Accessibility navigation


Determining feature relevance for the grouping of motor unit action potentials through generative topographic mapping

Andrade, A.O. and Vellido, A. (2006) Determining feature relevance for the grouping of motor unit action potentials through generative topographic mapping. In: Hamza, M. H. (ed.) Proceedings of the 25th IASTED International Conference on Modelling, Identification, and Control. Acta Press, Calgary, pp. 507-512. ISBN 0889865493

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Abstract/Summary

The study of motor unit action potential (MUAP) activity from electrornyographic signals is an important stage on neurological investigations that aim to understand the state of the neuromuscular system. In this context, the identification and clustering of MUAPs that exhibit common characteristics, and the assessment of which data features are most relevant for the definition of such cluster structure are central issues. In this paper, we propose the application of an unsupervised Feature Relevance Determination (FRD) method to the analysis of experimental MUAPs obtained from healthy human subjects. In contrast to approaches that require the knowledge of a priori information from the data, this FRD method is embedded on a constrained mixture model, known as Generative Topographic Mapping, which simultaneously performs clustering and visualization of MUAPs. The experimental results of the analysis of a data set consisting of MUAPs measured from the surface of the First Dorsal Interosseous, a hand muscle, indicate that the MUAP features corresponding to the hyperpolarization period in the physisiological process of generation of muscle fibre action potentials are consistently estimated as the most relevant and, therefore, as those that should be paid preferential attention for the interpretation of the MUAP groupings.

Item Type:Book or Report Section
Divisions:Faculty of Science
ID Code:14337
Uncontrolled Keywords:electromyography, MUAP, feature selection, generative topographic, mapping, clustering
Publisher:Acta Press

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation