Accessibility navigation

Phosphorus flux from wetland ditch sediments

Hill, C. R. and Robinson, S. (2012) Phosphorus flux from wetland ditch sediments. Science of the Total Environment, 437. pp. 315-322. ISSN 0048-9697

Full text not archived in this repository.

To link to this item DOI: 10.1016/j.scitotenv.2012.06.109


The accumulation of phosphorus (P) in the bottom sediment of field drainage ditches poses a threat to the ecology both of the ditch water and downstream water courses. We investigated the amounts, forms and internal loading of sediment-bound P along two drainage ditches that regulate water levels in a basin fen (~ 200 ha) supporting a mixture of restored wetland and drained agricultural fields. Water levels in the Lady's Drove Rhyne are currently managed to enhance the biodiversity of the wetland (Catcott Lows Reserve — an area formerly cultivated for arable crop production); whereas, the East Ditch is managed to drain adjoining land that remains under arable and livestock production. Laboratory-based chemical fractionation schemes were used to characterise the forms and potential mobility of the sediment-bound P, whilst pore-water equilibrators were employed in situ to evaluate the diffusive flux of P through the sediment–water column, and to characterise the corresponding redox conditions. Along both ditches, sediment pore-water profiles indicated conditions ranging from weakly to very reducing conditions with increasing depth, and net fluxes of P from the sediment to overlying water. P flux values ranged from 0.33 to 1.30 mg m− 2 day− 1. Both the degree of P saturation (DPS) of the sediment and NaOH extractable (Fe/Al-bound) P correlated significantly (P < 0.05) with P flux. Both in the wetland and agricultural ditches, by far the highest values for P flux were recorded at sites closest to points of drainage water entry from the corresponding, adjoining land. Although the P flux data were obtained from only a single sampling event, this study highlights the contribution of historical as well as ongoing agricultural land use on the sustained elevated P status of ditch sediments in lowland catchments.

Item Type:Article
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Faculty of Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
ID Code:26669

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation