Accessibility navigation


Protochordate Zic genes define primitive somite compartments and highlight molecular changes underlying neural crest evolution

Gostling, N. J. and Shimeld, S. M. (2003) Protochordate Zic genes define primitive somite compartments and highlight molecular changes underlying neural crest evolution. Evolution & Development, 5 (2). pp. 136-144. ISSN 1520-541X

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1046/j.1525-142X.2003.03020.x

Abstract/Summary

The vertebrate Zic gene family encodes C2H2 zinc finger transcription factors closely related to the Gli proteins. Zic genes are expressed in multiple areas of developing vertebrate embryos, including the dorsal neural tube where they act as potent neural crest inducers. Here we describe the characterization of a Zic ortholog from the amphioxus Branchiostoma floridae and further describe the expression of a Zic ortholog from the ascidian Ciona intestinalis. Molecular phylogenetic analysis and sequence comparisons suggest the gene duplications that formed the vertebrate Zic family were specific to the vertebrate lineage. In Ciona maternal CiZic/Ci-macho1 transcripts are localized during cleavage stages by asymmetric cell division, whereas zygotic expression by neural plate cells commences during neurulation. The amphioxus Zic ortholog AmphiZic is expressed in dorsal mesoderm and ectoderm during gastrulation, before being eliminated first from midline cells and then from all neurectoderm during neurulation. After neurulation, expression is reactivated in the dorsal neural tube and dorsolateral somite. Comparison of CiZic and AmphiZic expression with vertebrate Zic expression leads to two main conclusions. First, Zic expression allows us to define homologous compartments between vertebrate and amphioxus somites, showing primitive subdivision of vertebrate segmented mesoderm. Second, we show that neural Zic expression is a chordate synapomorphy, whereas the precise pattern of neural expression has evolved differently on the different chordate lineages. Based on these observations we suggest that a change in Zic regulation, specifically the evolution of a dorsal neural expression domain in vertebrate neurulae, was an important step in the evolution of the neural crest.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences
ID Code:10753
Uncontrolled Keywords:CENTRAL-NERVOUS-SYSTEM, ZINC-FINGER PROTEIN, DEVELOPMENTAL EXPRESSION, CIONA-INTESTINALIS, PATTERN-FORMATION, ASCIDIAN EMBRYOS, HOMEOBOX GENE, CELL LINEAGE, AMPHIOXUS, HEDGEHOG

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation