Accessibility navigation


Representing the acquisition and use of energy by individuals in agent-based models of animal populations

Sibly, R. M., Grimm, V., Martin, B. T., Johnston, A. S. A., Kulakowska, K., Topping, C. J., Calow, P., Nabe-Nielsen, J., Thorbek, P. and DeAngelis, D. L. (2013) Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods in Ecology and Evolution, 4 (2). pp. 151-161. ISSN 2041-210X

[img]
Preview
Text (Open Access) - Published Version
· Please see our End User Agreement before downloading.

709kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/2041-210x.12002

Abstract/Summary

Summary 1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. Keywords: bioenergetics; energy budget; individual-based models; population dynamics.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences > Ecology and Evolutionary Biology
ID Code:30834
Publisher:Wiley-Blackwell for the British Ecological Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation