Accessibility navigation


Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2

Tricker, P. J., Trewin, H., Kull, O., Clarkson, G. J. J., Eensalu, E., Tallis, M. J., Colella, A., Doncaster, C. P., Sabatti, M. and Taylor, G. (2005) Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia, 143 (4). pp. 652-660. ISSN 1432-1939

Full text not archived in this repository.

To link to this article DOI: 10.1007/s00442-005-0025-4

Abstract/Summary

Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus · euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (gs, lmol m2 s1), photosynthetic CO2 fixation (A, mmol m2 s1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], gs was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences > Environmental Biology
No Reading authors. Back catalogue items
ID Code:21914
Uncontrolled Keywords:Populus x euramericana;Stomatal numbers;Stomatal conductance;POPFACE
Publisher:Springer

Centaur Editors: Update this record

Page navigation