare the performance of the PFF with the
local ensemble transform Kalman filter (LETKF), which
has been widely used in geoscience applications. Special
emphasis will be given to the formulation of the ker-
nel, and it is shown that the scalar kernel used in ear-
lier versions is insufficient in high-dimensional sparsely
observed settings. A solution is found in matrix-valued ker-
nels. We also discuss ways to formulate the prior from
the forecast particles, another important ingredient in the
methodology.

The remainder of this paper is organized as follows:
Section 2 introduces the theoretical background for the
PFF, and the effect of the different kernels will be dis-
cussed. Section 3 describes the data assimilation exper-
iments used to evaluate the performance of the LETKF
and the PFF. Section 4 compares the experiment results
between a well-tuned LETKF and the PFF with linear
and nonlinear observations. Section 5 conducts sensitiv-
ity experiments to see the effect of different settings in the
PFF. Section 6 summarizes the results and discusses future
applications to geosciences models.

2 METHODOLOGY

2.1 Introduction to the particle flow
filter (PFF)

The particle flow filter (PFF, Pulido and van
Leeuwen, 2019) iteratively transforms the particles from
the prior to the posterior, with all their weights unchanged.
In fact, weights play no role in this methodology. Specif-
ically, the idea of particle flow is to (continuously)
transform each state vector such that the pdf of the model
state (recall that we treat the model state as a random
vector) is transformed from the prior pdf to the posterior
pdf. We define a pseudo time s, during which each state
vector is transformed. We can then formulate the idea
as

d
ds

xs = fs(xs), s ∈ [0,∞]

q0(x) = p(x)
q∞(x) = p(x|y) (2)

where xs is a state at pseudo time s, fs is the particle flow
(the transformation) that can be evaluated at each state at
pseudo time s, and qs is the intermediate pdf of the state
at pseudo time s: in particular, q0 is the prior pdf, and
q∞ is the targeted pdf, which in our case is the posterior
pdf.

The flow field fs has to be chosen such that the dis-
tance between the pdf at pseudo time s (qs) and the target
pdf q∞(x) = p(x|y) decreases as the pseudo time increases.
Here, the Kullback–Leibler divergence (KL divergence) is
used as a measure of this distance. (Formally the KL diver-
gence is not a distance measure because it is not symmetric
in its two arguments, but that is not a problem here.)
Specifically, the KL divergence between the intermediate
pdf at pseudo time s and the target pdf is

KL(qs) = ∫ qs(x) log
(

qs(x)
q∞(x)

)
dx (3)

For a given targeted pdf, and a given prior from the
forecast, the KL divergence is only a function of the inter-
mediate pdf at each pseudo time s. To be efficient, the
aim is to find the appropriate flow field fs at each pseudo
time such that the KL divergence can decrease as fast as
possible.

There is an infinite number of choices for the flow field.
To obtain a tractable solution, fs is assumed to be in a
reproducing kernel Hilbert space with a kernel K, which
is a mapping from Rnx × Rnx → Mnx×nx (R), where nx is the
dimension of the system and Mnx×nx (R) is a matrix of size
nx-by-nx. By this assumption, we can derive the flow field fs
such that the KL divergence always decreases with respect
to the pseudo time s (see Appendix for the derivations),
as

fs(⋅) = D∫ qs(x){K(x, ⋅)∇x log(p(x|y)) + ∇x ⋅ K(x, ⋅)}dx

(4)
where D is a positive-definite matrix that we can choose.
The matrix D is restricted in that it should ensure that the
physical dimensions of fs are those of the state vector, and
we choose it equal to the localized prior covariance matrix.
The Monte Carlo method is applied in the PFF. Denote the
state of particles as x1∶Np

s , where the superscript is the index
for particles and the subscript is the pseudo time. We use
the particle representation for the intermediate pdf qs(x),
as shown in Equation (5):

qs(x) =
1

Np

Np∑
i=1

𝛿(x − xi
s) (5)
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and, therefore, the flow field at pseudo time s in
Equation (4) can be written as

fs(x) =
1

Np
D

Np∑
i=1

{K(xi
s, x)∇xi

s
logp(xi

s|y) + ∇xi
s
⋅ K(xi

s, x)}

(6)
Note that we have replaced the dot in Equation (4)

with the state x whose particle flow is being evaluated in
Equation (6). This formula is general for evaluating the
transformation for any state, despite that we only need to
evaluate the transformation at x1∶Np

s for the Np particles.
To implement the PFF, we can discretize Equation (2) in
pseudo time, and use Equation (6) to evaluate the move-
ment of any state at pseudo time s to pseudo time s+Δs:

xs + Δs = xs +
Δs
Np

D
Np∑
i=1

{K(xi
s, xs)∇xi

s
log p(xi

s|y) + ∇xi
s
⋅ K(xi

s, xs)} (7)

with small Δs.
The first term on the right-hand side (RHS) of

Equation (6) is an attracting term, which drives the state
toward the local maximum of the posterior pdf, as the gra-
dient of a function points toward its local maximum value.
The kernel K(xi

s, x) measures how each particle x1∶Np
s con-

tributes to the local particle flow of the state x that is being
evaluated. Therefore, the kernel in the first term acts as a
weighting coefficient for each ∇xi

s
logp(xi

s|y). Note that the
kernel should give larger weighting to those particles that
are close to x to get an accurate average gradient of the
posterior for state x. In other words, the first term is the
smoothed gradient at the state x represented by the neigh-
boring particles. Figure 1a shows an example of how the
kernel works.

The second term on the RHS of Equation (6) acts
as a repelling term. To demonstrate its repelling nature,
assume we have a scalar kernel:

K(xi
s, x) = K(xi

s, x)Inx (8)

where K is a function from Rnx × Rnx → R, for instance:

K(xi
s, x) = exp

(
−1

2
(xi

s − x)TA(xi
s − x)

)
(9)

Then, the divergence of the kernel is reduced to the
gradient of the scalar function:

∇xi
s
⋅ K(xi

s, x) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕

𝜕xi
1
K(xi

s, x)
𝜕

𝜕xi
2
K(xi

s, x)

⋮
𝜕

𝜕xi
nx

K(xi
s, x)

⎤⎥⎥⎥⎥⎥⎥⎦
= ∇xi

s
K(xi

s, x) (10)

F I G U R E 1 Demonstration of how the particle flow is
represented by particles. The black dots are the states of particles,
and the gray dot is the state x at which the particle flow is being
evaluated. The shaded gray circles are the kernel, with darker
shading representing greater value. (a) The weighted average of the
gradient of the logarithm of posterior (the first term in Equation (6)).
The dashed contours denote the posterior pdf. The solid arrows are
the gradients at particles xi

s and xj
s, which point toward the local

maximum of the posterior pdf. The dashed arrow is the weighted
average of the two solid arrows. Since xi

s has a larger kernel value,
the particle flow evaluated at x has a larger portion from xi

s than
from xj

s. (b) The divergence from the kernel (the second term in
Equation (6)). The solid arrow is the direction of the gradient of the
scalar kernel evaluated at the particle xi

s, while this flow is actually
acting on the state x, which is shown by the dashed arrow

Figure 1b shows an example. The gradient of the ker-
nel should be evaluated at the particle positions xi

s (i.e., x
is fixed), and hence points from the particle xi

s toward the
state being evaluated x, while this “force” is actually act-
ing on the state being evaluated x. That is, the gradient
of the kernel tends to separate the state being evaluated x
from each of the particles xi

s. Note that this behavior is true
for any form of the kernel that maximizes when its two
arguments are the same.

We can summarize the effect of each term in the par-
ticle flow as follows. Suppose that the posterior is a uni-
modal distribution; then the first term in the particle flow
tends to make all the particles collapse into the mode,
which is similar to the variational method in finding the
most likely state. The second term tends to separate the
particles from each other. When all the particles reach a
steady state between these two forces, the distribution of
the particles will follow the posterior pdf.

When evaluating Equation (6), the gradients of the
logarithm of posterior (see Section 2.2) and of the kernel
(see Section 2.3) need to be determined, which will be
discussed in the following sections.

2.2 The logarithm of the posterior
in the PFF

The gradient of the logarithm of the posterior can be
calculated analytically if we specify the form of the prior
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and the likelihood. This is exactly the same as in a vari-
ational method. Specifically, based on Bayes’ theorem
(Equation (1)), we have

∇x log p(x|y) = ∇x log p(y|x) + ∇x log p(x) (11)

To evaluate the gradient of the logarithm of the likeli-
hood, we could, for instance, assume a Gaussian observa-
tional error, leading to

log p(y|x) ∝ −1
2
||y − H(x)||R (12)

where ||y−H(x)||R = (y−H(x))TR−1(y−H(x)), H is the
observation operator, and R is the observation error covari-
ance. Therefore, the gradient of the logarithm of likelihood
can be obtained analytically,

∇x log p(y|x) = HTR−1(y − H(x)) (13)

where H is the linearized observation operator:

H ≔ dH
dx

(x) (14)

Note that the observation error distribution does not
have to be Gaussian in the PFF. This is a strong point of the
PFF since the observation error may be non-Gaussian, for
instance, when the observation operator H has a complex
representation error.

When the observation operator H is linear, the lin-
earized observation operator H is independent of the state
x. In the EnKF, the observation operator H is typically eval-
uated at each ensemble member, after which covariance
is determined between state and observation space. This
covariance is not state dependent, which is not optimal if
H is highly nonlinear. The advantage of the PFF is that it
can evaluate H locally for each ensemble member, which
gives the PFF great potential to be applied to nonlinear
problems.

For the gradient of the prior, we can for instance
assume the prior to be Gaussian distributed, so that the
gradient can be obtained analytically as

∇x log p(x) = B−1(x − xb) (15)

where xb and B are the prior mean and covariance matrix,
respectively. Note that also the prior does not have to be
the Gaussian in the PFF. Any form of pdf can be used for
the prior in PFF as long as the gradient of its logarithm can
be easily obtained.

2.3 The choice of kernel

The solution of the PFF is independent of the choice of
the kernel for an infinite ensemble size (Lu et al., 2019).

However, with only a finite number of particles, the parti-
cle distribution may not be unique. In other words, given
different kernels (i.e., resulting in different particle flows),
the final position of the particles in state space will be dif-
ferent, but their statistics should represent the posterior
pdf as accurately as possible.

When the PFF was first developed, the kernel was
chosen to be diagonal and isotropic, that is,

K(x, z) = K(x, z)Inx (16)

where K is a function from Rnx × Rnx → R:

K(x, z) = exp
(
−1

2
(x − z)TA(x − z)

)
(17)

and A is a matrix that can properly define the distance
between particles in space. For example, we can choose A
to be proportional to the inverse of the prior covariance:

A = (𝛼B)−1 (18)

To contrast with a kernel that will be introduced later,
we will refer to the kernel in Equation (16) as the scalar
kernel. The divergence of the scalar kernel is

∇x ⋅ K(x, z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕

𝜕x1
K(x, z)

𝜕

𝜕x2
K(x, z)

⋮

𝜕

𝜕xnx
K(x, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −AT(x − z)K(x, z) (19)

Pulido and van Leeuwen (2019) have shown that the
scalar kernel works well for the 40-variable Lorenz 96 sys-
tem with 20 observations (50% of the system is observed).
Lu et al. (2019) has shown what any symmetric smooth
kernel will do when the ensemble size is infinitely large,
but when the ensemble size is much smaller than the
dimension of the system, care needs to be taken in for-
mulating the kernel. When we extend the system to 1,000
variables with 250 observations (25% of the system is
observed), problems arise when using the scalar kernel, no
matter the specific shape of K.

In this study, we generalize the scalar kernel to the
matrix-valued kernel with

K(x, z) = diag([K(1)(x, z),K(2)(x, z), … ,K(nx)(x, z)]) (20)

where

K(a)(x, z) = K(a)(x(a), z(a)) = exp
(
−1

2
(x(a) − z(a))2

𝛼𝜎(a)2

)
(21)
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where x(a) is the a-th component of the vector x, that is,

x =

⎡⎢⎢⎢⎢⎢⎣

x(1)
x(2)
⋮

x(nx)

⎤⎥⎥⎥⎥⎥⎦
(22)

and 𝜎(a) is the SD of the a-th component for the prior, and
𝛼 is a tunable multiplication factor determining the width
of kernel, which is chosen to be the reciprocal of the num-
ber of particles. The sensitivity of the PFF to the kernel
width 𝛼 will be discussed in Section 5. The divergence of
the matrix-valued kernel is

∇xi
s
⋅ K(xi

s, x) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕

𝜕xi
1
K(1)(xi

s,(1), x(1))
𝜕

𝜕xi
2
K(2)(xi

s,(2), x(2))

⋮
𝜕

𝜕xi
nx

K(nx)(x
i
s,(nx)

, x(nx))

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(

xi
s,(1)−x(1)
𝛼𝜎(1)

2

)
K(1)(xi

s,(1), x(1))

−
(

xi
s,(2)−x(2)
𝛼𝜎(2)

2

)
K(2)(xi

s,(2), x(2))

⋮

−
(

xi
s,(nx )

−x(nx )

𝛼𝜎(nx )
2

)
K(nx)(x

i
s,(nx)

, x(nx))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

We note that the most important difference between
the scalar (Equation (16)) and the matrix-valued
(Equation (20)) kernel is that, in the scalar kernel, the
value of kernel is the same for all components of the two
given particles, while that is typically not true for the
matrix-valued kernel. The value of the scalar kernel can
be seen as a generalized distance between particles. In
other words, we only measure a single distance in the
whole state space between two particles using the scalar
kernel, while we independently measure the distances in
each component using the matrix-valued kernel. (That
is, we obtain nx distances between two particles in the
matrix-valued kernel.)

The differences in particle flow from using these
two kernels become apparent when the convergence rate
between components of the state is very different, which is
the case when we only partially observe the system. Specif-
ically, the convergence rate for the observed components is
usually much faster than that for the unobserved compo-
nents. In this case, even though the particles become very
close in the observed component, the distance between
two particles in terms of the full states can still be large
because of the unobserved components, and hence, the
value of the kernel can still be small when using the

scalar kernel. In contrast, when the matrix-valued ker-
nel is used, each component in the state vector feels its
closeness of the corresponding component in the other
particle. Specifically, the observed components feel each
other independent of the unobserved components, and the
kernel value on the observed component can be large when
the observed components are close.

In addition to the value of the kernel, the divergence of
the kernel also makes the particle flows from two kernels
different. Specifically, for the scalar kernel, the divergence
of the kernel (Equation (19)) is proportional to the value
of the kernel itself. Each component of the divergence of
the kernel is scaled by the same kernel value. When the
observed components of the two particles become very
close, the value of the kernel can still be negligible because
of the contribution of the unobserved components, as dis-
cussed in the last paragraph. This means that the mag-
nitude of the divergence of the kernel is also negligible.
Therefore, the repelling force is too weak to separate the
particles away from each other in the observed compo-
nent using the scalar kernel, leading to particles collapsing
toward the mode in the observed component. On the other
hand, for the matrix-valued kernel, the value of each com-
ponent in the divergence of the kernel (Equation (23)) is
only proportional to how distance between two particles
on this component behaves, and hence, the repelling force
on the observed components can be effective.

Figure 2 shows a two-dimensional example of the dif-
ference in behavior of the two kernels. Suppose x1 is
the unobserved component and x2 is the observed com-
ponent. When x1 and x2 converge at a similar rate so
that two particles become close in both directions at the
same time, the difference of the repelling force (i.e., the
divergence of kernel) between the two kernels is small
(Figure 2a,b). This can occur when the observation has a
strong impact on (or is highly correlated with) the update
of the unobserved variable. When the unobserved compo-
nent converges much slower than the observed component
in Figure 2c,d, the repelling force of the scalar kernel
remains small even though the observed components are
very close (Figure 2d), leading to collapse of the particles
onto the posterior mode in that direction. However, the
matrix-valued kernel with independent repelling force in
each component leads to a strong repelling force on the
observed components (Figure 2c), avoiding the collapse on
the posterior mode. We note that the divergence of the ker-
nel is not only dependent on the kernel value but also on
the factor in front, but the value of the kernel part turns
out to be most important.

We demonstrate the difference of the posterior solu-
tion using the scalar and matrix-valued kernel in the
1,000-dimensional Lorenz 96 system detailed in Section 3.
Figure 3 shows the posterior marginal distribution of the
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F I G U R E 2 Comparison of the divergence of kernel between
(a, c) the matrix-valued kernel and (b, d) the scalar kernel. The
shading is the scalar kernel (which is assumed to be an independent
Gaussian with equal variance), the black dots are the particles, and
the black arrows are the repelling forces resulting from the
divergence of kernel. x1 denotes an unobserved component, and x2
is an observed component. (a, b) Divergence for both kernels when
the convergence rate of observed and unobserved components is
similar, leading to similar repelling forces. (c, d) Divergence for both
kernels when the convergence rate of the observed component is
larger than that of the unobserved component. For the scalar
kernel, the repelling force is small in all directions, such that the
particles collapse to the posterior mode in the observed component.
The matrix-valued kernel shows the correct behavior with a strong
repellent force for the observed component because the divergence
is allowed to be very different for the different components

variable x(19) (unobserved component) and x(20) (observed
component) after the first data assimilation update. This is
similar to the case in Figure 2c,d: the matrix-valued kernel
is able to keep particles away from each other, prevent-
ing the collapse in the observed component (Figure 3a),
while the particles collapse for x(20) using the scalar kernel
(Figure 3b).

As a final note, the matrix-valued kernel can be
more general than the diagonal version we explore here.
Off-diagonal elements could be used to communicate the
repelling force from one grid point to its neighbors. We
did not need that in the experiments below, but it is an
interesting path of research for the future.

2.4 Implementation of the PFF

Algorithm 1 summarizes the steps for implementing the
PFF. We can use the gradient descent method to push the
particles so that each particle is moved along the direction
of the steepest descent of the KL divergence. However, the
convergence rate using the gradient descent is too slow. We
use a quasi-Newton method with the prior covariance as

preconditioner to speed up convergence (see, e.g., Nocedal
and Wright, 2006). The calculation of the prior covariance
is required in the PFF, so there is no additional cost if we
choose the prior covariance as the preconditioner.

Another advantage of using the prior covariance as the
preconditioner is that it helps to maintain the dynami-
cal balance between the state variables. It is important in
the numerical weather prediction model that the initial
condition after the data assimilation update should stay
in a physically realistic regime and “balanced,” meaning
that the update does not put the system in an unbal-
anced state resulting in a rapid transition immediately
after the update, for example, by producing unrealistic
gravity waves, which will affect the quality of the forecast.

Algorithm 1

The algorithm below is provided to aid implemen-
tation for low-to-moderate dimensional systems. For
high-dimensional systems, modifications will be needed to
make the implementation more efficient

[Input to the algorithm]
xi

0 (i = 1, … ,Np) [the prior ensemble] (Nx × 1)
y [observation] (Ny × 1)
R [observation error covariance] (Ny ×Ny)

[Assume a Gaussian prior in this pseudo code]
x0 ← 1

Np

∑Np

i=1 xi
0 [ensemble mean] (Nx × 1)

X ← [x1
0 − x0, x2

0 − x0, … , xNp
0 − x0] [ensemble perturba-

tion matrix] (Nx ×Np)
B ← 1

Np−1
XXT [prior covariance matrix] (Nx ×Nx)

B←B ◦C [localization, see Equations (28) and (29)]
(Nx ×Nx)

s = 0 [pseudo time for the data assimilation]
repeat

for i = 1,… ,Np.
yi ← H(xi

s) [modeled observation] (Ny × 1)
Hi ← dH

dx
(xi

s) [linearized observation operator]
(Ny ×Nx)

∇logp(xi
s|y) ← HiTR−1(y − yi) − B−1(xi

s − x0)
[gradient of log posterior] (Nx × 1)

end for

for d = 1,… ,Nx
for i = 1,… ,Np

fs
i
(d) = 0 [the (d)-th component of the particle

flow for the i-th particle] (1× 1)
xi
(d) ← e(d)

Txi
s [the (d)-th component of xi

s]
(1× 1)

𝜕p
𝜕x

i

(d)
← e(d)

T𝛻logp(xi
s|y) [the (d)-th

component of 𝛻logp(xi
s|y)] (1× 1)
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F I G U R E 3 The prior and posterior marginal distribution of the variable x(19) (unobserved component) and x(20) (observed component)
before and after the first data assimilation update (t = 20) with linear observation operator defined in Equation (30), using the (a)
matrix-valued kernel (b) scalar kernel. The black circles are the particles for the prior, red circles are the particles for the posterior, and the
contour is the posterior covariance given by the ensemble Kalman filter [Colour figure can be viewed at wileyonlinelibrary.com]

for j = 1,… ,Np
xj
(d) ← e(d)

Txj
s [the (d)-th component of xj

s]
(1× 1)

Ki,j
(d) ← exp

(
− 1

2

(xi
(d)−xj

(d))
2

𝛼Bd,d

)
[the kernel

Equation (21)] (1× 1)
𝜕K
𝜕x

i,j

(d)
← −

(
xi
(d)−xj

(d)

𝛼Bd,d

)
Ki,j
(d) [the gradient of

kernel Equation (23)] (1× 1)
If

i
(d) ← If

i
(d) +

1
Np

(
Ki,j
(d)

𝜕p
𝜕x

i

(d)
+ 𝜕K

𝜕x
i,j

(d)

)
[integral part of Equation (6)] (1× 1)

end for
end for

end for

for i = 1,… ,Np
fi

s ← BIi
f [multiply integral by B to find particle

flow Equation (6)] (Nx × 1)
xi

s ← xi
s + Δsfi

s [Equation (7)] (Nx × 1)
end for
s← s+ 1

until stopping criterion met

[output of the algorithm]
xi

s (i = 1, … Np) [the posterior ensemble members]
(Nx × 1)

The pseudo time step (the time step for the iterations
in Equation (7)) Δs should be small enough to prevent
instability of the iterative procedure. We use an adaptive
scheme to determine the pseudo time step Δs to accelerate

the convergence. In general, we start with a small Δs at
the beginning, and gradually increase Δs during the iter-
ations. This is because at the beginning of the iterations
the magnitude of the particle flow is large and we need a
smaller Δs to ensure that the trajectories of the particles
do not cross in state space. At later iterations, the mag-
nitude of the particle flow becomes smaller, so we can
use a larger Δs to accelerate the convergence. Specifically,
we start with a small initial Δs based on trial and error,
ensuring that the particle flow will not blow up in the first
few iterations. Then, if the particle flow decreases for 20
pseudo time steps, we increase Δs by a factor of 1.4. If the
magnitude of the particle flow increases, we will decrease
Δs by a factor of 1.4. The initial Δs is chosen differently
for different observation types. For the linear and absolute
value observation, the initial Δs is 0.05, and for the square
and exponential observation, the initial Δs is 0.001. More
research is needed on how to accelerate the convergence
in particle flows, but the practical scheme outlined above
works well for our problem.

3 EXPERIMENTAL DESIGN

We compare the effect of the PFF and the local ensem-
ble transform Kalman filter (LETKF) by applying both
methods to the Lorenz 96 model. The equation for the
nx-dimensional Lorenz 96 model is

dx(a)
dt

= (x(a+1) − x(a−2))x(a−1) − x(a) + F (24)

http://wileyonlinelibrary.com
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where a = 1, … , nx and x(a) is the a-th component of the
state x defined in Equation (22). We set nx to 1,000 and F to
8. The fourth-order Runge–Kutta scheme is used, and the
time resolution is Δt = 0.01. The initial condition is set as

x(a)(t = 0) =

{
F, if mod(a, 5) ≠ 0
F + 1 if mod(a, 5) = 0

(25)

and the model is integrated for 1,000 time steps to generate
chaotic behavior. At t = 1,000, Np = 20 ensemble members
are generated by adding random perturbations, following
a normal distribution N(0, 2Inx×nx ). A run without the ran-
dom perturbation at t = 1,000 is taken as the truth. After
then, observations with random noise, following N(0, R),
where R = 𝜀Iny×ny (𝜀 will be different for different obser-
vation types) and ny is the number of observations, are
assimilated into the system every 20 time steps (which
roughly corresponds to every 24 hr in atmospheric mod-
els). The magnitude of the observational error 𝜀 depends
on the observation operators. The observation is taken at
every fourth variable in the system, which means only 25%
of the system is observed and ny =

nx
4

. Note that this is a
fixed-observing system, meaning that 75% of the system is
never observed. The ensemble and the truth are integrated
for 1,500 time steps.

To obtain a more statistically reliable comparison
between the PFF and the LETKF, the experiments
described above are averaged over 10 different random
realizations of the ensemble perturbations, the truth, and
the observation errors for both the PFF and the LETKF.
The only exception is for the square observation, in which
case we are not able to find suitable parameters for the
LETKF for 9 of the 10 realizations. In other words, the
model blows up before 1,500 time steps for these nine
realizations when using LETKF to assimilate the square
observation. Nevertheless, the model remains stable using
the PFF to assimilate square observations for all the 10
realizations. Therefore, when comparing the performance
of the LETKF and the PFF for assimilating the square
observation, the performance for the LETKF is evaluated
by only one realization, while for the PFF is by all the
10 realizations. For other observations, we will compare
the averaged performance of the results from all the 10
realizations in the following.

For both the PFF and the LETKF, we need to localize
the effect of the observations due to the fact that the dimen-
sion of system is much larger than the sample size. For
the LETKF, we update the system grid point by grid point,
using the localized observational error covariance Ri when
updating the i-th grid point:

Ri = R ◦ Ci (26)

where ◦ is the Schur product of the observational error
covariance and the matrix Ci:

Ci = diag

([
exp

{
−
(

d(i, 1)
rin

)2
}

,

exp

{
−
(

d(i, 2)
rin

)2
}

, … ,

exp

{
−
(d(i,ny)

rin

)2
}])

(27)

where d(i, j) is the distance between the i-th grid point
and the j-th observation, and rin is the decorrelation length
scale for the observation, which is set to rin = 4. The choice
of the decorrelation length scale rin is based on the prop-
erties of the Lorenz 96 system. We retain the covariance
between the state variables that are within three times the
decorrelation length scale from the observation location.
That is, 25 (= 1+ 2× 3× rin) state variables survive this
localization.

For the PFF, we assume a Gaussian prior in the stan-
dard experiment described here. We directly localize on
the prior covariance matrix:

B ← B ◦ C (28)

where

C = [ci,j]nx×nx , ci,j = exp

{
−
(

i − j
rin

)2
}

(29)

Note that rin is also set as 4 here.
We compare the performance of the PFF and the

LETKF using different types of observations, including
linear and nonlinear observations. The linear observation
operator is

Hlinear(x) =

⎡⎢⎢⎢⎢⎢⎣

x(4)
x(8)
⋮

x(nx)

⎤⎥⎥⎥⎥⎥⎦ny×1

(30)

The observational error is set as 𝜀= 0.5. For the nonlin-
ear observations, we consider several observational opera-
tors: absolute value, exponential, and square operator. For
the absolute value operator, which is

Habs(x) =

⎡⎢⎢⎢⎢⎢⎣

|x(4)||x(8)|
⋮|x(nx)|

⎤⎥⎥⎥⎥⎥⎦ny×1

(31)
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the pdf of the likelihood as function of the state will be
bimodal. The magnitude of the linearized observational
operator will be independent of the state. The observa-
tional error is set as 𝜀= 0.5. We will also test the behavior of
the methods for an exponential observation operator, given
by

Hexp(x) =

⎡⎢⎢⎢⎢⎢⎣

e
x(4)

6

e
x(8)

6

⋮

e
x(nx )

6

⎤⎥⎥⎥⎥⎥⎦ny×1

(32)

leading to a unimodal likelihood. However, the magnitude
of the linearized observational operator will depend on the
state. The observational error is set as 𝜀 = 0.01. Finally, for
the squared operator, given by

Hsquare(x) =

⎡⎢⎢⎢⎢⎢⎣

x(4)2

x(8)2

⋮

x(nx)
2

⎤⎥⎥⎥⎥⎥⎦ny×1

(33)

the pdf of the likelihood as function of the state will be
bimodal, and the magnitude of the linearized observation
operator will depend on the state, which is the most com-
plicated operator. The observational error is set as 𝜀 = 1.

4 RESULTS

The performance of the PFF is tested in a sequential data
assimilation experiment as described in Section 3. To com-
pare the results between the PFF and the LETKF, the
prior for the PFF is assumed to be Gaussian, which is the
same assumption as is used in the LETKF. The difference
between the PFF and the LETKF is then in the likeli-
hood. When the observation is linear, their performance
is expected to be similar. However, when the observation
is nonlinear, the non-Gaussian likelihood is expected to
cause differences in the two methods.

4.1 Linear observation operator

To quantitatively compare the results from different data
assimilation (DA) methods, the root mean square error
(RMSE) of all the variables (total RMSE) is used to evaluate
their performance:

RMSE_X(t) =

√√√√ 1
nx

nx∑
a=1

(x(a)(t) − xt(a)(t))2 (34)

where x(a) is the ensemble mean for the a-th component
of the state vector x and xt(a) is the a-th component of the
truth. We also compare the RMSE of the observed variables
alone for different experiments, which is

RMSE_X_OBS(t) =
√

1|OBS| ∑
(a)∈OBS

(x(a)(t) − xt(a)(t))2

(35)
where OBS = {4, 8, … , nx} is the set containing the indices
of the observed variables and |OBS| is the number of the
elements in the set OBS (|OBS| = ny =

nx
4

). Similarly, the
RMSE of the unobserved variables is

RMSE_X_NOOBS(t)

=
√

1|NOOBS| ∑
(a)∈NOOBS

(x(a)(t) − xt(a)(t))2 (36)

where NOOBS = {1, 2, … , nx} ⧵OBS and |NOOBS| = nx −
ny = 3

4
nx.

Figure 4 shows the RMSE of the LETKF and the PFF
results. Both methods show a reduced RMSE for both
observed and unobserved variables compared with the
ensemble without data assimilation (noDA ensemble). For
the LETKF without inflation, Figure 4a shows that its
RMSE of the observed variables decreases at the obser-
vation times. The RMSE of the unobserved variables also
decreases at most of the observation times before t = 800,
while it increases, instead, for most of the observation
times after t = 800. This suggests that the covariance
between observed and unobserved variables is not good
enough to update the unobserved variables correctly after
t = 800 for the LETKF without inflation. In addition, the
RMSE of the observed variables at the observation times
gradually increases with time. This suggests that the sys-
tem is gradually biased against the observations.

After extensive experimentation, we found the best
value for the inflation factor was 1.25 for the LETKF.
Figure 4b shows that the RMSE of the observed vari-
ables decreases to around 0.6–0.7 at almost all the obser-
vation times. The RMSE of the unobserved variables
also decreases for most of the observation times. This
suggests that with the inflated prior, the covariance
structure becomes better and LETKF is able to better fol-
low the system without the possible filter divergence as in
Figure 4a.

With a proper choice of the kernel width α in
Equation (21), we are able to have a stable RMSE of the
observed variables for the PFF either with or without
inflation of the prior (Figure 4c,d). However, it is found
that with the inflation of the prior in the PFF, the RMSE
of both observed and unobserved variables still slightly
decreases. Comparing the performance of the LETKF with
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F I G U R E 4 Root-mean-square
error (RMSE) of the noDA ensemble
(i.e., the ensemble with same initial
conditions but without data
assimilation, dashed lines) and with
data assimilation (solid lines) using (a)
the LETKF without inflation γ = 1, (b)
the LETKF with inflation factor
γ = 1.25, (c) the PFF without inflation
γ = 1 and with kernel width α = 0.05,
and (d) the PFF with inflation factor
γ = 1.25 and with kernel width
α = 0.01 [Colour figure can be viewed
at wileyonlinelibrary.com]

inflated prior (Figure 4b) and the PFF with inflated prior
(Figure 4d), we find their RMSE of the observed variables
comparable, while it is interesting to note that the PFF
has a slightly smaller RMSE of the unobserved variables
than the LETKF does. Generally, Figure 4 suggests that
the performance of the PFF is overall comparable to a
well-tuned LETKF when the observation is linearly related
to the model state.

In addition to the behavior of the mean, the “reliabili-
ty” of the ensemble is also important. A “reliable ensem-
ble” can defined as the ensemble in which “the truth and
the forecast ensemble can be considered samples from the
same probability distribution.” (Hamill, 2001). In other
words, the distribution represented by the ensemble is
indistinguishable from the distribution from which the
truth is drawn. To evaluate the reliability, the rank his-
togram is used as another measure of performance. A rank
histogram close to a uniform distribution is considered as
a necessary condition for a reliable ensemble.

The rank histogram of the observed variables in the
prior compared with the truth at the observation times is
shown in Figure 5. It is shown that the rank histogram
for the LETKF without inflation (Figure 5a) is close to
U-shape, suggesting that the ensemble may be either
biased against the truth or underdispersive. Based on
Figure 4a, since the RMSE of the observed variables at
observation times gradually increases with time, it can
be inferred that the ensemble is also gradually biased
against the truth. With inflation of the prior, the rank his-
togram from the LETKF becomes flat (Figure 5b). The
rank histogram from the PFF is quite close to the uni-
form distribution, despite that the ensemble is slightly

overdispersive (Figure 5c,d). The rank histogram for the
unobserved variables is similar to that of the observed
variables (not shown).

In a brief summary, we find that, for the linear observa-
tion, the PFF shows comparable results to the LETKF with
prior inflation. In the setup used here, both the PFF and
the LETKF assume a Gaussian prior, and the observation
operator is linear. In this case, we would expect that PFF
shows similar results with a well-tuned LETKF. Note that
both inflating the prior and tuning the kernel width (see
Section 5.1) for the PFF can make the posterior wider, to
prevent filter divergence. However, unlike the inflation for
the prior, the tuning of kernel width will not change the
position of the mean in the posterior. In other words, the
tuning of the kernel width retains most of the information
from both the prior and the observations. Note that when
there is evidence that the prior is underdispersive, we can
still inflate the prior for the PFF. This suggests that the PFF
is more flexible than the LETKF.

4.2 Nonlinear observation operators

When the model states are nonlinearly related to the obser-
vations, the likelihood is no longer Gaussian as a function
of the model state, making the posterior non-Gaussian too.
In this case, the mean of the ensemble model state may not
be representative of the behavior of the ensemble, and so
a RMSE in the model state may not be a useful measure of
performance, for example, when the posterior is a multi-
modal distribution. This happens for the square observa-
tion H(x) = x(4a)

2, where the observation operator is not

http://wileyonlinelibrary.com
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F I G U R E 5 Rank histogram of the observed variables for the prior compared with the truth at the observation times for the linear
observation. The ensemble from (a) the LETKF without inflation γ = 1, (b) the LETKF with inflation factor γ = 1.25, (c) the PFF without
inflation γ = 1 and with kernel width α = 0.05, and (d) the PFF with inflation factor γ = 1.25 and with kernel width α = 0.01

one-to-one even if we confine the domain to the subset of
the observed variable. To measure the performance of the
ensemble for the observed variables, instead, we compare
the RMSE defined in the observational space. Given that
the measurement error (the observation error in the obser-
vational space) is taken to be Gaussian, the posterior in the
observational space is expected to be closer to Gaussian,
and at least less likely to be multimodal. The RMSE of the
observed variables defined in the observational space is

RMSE_Y (t) =
√

1|OBS| ∑
(a)∈OBS

(y(a)(t) − yt(a)(t))2 (37)

where y(a) is the ensemble mean of the modeled observa-
tion given by the a-th component of the model state, as
defined in Equation (38):

y(a) =
1

Np

Np∑
i=1

H(xi
(a)) (38)

and yt(a) is the modeled observation given by the a-th
component of the truth,

yt(a) = H(xt,(a)) (39)

Figure 6 shows the RMSE and the spread of the observed
variables in the observational space for the nonlinear

observations. For the absolute value operator, both the
RMSE and the spread at observation times gradually
increase with time and become steady after t = 300 for
the LETKF, and the LETKF can still slightly improve the
ensemble compared with the noDA ensemble (Figure 6a).
For the exponential operator, the results from LETKF are
not very stable: the results are good before t = 400, but after
t = 400, the error sometimes grows very fast between the
observation times and sometimes is even larger than the
noDA ensemble (Figure 6c). Similar results can be found
for the square operator for the LETKF (Figure 6e). In con-
trast, the performance of the PFF for these three nonlinear
observations are all very good and stable (Figure 6b,d,f).
All of the three experiments show an improvement over
the noDA ensemble. We note that the parameters (infla-
tion factor and the localization radius) in LETKF for these
experiments are already the best: if the parameters are
changed even a small amount, the model blows up before
t = 1,500.

For the behavior of the unobserved variables, the
LETKF only shows an improvement in the RMSE for the
absolute value observation before t = 300 (Figure 7a),
for the exponential observation before t = 1,000
(Figure 7c). After that, the RMSE from the LETKF is
almost indistinguishable from the noDA ensemble for
the absolute value operator (Figure 7a), and becomes
even worse for the other two observational operators



HU and VAN LEEUWEN 13

F I G U R E 6 RMSE and the
ensemble spread of the observed
variables defined in the observational
space for the nonlinear observations.
The dashed lines are from the noDA
ensemble, and the solid lines are from
the (a, c, e) LETKF and (b, d, f) PFF.
The observation operator is (a, b) the
absolute value operator, (c, d) the
exponential operator, and (e, f) the
square operator [Colour figure can be
viewed at wileyonlinelibrary.com]

(Figure 7c,e). In contrast, the RMSE from the PFF shows
an improvement for all the observational operators over
the noDA ensemble (Figure 7b,d,f). It is worth noting that
for the PFF, the RMSE of the observed variables in model
space for the absolute value (Figure 7b) and square obser-
vations (Figure 7f) at observation times are quite variable,
while their values are very stable when evaluated in the
observation space (Figure 6b,f). This demonstrates the
problem of using the ensemble mean as a measure of the
performance when the posterior is possibly not unimodal
in the model space.

The rank histogram in the observational space is also
used to verify the reliability of the ensemble for the nonlin-
ear observations. Figure 8a,b shows that, for the absolute
value operator, both the LETKF and the PFF have a rank
histogram close to the uniform distribution. Note that the
LETKF is not able to generate a bimodal posterior pdf; it
can only “choose” one mode given the observation. The
magnitude of the linearized observational operator is inde-
pendent of the model state for the absolute value operator,
meaning that this observation operator is equivalent to
the linear operator when the model state is far from 0.

Therefore, the incapability of generating the two modes
of the posterior is a major error source for the LETKF
when the observation is the absolute value operator. How-
ever, this error becomes less apparent when we transform
the variables from the model state to the observational
space. This can partially explain why the rank histogram
of the LETKF in the observational space is close to the uni-
form distribution for the absolute value operator. However,
for the other nonlinear observations, the rank histograms
from the LETKF become U-shaped (Figure 8c,e). This is
a result of biased mean, as is evident in Figure 7c,e. This
suggests that the dependence of the linearized observa-
tional operator on the state is a major reason for the biased
mean in the observational space for the LETKF. For the
PFF, Figure 8b,d,f shows that the rank histograms for all
the nonlinear operators are close to the uniform distribu-
tion, although slightly overdispersive for the exponential
operator.

To demonstrate the ability of PFF to generate mul-
timodal posterior, we compare the time series of one of
the observed variables x(108) with square observations dur-
ing t = 250–500 in Figure 9. Note that there can be two

http://wileyonlinelibrary.com
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F I G U R E 7 The same as
Figure 3, but for the nonlinear
observations. The solid lines are from
the (a, c, e) LETKF and (b, d, f) PFF.
The observation operator is (a, b) the
absolute value operator, (c, d) the
exponential operator, and (e, f) the
square operator [Colour figure can be
viewed at wileyonlinelibrary.com]

solutions, with the same magnitude but opposite in sign in
the state space, given a square observation. We will call the
solution with the opposite sign of the truth the second solu-
tion (blue dots in Figure 9). We note that, in a bimodal situ-
ation like this, the correct posterior solution is an ensemble
that covers both the true and the second solutions, while
individual particles follow one or the other. Both meth-
ods demonstrate an improvement of the variable evolution
compared with the noDA ensemble (Figure 9). For LETKF,
the whole ensemble sometimes follows the correct solu-
tions (red dots), for example, at t = 340, 360, 380, 440, and
460, while the whole ensemble follows the second solution
(blue dots) as well, for example, at t = 300, 320, 420, and
500 (Figure 9b). In contrast, for the PFF, the ensemble is
able to follow both the true and the second solution at the
same time (Figure 9c).

Note that when the whole ensemble from the LETKF
chooses the wrong mode (i.e., follows the second solu-
tion) for the observed variables, the behavior of the
unobserved variables will also be impacted by the poor
covariance structures. Figure 10 shows the time series of
the unobserved variable x(109), whose update during the

data assimilation is immediately affected by its neighbor
x(108). It is shown that after t = 300, the ensemble from the
LETKF gradually loses track of the truth, and the spread
becomes smaller (Figure 10b). Compared with the LETKF,
the ensemble from the PFF has a larger spread, but follows
the truth much better (Figure 10c). Although the over-
all spread of the unobserved variable for the PFF is large,
it does not mean that the PFF loses the skill during the
data assimilation. The evolution of each ensemble mem-
ber still follows the truth better and in a more consistent
way than the noDA ensemble (this can also be inferred
from Figure 7f), suggesting that the ability of the PFF to
capture the multimodal distribution of the posterior can
also improve the update of the unobserved variables in its
neighborhood.

It is worthwhile to mention that, in the square observa-
tion case (and other multimodal likelihood or posterior),
the ensemble mean in the model state space may not
be representative. For example, at t = 420 for the PFF
(Figure 9c), almost half of the ensemble for the observed
variable chooses the true solution, while another half
chooses the second solution, leading to the ensemble mean

http://wileyonlinelibrary.com
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F I G U R E 8 The same as Figure 5,
but for the observed variables in the
observational space for the nonlinear
observations. The ensemble is from the (a,
c, e) LETKF and (b, d, f) PFF. The
observation operator is (a, b) the absolute
value operator, (c, d) the exponential
operator, and (e, f) the square operator

being close to the average of the two solutions, where the
true posterior pdf will have little probability mass. In con-
trast, the behavior of the observed variable in each ensem-
ble member from the LETKF is very similar (Figure 9b).
In this case, the ensemble mean in the model state space
is considered to be representative. To summarize, given
the capability of PFF to generate the ensemble with mul-
timodal distribution, we should be more cautious when
using the ensemble mean in the model state space as a tool
to diagnose or analyze the behavior of the ensemble. As a
final note, while the posterior pdf is bimodal in observed
variables, it has many more modes when considering all
components together. In this sense, the behavior of the PFF
is quite remarkable.

5 THE SENSITIVITY
EXPERIMENTS

In this section, we conduct several preliminary sensitivity
experiments examining the effect of different settings in
the PFF, including the kernel width, the number of iter-
ations, and the prior assumption on the performance of

the PFF. The preliminary aspect is related to the fact that
not much research has been conducted in this area, and
the research areas are too vast to cover in this paper. The
same experiment setups for the sequential data assimila-
tion experiments as described in Section 3 are used.

5.1 The kernel width

We choose the kernel width α as the reciprocal of the num-
ber of the particles. The reason is twofold. First, we do
not want α to be too large, as a large α means a strong
smoothing of the particle flow through the weighting of the
gradients with the kernel, in which case we lose the abil-
ity to describe the fine-scale structures in the posterior pdf.
On the other hand, we do not want α to be too small either,
especially with only a limited number of particles. This is
because a small α means the repelling force will be sig-
nificant only when particles become very close. When we
only have a limited number of particles, the particles are
sparse in the space. Therefore, using a small α with a lim-
ited number of particles may cause the particles to almost
collapse to the mode (i.e., become too close to the mode).
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F I G U R E 9 The time series of the observed variable x(108)

during t = 250–500. The black line is the truth, the green lines are
the ensemble members, and the gray line is the ensemble mean.
The square observation is assimilated into the system. The red dots
are the solution with the same sign of the truth corresponding to the
observations, and the blue dots are the second solution with the
opposite sign of the truth corresponding to the observations. The
ensemble is from (a) noDA, (b) LETKF, and (c) PFF [Colour figure
can be viewed at wileyonlinelibrary.com]

Due to the above reasons, when we have more particles,
we would like to make α smaller, but not too small, to keep
the fine-scale structures of the particle flow at the location
where each particle lies. In other words, we would expect
α to be inversely proportional to the number of particles.

Indeed, the kernel width α is a tuning parameter, and
there is no certain reason for why we choose it to be
exactly the reciprocal of the number of particles. There-
fore, the sensitivity of the performance of the PFF to α
is examined in the following. Figure 11 demonstrates the
effect of kernel width on the divergence of the kernel (i.e.,
the repelling force) for the Gaussian kernel we used in
this study. Take a wider kernel (solid line in Figure 11),
for example, although the range of influence for a parti-
cle is larger, the repelling force is generally smaller. This

F I G U R E 10 The same as Figure 9 but for the unobserved
variable x(109). The ensemble is from (a) noDA, (b) LETKF, and (c)
PFF [Colour figure can be viewed at wileyonlinelibrary.com]

suggests that the particles can feel the repelling force from
each other when their distance is large, which might lead
to a larger spread of the posterior. However, the magnitude
of the divergence of a wider kernel can also be too small
to balance the gradient of logarithm of posterior, leading
to a narrower posterior. In addition, we note that a larger
kernel width means a stronger smoothing of the particle
flow, which complicates the interpretation of the effect of
the kernel width on the PFF.

A set of sensitivity experiments are conducted to see
what the effect of the kernel width is on the PFF, using
linear observations and with all other settings the same as
in Section 4 except for the kernel width. Figure 12 shows
the posterior marginal distribution of the variable x(19)
(unobserved component) and x(20) (observed component)
after the first data assimilation update for a kernel with
large kernel width and another with small kernel width.
A larger kernel width results in a larger spread of the
posterior, through the complicated interaction between
particles (Figure 12b). Figure 13 shows the total RMSE of
the ensemble for 500 time steps. It is found that, when

http://wileyonlinelibrary.com
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F I G U R E 11 Demonstration of the effect of kernel width on
the divergence of the kernel (repelling force). The system is
assumed to be one-dimensional. The x axis is the relative location
with respect to one of the particles, and the y axis is the divergence
of the kernel that is applied on the state whose particle flow is
evaluated. The dashed (solid) line represents a small (large) kernel
width. The arrow represents the direction of the repelling force

the kernel width α is within the range [0.01, 0.1], the
performance is comparable. When α is either too small
or too large, the performance of PFF in terms of RMSE
becomes suboptimal. In particular, when α = 0.001, the
RMSE becomes larger than the noDA ensemble. Figure 14
shows the rank histogram of the prior for the observed vari-
ables at the observation times. For the smaller kernel width
(Figure 14a,b), the rank histogram suggests the ensemble
may be either biased against the truth or underdispersive.
For larger kernel width (Figure 14c,d), the rank histogram
suggests that the ensemble is slightly overdispersive. This
suggests that a wider (narrower) kernel leads to a larger
(smaller) spread of the posterior. The good news is that a
range of a factor 10 for 𝛼 still leads to good performance of
the filter, so the PFF is not too sensitive to this parameter,
at least for the experimental settings explored here.

5.2 The number of iterations

As in all iterative methods, we have to determine the num-
ber of iterations needed for successful interpretation of
the PFF. The number of iterations is set to 500 for all
previous experiments. We conduct two sets of sensitivity
experiments, with one using linear observations and the
other using exponential observations. Figure 15 illustrates
this sensitivity by showing the total RMSE of the ensem-
ble over 500 time steps. It is found that, once the number
of iterations is over 50, the RMSE is quite similar for the

linear observation case (Figure 15a). On the other hand,
the RMSE becomes quasi-steady only when the number
of iterations is more than 200 for the exponential obser-
vation (Figure 15b). This result suggests that PFF requires
more iterations for more complicated observation opera-
tors to converge to the steady-state solution. Examinations
of the iterations for PFF show that the number of iterations
required can be different at different observation times
(not shown). In addition, the error from the insufficient
convergence at an earlier time can accumulate and affect
the prior covariance at subsequent observation times. In
other words, the differences between using different num-
ber of iterations are expected to be more and more pro-
nounced if we further extend the integration time. On the
other hand, we can expect fewer iterations if the observa-
tion frequency is higher. Therefore, a wise way of choosing
the number of iterations for different observation opera-
tors at different observation times can improve the effi-
ciency of the PFF. Note that the PFF is based on a steepest
descent algorithm for the KL divergence. There is little
experience with minimization methods for pdfs, but it is
highly likely that more efficient schemes are possible. We
have to leave research in this direction to a future paper.

5.3 The prior assumption

One advantage of the PFF is that there is no assumption
on the distribution of the prior, as long as we are able
to derive the gradient of its logarithm analytically. In the
previous section, we have assumed the prior to be Gaus-
sian, to compare with the LETKF. However, the Gaus-
sian assumption for the prior is definitely not optimal,
for example, for hydrometeor-related variables in atmo-
spheric models (Posselt et al., 2014), or as a results of
nonlinear observation operators at a previous assimilation
step.

An example of a more desirable choice of the prior is a
Gaussian mixture pdf. One way to construct the Gaussian
mixture pdf is to first apply clustering analysis for the par-
ticles and then construct a Gaussian pdf for each cluster
independently; see for example, Bengtsson et al. (2003). We
then sum all the Gaussian pdfs with their weights propor-
tional to the number of particles in each cluster to form the
Gaussian mixture pdf. As for the way to conduct the clus-
tering analysis, we should note that any method requiring
repeated calculations of the distance between particles
can be computationally prohibitive for a high-dimensional
system. For example, k-means clustering can be too expen-
sive. Other methods, such as agglomerative hierarchical
clustering, in which we only need to calculate the distance
between particles once, might be affordable. Although
the agglomerative hierarchical clustering method seems
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F I G U R E 12 The same as Figure 3, but the kernels used here are both matrix-valued kernels yet with different kernel widths. (a) A
narrow kernel width α = 0.001. (b) A wide kernel width α = 1 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 13 The total RMSE of the ensemble from the PFF,
assimilating linear observations, with different kernel widths
[Colour figure can be viewed at wileyonlinelibrary.com]

promising, we found that it is difficult to construct the
Gaussian mixture prior in the system with the square
observations. The reason is in the following: despite many
of the marginal distributions for the observed variables
in the prior being bimodal distributed, in which case two
clusters might seem to be enough, the joint distribution for
all the observed variables can have many more modes. For
example, we can have four modes for a two-dimensional
system if the two variables are independent and both have
bimodal marginal distribution. Given that we only have 20
particles, it is difficult to construct a proper Gaussian mix-
ture prior based on the clustering method: the number of
modes is just too high.

Another possible way is to assume the prior to be a
Gaussian mixture with equal weights, and with the same
covariance D for each component. The mean of each
component is set to be the state of each particle xi

0, and the

Gaussian mixture can be written as

p(x0) =
1

Np

Np∑
i=1

N(xi
0,D) (40)

In this case, the problem of determining the prior
reduces to determining the covariance in each component
of the Gaussian mixture. We can determine this covariance
D by assuming that the covariance of the Gaussian mixture
is equal to the sample covariance of all particles together.
The covariance of the Gaussian mixture can be written as

Cov(x0) = D + 1
Np

Np∑
i=1

(xi
0 − x0)(xi

0 − x0)T

x0 = 1
Np

Np∑
i=1

xi
0 (41)

where x0 is the ensemble mean of the prior. The sample
covariance of the particles is

B = Cov({xi
0}

Np

i=1) =
1

Np − 1

Np∑
i=1

(xi
0 − x0)(xi

0 − x0)T (42)

We can immediately obtain the covariance matrix D as

D = B
Np

(43)

Experiments with the Gaussian mixture in
Equation (40) show that the covariance for each compo-
nent D is too narrow, making the update of each particle
very limited (not shown). We can improve this update by

http://wileyonlinelibrary.com
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F I G U R E 14 The same
as Figure 5, but for the PFF
with different kernel width.
(a) α = 0.001, (b) α = 0.01, (c)
α = 0.1, and (d) α = 1. For the
experiment with α = 0.05, see
Figure 5c

F I G U R E 15 The same as Figure 13, but for a different number of iterations for the PFF using (a) the linear observation and (b) the
exponential observation [Colour figure can be viewed at wileyonlinelibrary.com]

making D wider through multiplication with a scalar, so
that each component is able to interact with each other.
However, we note that making D wider is to some extent
equivalent to inflating the prior. We should not make
D so wide that the information of the prior will be lost.
Nevertheless, we can still tune the width of D to seek an
optimal width for our system. We have tried this Gaus-
sian mixture prior in the system with square observations,
but the RMSE of this ensemble does not show significant
improvement over the ensemble with Gaussian prior

(not shown). This might be due to the characteristics of
the current system, since the relationship even between
neighboring variables is generally weak in the Lorenz
1996 model. We still expect an improvement of PFF per-
formance using the Gaussian mixture prior in a real
atmospheric model over the Gaussian prior, since some
nonlinear relationships, such as hydrometeor variables,
will be apparent. Detailed examinations of different prior
assumptions on the performance of the PFF are needed in
future studies.

http://wileyonlinelibrary.com
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6 CONCLUSIONS AND
DISCUSSION

The particle flow filter (PFF) is a recently developed Monte
Carlo filter based on a deterministic flow, which natu-
rally avoids the weight degeneracy problem and thus has
potential to be applied to high-dimensional problems. The
PFF optimally transforms the particles from the prior dis-
tribution to the posterior distribution, maintaining equal
weight for all the particles at all iteration steps. With the
assumption that the particle flow is embedded in a repro-
ducing kernel Hilbert space (RKHS), we are able to derive
an analytical expression for the particle flow that min-
imizes the Kullback–Leibler divergence (KL divergence)
between intermediate pdfs and the posterior pdf, starting
at the prior.

The particle flow is composed of two terms: the
weighted average of the gradient of the logarithm of the
posterior and the divergence of the kernel. With the former
term alone, the particles are driven to the mode of the pos-
terior. This can be demonstrated when we have only one
particle. In this case, the divergence of the kernel vanishes
and the particle flow is equivalent to a 3DVar. The diver-
gence of the kernel acts to repel the particles away from
each other. When the summation of two terms for all the
particles balance each other, the particle distribution will
describe the posterior distribution.

In the limit of infinite number of particles, the solu-
tion from the PFF is independent of the choice of the
kernel. However, since we have only a finite number of
particles, the choice of the kernel becomes critical. When
the PFF was first developed, a scalar Gaussian kernel was
found to work well in a relatively low-dimensional sys-
tem with dense observations. However, we find that in the
sparsely observed high-dimensional system, in which the
variance of the gradient of posterior among variables can
be very large, the scalar kernel fails to maintain the vari-
ance of the marginal distribution of the observed variables.
To tackle this problem, a new matrix-valued Gaussian ker-
nel is proposed in this study. The proposed kernel is a
diagonal matrix with a different Gaussian scalar kernel in
the diagonal entries. The advantage of this kernel is that
it independently measures the distance between particles
in each direction, ensuring that the marginal distributions
will not collapse.

The PFF with the newly proposed matrix-valued ker-
nel is tested with a sequential data assimilation experiment
in a 1,000-dimensional Lorenz 96 system, with only 25%
of the system observed every 20 time steps. With linear
observations, the performance of the PFF is similar to a
well-tuned LETKF. Note that, with a proper choice of ker-
nel width, the PFF does not require inflation of the prior,

while an inflated prior is needed for the LETKF to achieve
similar results. With nonlinear observations, the PFF out-
performs the LETKF in terms of the RMSE in observa-
tional space and the rank histogram of the prior at obser-
vation times. We have separately examined two aspects of
the nonlinear observations: a multimodal structure in the
likelihood and the dependency of the linearized observa-
tion operator on the state. Since the PFF is able to evaluate
the linearized observation operator locally for each parti-
cle, the PFF can capture the multimodal distribution of
the likelihood in the absolute value and square observation
operators, which also improves the update of the unob-
served variables through a better covariance structure in
the system. On the other hand, since the PFF iteratively
updates the linearized observation operator, it can much
better capture the nonlinear relation between model state
and observations.

The sensitivity of settings in the PFF to its perfor-
mance is also examined, but much more work is needed.
In terms of kernel width, it is found that a wide (nar-
row) kernel tends to make the posterior wider (narrower),
but a strong point of the methodology is that the sensi-
tivity to the scaling factor is small with good performance
over a range of a factor 10. An optimal width is found
when the scaling factor is the reciprocal of the number
of particles. While we explored a diagonal matrix-valued
kernel, a possible extension is to explore the off-diagonal
elements to provide a smoother repelling force. We did not
need that in our experiments, but this might be useful in
more realistic models. In terms of the iteration number,
it is found that fewer iterations are needed for the lin-
ear observation than the nonlinear observations to reach
a steady-state posterior solution. In addition, the itera-
tions needed at different observation times can be quite
different. We use the quasi-Newton method to accelerate
the convergence, with the preconditioner chosen to be the
localized background error covariance from the particles,
but other methods might be more beneficial. In terms of
the assumption for the prior, we propose different ways of
efficiently constructing a Gaussian mixture prior. The sen-
sitivity experiments show that the PFF with a Gaussian
mixture prior does not show significant improvement over
the PFF with a Gaussian prior, mainly related to the diffi-
culty of applying an efficient clustering algorithm to define
the mixtures. Furthermore, we pushed the method by only
using 20 particles, in which case clustering is perhaps
overdoing it. Other possibilities include a hybrid covari-
ance between ensemble covariance and a static (climatol-
ogy) covariance. This might especially be of interest when
Gaussian mixtures are used with a small ensemble size.

When the PFF is applied to a real atmospheric model
with complex observation operators, the adjoint of the
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observational operator may not always be available. In the
ensemble Kalman filter, the ensemble covariance between
state and observation space can be used to replace the
adjoint model. However, when the observation is highly
nonlinear, the ensemble covariance will not be accurate.
An alternative solution to avoid the adjoint is to assume
that the observational operator is embedded in a RKHS
(Pulido et al., 2019). A similar trick is used as in the
PFF, and the gradient of the observational operator can be
obtained without need for the full adjoint model. Pulido
et al., 2019 have also shown that the performance of PFF
using the RKHS approximation for the linearized observa-
tion operator is better than using the ensemble covariance
approximation.

Finally, the PFF that has been developed here is a fil-
ter, but it can easily be extended to a smoother. Since the
PFF is computationally similar to an ensemble of 3DVars,
this would be similar to an extension to an ensemble
4DVars. Indeed, as an example, the “Ensemble of data
assimilations” promoted by ECMWF, which is essentially
an ensemble smoother, can be transformed relatively easy
into a fully nonlinear data-assimilation system via the
PFF. The main difference is that the 4DVars will have
to communicate at every iteration by sending over full
state vectors from one minimization to the other. One
can also envisage a scheme in which communication is
not at every iteration step to speed up calculations. There
remains much to do before this is reality, but there is a clear
path ahead.
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APPENDIX A. THE DERIVATION OF THE PFF
IN EQUATIONS (6) AND (7)

The Kullback–Leibler divergence (KL divergence)
between the intermediate pdf at pseudo time s qs and
targeted pdf p(x|y) is given by Equation (A1):

KL(qs) ≔ ∫ qs(x) log
(

qs(x)
p(x|y)

)
dx (A1)

The goal of this derivation is to find the appropriate
flow field fs, such that the KL divergence decreases with
pseudo time:

d
ds

x = fs(x), s ∈ [0,∞] (A2)

KL(qs+Δs) ≤ KL(qs) (A3)

where qs+Δs is the imtermediate pdf at pseudo time s+Δs.
To achieve the goal, we require that the derivate of KL

divergence to pseudo time is negative:

dKL
ds

≤ 0 (A4)

That is,

dKL
ds

= d
ds ∫ qs(x) log

(
qs(x)

p(x|y)
)

dx

= ∫
𝜕

𝜕s

{
qs(x) log

(
qs(x)

p(x|y)
)}

dx

= ∫
𝜕qs(x)
𝜕s

{
log

(
qs(x)

p(x|y)
)
+ 1

}
dx ≤ 0 (A5)

Since we assume there is only advection in the trans-
formation of the state x, the pseudo time rate change of the
intermediate pdf qs is characterized by the corresponding
Liouville equation:

𝜕qs(x)
𝜕s

+ ∇x ⋅ (fs(x)qs(x)) = 0 (A6)

Based on the Liouville equation (Equation (A6)),
Equation (A5) can be written as

dKL
ds

= −∫ ∇x ⋅ (fs(x)qs(x))
{

log
(

qs(x)
p(x|y)

)
+ 1

}
dx

(A7)
Integrating by parts, Equation (A7) can be further writ-

ten as

dKL
ds

= ∫ fs(x)qs(x) ⋅ ∇x

{
log

(
qs(x)

p(x|y)
)
+ 1

}
dx (A8)

We have used the fact that qs should approach zero on
the boundary to assure that the integral of qs in the whole
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domain is finite. Equation (A8) can be further written as

dKL
ds

= ∫ fs(x)qs(x) ⋅ ∇x{log(qs(x)) − log(p(x|y))}dx

= ∫ fs(x) ⋅ ∇xqs(x) − fs(x)qs(x) ⋅ ∇x log(p(x|y))dx

= −∫ qs(x)∇x ⋅ fs(x) + fs(x)qs(x) ⋅ ∇x log(p(x|y))dx

(A9)

where the integration by parts has been used again from
line two to line three in Equation (A9).

We now assume the solution of fs is embedded in a
reproducing kernel Hilbert space (RKHS). Every function
in a RKHS can be written as

fs(x) = ⟨K(x, ⋅), fs(⋅)⟩ ∈ R
nx (A10)

where K is the matrix-valued kernel. The bracket is the
inner product in the RKHS. Based on Equation (A10), the
divergence of fs can be written as

∇x ⋅ [fs(x)] =∇x ⋅ ⟨K(x, ⋅), fs(⋅)⟩= ⟨∇x ⋅ K(x, ⋅), fs(⋅)⟩1 ∈ R

(A11)

Based on Equations (A10) and (A11), the rate of change
of the KL divergence in Equation (A9) can be written as

− ∫ qs(x)⟨∇x ⋅ K(x, ⋅), fs(⋅)⟩1 + ⟨K(x, ⋅), fs(⋅)⟩qs(x) ⋅ ∇x

log(p(x|y))dx

= −∫ qs(x){⟨∇x ⋅ K(x, ⋅), fs(⋅)⟩1 + ⟨K(x, ⋅)∇x

log(p(x|y)), fs(⋅)⟩1}dx

=
⟨
−∫ qs(x){∇x ⋅ K(x, ⋅) + K(x, ⋅)∇x

log(p(x|y))}dx, fs(⋅)
⟩

1
(A12)

To make the pseudo time rate change of KL-divergence
negative, that is, Equation (A4), we choose fs based on
Equation (A12) as

fs(⋅) = D∫ qs(x){∇x ⋅ K(x, ⋅) + K(x, ⋅)∇x log(p(x|y))}dx

= DIf (A13)

in which D is a positive definite matrix included to
ensure that fs has the right physical dimension. With this
choice, and abbreviating the integral as If , Equation (A12)
becomes

dKL
ds

= ⟨−If ,DIf ⟩ ≤ 0 (A14)

Here we used that D is positive definite with respect to
the inner product. Note that fs is pointing in the direction
with the greatest descent of KL divergence, modified by
matrix D.

To implement Equation (A13), we need to represent
qs(x) with the particle representation. Assuming the parti-
cles are {xi

s}
Np

i=1, then

qs(x) =
1

Np

Np∑
i=1

𝛿(x − xi
s) (A15)

With Equations (A13) and (A15), we can obtain the
solution of the particle flow:

fs(⋅) =
1

Np
D

Np∑
i=1

∇xi
s
⋅ K(xi

s, ⋅) + K(xi
s, ⋅)∇xi

s
log(p(xi

s|y))
(A16)

where
∇xi

s
⋅ K(xi

s, ⋅) = ∇x ⋅ K(x, ⋅)|x=xi
s

(A17)

and

∇xi
s
log(p(xi

s|y)) = ∇x log(p(x|y))|x=xi
s

(A18)


