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Model Error Estimation Using the Expectation Maximization Algorithm and a
Particle Flow Filter\ast 

Mar\'{\i}a Magdalena Lucini\dagger , Peter Jan van Leeuwen\ddagger , and Manuel Pulido\dagger 

Abstract. Model error covariances play a central role in the performance of data assimilation methods applied
to nonlinear state-space models. However, these covariances are largely unknown in most of the
applications. A misspecification of the model error covariance has a strong impact on the com-
putation of the posterior probability density function, leading to unreliable estimations and even
to a total failure of the assimilation procedure. In this work, we propose the combination of the
expectation maximization (EM) algorithm with an efficient particle filter to estimate the model er-
ror covariance using a batch of observations. Based on the EM algorithm principles, the proposed
method encompasses two stages: the expectation stage, in which a particle filter is used with the
present updated value of the model error covariance as given to find the probability density function
that maximizes the likelihood, followed by a maximization stage, in which the expectation under the
probability density function found in the expectation step is maximized as a function of the elements
of the model error covariance. This novel algorithm here presented combines the EM algorithm
with a fixed point algorithm and does not require a particle smoother to approximate the posterior
densities. We demonstrate that the new method accurately and efficiently solves the linear model
problem. Furthermore, for the chaotic nonlinear Lorenz-96 model the method is stable even for
observation error covariance 10 times larger than the estimated model error covariance matrix and
also is successful in moderately large dimensional situations where the dimension of the estimated
matrix is 40\times 40.
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AMS subject classifications. 62M05, 62M20, 60G25, 93E10, 93E11

DOI. 10.1137/19M1297300

1. Introduction. Several research areas in which the object of research is a complex sys-
tem, such as the atmosphere, the ocean, and biological systems, require estimating the state
of the system through partial observational information which is distributed in time. Surro-
gate models of the system, which represent approximately the time evolution of the variables,
are included as a source of information in the state estimation. This has a twofold aim; it
regularizes the state estimation at a time and propagates information of the system and its
uncertainty to the subsequent times. This estimation problem was called data assimilation in
geophysical sciences [8, 18], and this terminology has subsequently been popularized in other
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areas. The so-called state-space model is composed by two stochastic equations; one repre-
sents the evolution of the hidden state variables and is henceforth referred to as the dynamical
model, and the other one maps the state of the system into the observation space through an
observational model.

The increase of observational data availability, particularly indirect observations, and the
increased complexity in surrogate models introduce nonlinear dependencies into the dynam-
ical and observational models which in turn lead to non-Gaussian statistics. Accounting for
these non-Gaussian statistics in high-dimensional state-space models is essential for the infer-
ence and represents one of the major challenges in the area [13, 35, 41]. Gaussianity-based
techniques such as all the variants of the Kalman filter and optimization techniques based on
maximum a posteriori estimation, also known as variational data assimilation, cannot deal
with strongly non-Gaussian statistics. Monte Carlo techniques are one of the most promising
methodologies that can fully consider the non-Gaussian uncertainty in the sequential inference
[12, 15, 27]. These techniques aim to represent the state distribution by a set of realizations
(referred to as particles) of this distribution. Particles are evolved between estimation times
by the use of the dynamical model. However, one point of contention in these techniques is the
particle degeneracy along the time sequence. After a few cycles, most of the particles finish
with negligible weights, i.e., their likelihood to the observation is low or null, and only one
particle remains with weight 1. This limitation is particularly important in high-dimensional
systems. One solution is resampling; however, this brings another limitation since only a
few particles with large weight remain, and therefore the diversity is lost, particularly in
experiments which can only afford a small number of particles.

Recently a new framework for particle filters (PFs), called particle flow filters, has been
proposed [4, 9]. Within this framework, particles are moved from the initial proposed distri-
bution to the posterior distribution using flows that are consistent with Bayes's rule. Particle
flows potentially avoid the need for resampling since the particles are moved to regions of
higher likelihood of the state space. The flow is not unique and requires the solution of an
ordinary differential equation under a given regularization. Alternatively, if the Gaussian
assumption is taken, the expression for the flow can be derived analytically, and the flow is
unique and known as Gaussian particle flow. In a recent work, Pulido and van Leeuwen [25]
showed that under the assumption that the flow lies in a reproducing kernel Hilbert space,
it is uniquely determined through a Monte Carlo integration, an interacting particle system.
This approach combines Monte Carlo sampling with variational inference. It is shown that
this sequential Monte Carlo filter does not require resampling even for long time sequences
and can work in relatively high-dimensional systems.

A crucial assumption in PFs is that the model error uncertainty is known. The model
error uncertainty is included in the evolution of the particles and is essential to account for
the prediction uncertainty. This is particularly the case in particle flow filters, in which the
sequential prior density is assumed to be known. In practice, model error uncertainty is not
known, and it is highly dependent on the surrogate model we are using. The structure of the
model error uncertainty, in terms, for example, of correlation between variables, is expected
to be different if different surrogate models are used. Therefore, there is a current need for the
development of model error estimation techniques that may be applied for sequential Monte
Carlo filters.
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Likelihood-based methods for model error covariance estimation may be broadly classified
into two groups: maximum likelihood estimation and Bayesian inference. Maximum likelihood
estimation methods have been applied assuming that covariance parameters are deterministic
[5, 17, 35, 36]. In this case, non--a priori information on the parameters is required. When
the gradient of the likelihood can be obtained analytically, Newton--Raphson optimization
methods may be applied to maximize the likelihood function. When this is not feasible, one
of the most popular methods for maximum likelihood estimation is expectation maximization
(EM) [10]. One of the reasons for its widespread use is that it is readily applicable. In par-
ticular, contrary to Newton--Raphson optimization methods, EM does not depend on tunable
parameters. The second group is a Bayesian approach in which the model error covariance
parameters are interpreted as stochastic and the prior distribution of the parameters needs
to be given. In this case, some hypotheses on the correlations between state-space variables
and parameters are required [28]. Some authors [22, 33] assume that the uncertainty in the
parameters does not affect the state density, while the authors of [29] use the marginalization
of the hidden state for the parameter estimation in a hierarchical Bayesian framework.

In this article, we propose a new method based on a maximum likelihood approach to
estimate the model error covariance matrix in state-space models. The article is organized as
follows. In section 2 we formulate the problem, giving a brief overview of PFs and some details
of a recently proposed particle flow filter to be used in the experiments before describing the
proposed method to estimate the model error covariance matrix in subsection 2.3. Further
details about its derivation are given in Appendix A and Appendix B. The proposed method
is tested on a simple autoregressive linear model and on the Lorenz-96 model with 8 and
40 dimensions. The experiments' design, results, and comparison with existing methods are
shown in section 3, while in section 4 we present some conclusions.

2. Methodology.

2.1. Problem formulation. Consider a state-space model consisting of a nonlinear system
and a nonlinear observation model, described by

xk = \scrM (xk - 1) + \bfitbeta k,(2.1)

yk = \scrH (xk) + \bfitepsilon k,(2.2)

where xk \in \BbbR Nx , called the state vector, is a hidden or latent process, and \{ yk\} Kk=1 is a
time series of observations measured at times k = 1, . . . ,K with yk \in \BbbR M . The maps \scrM (.)
and \scrH (.) denote the nonlinear deterministic dynamical model and the (possibly nonlinear)
observation operator, respectively. The state process is assumed to be a Markov process,
whereas the conditional density of the observations yk depends only on the current state xk
for k = 1, . . . ,K. The stochastic term \bfitbeta k accounts for the missing physics in the model and
its numerical approximations, whereas \bfitepsilon k is the observation noise. In this work, we assume
that observational and model uncertainty are additive and \bfitbeta k \sim \scrN (0,Qk) and \bfitepsilon k \sim \scrN (0,Rk),
where Qk and Rk belong to the subspace of positive definite matrices in \BbbR Nx\times Nx and \BbbR M\times M ,
respectively, representing the model error and observation error covariance matrices at time
k. We denote by \bfittheta k \in \Theta the vector of parameters (Qk,Rk).

Since \scrM and \scrH are surrogate models which approximate the system evolution and the
processes that relate the observations with the hidden state, the model error and observa-
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tional error covariances are expected to be largely unconstrained physically. Observational
errors may be partially constrained from the knowledge of measurement errors, whereas rep-
resentation errors, arising from the fact that models and observations often represent reality
differently, are hard to determine in practice. Therefore, the parameters \bfittheta k of the state-space
model are unknown and need to be inferred from the data as well as the hidden state xk.
In principle, unknown parameters from the dynamical and observational models may also
be included in \bfittheta k [24]; in this work we consider these parameters to be provided. In this
parametric inference problem we need to assume an a priori underlying error distribution; the
assumption \bfitbeta k \sim N(0, Qk) was then taken. The technique here proposed could be extended
to \bfitbeta k belonging to an exponential family, as done in [7].

We assume that the model error covariance Qk and the observation error covariance Rk

vary slowly within K-cycles (the temporal scale of covariance variations is longer than K-
cycles), that is, Qk = Q, Rk = R \forall k = 1, . . . ,K, and propose a method based on a time-
batch of observations to estimate the model error covariance Q for particle filters (PFs).
The information provided by the observations along the K times, y1:K , where the subindices
1 : K denote the set \{ y1, . . . ,yK\} , is considered essential to regularize/constrain the Nx\times Nx

unknowns from Q. The coupling between observations at different times is produced through
the dynamical model \scrM .

The method presented here is based on maximum likelihood estimation: given a set of
independent observations \{ yk, k = 1, . . . ,K\} from a probability density function (pdf) repre-
sented by p(y1:K ;\bfittheta ), a nonlinear dynamical model \scrM , and an observation operator \scrH , we seek
to maximize the likelihood of the observations as a function of the statistical parameters Q
given an observation error covariance R in the presence of a hidden state x0:K . The statistical
parameters to be estimated are assumed to vary slowly. This is an essential and unavoidable
assumption in the state-space framework because this framework usually considers a single re-
alization of the observation at each time. Hence, a time range with a long set of observations,
say K \geq 100, is required to constrain the statistical parameters in which the model error co-
variance is assumed to be slowly varying. Online maximum likelihood techniques (e.g., [1, 7])
and hierarchical Bayesian inference [29] also need to assume slow variations in the statistical
parameters.

2.2. Particle filters. State-space models are generally used in sequential data assimilation
to estimate or reconstruct the hidden state xk given the observations y1:K . This can be done
by computing the filter densities \{ p(xk| y1:k)\} k=1:K or smoother densities \{ p(xk| y1:s)\} k=1:K

with s \geq k. Having prior knowledge of the initial state x0, that is, given a prior pdf p(x0), the
posterior pdf of a filter is the probability of the model state at time k, given all the available
information up to time k. In a Markovian system with observations yk that are conditionally
independent given the state, the filter densities can be computed recursively using Bayes's
rule to obtain the posterior pdf

(2.3) p(xk| y1:k;\bfittheta ) =
p(yk| xk;\bfittheta )p(xk| y1:k - 1;\bfittheta )

p(yk| y1:k - 1;\bfittheta )
,

where the prior pdf p(xk| y1:k - 1;\bfittheta ) is the forecast or prediction pdf, p(yk| xk;\bfittheta ) is the observa-
tion likelihood defined by the observation model\scrH and the distribution of the observation error
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\bfitepsilon k, and p(yk| y1:k - 1;\bfittheta ) is a normalizing factor. Note that we consider here the marginalized
posterior pdf, in which the only state variable that is estimated is the current one, considering
all the past and the current observations.

When the dynamical and observational models are linear and their errors Gaussian, the
filter densities are Gaussian and the state can be computed using Kalman recursive algorithms.
However, for nonlinear models and/or nonlinear observational functions it is not possible to
get a known distribution or a closed form for these filter pdfs, and they should be somehow
approximated. Classical PFs [2, 12, 38] are based on sequential importance sampling and
resampling algorithms and provide different methods to approximate these pdfs.

The basic idea behind a PF is to represent the posterior pdf p(xk| y1:k) by a set of Np

particles \{ x(j)k \} j=1:Np with corresponding weights \{ w(j)
k \} j=1:Np such that

\sum Np

j=1w
(j)
k = 1. That

is, at time k, p(xk| y1:k;\bfittheta ) is approximated by

(2.4) p(xk| y1:k;\bfittheta )
.
=

Np\sum 
j=1

w
(j)
k \delta (xk  - x

(j)
k ),

where
.
= denotes approximation by an ensemble of particles and \delta (\cdot ) is the Dirac \delta function.

Initially, a set of Np particles\{ x(j)0 \} j=1:Np with corresponding weights \{ w(j)
0 = 1

Np
\} j=1:Np

is drawn from the prior pdf p(x0). These particles are sequentially evolved in time using

a forecasting, weighting, and resampling scheme to obtain \{ x(j)k \} j=1:Np and \{ w(j)
k \} j=1:Np at

each time step k. Different PFs were proposed depending on the resampling, forecasting, or
weighting approaches taken [2, 25, 43].

2.2.1. Variational mapping particle filter. The variational mapping PF (VMPF) is a
particle flow filter which is based on optimization and Monte Carlo sampling. At each cycle,
a particle flow filter [4, 9] drives the particle samples from the prior density towards a desired
target density. In the VMPF, the particles are moved deterministically via a sequence of maps,
based on the optimal transport principle. The maps seek to minimize the Kullback--Leibler
divergence (KLD) between the target density, i.e., the posterior density p(xk| y1:k), and an
intermediate density q(xk), that is, the density represented through the sample, the set of
particles, at a given cycle k. At the ith optimization iteration, the KLD is given by

(2.5) \scrD KL(qi(xk)\| p(xk| y1:k)) =

\int 
qi(xk) log

qi(xk)

p(xk| y1:k)
dxk,

where qi(xk) is represented via Np sample points, i.e., particles, x
(1:Np)
k,i \sim qi(xk).

The density qi is the result of a map, Ti(xk,i - 1) = xk,i - 1 + \epsilon vi(xk,i - 1), which is a small

perturbation to the identity map (\epsilon is assumed to be small). This means qi = T \sharp i qi - 1 =
qi - 1(T

 - 1
i )| det J(T - 1

i )| . The maps are assumed to be in a reproducing kernel Hilbert space
(RKHS).

The optimal map that gives the steepest descent direction in the RKHS is shown to be
given by

(2.6) vi(xk) =  - \nabla \scrD KL(xk) = \scrE x\prime k\sim qi
\Bigl[ 
K(x\prime 

k,xk)\nabla x\prime k
log p(x\prime 

k| y1:k) +\nabla x\prime K(x\prime 
k,xk)

\Bigr] 
,
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where K is a kernel (assumed here to be Gaussian) [25].
Then the optimization is a sequence of (sufficiently smooth) mappings in which each

particle (j) is moved along the steepest descent direction

(2.7) x
(j)
k,i = x

(j)
k,i - 1  - \epsilon \nabla \scrD KL(x

(j)
k,i - 1).

If observational and model errors are assumed to be Gaussian, the gradient of the log-
posterior density is

(2.8) \nabla \bfx log p(xk) = H\top R - 1
k (yk  - \scrH (xk)) - Q - 1

k

\left[  xk  - Np\sum 
j=1

\bfitbeta 
(j)
k - 1\scrM (x

(j)
k - 1)

\right]  ,
where \bfitbeta 

(j)
k - 1 \triangleq 

w
(j)
k - 1\psi 

(j)
\bfQ k\sum Np

m=1 w
(m)
k - 1\psi 

(m)
\bfQ k

, and \psi 
(j)
\bfQ k

= exp( - \| xk  - x
(j)
k \| 2\bfQ k

). They could be interpreted as

weights of the forecast states which consider the distance between the particles to the point
under consideration. A more detailed description of the VMPF is found in [25]. Recently, a
generalization to embed also the observational operator in the RKHS was proposed in [26].

One of the main advantages of the VMPF is that it not only efficiently samples high-
dimensional state spaces with a limited number of particles but also does not suffer from
sample impoverishment. Since (2.6) moves the particles toward regions of high observation
likelihood, by construction the resulting sample has a large effective sample size close to the
number of particles. Thus, this particle flow filter does not require resampling even for long
recursions, as shown in [25].

2.3. Parameter estimation. Let us assume that p(\cdot ;\bfittheta ) is a parametric distribution, with
\bfittheta \in \Theta the parameter space. Given a set of observations y1:K = \{ yk, k = 1, . . . ,K\} taken
along a time interval of length K, a maximum likelihood estimation method aims at finding
the value of \bfittheta that maximizes the (incomplete) likelihood of the observations,

(2.9) L(\bfittheta ) = p(y1:K ;\bfittheta ) =

\int 
p(x0:K ,y1:K ;\bfittheta )dx0:K ,

or equivalently, the log-likelihood function

(2.10) l(\bfittheta ) = ln p(y1:K ;\bfittheta ) = ln

\biggl( \int 
p(x0:K ,y1:K ;\bfittheta )dx0:K

\biggr) 
.

The likelihood function (2.9) can be interpreted as how probable the set of observations
y1:K would be for different choices of \bfittheta . An analytic form for the log-likelihood function is not
achievable in practice, and the numerical evaluation of (2.10) may involve high-dimensional
integrations, which is intractable. In some situations the optimization task can be accom-
plished by using numerical optimization routines like Newton--Raphson techniques to solve the
nonlinear equations obtained by differentiating the log-likelihood function (2.10) [5, 16, 24].
However, even in these particular situations, other methods are preferable due to the difficulty
of implementing optimization methods and tuning their parameters. Gradient optimization
methods may not be stable numerically for certain sets of parameters.
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The expectation maximization (EM) algorithm [10] is a widely used numerical method
that aims at maximizing the log-likelihood of the observations as a function of the statistical
parameters \bfittheta in the presence of a hidden state x0:K in successive iterations without the need
to evaluate the complete log-likelihood function.

It basically consists in maximizing iteratively an intermediate function defined as

\scrG (\bfittheta \prime ,\bfittheta ) \triangleq \BbbE \bfittheta \prime [ln p(x0:K ,y1:K ;\bfittheta )](2.11)

=

\int 
ln p(x0:K ,y1:K ;\bfittheta )p(x0:K | y1:K ;\bfittheta \prime )dx0:K ,(2.12)

where \bfittheta \prime ,\bfittheta \in \Theta . This intermediate function \scrG is, generally, much simpler to maximize than
the incomplete log-likelihood defined in (2.10).

Starting from an initial parameter \bfittheta 0, the two steps of the EM algorithm at iteration s
can be summarized as follows:

\bullet Expectation Step (E-Step): Calculate the required densities to compute the inter-
mediate function \scrG (\bfittheta s - 1,\bfittheta ) as in (2.12).

\bullet Maximization Step (M-Step): find \bfittheta s = max\bfittheta \in \Theta \scrG (\bfittheta s - 1,\bfittheta ).
The assumptions of a hidden Markov model and mutually independent observations in

(2.1) and (2.2) allow us to express the joint pdf p(x0:K ,y1:K ;\bfittheta ) as

(2.13) p(x0:K ,y1:K ;\bfittheta ) = p(x0;\bfittheta )
K\prod 
k=1

p(xk| xk - 1;\bfittheta )
K\prod 
k=1

p(yk| xk;\bfittheta ).

To estimate the parameters of the state-space model using the EM algorithm, the expectation
of this last pdf under the conditional (smoother) pdf p(x0:K | y1:K ;\bfittheta \prime ) must be computed in
the E-Step of the algorithm. In the case of a linear Gaussian model this can be accomplished
by means of a Kalman smoother [31]. This was further extended to the ensemble Kalman
filter in [14, 24].

When the dynamical or observational model is nonlinear and therefore the joint density
non-Gaussian, the expectation in (2.11) may be intractable, and a different approach must
be taken. A generally used approach is to approximate the expression in (2.11) by generating
samples of the smoother pdf p(x0:K | y1:K ;\bfittheta \prime ) using a particle smoother [3, 17, 21, 23]. However,
the use of particle smoothers in data assimilation represents a computational challenge, since
they not only tend to degenerate rapidly but also have a poor performance in moderate to
high-dimensional spaces, particularly if the time sequence is long (large K).

The requirement of a particle smoother in the E-Step of the EM algorithm is due to the
fact that the likelihood of the observations p(y1:K ;\bfittheta ) is usually obtained by marginalizing the
joint pdf p(x0:K ,y1:K ;\bfittheta ) over the whole state x0:K (cf. (2.9)).

Instead of using this last expression for the likelihood of the observations, and following
the notation of [6], the likelihood of the observations (model evidence) can be decomposed
as p(y1:K ;\bfittheta ) =

\prod K
k=1 p(yk| y1:k - 1;\bfittheta ), with the convention y1:0 = \{ \emptyset \} . Marginalizing this last
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expression, we obtain

p(y1:K ;\bfittheta ) =
K\prod 
k=1

p(yk| y1:k - 1;\bfittheta )

=
K\prod 
k=1

\int 
p(yk| xk;\bfittheta )p(xk| y1:k - 1;\bfittheta )dxk,(2.14)

and therefore we can rewrite the logarithm of the incomplete likelihood (2.9) as

(2.15) l(\bfittheta ) = log p(y1:K ;\bfittheta ) = log
K\prod 
k=1

\int 
p(yk| xk;\bfittheta )p(xk| y1:k - 1;\bfittheta )dxk.

Using this last expression instead of the commonly used expression (2.10), the intermediate
function \scrG (\bfittheta \prime ,\bfittheta ) of the EM algorithm can be written as

\scrG (\bfittheta \prime ,\bfittheta ) =
K\sum 
k=1

\int 
p(xk| y1:k;\bfittheta 

\prime ) log

\biggl( 
p(yk| xk;\bfittheta )p(xk| y1:k - 1;\bfittheta )

p(xk| y1:k;\bfittheta 
\prime )

\biggr) 
dxk,(2.16)

as shown in Appendix A. Note that this last expression for \scrG (\bfittheta \prime ,\bfittheta ) is written in terms of filter
and forecast pdfs, while smoother pdfs are no longer required. As the denominator of (2.16)
does not depend on \bfittheta , maximizing \scrG (\bfittheta \prime ,\bfittheta ) with respect to \bfittheta is equivalent to maximizing

\scrG (\bfittheta \prime ,\bfittheta ) =
K\sum 
k=1

\int 
p(xk| y1:k;\bfittheta 

\prime ) log (p(yk| xk;\bfittheta )p(xk| y1:k - 1;\bfittheta )) dxk(2.17)

=
K\sum 
k=1

\scrE \bfittheta \prime [log(p(yk| xk;\bfittheta )p(xk| y1:k - 1;\bfittheta ))] .(2.18)

So far \bfittheta denotes the set comprised by (Q,R), the model error and observation error covariance
matrices, respectively. As there is a certain degree of knowledge about the instrument's
noise and how observations are measured or obtained, R is usually determined empirically in
practice by estimating these noises and the errors between the state and observation space.
However, this is far from being an accurate representation of R, and during the last few years
great effort has been dedicated to the study and estimation of the observation error covariance
matrix, and many works have been published on these topics (see [20, 32, 36, 37, 39] and
references therein). Some of these works focus on studying the most plausible structure for R
given the nature of how observations were measured, taking into account correlations between
observation errors, while some others just propose a fixed structure for R and a methodology
to estimate it. What these different approaches have in common is that they assume that
the model error covariance matrix is already given, or known. The model error covariance
matrix Q is, perhaps, the most difficult one to estimate or determine, since it accounts for
the model inaccuracies and deficiencies in representing the missing underlying physics, the
errors in parameterizations, the unresolved and smaller scales, and the numerical schemes
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used. Some works have been devoted to the joint estimation of (Q,R), and an up to date and
detailed review of these techniques is presented in [34].

The main purpose of this work is to provide a method to estimate Q, the covariance
matrix of the model error \bfitbeta . Assuming that R is known, replacing \bfittheta = Q and having in mind
that by hypothesis the density p(yk| xk;Q) is assumed to be independent of Q, starting from
an initial guess Q0, the two steps of the EM algorithm at iteration s can be summarized as
follows:

\bullet Expectation Step (E-Step): Calculate the required densities to compute the inter-
mediate function

\scrG (Qs - 1,Q) =
K\sum 
k=1

\scrE \bfQ s - 1 [log(p(xk| y1:k - 1;Q))] .(2.19)

\bullet Maximization Step (M-Step): find Qs = max\bfQ \in \Theta \scrG (Qs - 1,Q), where \Theta is the
space of positive definite matrices of order Nx.

Using a PF, the posterior pdf p(xk| y1:k;Qs - 1) can be approximated by a set of particles and
their corresponding weights as in (2.4) with \bfittheta = Qs - 1.

As we assume a Gaussian model noise \bfitbeta \sim \scrN (0,Q) (see subsection 2.1), the transi-
tion density is given by p(xk| xk - 1;Q) = \phi (xk,\scrM (xk - 1),Q), where \phi (xk,\scrM (xk - 1),Q) \triangleq 

1
(2\pi )n/2| \bfQ | 1/2 exp

\bigl\{ 
 - 1

2(xk  - \scrM (xk - 1))
\top Q - 1(xk  - \scrM (xk - 1))

\bigr\} 
.

Therefore, the prediction density p(xk| y1:k - 1;Q) can be approximated by

p(xk| y1:k - 1;Q)
.
=

Np\sum 
i=1

w
(i)
k - 1\bfitphi 

\Bigl( 
xk,\scrM (x

(i)
k - 1),Q

\Bigr) 
,(2.20)

where w
(i)
k - 1,x

(i)
k - 1 are the ith weight and particle, respectively, obtained by a PF at time step

k  - 1.
Combining these approximated pdfs and computing the required expectations, the inter-

mediate function \scrG (Qs - 1,Q) given in (2.19) can now be written in terms of Np particles
as

\scrG (Qs - 1,Q)
.
=

K\sum 
k=1

Np\sum 
j=1

w
(j)
k,\bfQ s - 1

log

\left(  Np\sum 
i=1

w
(i)
k - 1,\bfQ \bfitphi 

\Bigl( 
x
(j)
k ,\scrM (x

(i)
k - 1),Q

\Bigr) \right)  .(2.21)

Differentiating (2.21) with respect to Q, we can determine the root of \partial \scrG (\bfQ s - 1,\bfQ )
\partial \bfQ = 0 to

obtain the maximum of the intermediate function \scrG (Qs - 1,Q) at iteration s. By doing this,
we obtain (Appendix B)

Q = f\bfQ s - 1(Q) =
1

K

K\sum 
k=1

\left[  Np\sum 
j=1

w
(j)
k,\bfQ s - 1

\left(  1

Sj,i

Np\sum 
i=1

w
(i)
k - 1,\bfQ \bfitpsi j,ik Bj,i

k

\right)  \right]  ,(2.22)

where \bfitpsi j,ik \triangleq exp\{  - 1
2(x

(j)
k  - \scrM (x

(i)
k - 1))

TQ - 1(x
(j)
k  - \scrM (x

(i)
k - 1)\} , B

j,i
k \triangleq (x

(j)
k  - \scrM (x

(i)
k - 1))(x

(j)
k  - 

\scrM (x
(i)
k - 1))

T , and Sj,i \triangleq 
\sum Np

i=1w
(i)
k - 1,\bfQ \bfitpsi 

j,i
k .
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We have to take into account that particles and weights indexed by j, that is, x
(j)
k and

wjk,\bfQ s - 1
in (2.22), are computed in the expectation step using Qs - 1 as the model error cova-

riance matrix. On the other hand, particles and weights indexed by i, that is, x
(i)
k - 1, w

i
k - 1,\bfQ ,

should be computed with a filter that assumes Q as the model error covariance matrix. How-
ever, this Q is the matrix to be found in the maximization step.

Summarizing, the two steps of this EM algorithm using a PF at iteration s are as follows:
\bullet E-Step: Given Qs - 1, use a PF with a model error covariance Qs - 1 to calculate the
weights and particles which are needed for the intermediate function \scrG (Qs - 1,Q).

\bullet M-Step: Solve (2.22).
The M-Step at iteration s requires solving an implicit equation for the covariance matrix

Q, where the inverse of Q is involved. In this work we propose to solve this equation using
a fixed point algorithm in Q. This fixed point algorithm requires extra iterations at each
iteration of the EM algorithm; however the conducted experiments showed that fewer than
six iterations of the fixed point algorithm are enough to satisfy the required stopping criteria.
The Banach fixed point theorem, or contractive mapping theorem, guarantees the existence
(and uniqueness) of a fixed point of certain mappings (functions) defined on a complete metric
space, as long as these mappings are contractive. It is not possible to show analytically that
the function involved in our fixed point algorithm is contractive due to the nonlinearity in
the dynamical model, and since we are not under the hypothesis of the Banach fixed point
theorem we cannot guarantee that our algorithm converges to a fixed point. What we can
guarantee, based on empirical evidence, is that the algorithm stops after a few iterations,
satisfying a stopping criterion based on the Frobenius norm defined below.

The pseudocode of the proposed algorithm is presented in Algorithm 2.1. Within this
pseudocode, PF (Q) indicates that the particles and corresponding weights are obtained by
using a PF with Q as model error covariance matrix. The algorithm evaluates the fixed point
function, (2.22), to obtain the new updated value of the parameters.

The stopping criterion for the fixed point algorithm (FP) is defined as either stop\mathrm{C}(Q\mathrm{F}\mathrm{P},

QFP0) =
| | \bfQ FP - \bfQ FP0| | F

| | \bfQ FP | | F , where | | \cdot | | F is the Frobenius norm, is smaller than a previously set
threshold, or when the maximum number of fixed point iterations is reached.

The algorithm in its current form does not assume any a priori knowledge of the structure
of Q, and therefore the full matrix is estimated. That is, at each iteration of the EM algorithm
the full covariance matrix Q is computed (M-Step) by means of a fixed point algorithm. The
updated value of Q, at the mth iteration of the fixed point algorithm, is given by Qm =
f\bfQ EM

(Qm - 1), where Qm - 1 is the matrix computed in the previous iteration of the fixed point
algorithm and f\bfQ EM

(Qm - 1) is calculated using the formula for f\bfQ EM
(Qm - 1) given in (2.22).

Hence, the resulting Qm is a linear combination of the positive semidefinite matrices Bj,i
k

multiplied by nonnegative real numbers (0 \leq w
(j)
k,\ast < 1, 0 < \psi j,ik , and Sj.i > 0), and therefore

the updated value Qm is also a positive semidefinite matrix.
In practice, these numerical calculations appear to be robust to roundoff errors so that it is

not required to impose any further restriction to guarantee the positive semidefiniteness of Q.
For higher-dimensional problems, symmetry may be assumed a priori, and the upper trian-
gular matrix of the model error covariance may be obtained via sparse matrix multiplication
algorithms.
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Algorithm 2.1. EM algorithm to estimate Q using a PF and a fixed point algorithm.

Given QEM , x
1:Np

0 , w
1:Np

0 , \epsilon EM , \epsilon FP
iterEM = 1
while (iterEM \leq MaxiterEM) and (stopEM > \epsilon EM ) do
E-Step:

Compute \{ x(j)
k , w

(j)
k,\bfQ EM

\} using PF(QEM )
M-Step:
iterFP = 1; stopFP = 2\epsilon FP
QFP0 = QEM

while (iterFP \leq MaxiterFP ) and (stopFP > \epsilon FP ) do
QFP = f\bfQ EM

(QFP0) from (2.22)
Compute stopFP = stop\mathrm{C}(Q\mathrm{F}\mathrm{P},Q\mathrm{F}\mathrm{P}0)

Compute \{ x(i)
k - 1, w

(i)
k - 1,\bfQ FP

\} using PF(QFP )
iterFP =iterFP + 1; QFP0 = QFP

end while
Compute stopEM = stopC(QEM ,QFP )
QEM = QFP

iterEM =iterEM + 1
end while

3. Numerical experiments' design. In order to evaluate the capabilities and performance
of the proposed methodology, numerical experiments were designed using two different dy-
namical models \scrM , a univariate linear Gaussian model and the Lorenz-96 model [19]. For
each of these models we conducted twin experiments with different settings. We first gener-
ated a set of noisy observations using the dynamical model with known parameters. Then,
using these synthetic observations and the same stochastic dynamical model, we estimated
the model error covariance Q with the proposed algorithm and compared the results with
those obtained with some classical methodologies. These experiments are useful to assess the
convergence and performance of the proposed methodology.

3.1. Linear model. A one-dimensional linear Gaussian state-space model is defined as

xk = \nu xk - 1 + \beta k,(3.1)

yk = xk + \epsilon k,

where \{ xk\} k=0:K , \{ yk\} k=1:K \in \BbbR , \beta k \sim \scrN (0,Q), \epsilon k \sim \scrN (0,R), \nu is the autoregressive coeffi-
cient, and Q,R are the error variances. The implementation of the EM algorithm to estimate
the parameters of this linear Gaussian model using the Kalman filter and smoother was first
discussed by Shumway and Stoffer in [31], whereas in [30] the same authors provide a more
detailed derivation of this implementation. Discussions of the convergence of the EM algo-
rithm for this model can be found in [11, 40, 42]. A set of one-dimensional experiments was
conducted by generating K = 100 noisy observations y1:K using the linear model (3.1) with
known parameter values \nu = 0.8,Qtrue = I1, R = I1. Then, using the same model, these syn-
thetic observations, and an initial guess Q0 sampled from a uniform distribution \scrU [0.5, 1.5],
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the model error variance Q was estimated by four different algorithms:
\bullet EM+VMPF: The algorithm here proposed, which is a version of the EM algorithm for

a PF without the need of a particle smoother. The PF used is the variational mapping
particle filter (VMPF) described in subsection 2.2.1.

\bullet EM+SIR: The algorithm here proposed, coupled with a classical sampling importance
resampling (SIR) filter [2].

\bullet EM+KF+KS: The classical EM algorithm based on the Gaussian assumption that
requires a Kalman filter and smoother as presented in [30].

\bullet EM+EnKF+EnKS: A version of the EM algorithm in conjunction with the ensemble
Kalman filter and an ensemble Kalman smoother as presented in [24] with Np = 50
ensemble members.

The procedure was repeated independently 50 times for each algorithm in order to have an
empirical distribution of the estimators. That means the ``true"" state and a set of observations
\{ y1:K\} were generated independently for each experiment realization, and an independent
initial guess Q0 was sampled from a uniform distribution \scrU [0.5, 1.5]. Then the model error
covariance Q was estimated. This procedure was repeated 50 times for each algorithm. With
these results we can have an approximation of the empirical distribution of the estimators.

As the algorithm here proposed is suitable to be used with any PF, we tested the EM+PF
algorithm with two different PFs, namely the classical SIR filter with Np = 1000 particles (for
a detailed explanation see [2]) and the recently proposed PF based on optimal transportation
and referred to as the variational mapping particle filter (VMPF) (subsection 2.2.1 and [25])
with Np = 20 particles.

Figure 1. \^\bfQ as function of the iteration number using the EM+VMPF (blue), EM+SIR (orange),
EM+KF+KS (green), and EM+EnKF+EnKS (red) algorithms, for the linear model (subsection 3.1) with true
parameter value \bfQ true = \bfI 1, \bfR = \bfI 1, \nu = 0.8, and K = 100. The 95\% confidence intervals were generated by
running 50 independent repetitions of these estimation experiments and 25 EM iterations. For the EM+VMPF
only Np = 20 particles were used, whereas for the EM+SIR and the EM+EnKF+EnKS Np = 1000 particles
and Np = 50 ensemble members, respectively, were used.
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Figure 1 shows the mean and 95\% confidence intervals obtained by the 50 independent
repetitions of the experiments for each algorithm. The EM+VMPF, EM+KF+KS, and
EM+EnKF+EnKS algorithms show a similar behavior, stabilizing after 5 to 6 iterations
of their respective EM versions; the EM+EnKF+EnKS one is the less biased (in terms of the
mean value of the confidence interval). The 95\% confidence intervals for these three methods
include the true value Qtrue = I1. With only Np = 20 particles the EM+VMPF algorithm
results are very similar to the EM+KF+KS ones. On the other hand, for this simple linear
model and using Np = 1000 particles, the results obtained by using the SIR filter are biased,
and the 95\% confidence interval never reaches the true value of Qtrue = I1. In the experiments
that follow, we only use EM+VMPF for the PF implementation of the proposed algorithm.
Experiments coupling the EM algorithm with the SIR filter for high-dimensional state and
observational spaces, including the Lorenz-96 system, are not feasible due to the large number
of particles required [25].

3.2. Lorenz-96 model. In this section we show results of twin experiments using the
chaotic and nonlinear Lorenz-96 system as the dynamical model \scrM in (2.1). The Lorenz-96 is
one of the most used toy models in data assimilation within the geoscience community due to
its ability to mimic certain properties of the atmospheric predictability at a low computational
cost.

It is defined by the ordinary differential equations

(3.2)
dXn

dt
=  - Xn - 2Xn - 1 +Xn - 1Xn+1  - Xn + F,

where Xn is the state variable of the model at variable (position) n, n = 1, . . . , Nx, and the
domain is assumed to be periodic, that is, X - 1 \equiv XN - 1, X0 \equiv XN , XN+1 \equiv X1. F is the
forcing constant, and, as usual, here it is set as F = 8 to represent chaotic dynamics.

We used a fourth-order Runge--Kutta scheme with a model time step of \delta t = 0.005 to
integrate the Lorenz-96 equations (3.2). In the first set of experiments with the Lorenz-96
system, the number of variables is set to Nx = 8, meaning that an 8\times 8 model error covariance
Q has to be estimated. The observation error covariance R was chosen as a diagonal matrix
R = \sigma 2RI. We observed every grid point; in other words, the observation model\scrH is assumed to
be the identity transformation. The observations are taken every \Delta t = 0.05, which represents
10 model time steps in all the experiments performed.

For these twin experiments, we simulated K = 500 noisy observations y1:K using the
Lorenz-96 model with known model error and observation error covariances Qtrue,R. Using
the same model and these synthetic observations, the full model error covariance matrix Q
was estimated by three different algorithms:

\bullet EM+VMPF: The algorithm here proposed, which is a version of the EM algorithm
for a PF without the need of a particle smoother. The PF used is the VMPF, as in
the previous section.

\bullet EM+VMPF+EnKS: A ``hybrid"" method, consisting of the ``classical"" batch EM, where
the VMPF is used in the forward pass of the E-Step and a Gaussian smoother is used
in the backwards pass.

\bullet EM+EnKF+EnKS, as presented in [24].
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In all these algorithms the number of particles/ensemble members was Np = 20, except
when otherwise stated. The method here proposed is designed to be used with a PF, avoiding
the need of a particle smoother due to the computational disadvantages they present. A fair
competitor to analyze the performance of our methodology would be the classical EM using
a PF and a particle smoother. As already mentioned, particle smoothers tend to degenerate
rapidly and have a poor performance in moderate-dimensional spaces, and so we propose to
use the EnKS smoother combined with the VMPF instead for comparison purposes.

The performance of the VMPF in the Lorenz-96 dynamical system has been thoroughly
evaluated in [25]. In particular, that work showed that the effective sample size was close to the
number of particles, and no resampling was required for the 40-variable Lorenz-96 system. The
EM+EnKF+EnKS uses the perturbed observations EnKF, while the EnKS is based on the
linear RTS smoother. Furthermore, since this work attempts to estimate the full model error
covariance matrix, we did not use either localization or inflation in the experiments. However,
we note that model error may be interpreted as additive inflation so that in principle model
error estimation should account for underdispersion of the ensemble.

To assess the proposed methodology to estimate the model error covariance matrix, ex-
periments with two different structures, usually assumed in practice, were proposed for the
true model error covariance matrix Qtrue: (a) an isotropic noncorrelated covariance matrix,
where Qtrue = \sigma 2I, with I the identity matrix of order Nx, and (b) an isotropic tridiagonal
covariance matrix with diagonal values \sigma 2d and both sub-/superdiagonal values \sigma 2sd. In the
first case we assume that model errors for different model variables are uncorrelated and have
the same variance \sigma 2d, whereas for the second case we assume an a priori spatial covariance
structure with correlations between the first neighbors. We remark that this is the structure
of the ``true"" model error covariance used to generate the synthetic observations via (2.1) and
(2.2). On the other hand, we do not assume any constraint on the structure of the covariance
matrix in the estimation algorithm, with the exception of the positive semidefinite property
(and hence symmetry) of the estimated matrix, which is satisfied by construction.

Following a similar procedure as for the linear model case (subsection 3.1), 50 independent
realizations of this experiment were performed in order to show the estimator empirical distri-
bution. The nonzero values of the initial guesses Q0 (a Nx\times Nx matrix with the same structure
of Qtrue) and \sigma 

2
d and \sigma sd were sampled from \scrU [0.05, 0.5] and \scrU [0.01, 0.15], respectively.

In Figure 2 we show the empirical distribution of the estimator of Q (top panel) for true
parameter value Qtrue = \sigma 2I with \sigma 2 = 0.2, R = 0.5I, and K = 500 observations and the
Frobenius norm \| Qtrue  - \^Q(s)\| F (bottom panel), for the algorithm proposed in this work,
EM+VMPF (blue), the EM+VMPF+EnKS algorithm (yellow), and the EM+EnKF+EnKS
algorithm (red) proposed by [24], which requires an ensemble Kalman filter and an ensemble
Kalman smoother. Since the full covariance matrix is estimated, the Frobenius norm indicates
both deviations from nonzero and zero values in the estimation. Thus, it is a good diagnostic
of the overall structural errors in the estimation.

For ease of visualization, and just for plotting purposes, in this case of an isotropic uncor-

related covariance assumption Q = \sigma 2I, at the sth iteration of the EM algorithm we kept [\widehat \sigma 2d]s
as the average of the diagonal values of \widehat Q(s). As we repeated each experiment independently

50 times, we had a series of 50 values of [\widehat \sigma 2d]s at the s iteration of the EM algorithm to con-
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struct a violin object that describes the empirical distribution of the corresponding estimator
at each iteration.

With only Np = 20 particles, the EM+VMPF and the EM+EnKF+EnKS methods pro-
vide good estimates of Q, stabilizing in about 10 iterations with the median value (white
circle) around the true diagonal value (top panel of Figure 2). The EM+VMPF (blue) al-
gorithm produces estimates less biased than the EM+EnKF+EnKS (red) algorithm despite
the fact that it does not require a particle smoother (and therefore uses less observational
information in the state estimates). Moreover, the violin objects show that the empirical
distribution for the EM+VMPF estimates is symmetric and highly concentrated around the
true value, whereas the EM+EnKF+EnKS estimator empirical distributions have a greater
dispersion, are not symmetric, and have tails towards higher values of \sigma 2d, meaning that in
the 50 repetitions performed this method overestimates the value of \sigma 2d. On the other hand,
the EM+VMPF+EnKS estimator empirical distribution has a large dispersion and does not
reach the true value \sigma 2d.

The bottom panel of Figure 2 shows the empirical distribution of the Frobenius norm
\| Qtrue  - \^Q(s)\| F for the three methods. The EM+EnKF+EnKS algorithm (red), despite
having a greater dispersion, has a slightly better performance than the other two.

To examine the sensitivity of the proposed algorithm to different values of the observation
error covariance R a second set of experiments was performed. We assumed R = \sigma 2RI with
\sigma 2R \in \{ 0.1, 0.5, 1.0, 2.0\} , and Q = 0.2I. For each setting we performed 30 independent real-

izations of the same experiment. The mean and 95\% confidence intervals for [\widehat \sigma 2d]s for each
value of \sigma 2R are shown in Figure 3. The larger the R values are, the harder it is to estimate
model error, likely because of sampling noise. The results for \sigma 2R = 1.0 and 2.0 are noisier and
demonstrate small biases, even after 25 iterations of the EM scheme. As clearly stated in [34]
and references therein, the quality of reconstructed state vectors and estimation procedures
when using variational or ensemble-based methods largely depends on the relative amplitudes
between observation and model errors. In [44] the authors also mention that a small increment
in the magnitude of the observation error R significantly affects the accuracy and behavior of
the method they propose to estimate the model error Q iteratively in the observation space
using the implicit equally weighted PF (IEWPF) [43]. Their method provides reasonable es-
timates of the diagonal values of Qtrue as long as the diagonal values of the observation error
matrix R are relatively small (they assume a diagonal R), with \sigma 2R = 0.2 being the largest
one. The larger \sigma 2R, the less accurate the estimation procedure. As shown in Figure 3, the
estimation with EM+VMPF gives results with a good performance for observational variances
ranging from 0.1 to 2.0. The estimation error increases with the increase of the observational
variance; however, the estimation error is lower than 20\% in all the cases shown.

Experiments designed for the estimation of a tridiagonal isotropic model error covariance
are shown in Figure 4. The diagonal value of Qtrue was set to \sigma 

2
d = 0.2 and sub-/superdiagonal

values were \sigma 2sd = 0.05, as defined in [44], R = 0.5I, K = 500, and Np = 20. For this isotropic
tridiagonal model error covariance assumption, at the sth iteration of the EM algorithm we

computed \widehat \sigma 2d as the average of the diagonal values of \^Qs, and
\widehat \sigma 2sd as the average of the sub-

/superdiagonal values of \^Qs. The violin plots at the sth iteration of the EM algorithm were

generated with \widehat \sigma 2d, \widehat \sigma 2sd obtained for each realization of the experiment.
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Figure 2. EM+VMPF (blue), EM+VMPF+EnKS (yellow), and EM+EnKF+EnKS (red) performances
when estimating \bfQ . Mean diagonal elements of \^\bfQ (s) (top) and Frobenius norm \| \bfQ true  - \^\bfQ (s)\| F (bottom) for
the 8 variables Lorenz-96 model (3.2) with true model error covariance \bfQ true = \sigma 2I, \sigma 2 = 0.2, and K = 500
(subsection 3.2). The violin plots were generated by running 50 independent repetitions of the algorithm with
Np = 20 particles.
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Figure 3. Sensitivity of EM+VMPF to different values of observation error \bfR in the 8-variable Lorenz-96
model (subsection 3.2) with true model error covariance \bfQ true = \sigma 2I, with \sigma 2 = 0.2, Nx = 8, and K = 500.
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As shown in Figure 4, the EM+VMPF(blue) and EM+EnKF+EnKS (red) methods con-
verge rapidly to the true value \sigma 2d (top panel), whereas the hybrid EM+VMPF+EnKS method
does not capture the variances. The empirical distribution of the EM+VMPF estimates shows
a median value (white circle) closer to the true value of \sigma 2d but has a greater dispersion. How-
ever, as in the diagonal Q case, the EM+EnKF+EnKS proposal tends to overestimate \sigma 2d.
Both the EM+VMPF and EM+EnKF+EnKS methods show a similar performance when esti-
mating the sub-/superdiagonal elements of Q, with EM+VMPF being more biased in terms of
the median value. However, after 17 iterations the violin object obtained by the EM+VMPF
proposal is completely contained within the violin object obtained by the EM+EnKF+EnKS
algorithm. The EM+VMPF+EnKS method never reaches the covariances between neighbor-
ing variables, underestimating them. A different behavior is observed for the empirical distri-
bution of the Frobenius norm. In this case, EM+EnKF+EnKS outperforms the EM+VMPF
estimation procedure, which in turn outperforms the EM+VMPF+EnKS performance. Thus,
EM+VMPF has a better performance when estimating variance and covariances between
neighbor variables, but it does not perform so well when estimating the null long correlations
due to its nonparametric statistics.

Regarding computational costs and times, EM+VMPF and EM+VMPF+EnKS needed
3.1 minutes and 1.2 minutes, respectively, to complete 20 iterations of their EM versions. The
extra cost in the former one is because it needs to do the iterations of the fixed point algorithm
at each EM iteration. On average 4 fixed point iterations are required even when we set the
maximum number of iterations to 6; i.e., the convergence criterion is met in 4 iterations on
average (see Algorithm 2.1). Therefore, the overall extra cost of the smoother-free EM in this
experiment is about 3 times the classical batch EM using the same number of particles.

We also evaluated the performance of the proposed algorithm using less frequent observa-
tions. This means that longer model integrations are required, which in turn enhances non-
linearities, resulting in non-Gaussian forecast distributions. We used the 8-variable Lorenz-96
model assuming observations are available every \Delta t = 0.25. In all the previous experiments
with the Lorenz-96 model, we assumed observations were every \Delta t = 0.05. The synthetic
observations were generated with a true tridiagonal model error covariance matrix Q, with
diagonal values \sigma 2d = 0.5 and sub/superdiagonal values \sigma sd = 0.1, R = 0.5I8, K = 500.
Following a procedure similar to that for previous experiments and settings, independent
realizations of the current experiment were performed, and Qtrue was estimated using the
EM+VMPF, EM+EnKF+EnKS, and EM+VMPF+EnKS algorithms with Np = 20 parti-
cles. The mean values of \^\sigma 2d and \^\sigma sd at the sth iteration of the algorithm are shown in
Figure 5. The EM+VMPF (blue solid line) algorithm recovers the structure of Q better than
the EM+EnKF+EnKS (red dashed lines) and the EM+VMPF+EnKS (yellow dot-dashed
lines) algorithms. The EM+VMPF algorithm outperforms the other two algorithms when
estimating the variances \sigma 2d, being EM+EnKF+EnKS and EM+VMPF+EnKS highly biased.
The three methods show similar performances when estimating the sub/superdiagonal values
of Q, \sigma sd.

The low performance of EM+EnKF+EnKS in this estimation problem appears to be asso-
ciated to the Gaussianity assumption. The non-Gaussianity resulting from long assimilation
cycles has a negative impact on the Gaussian-based algorithms, with the EM+EnKF+EnKS
performance being the most affected. On the other hand, the smoother-free algorithm based
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Figure 4. Estimation of \bfQ as a function of the iteration for the EM+VMPF (blue), EM+EnKF+EnKS
(red), EM+VMPF+EnKS (yellow) for the Lorenz-96 model with tridiagonal true model error covariance \bfQ true,
with \sigma 2

d = 0.2, \sigma 2
sd = 0.05, Nx = 8, and K = 500 (subsection 3.2). The violin plots were generated by running

50 independent repetitions of these algorithms with Np = 20 particles. Upper panels show the average of
the estimated diagonal values of \^\bfQ s (top panel) and the average of the sub/superdiagonal values of \^\bfQ s (middle
panel). The Frobenius norm \| \bfQ true - \^Q(s)\| F is shown in the bottom panel as function of the algorithm iteration.

on a PF, EM+VMPF, can capture the non-Gaussian densities and gives a relatively good
estimation. A similar result was found in [7] for an online EM algorithm. They show that
importance-sampling online EM with a PF has a much better performance than a Gaussian
smoother EM for long assimilation cycles.

A higher-dimensional experiment was also performed for the chaotic Lorenz-96 model with
40 dimensions and F = 8, where a 40\times 40 model error covariance matrix has to be estimated.
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Figure 5. Estimation of \bfQ as a function of the iteration, for the 8-variable Lorenz-96 model using \Delta t = 0.25
with \bfQ true a tridiagonal matrix, \sigma 2

d = 0.5, \sigma sd = 0.1, \bfR = 0.5 \bfI , K = 500 (subsection 3.2). Each line shows
the mean of the diagonal elements of \^\bfQ s and the mean of the subdiagonal elements \widehat \sigma (sd) for the EM+VMPF
(blue solid line), the EM+EnKF+EnKS (red dashed line), and EM+VMPF+EnKS (yellow dot-dashed line)
algorithms with Np = 20 particles. True values of \sigma 2

d = 0.5 (blue) and \sigma sd = 0.1 (black) are shown as
horizontal dotted lines.

We prescribed an isotropic tridiagonal model error covariance matrix Qtrue, with diago-
nal values \sigma 2d = 0.2 and both sub-/superdiagonal values equal to \sigma 2sd = 0.05 to generate the
synthetic observations. Following a procedure similar to that used in the previous experi-
ments, we performed independent repetitions of this experiment and estimated Q using the
EM+VMPF, the EM+VMPF+EnKS, and the EM+EnKF+EnKS algorithms. We used Np =
20 particles for the EM+VMPF smoother-free algorithm, whereas the EM+EnKF+EnKS
and the EM+VMPF+EnKS algorithms required Np = 50 ensemble members/particles in
order to avoid smoother divergence. We note that early experiments we conducted with
the 40-variables Lorenz-96 model using Np =20 particles with both EM+EnKF+EnKS and
EM+VMPF+EnKS showed divergence.

The observation error covariance was set to R = 0.5I, and the batch of observations

is K = 500. At the sth iteration of the EM algorithm we computed \widehat \sigma 2d as the average of

the diagonal values of \^Qs,
\widehat \sigma 2sd as the average of the sub-/superdiagonal values of \^Qs and

the Frobenius norm \| Qtrue  - \^Q(s)\| F . The results of these estimates at the sth iteration of
the algorithm are shown in the top, middle, and bottom panels, respectively, of Figure 6.
The performances of the EM+VMPF (blue) and the EM+EnKF+EnKS (red) algorithms are
similar in terms of the estimation of the diagonal values of Q and Frobenius norm. When
estimating the diagonal elements of Q both algorithms tend to stabilize after 10 iterations
overestimating them, with the EM+VMPF algorithm being the less biased. EM+VMPF
shows an excellent performance when estimating the sub/superdiagonal elements \sigma sd, while
EM+EnKF+ EnKS slightly underestimates it.

The full covariance matrix is estimated at each iteration, and the Frobenius norm indicates
both deviations from nonzero and zero values in the estimation. As shown in the bottom panel
of Figure 6, the overall structural errors in the estimation of Q by the EM+VMPF and the
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EM+EnKF+EnKS algorithms are similar. On the other hand, EM+VMPF+EnKS (yellow)
has a poor performance, underestimating \sigma 2d and \sigma sd. We remark here that EM+VMPF uses
Np =20 particles, while EM+EnKF+EnKS and EM+VMPF+EnKS require Np =50 particles.

Regarding computational times, the experiments took an average of 53.2 minutes and
93.9 minutes to complete 20 iterations for EM+VMPF and EM+VMPF+EnKS, respectively.
All the experiments were run in Python on a laptop with an i5 processor. In this larger-
dimensional experiment the number of iterations in the fixed point algorithm is again about
4; however, due to the larger number of particles required for the smoother (50 particles),
EM+VMPF presents a lower computational cost. The required number of particles is an
important factor in practice for medium and large systems.

Despite the increase in the dimensionality, the experiments' results show that the smoother-
free version of the EM algorithm for a PF provides unbiased results when estimating the
diagonal and sub/superdiagonal values of Q, showing a better performance than the hy-
brid EM version for a PF combined with a Gaussian Rauch--Tung--Striebel (RTS) smoother
(EM+VMPF+EnKS).

4. Conclusions. In this work a novel method to estimate the model error uncertainty
in dynamical systems is introduced and evaluated. It assumes that both the model and
observation errors are additive and Gaussian with zero mean and covariance matrices Q and
R, respectively. The methodology here presented is based on the maximization of a likelihood
criterion using the principles of the EM algorithm and a particle filter. We aim at maximizing
the complete likelihood of the observations by marginalizing this likelihood function. The
resulting likelihood is expressed sequentially. By taking this approach, in the E-Step of the
EM algorithm we only have to compute filtering densities, avoiding the need to compute
smoothing densities, which are known to be one of the main drawbacks when using particle
filters in data assimilation. The trade-off of avoiding the need of a particle smoother in the
E-Step of the EM algorithm is the need to solve an implicit equation for Q in the M-Step of
the EM algorithm. This problem was tackled by means of a fixed point algorithm, and despite
the fact that an analytical proof of its convergence is not straightforward to obtain due to the
nonlinearity of the model dynamics, empirical results show that it converges to a solution of
this implicit equation.

The EM algorithm coupled with the VMPF presents, in general, an overall excellent
performance. It gives very promising results in the experiments performed with a simple linear
first order autoregressive system and a chaotic Lorenz-96 system with 8 and 40 variables. In the
first case, results were compared with those obtained by different methods already proposed
in the literature, showing a good performance in terms of bias and root mean squared error
(RMSE). The new method is suitable for non-Gaussian posterior densities from nonlinear
dynamical and observational models, unlike the Kalman filter/smoother and its ensemble
variants.

The proposed smoother-free variant of the EM algorithm with the particle filter is com-
pared with a classical EM algorithm that uses the particle filter and a Gaussian smoother.
The experiments also present a comparison with the EM algorithm coupled with the ensemble
Kalman filter. The Gaussian assumption in the Kalman filter leads to an analytical solution
of the maximization step. In this sense, the combination of the EM with the Kalman filter
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Figure 6. Estimation of \bfQ as a function of the iteration, for the 40-variable Lorenz-96 model with \bfQ = 0.2 \bfI ,
\bfR = 0.5 \bfI , K = 500 (subsection 3.2) for the EM+VMPF (blue solid line) algorithm with Np = 20 particles,
and the EM+EnKF+EnKS (red dashed line), and EM+VMPF+EnKS (yellow dot-dashed line) algorithms with
Np = 50 particles each. Each line shows the mean of the diagonal elements of \^\bfQ s (top panel), the mean of the
subdiagonal elements \widehat \sigma (sd) (middle panel), and Frobenius norm \| \bfQ true  - \^\bfQ (s)\| F (bottom panel). True values
of \sigma 2

d = 0.2 and \sigma sd = 0.05 are shown as horizontal dot-dashed lines in black.

could be considered as a gold standard for the proposed algorithm to achieve. The results
of the experiments showed that the smoother-free algorithm coupled with the particle filter
performance may be as good as the performance of the EM with the Kalman filter. In a more
equally based comparison, the smoother-free variant of the EM algorithm gives a performance
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that is superior to that of the classical EM algorithm coupled with the particle filter and a
Gaussian smoother.

In the case of the Lorenz-96 system, its performance was tested for different scenarios
showing good convergence properties, even for less frequent observations. It is stable even
for R = 10Q, although a small bias appears in the estimate. The new method outperforms
the traditional EM algorithm with the EnKS [14] for a diagonal Q and for the diagonal of a
tridiagonal Q. However, off-diagonal elements' estimates were always noisier than those using
an EnKS. It also works in moderately large parameter estimation problems of dimension
40 \times 40 and of state space 40. In the case of less frequently observed data, longer model
integrations are required, which result in non-Gaussian forecast distributions. The smoother-
free EM algorithm coupled with the VMPF showed better performance in this scenario than
methods based on the ensemble Kalman filter and smoothers.

In general we found that the extra computational cost of the smoother-free EM for the
same number of particles is about 3--4 times the classical batch EM due to the fixed point
algorithm iterations. However, in practice a smaller number of particles may be required
if the smoother step is avoided, substantially diminishing the extra cost. At the current
form, the algorithm here proposed would be expensive (in computational time and also in
terms of memory requirements) for state dimensions larger than Nx > 100 and prohibitive for
Nx > 1000, since the algorithm uses the explicit form of Q and its inverse is needed at the
M-Step.

The computational cost of the algorithm here proposed is directly related to the number
of iterations needed for convergence. All the experiments performed achieved convergence
to a narrow neighborhood of the true value of Q in as few as 10--15 iterations of the EM
algorithm. Each EM iteration requires the computation of K filtering densities computed by
using a particle filter with Np particles, whereas the M-Step requires solving a fixed point
algorithm. In our experiments, we set the maximum number of iterations for the fixed point
algorithm to 6. In practice, an average of 4 fixed point iterations were enough to satisfy
the stopping criterion. In turn, each of these fixed point iterations also require computing K
filtering densities computed by using a particle filter with Np particles.

The numerical results obtained in the conducted experiments and these last considerations
about computational costs suggest that the method works well for moderately large models,
and in the examined situations even better and faster than classical schemes, but as previously
mentioned, it would be too expensive in its current implementation for large-dimensional
models.

Model error covariances are essential in particle flow filters. The conducted experiments
show that these particle flow filters, in particular VMPF, can work with an adaptive model
error without a priori information on this covariance, whereas in previous studies a fixed
known model error covariance was used [25]. Model error covariances impact on the prior
density and also on the kernel covariance in the VMPF. The overall excellent performance of
the estimates may also be attributed to the strong sensitivity of VMPF performance to model
error covariance. In this sense, there is a positive feedback between the model error covariance
estimates of the EM algorithm and the state estimates of the filter.
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Appendix A. Derivation of \bfscrG (\bfittheta \prime , \bfittheta ). As explained in subsection 2.3, the likelihood of
the observations can be decomposed as p(y1:K ; \theta ) =

\prod K
k=1 p(yk| y1:k - 1; \theta ), with the convention

y1:0 = \{ \emptyset \} . Marginalizing this last expression, we obtain

p(y1:K ; \theta ) =

K\prod 
k=1

p(yk| y1:k - 1; \theta )

=
K\prod 
k=1

\int 
p(yk| xk; \theta )p(xk| y1:k - 1; \theta )dxk,(A.1)

and taking the logarithm we can rewrite this last expression as

l(\theta ) = log p(y1:K ; \theta ) = log

K\prod 
k=1

\int 
q\theta \prime (xk)

p(yk| xk; \theta )p(xk| y1:k - 1; \theta )

q\theta \prime (xk)
dxk,

where q\theta \prime (xk) is a pdf whose support includes the support of the likelihood of the observations.
In principle, \theta \prime is not necessarily equal to \theta . Using Jensen's inequality,

l(\theta ) \geq 
K\sum 
k=1

\int 
q\theta \prime (xk) log

\biggl( 
p(yk| xk; \theta )p(xk| y1:k - 1; \theta )

q\theta \prime (xk)

\biggr) 
dxk.(A.2)

Let \scrG (q, \theta ) be an intermediate function defined as

\scrG (q, \theta ) =
K\sum 
k=1

\int 
q(xk) log

\biggl( 
p(yk| xk; \theta )p(xk| y1:k - 1; \theta )

q(xk)

\biggr) 
dxk.(A.3)

Using Bayes's rule, the recursive posterior density at time k is

p(xk| y1:k; \theta ) =
p(yk| xk; \theta )p(xk| y1:k - 1; \theta )

p(yk| y1:k - 1; \theta )
.(A.4)

If we choose q(xk) = p(xk| y1:k; \theta ), and so replace (A.4) in (A.3), it can be shown that \scrG (q, \theta ) =
l(\theta ). That means that for fixed \theta = \theta \prime , the function q that maximizes the intermediate
function, \scrG , is the recursive posterior density p(xk| y1:k; \theta ). This density can be inferred by a
filter method, and this corresponds to the Expectation Step.

On the other hand, maximizing \scrG (q, \theta ) with respect to \theta gives a lower bound of l(\theta ).
The Maximization Step consists in maximizing \scrG (q\prime , \theta ) as a function of \theta , where q\prime is the

density obtained in the Expectation Step. If we now write q\theta \prime (xk) = p(xk| y1:k; \theta 
\prime ) and make an

abuse of notation in the expression \scrG (q\theta \prime , \theta ) by replacing q\theta \prime by the parameter that identifies
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it, then

\scrG (\theta \prime , \theta ) =
K\sum 
k=1

\int 
p(xk| y1:k; \theta 

\prime ) log

\biggl( 
p(yk| xk; \theta )p(xk| y1:k - 1; \theta )

p(xk| y1:k; \theta \prime )

\biggr) 
dxk(A.5)

=
K\sum 
k=1

\int 
p(xk| y1:k; \theta 

\prime ) log (p(yk| xk; \theta )p(xk| y1:k - 1; \theta )) dxk(A.6)

 - 
K\sum 
k=1

\int 
p(xk| y1:k; \theta 

\prime ) log
\bigl( 
p(xk| y1:k; \theta 

\prime )
\bigr) 
dxk.(A.7)

Appendix B. Equation for Q. We want to find the root of \partial 
\partial \bfQ \scrG (Qs - 1,Q) = 0, where

\scrG (Qs - 1,Q):

\scrG (Qs - 1,Q)
.
=

K\sum 
k=1

Np\sum 
j=1

w
(j)
k,\bfQ s - 1

log

\left(  Np\sum 
i=1

w
(i)
k - 1,\bfQ \bfitphi 

\Bigl( 
x
(j)
k ,\scrM (x

(i)
k - 1),Q

\Bigr) \right)  
and \bfitphi (xk,\bfitmu ,\Sigma ) = 1

(2\pi )Nx/2| \Sigma | 1/2 exp
\bigl\{ 
 - 1

2(xk  - \bfitmu )
T\Sigma  - 1(xk  - \bfitmu )

\bigr\} 
.

Denoting \bfitbeta 
(i,j)
k = x

(j)
k  - \scrM (x

(i)
k - 1), we have

\partial 

\partial Q
\scrG (Qs - 1,Q)

=

K\sum 
k=1

Np\sum 
j=1

w
(j)
k,\bfQ s - 1

\partial 

\partial Q
log

\left[  Np\sum 
i=1

w
(i)
k - 1

(2\pi )Nx/2| Q| 1/2

\times exp

\biggl\{ 
 - 1

2
(\bfitbeta 

(i,j)T

k Q - 1\bfitbeta 
(i,j)
k )

\biggr\} \biggr] 

=

K\sum 
k=1

Np\sum 
j=1

w
(j)
k,\bfQ s - 1

\partial 

\partial Q

\biggl[ 
 - Nx

2
log(2\pi ) - 1

2
log | Q| 

+ log

\left(  Np\sum 
i=1

w
(i)
k - 1 exp

\biggl\{ 
 - 1

2
(\bfitbeta 

(i,j)T

k Q - 1\bfitbeta 
(i,j)
k )

\biggr\} \right)  \right]  
=  - K

2
Q - 1 +

1

2
Q - 1

\left[  K\sum 
k=1

Np\sum 
j=1

w
(j)
k,\bfQ s - 1

1

Si

Np\sum 
i=1

w
(i)
k - 1

\times exp\{  - 1

2
(\bfitbeta 

(i,j)T

k Q - 1\bfitbeta 
(i,j)
k )\} \bfitbeta (i,j)

k \bfitbeta 
(i,j)T

k

\biggr] 
Q - 1,

where Si =
\sum Np

i=1w
(i)
k - 1 exp\{  - 

1
2(\bfitbeta 

(i,j)T

k Q - 1\bfitbeta 
(i,j)
k )\} .
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Thus, Q that satisfies \partial 
\partial \bfQ \scrG (Qs - 1,Q) = 0 is given by

Q =
1

K

K\sum 
k=1

\left[  Np\sum 
j=1

w
(j)
k,\bfQ s - 1

\Biggl( 
1

Si

Np\sum 
i=1

w
(i)
k - 1,Q \bfitpsi 

j,i
k Bj,i

k

\Biggr) \right]  ,(B.1)

where \bfitpsi j,ik = exp\{  - 1
2(\bfitbeta 

(i,j)T

k Q - 1\bfitbeta 
(i,j)
k )\} and Bj,i

k = \bfitbeta 
(i,j)
k \bfitbeta 

(i,j)T

k .
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