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Vitamins E and C do not effectively inhibit low density lipoprotein oxidation

by ferritin at lysosomal pH

Oluwatosin O. Ojo (® and David S. Leake

School of Biological Sciences and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, Berkshire, UK

ABSTRACT

Low density lipoprotein (LDL) might be oxidized by iron in the lysosomes of macrophages in
atherosclerotic lesions. We have shown previously that the iron-storage proteinferritin can oxidize
LDL at lysosomal pH. We have now investigated the roles of the most important antioxidant con-
tained in LDL, a-tocopherol (the main form of vitamin E) and of ascorbate (vitamin C), a major
water-soluble antioxidant, on LDL oxidation by ferritin at lysosomal pH (pH 4.5). We incubated
LDL with ferritin at pH 4.5 and 37°C and measured its oxidation by monitoring the formation of
conjugated dienes at 234 n min a spectrophotometer. a-Tocopherol is well known to inhibit LDL
oxidation at pH 7.4, but enrichment of LDL with a-tocopherol was unable to inhibit LDL oxida-
tion by ferritin at pH 4.5. Ascorbate had a complex effect on LDL oxidation by ferritin at lyso-
somal pH and exhibited both antioxidant and pro-oxidant effects. It had no antioxidant effect on
partially oxidized LDL, only a pro-oxidant effect. Ascorbate completely inhibited LDL oxidation by
copper at pH 7.4 for a long period, but in marked contrast did not inhibit LDL oxidation by cop-
per at lysosomal pH. Dehydroascorbate, the oxidation product of ascorbate, had a pronounced
pro-oxidant effect on LDL incubated with ferritin at pH 4.5. The inability of a-tocopherol and
ascorbate to effectively inhibit LDL oxidation by ferritin at lysosomal pH might help to explain
why the large clinical trials with these vitamins failed to show protection against cardiovascu-
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lar diseases.

Introduction

There has been a great deal of interest in oxidized low
density lipoprotein (LDL), which has many potentially
atherogenic effects [1-3]. A beneficial effect of antioxi-
dants in decreasing cardiovascular disease would pro-
vide further support for the oxidized LDL hypothesis of
atherosclerosis. Some clinical trials have reported effi-
cacy of antioxidants, mainly vitamins E and C, in reduc-
ing cardiovascular events [4,5] but the large clinical
trials have shown no protection [6-10]. The role of anti-
oxidants and oxidized LDL in atherosclerosis therefore
remains controversial.

Vitamin E has eight forms, but a-tocopherol is the
main one in the body and lipoproteins [11] and is the
most abundant lipid-soluble antioxidant contained in
LDL, with each LDL particle containing about five to
nine molecules [12,13]. a-Tocopherol has a chain break-
ing effect on free radical reactions, due to its ability to
scavenge alkoxyl and peroxyl radicals formed from lipid

peroxidation [14,15]. Increasing the o-tocopherol con-
tent of LDL has been shown to decrease its oxidisability
by macrophages or copper [16,17], but a-tocopherol
can increase the oxidation of LDL if the oxidative stress
is low because the a-tocopherol radical can abstract a
hydrogen atom from a polyunsaturated lipid and pro-
mote peroxidation [18,19]. Supplementation of LDL
with a-tocopherol does not protect LDL from oxidation
by copper or ferric iron or a low concentration of fer-
rous iron at lysosomal pH [20]. a-Tocopherol has been
shown to reduce diet-induced atherosclerosis in rabbits
[21,22] and decreased atherosclerotic lesion formation
in apoE-deficient mice fed an atherogenic diet [23] and
LDL receptor-deficient mice on a low [24] or high fat
diet [25], but it sometimes had no effect on atheroscler-
osis or even increased it [26].

Ascorbate (vitamin C) is an important water-soluble
vitamin and can protect LDL from oxidation by copper
[27-29], iron [30,31], a radical generator, neutrophils or
cigarette smoke [32]. Ascorbate can increase the
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oxidation, however, of partially oxidized LDL [29,30].
Some studies have shown an anti-atherogenic effect of
ascorbate in cholesterol fed-rabbits [33,34], but others
have demonstrated that ascorbate had no protective
effect in these animals [35]. Similarly to a-tocopherol,
there is no strong evidence that ascorbate decreases
cardiovascular disease in clinical trials [8,9,36,37].

Dehydroascorbate (the oxidation product of ascor-
bate when it acts as an antioxidant) inhibits the oxida-
tion of fresh nonoxidised LDL [38,39], but increases the
oxidation of partially oxidized LDL [29,39].

The iron hypothesis of atherosclerosis was proposed
by Sullivan in 1981 [40], but this hypothesis is contro-
versial [41] possibly because plasma iron concentrations
are not always a good indication of iron levels inside
cells. Iron is increased greatly in human [42,43] and rab-
bit atherosclerotic lesions [44] and macrophage foam
cells in human atheromas are high in iron and ferritin
[45]. Ferritin light chain levels are increased in human
diseased coronary arteries [46] and high plasma ferritin
concentrations are associated with an increase in myo-
cardial infarctions [47] and increased progression of
human carotid atherosclerosis [48]. Interestingly, the
macrophage-specific knockout of ferroportin, which
transports iron out of cells, increased atherosclerosis
substantially in mice [49].

We have shown that LDL can be oxidized in the lyso-
somes of macrophages, that this oxidation is catalyzed
by iron [50] and that it can be inhibited by the antioxi-
dant cysteamine, which accumulates in lysosomes
[51,52]. The lysosomal oxidation of LDL causes the
secretion of inflammatory cytokines by macrophages
and an increase in the pH of lysosomes, which can be
protected against by cysteamine [53]. Inhibiting the
lysosomal oxidation of LDL by cysteamine decreases
the development of atherosclerosis [54] and causes the
regression of preexisting lesions [52] in mice.

LDL can also be oxidized by the main iron-storage
protein ferritin at acidic pH, much faster than at pH

4 [55]. There was a large increase in hydroperoxides
in the LDL, including cholesteryl linoleate hydroperox-
ide, and an increase in 7-ketocholesterol at pH 4.5
[55]. This raises the possibility that ferritin delivered
to lysosomes by autophagy or endocytosis might
play a role in oxidizing LDL in these organelles.
When cells are deficient in iron the protein NCOA4
binds to ferritin in the cytosol and delivers it to auto-
phagosomes which fuze with lysosomes where the
ferritin is degraded and iron made available [56,57].
Plasma ferritin, although not totally saturated with
iron [58], binds to transferrin receptor-1 and is
endocytosed and delivered to lysosomes [59].

In the present study, we have investigated the
effects of a-tocopherol and ascorbate on LDL oxidation
by ferritin at lysosomal pH because a-tocopherol is the
main antioxidant in LDL, ascorbate would be delivered
to lysosomes when cells endocytose interstitial fluid
and because these antioxidants have been investigated
in a number of very large clinical trials of cardiovascu-
lar disease.

Materials and methods
Materials

All reagents used were purchased from Sigma Aldrich
Limited. Ferritin was from equine spleen and had a
molecular weight of 440kDa. Ferritin, ascorbate and
dehydroascorbate was dissolved freshly before
each experiment.

LDL Isolation

LDL was isolated by sequential ultracentrifugation, as
previously described [60], from pooled plasma from
normal human blood. LDL was stored in the presence
of 100 uM EDTA at 4°C and used within one month of
storage. Ethical permission to take human blood for the
isolation of LDL was obtained from the University of
Reading Research Ethics Committee.

Enrichment of LDL with o-tocopherol

The a-tocopherol content of native LDL was increased
as described by Esterbauer et al. [61]. Plasma from
blood collected from healthy volunteers was obtained
by centrifugation at 1500g for 30min at 4°C. The
pooled plasma was then incubated for 3 h at 37 °C with
1% (v/v) dimethylsulfoxide containing 100 mM o-toc-
opherol (final concentration 1mM) or 1% (v/v) dime-
thylsufoxide as a control. LDL was then isolated by
sequential ultracentrifugation [60]. (The dimethylsulfox-
ide would have been removed from the LDL during dia-
lysis.) We quantified the o-tocopherol content of LDL
by HPLC, as described previously [62].

Measurement of conjugated dienes

LDL (50 pug protein/ml) was oxidized with 0.1 uM ferritin
in 150 mM NaCl/10 mM sodium acetate buffer, pH 4.5
or 150 mM NaCl/T0mM MOPS (3-(N-morpholino) pro-
panesulphonic acid) buffer, pH 7.4 treated with pre-
washed Chelex-100 (1%, w/v) to remove contaminating
transition metal ions. The formation of conjugated
dienes was monitored by measuring attenuance
(absorbance plus UV scattering) at 234nm at 37°C
overnight in a dual beam Lambda Bio 40 8-cell position
spectrophotometer (PerkinElmer) with UV WinLab



software. The test cuvettes were placed against appro-
priate reference cuvettes that did not contain LDL and
the attenuance of the reference cuvettes was automat-
ically subtracted from that of the test cuvettes. The ini-
tial attenuance was subtracted from the later
time points.

It was important to wash the cuvettes very carefully
between use to avoid contamination by transition metal
ions. After an experiment, they were rinsed with water
several times and cleaned with warm dilute detergent
(washing-up liquid) with a cotton bud. They were then
rinsed in purified water and soaked in ethanol, rinsed
with purified water and then filled with 100 uM diethyle-
netriaminepentaacetic acid (DTPA) for 1h, to remove any
firmly bound metal ions, rinsed thoroughly with purified
water followed by ethanol and left to dry.

Statistics

The mean = SEM of the specified number of independ-
ent experiments are shown. Treatments were compared
by a one-way ANOVA with a Tukey's post-hoc test. A
p value of < 0.05 was considered statistically
significant.

Results

Effect of enriching LDL with a-tocopherol on
oxidation by ferritin at pH 7.4 and 4.5

Enriching human LDL with o-tocopherol by taking
a-tocopherol orally [16,17] or by adding a-tocopherol
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to plasma and then isolating LDL [63] inhibits its oxida-
tion by macrophages or copper at pH 7.4, the pH of
normal interstitial fluid or plasma. We have investigated
the effect of a-tocopherol enrichment of LDL by adding
a-tocopherol to plasma and isolating the LDL by ultra-
centrifugation on LDL oxidation by ferritin at lysosomal
pH (pH 4.5). The a-tocopherol content of LDL was
increased from 15+0.4 to 26+0.8nmol/mg protein
(mean £SEM), leading to an increase in the average
number of a-tocopherol molecules contained in each
LDL particle from about 8 to 13. Control and a-tocoph-
erol-enriched LDL were incubated with ferritin at pH 4.5
and 7.4 and the formation of conjugated dienes was
monitored at 234nm (Figure 1). The oxidation was
faster at acidic pH, as expected [55]. As described previ-
ously [55], LDL oxidation at pH 4.5 had a short lag
phase, a rapid oxidation phase, a slower oxidation
phase, an aggregation phase (in which LDL aggregates
and scatters the beam of UV resulting in an increase in
attenuance) and a sedimentation phase (in which the
aggregates sink beneath the beam of UV in the spectro-
photometer and are not detected). The rate of increase
of attenuance was not significantly decreased by a-toc-
opherol enrichment.

Effects of ascorbate on LDL oxidation by ferritin
at lysosomal pH

We tested the effect of varying concentrations
(10-100 puM) of ascorbate on LDL oxidation by ferritin at
lysosomal pH. The recommended plasma ascorbate
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Figure 1. Effect of a-tocopherol enrichment on LDL oxidation by ferritin. (A) Control LDL or LDL enriched with a-tocopherol
(50 ug protein/ml) was oxidized by ferritin (0.1 uM) in a sodium acetate buffer of pH 4.5 or a MOPS buffer of pH 7.4. The forma-
tion of conjugated dienes and at later times aggregation was monitored as attenuance (absorbance plus UV scattering) at
234 nm. This result is representative of four independent experiments. (B) The mean +SEM of attenuance at 200 min (which was
still in the oxidation phase, rather than the aggregation phase) were compared by one-way ANOVA (n = 4) followed by a Tukey’s
post-hoc test (p > 0.05). ns indicates not significantly different to the indicated comparison.
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Figure 2. Effect of ascorbate on LDL oxidation by ferritin at lysosomal pH. (A) LDL (50 pg protein/ml) was oxidized with ferritin
(0.1 uM) in the absence or presence of ascorbate (10 uM-100uM) pH 4.5 and 37 °C. The formation of conjugated dienes and at
later times LDL aggregation was monitored by measuring attenuance at 234nm. This is representative of four independent
experiments. (B) The attenuance at 200 min (which was still in the oxidation phase, rather than the aggregation phase) was com-
pared by one-way ANOVA (n =4) followed by a Tukey's post-hoc test. *Indicates p < 0.05 and ** indicates p < 0.01 compared to
the control.
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Figure 3. The effect of existing oxidized lipids on the effect of ascorbate on LDL oxidation by ferritin at lysosomal pH. (A) LDL
(50 ug protein/ml) was oxidized by ferritin (0.1 M) at pH 4.5 and 37°C in the absence or presence of 30 uM ascorbate added at
different time points (0-200 min). The formation of conjugated diene and at later times LDL aggregation was monitored by
measuring attenuance at 234 nm. This result represents three independent experiments. (B) The attenuance at 200 min (when the
LDL in the absence of ascorbate was in its oxidation phase, but not yet in the aggregation phase) was compared by one-way
ANOVA (n=3) followed by a Tukey’s post-hoc test. *** indicates p < 0.001 compared to the control. ##%# indicates p < 0.001
for the indicated comparison.

concentration is 50 M [64]. Ascorbate exhibited an
antioxidant effect on the initial phase of oxidation of
LDL, followed by an abrupt pro-oxidant effect such that
the extent of oxidation overtook that of the control LDL
(Figure 2). The duration of the inhibition phase was
increased as the concentration of ascorbate increased.
We showed previously that the antioxidant activity
of ascorbate on LDL oxidation by copper at pH 7.4 is
lost when LDL is partially oxidized [29]. We therefore

tested the effects of preexisting oxidized lipids on the
antioxidant and pro-oxidant activities of ascorbate
when LDL is oxidized by ferritin at pH 4.5. When ascor-
bate was added at the start of the experiment, there
was an antioxidant effect followed by a pro-oxidant
effect, as expected (Figure 3). When ascorbate was
added at 100 and 200 min, when the oxidation was
already underway, it caused an immediate and rapid
oxidation of LDL.
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Figure 4. The effect of ascorbate on LDL oxidation by copper at pH 4.5 and 7.4. (A) LDL (50 ng protein/ml) was oxidized by
CuSO4 (5 uM) in the presence or absence of ascorbate (30 uM) at 37 °C in a sodium acetate buffer of pH 4.5 or a MOPS buffer of
pH 7.4. The formation of conjugated dienes was measured by attenuance of 234 nm. This result is representative of three inde-
pendent experiments. (B) The attenuance at 200 min (when the LDL was in its oxidation phase, but not yet in the aggregation
phase at pH 4.5) was compared by one-way ANOVA (n =3) followed by a Tukey's post-hoc test. ns indicates not significant, ***

indicates p < 0.001 for the indicated comparison.

Effects of ascorbate on LDL oxidation by copper
at pH 4.5 and 7.4

We compared the effects of ascorbate on LDL oxidation
by ferritin to the much better studied system of LDL
oxidation by copper (Figure 4). The oxidation profile of
LDL oxidation by copper was very different at pH 4.5
and 7.4. At pH 7.4, there was the well-known lag phase,
propagation phase and decomposition phase [27]. At
pH 4.5, the oxidation was much slower and had a lag
phase, rapid oxidation phase, slow oxidation phase,
aggregation phase and sedimentation phase, some-
what similar to the oxidation profile given by ferritin
(Figure 1) or ferrous and ferric ions [62] at pH 4.5. The
attenuance reached a much higher peak due to LDL
aggregation and therefore UV scattering.

Ascorbate (30 uM) had very different effects at the
two pH values. At pH 7.4, it completely prevented
the oxidation of LDL for a prolonged period and then
the oxidition proceeded at the uninhibited rate. At pH
45, however, ascorbate had little effect on
LDL oxidation.

Effects of dehydroascorbate on LDL oxidation by
ferritin at lysosomal pH

We investigated the effect of the oxidation product of
ascorbate, dehydroascorbate, on LDL oxidation by fer-
ritin at lysosomal pH. Dehydroascorbate did not protect
LDL from oxidation. It initially had no effect on the
oxidation, but later had a pro-oxidant effect, which
occurred sooner the higher the concentration of dehy-
droascorbate (Figure 5).

Discussion

Preventing LDL oxidation was considered one of the
most impoprtant strategies to reduce cardiovascular
diseases, but the large clinical trials of antioxidants,
mainly a-tocopherol and ascorbate, showed no protec-
tion [6-10]. We previously showed that a-tocopherol-
enrichment of LDL did not protect LDL effectively
against oxidation by ferric iron, copper ions or a low
concentration of ferrous iron at lysosomal pH (pH 4.5),
but as expected it protected LDL against oxidation by
copper at pH 7.4 [20]. In the present study, enrichment
of LDL with a-tocopherol did not protect LDL from oxi-
dation by ferritin at lysosomal pH (Figure 1). The fold
enrichment of a-tocopherol we obtained by adding
a-tocopherol to plasma followed by isolating LDL was
1.73, which is comparable to the enrichment obtained
in the clinical trials (1.60-2.42) [8,9,65-67].

a-Tocopherol might sometimes have an antioxidant
effect on LDL by scavenging radicals, such as lipid per-
oxyl radicals (LOOe).

ol — tocOH + LOOe — o — tocO e +LOOH (1)

a-Tocopherol might also have pro-oxidant effects by
reducing ferric iron (ferritin contains ferric iron) to fer-
rous iron itself becoming the a-tocopheroxyl radical,
which is not entirely stable and can abstract a hydrogen
atom from a bisallylic methylene group in a polyunsat-
urated fatty acyl moiety promoting lipid peroxidation
[68,69].

o —tocOH + Fe’" — o —tocO @ +H' +Fe?™  (2)
o — tocO @ +-LH — o — tocOH + Le (3)
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Figure 5. Effect of dehydroascorbate on LDL oxidation by ferritin at lysosomal pH. (A) LDL (50 pg protein/ml) was oxidized with
ferritin (0.1 uM) in the absence or presence of dehydroascorbate (10-100uM) pH 4.5 at 37°C. The formation of conjugated
dienes was monitored by measuring attenuance at 234 nm. This result is representative of four independent experiments. (B) The
attenuance at 200 min (when the LDL was in its oxidation phase, but not yet in the aggregation phase in the absence of dehy-
droascorbate) was compared by one-way ANOVA (n=4) followed by a Tukey's post hoc-test. *** indicates p < 0.001 compared

to the control.

Le-+0, — LOOe (4)

In addition, ferrous iron would break down lipid
hydroperoxide much faster than ferric iron would [70].
Fe’" +LOOH — LO e +OH™ + Fe*'(fast)  (5)
Fe*™ + LOOH — LOO e +OH™

+ Fe?* (slow) please delete OHsuperscript 1

— and add Hsuperscript + instead
(6)

These pro-oxidant effects might counterbalance the
antioxidant effect and lead to a net lack of effect of
a-tocopherol on LDL oxidation by ferritin at pH 4.5.

We have postulated that LDL is oxidized by iron at
lysosomal pH by the hydroperoxyl radical (HO,e), which
is more reactive and hydrophobic than the superoxide
radical (O,e7) [51]. Ferrous iron might transfer an elec-
tron to oxygen forming the superoxide radical, which
protonates at acidic pH (pK, 4.8) to form the hydroper-
oxyl radical. The hydroperoxyl radical might abstract a
hydrogen atom from a polyunsaturated fatty acyl moi-
ety to cause its oxidation.

Fe’™ +0, = Fe’t + 0,0 — )
Oye—+ H' — HO,, (8)
HO,. + LH — H,0, + Le )

Le+0, — LOOe (10)

We investigated the effects of ascorbate
(10-100 uM), whose recommended plasma concentra-
tion is 50 uM [64], on LDL oxidation by ferritin at lyso-
somal pH as it would be delivered to lysosomes when
cells endocytose extracellular fluid. Ascorbate had com-
plex antioxidant and pro-oxidant effects on LDL

oxidation by ferritin at lysosomal pH. It initially inhibited
the oxidation of LDL in a concentration-dependent
manner and then had a very abrupt pro-oxidant effect
(Figure 2).

Ascorbate might have inhibited LDL oxidation by fer-
ritin in at least three ways.

Ascorbate might have scavenged superoxide or
hydroperoxyl radicals.

AscH, + 05~ + H" — AscH e +H,0, (11)
AscH, + HO,e — AscHe + H,O, (12)

2. The ascorbyl radical formed by this reaction might
be stabilized by dismutation to ascorbate and
dehydroascorbate (DHA).

AscH e + AscHe < AscH, + DHA (13)

3. Ascorbate might have acted as a co-antioxidant
for oa-tocopherol by rejuvenating a-tocopherol
from the a-tocopheroxyl radical, restoring the anti-
oxidant ability of a-tocopherol and preventing the
pro-oxidant effect of the o-tocopheroxyl radical
[71].

o — tocO e +AscH, — oo — tocOH + AscHe  (14)

It should be noted, however, that the rate of
reaction of ascorbate with o-tocopheroxyl radicals

4. xscoitrites imlghterpgssiioie dcidic piduaduesol72bn
released from ferritin, decreasing the ability of this
iron to oxidize LDL.

Ascorbate’s antioxidant effect on LDL incubated with
ferritin very suddenly switched to a pro-oxidant effect



and the rate of LDL oxidation then exceeded that of
LDL incubated in the absence of ascorbate (Figure 2).
We propose that the pro-oxidant effect of ascorbate
might be explained by two mechanims.

1. Ascorbate might reduce the ferric iron of ferritin
to ferrous iron.

AscH, + Fe3* — AscH o +H™ + Fe?*t (15)

The ferrous iron would react with oxygen to form
superoxide and hydroperoxyl radicals (Equations 7
2. Beddls Whitheleaukd drddizdethieih Dhight react rap-
idly with the lipid hydroperoxides that have build
up in the LDL to form lipid alkoxyl radicals
(Equations 5), giving a burst of LDL oxidation.

We do not know why the switch from an antioxidant
to a pro-oxidant effect on ferritin was so abrupt with
ascorbate, but it appears to be related to the build up
of lipid hydroperoxides in LDL because when ascorbate
was added to partially oxidized LDL there was an imme-
diate burst of oxidation (Figure 3).

To investigate the effect of pH on the antioxidant
and pro-oxidant activities of ascorbate, we investigated
the effects of ascorbate on LDL oxdation by copper, as
copper can oxidize LDL well at pH 7.4. Copper, in
marked contrast to ferritin (Figure 1) and ferrous iron
[50,62], oxidized LDL much faster at pH 7.4 than at pH
4.5 and with very different kinetics (Figure 4). The kinet-
ics at pH 7.4 were as expected [27]. At pH 4.5, the kinet-
ics were similar to those observed with ferritin (Figure
1) and ferrous or ferric iron at this pH [62]. The mechan-
ism of LDL oxidation by copper might well be different
at pH 7.4 and 4.5. At pH 7.4, it might involve copper
interacting with certain amino acids, for instance trypto-
phan residues, in apolipoprotein B-100 of LDL [73], pre-
existing lipid hydroperoxides [74] or a-tocopherol [68].
At pH 4.5, copper might oxidize LDL by forming the
hydroperoxyl radical, as shown below (where the iden-
tity of XH is uncertain), followed by Equations 8-10.

Cu** +XH — Cut + X e +HT (16)
Cut + 0, — Cu?* +05° 17)

The inhibition by ascorbate of LDL oxidation by
CuSO, at pH 7.4 is similar to what has previously been
observed [28,30]. The mechanism of the inhibition
might involve scavenging free radicals, decreased bind-
ing of copper ions to LDL [75], the reduction of Cu?* to
Cu™ thus preventing a-tocopherol-mediated lipid
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peroxidation by Cu®" or a co-antioxidant effect with
a-tocopherol [71].

Ascorbate had little effect on LDL oxidation by
CuSQ, at pH 4.5 because the above antioxidant mecha-
nisms might not apply at this pH. It is surprising that
ascorbate did not inhibit LDL oxidation by scavenging
hydroperoxyl/superoxide radicals because its optimal
pH for scavenging these radicals is pH 4.5 [76]. It is pos-
sible that copper ions generate these radicals in a site-
specific manner on the surface of LDL where ascorbate
might not have access to them.

We investigated the effects of dehydroascorbate
(10-100 uM), the oxidation product of ascorbate, on
LDL oxidation by ferritin at lysosomal pH (Figure 5).
Very different plasma concentrations of dehydroascor-
bate has been reported by a number of studies and
range from 2-29 uM (see [39] for references). The local
concentrations would be expected to increase when
ascorbate acts as an antioxidant. Dehydroascorbate ini-
tially had no effect on LDL oxidation by ferritin at pH
4.5, but then had a sudden pro-oxidant effect (Figure
5). The pro-oxidant effect occurred sooner and the rate
of oxidation was greater at the higher dehydroascor-
bate concentrations. The effects of dehydroascorbate
on LDL oxidation by ferritin at pH 4.5 are in marked
contrast to the effects with copper at pH 7.4, where
dehydroascorbate inhibited very effectively the oxida-
tion of unoxidized LDL (but increased the oxidation of
mildly-oxidized LDL) [39]. The pro-oxidative effect of
dehydroascorbate might be due to the conversion of
Fe’" in ferritin to Fe’" by ascorbate or erythroascor-
bate, both of which can be generated from dehydroas-
corbate [39], followed by Equations 5 and 7-10.

In conclusion, the lack of effective inhibition by
a-tocopherol and ascorbate of LDL oxdation by ferritin
at lysosomal pH might help to explain why vitamins E
and C did not reduce cardiovascular disease in the large
clinical trials [6-10].
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