Accessibility navigation


Improved process topology for membrane distillation

Foster, P. J., Burgoyne, A. and Vahdati, M. M. (2001) Improved process topology for membrane distillation. Separation and Purification Technology, 21 (3). pp. 205-217. ISSN 1383-5866

Full text not archived in this repository.

To link to this article DOI: 10.1016/S1383-5866(00)00201-X

Abstract/Summary

In membrane distillation in a conventional membrane module, the enthalpies of vaporisation and condensation are supplied and removed by changes in the temperatures of the feed and permeate streams, respectively. Less than 5% of the feed can be distilled in a single pass, because the potential changes in the enthalpies of the liquid streams are much smaller than the enthalpy of vaporisation. Furthermore, the driving force for mass transfer reduces as the feed stream temperature and vapour pressure fall during distillation. These restrictions can be avoided if the enthalpy of vaporisation is uncoupled from the heat capacities of the feed and permeate streams. A specified distillation can then be effected continuously in a single module. Calculations are presented which estimate the performance of a flat plate unit in which the enthalpy of distillation is supplied and removed by the condensing and boiling of thermal fluids in separate circuits, and the imposed temperature difference is independent of position. Because the mass flux through the membrane is dependent on vapour pressure, membrane distillation is suited to applications with a high membrane temperature. The maximum mass flux in the proposed module geometry is predicted to be 30 kg/m2 per h at atmospheric pressure when the membrane temperature is 65°C. Operation at higher membrane temperatures is predicted to raise the mass flux, for example to 85 kg/m2 per h at a membrane temperature of 100°C. This would require pressurisation to 20 bar to prevent boiling at the heating plate of the feed channel. Pre-pressurisation of the membrane pores and control of the dissolved gas concentrations in the feed and the recyled permeate should be investigated as a means to achieve high temperature membrane distillation without pore penetration and wetting.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Construction Management and Engineering > Innovative and Sustainable Technologies
ID Code:21825
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation