## Fractional order modeling of large three-dimensional RC networks
Galvão, R. K. H., Hadjiloucas, S., Kienitz, K. H., Paiva, H. M. and Afonso, R. J. M.
(2012)
Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1109/TCSI.2012.2209733 ## Abstract/SummaryAn incidence matrix analysis is used to model a three-dimensional network consisting of resistive and capacitive elements distributed across several interconnected layers. A systematic methodology for deriving a descriptor representation of the network with random allocation of the resistors and capacitors is proposed. Using a transformation of the descriptor representation into standard state-space form, amplitude and phase admittance responses of three-dimensional random RC networks are obtained. Such networks display an emergent behavior with a characteristic Jonscher-like response over a wide range of frequencies. A model approximation study of these networks is performed to infer the admittance response using integral and fractional order models. It was found that a fractional order model with only seven parameters can accurately describe the responses of networks composed of more than 70 nodes and 200 branches with 100 resistors and 100 capacitors. The proposed analysis can be used to model charge migration in amorphous materials, which may be associated to specific macroscopic or microscopic scale fractal geometrical structures in composites displaying a viscoelastic electromechanical response, as well as to model the collective responses of processes governed by random events described using statistical mechanics.
[1] E. Warburg, “Ueber das Verhalten sogenannter unpolarisirbarer Elektroden
gegenWechselstrom,” Annalen der Physik und Chemie, vol. 67,
pp. 493–499, 1899.
[2] J. C. Wang, “Realizations of generalized Warburg impedance with RC
ladder networks and transmission lines,” J. Electrochem. Soc., vol. 134,
no. 8, pp. 1915–1920, Aug. 1987.
[3] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals
and Derivatives—Theory and Applications. New York: Gordon and
Breach Science Publishers, 1987.
[4] I. Podlubny, “Geometric and physical interpretation of fractional integration
and fractional differentiation,” Fractional Calc. Appl. Analysis,
vol. 5, no. 4, pp. 367–386, 2002.
[5] D. Cafagna, “Past and present—Fractional calculus: A mathematical
tool from the past for present engineers,” IEEE Ind. Electron. Mag.,
vol. 1, no. 2, pp. 35–40, 2007.
[6] J. M. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in
Fractional Calculus: Theoretical Developments and Applications in
Physics and Engineering. New York: Springer, 2007.
[7] M. D. Ortigueira, “An introduction to the fractional continuous-time
linear systems: The 21st century systems,” IEEE Circuits Syst. Mag.,
pp. 19–26, 2008.
[8] I. Podlubny, “Geometric and physical interpretation of fractional integration
and fractional differentiation,” Fractional Calc. Appl. Analysis,
vol. 5, no. 4, pp. 367–386, 2002.
[9] J. Mayes and M. Sen, “Approximation of potential-driven flow dynamics
in large-scale self-similar tree networks,” in Proc. Royal Soc.,
A, May 2011, vol. 467, Mathematical, Physical and Engineering Sciences,
pp. 2810–2824.
[10] T. Clarke, B. N. N. Achar, and Hanneken, “Mittag-Leffler functions
and transmission lines,” J.Mol. Liquids, vol. 114, no. 1–3, pp. 159–163,
2004.
[11] P. J. Torvik and R. L. Bagley, “On the appearance of the fractional
derivative in the behavior of real materials,” J. Appl. Mech., vol. 51,
no. 2, pp. 294–298, 1984.
[12] J. J. De Espíndola, J. M. Da Silva Neto, and E. M. O. Lopes, “A generalised
fractional derivative approach to viscoelastic material properties
measurement,” Appl. Math. Comput., vol. 164, no. 2, pp. 493–506,
2005.
[13] J. Sabatier,M. Aoun, A. Oustaloup, G. Gregoire, F. Ragot, and P. Roy,
“Fractional system identification for lead acid battery state charge estimation,”
Signal Process., vol. 86, no. 10, pp. 2645–2657, 2006.
[14] I. Schäfer and K. Krüger, “Modelling of coils using fractional derivatives,”
J. Phys. D: Appl. Phys., vol. 41, p. 045001, 2008.
[15] R. F. Voss and J. Clarke, “ noise in speech and music,” Nature, vol.
258, pp. 317–318, 1975.
[16] M. S. Keshner, “ noise,” Proc. IEEE, vol. 70, no. 3, pp. 212–218,
Mar. 1982.
[17] M. Caputo, “Distributed order differential equations modeling dielectric
induction and diffusion,” Fractional Calc. Appl. Anal., vol. 4, pp.
421–442, 2001.
[18] R. Gorenflo and F. Mainardi, “Fractional diffusion processes: Probability
distributions and continuous time random walk,” in Long Range
Dependent Processes: Theory and Applications, G.Rangarajan andM.
Ding, Eds. New York: Springer-Verlag, 2003.
[19] M. D. Ortigueira and A. G. Batista, “On the relation between the fractional
Brownian motion and the fractional derivatives,” Phys. Lett. A,
vol. 372, no. 7, pp. 958–968, 2008.
[20] A. Oustaloup, “Fractional order sinusoidal oscillators: Optimization
and their use in highly linear FM modulation,” IEEE Trans. Circuits
Syst., vol. CAS-28, no. 10, Oct. 1981.
[21] M. D. Ortigueira, “A coherent approach to non integer order derivatives,”
Signal Processing, Special Section: “Fractional Calculus Applications
in Signals and Systems”, vol. 86, no. 10, pp. 2505–2515,
2006.
[22] T. T. Hartley and C. F. Lorenzo, “Fractional order system identification
based on continuous order distributions,” Signal Process., vol. 83, pp.
2287–2300, 2003.
[23] D. Valério, M. D. Ortigueira, and J. Sá da Costa, “Identifying a transfer
function from a frequency response,” ASME J. Computat. Nonlinear
Dynamics, Special Issue Discontinuous Fractional Dynamical Syst.,
vol. 3, no. 2, p. 021207, Apr. 2008.
[24] S. Hadjiloucas, G. C. Walker, J. W. Bowen, and R. K. H. Galvão,
“System identification algorithms for fast pulse spectroscopies,” in J.
Physics: Conf. Ser., 2011, vol. 310, 012002.
[25] H. H. Sun, A. A. Abdelwahab, and B. Onaral, “Linear approximation of
transfer function with a pole of fractional order,” IEEE Trans. Automat.
Control, vol. AC-29, no. 5, pp. 441–444, 1984.
[26] I. Podlubny, I. Petras, B. M. Vinagre, P. O’Leary, and L. Dorcak,
“Analogue realizations of fractional order controllers,” Nonlinear
Dynamics, vol. 29, no. 1–4, pp. 281–296, 2002.
[27] I. Podlubny, “Fractional-order systems and -controllers,” IEEE
Trans. Autom. Contr., vol. 44, no. 1, pp. 208–213, Jan. 1999.
[28] M. Ichise, Y. Nagayanagi, and T. Kojima, “An analog simulation
of non-integer order transfer functions for analysis of electrode processes,”
J. Electroanal. Chem. Interfacial Electrochem., vol. 33, pp.
253–265, 1971.
[29] H. H. Sun, B. Onaral, and Y. Tsao, “Application of positive reality principle
to metal electrode linear polarization phenomena,” IEEE Trans.
Biomed. Engrg., vol. BME-31, no. 10, pp. 664–674, Oct. 1984.
[30] W. Wieczorek, A. Zalewska, M. Siekierski, and J. Przyluski, “Modelling
the a.c. conductivity behaviour of composite polymeric electrolytes
by the effectivemediumtheory,” Solid State Ionics, vol. 86–88,
pp. 357–362, 1996.
[31] A. S. Nowick, A. V. Vaysleyb, and I. Kuskovsky, “Universal Dielectric
response of various doped ionically conducting ceramics,”
Phys. Rev. B, vol. 58, pp. 8398–8406, 1998.
[32] A. S. Nowick and B. S. Lim, “Simple versus complex ionic systems,”
Phys. Rev. B, vol. 63, p. 184115, 2001.
[33] N. Engheta, “Fractional curl operator in electromagnetics,” Microw.
Opt. Technol. Lett., vol. 17, no. 2, Feb. 1998.
[34] A. K. Jonscher, Dielectric Relaxation in Solids. London, U.K.:
Chelsea Dielectrics Press, 1983.
[35] H. Fröhlich, Theory of Dielectrics. London, U.K.: Oxford Univ.
Press, 1949.
[36] D. L. Sidebottom, “Dimensionality dependence of the conductivity dispersion
in ionic materials,” Phys. Rev. Lett., vol. 83, pp. 983–986, 1999.
[37] A. S. Nowick and B. S. Lim, “Electrical relaxations: Simple versus
complex ionic systems,” Phys. Rev. B, vol. 63, p. 184115, 2001.
[38] D. L. Sidebottom, B. Roling, andK. Funke, “Ionic conduction in solids:
Comparing conductivity and modulus representations with regard to
scaling properties,” Phys. Rev. B, vol. 63, p. 024301.
[39] M. Creyssels, E. Falcon, and B. Castaing, “Scaling of ac electrical conductivity
of powders under compression,” Phys. Rev. B, vol. 77, p.
075135, 2008.
[40] D. P. Almond, C. R. Bowen, and D. A. S. Rees, “Composite dielectrics
and conductors: Simulation, characterization and design,” J. Phys. D.
Appl. Phys., vol. 39, pp. 1295–1304, 2006.
[41] D. P. Almond, B.Vainas, and N. F. Uvarov, “A new analysis of the bulk
ac electrical response of ionic conductors,” Solid State Ionics, vol. 111,
pp. 253–261, 1998.
[42] B. Vainas, D. P. Almond, J. Luo, and R. Stevens, “An evaluation of
random R-C networks for modeling the bulk ac electrical response of
ionic conductors,” Solid State Ionics, vol. 126, pp. 65–80, 1999.
[43] R. Bouamrane and D. P. Almond, “The emergent scaling phenomenon
and the dielectric properties of random resistor-capacitor networks,” J.
Phys.: Condens. Matter, vol. 15, no. 24, pp. 4089–4100, 2003.
[44] N. J. McCullen, D. P. Almond, C. J. Budd, and G. W. Hunt, “The
robustness of the emergent scaling property of random RC network
models of complex materials,” J. Physics D: Appl. Phys., vol. 42, no.
6, pp. 64001.1–64001.8, 2009.
[45] S. Panteny, R. Stevens, and C. R. Bowen, “The frequency dependent
permittivity and AC conductivity of random electrical networks,” Ferroelectrics,
vol. 319, pp. 199–208, 2005.
[46] A. K. Jonscher, “The universal dielectric response,” Nature, vol. 267,
no. 5613, pp. 673–679, 1977.
[47] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits.
New York: McGraw-Hill, 1987.
[48] D. Luenberger, “Dynamic equations in descriptor form,” IEEE Trans.
Autom. Contr., vol. 22, no. 3, pp. 312–321, Jun. 1977.
[49] P. C. Müller, “Descriptor systems: Pros and cons of system modelling
by differential-algebraic equations,” Math. Comput. Simul., vol. 53, no.
4–6, pp. 273–279, 2000.
[50] K. H. Kienitz, R. K. H. Galvão, S. Hadjiloucas, and R. J. M. Afonso,
“Determining state equations from descriptor representations of dynamic
systems,” Appl. Math. Modelling, submitted for publication.
[51] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization.
New York: Academic, 1981.
[52] D. P. Looze and J. S. Freudenberg, “Tradeoffs and limitations in feedback
systems,” in The Control Handbook, W. S. Levine, Ed. Boca
Raton, FL: CRC Press, 1996.
[53] C. T. Chen, Linear System Theory and Design. NewYork:CBSCollege
Publishing, 1984.
[54] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-
band complex noninteger differentiator: Characterization and
synthesis,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol.
47, no. 1, pp. 25–39, Jan. 2000.
[55] A. Oustaloup, B. Mathieu, and P. Lanusse, “The CRONE control of
resonant plants: Application to a flexible transmission,” Eur. J. Contr.,
vol. 1, no. 2, pp. 113–121, 1995.
[56] T. Poinot and J.-C. Trigeassou, “"A method for modelling and simulation
of fractional systems,” Signal Process., vol. 83, pp. 2319–2333,
2003.
[57] M. Thomassin and R. Malti, “Multivariable identification of continuous
time fractional system,” in Proc. 7th Int. Conf. Multibody System.
Nonlinear Dynamics, Contr. (MSNDC) 2009 ASME Int. Design Eng.
Technical Conf. Comput. Inf. En. Confe. DETC/CIE 2009, San Diego,
DETC2009–86984.
[58] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System Dynamics:
Modeling, Simulation and Control of Mechatronic Systems,
5th ed. New York: Wiley, 2006.
[59] J. W. Polderman and J. C.Willems, Introduction to Mathematical Systems
Theory, A Behavioral Approach. New York: Springer-Verlag,
1998.
[60] J. C. G. Pimentel, E. Gad, and S. Roy, “High-order A-stable and
L-stable state space discrete modeling of continuous systems,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 2, pp. 346–359, Feb.
2012.
[61] W. Macher, “Inter-reciprocity principles for linear network-waveguides
systems based on generalized scattering, admittance and
impedance matrices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
59, no. 4, pp. 721–734, Apr. 2012.
[62] M. C. Núñez and R. C. Puche, “Advantages of geometric algebra
over complex numbers in the analysis of networks with nonsinusoidal
sources and linear loads,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 59, no. 9, pp. 2056–2064, Sep. 2012.
[63] L. Codecasa, “Novel feedback theory of electric circuits-Part I: Cutbased
decomposition,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
59, no. 7, pp. 1491–1504, Jul. 2012.
[64] L. Codecasa, “Novel feedback theory of electric circuits-Part II: Loop
invariants,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 7,
pp. 1505–1518, Jul. 2012.
[65] D. De Jonghe and G. Gielen, “Characterization of analog circuits using
transfer function trajectories,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 59, no. 8, pp. 1796–1804, Aug. 2012.
[66] B. H. G. Barbosa, L. A. Aguirre, C. B. Martinez, and A. P. Braga,
“Black and Gray-Box Identification of a Hydraulic pumping system,”
IEEE Trans. Contr. Syst. Technol., vol. 19, no. 2, pp. 398–406, 2011.
[67] R.O. Duda and P. E.Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.
[68] N. R. Draper andH. Smith, Applied Regression Analysis, 3rd ed. New
York: Wiley, 1998.
[69] S. K. Wu and B.-S. Chen, “Synchronization of partial differential systems
via diffusion coupling,” IEEETrans. Circuits Syst. I, Reg. Papers,
vol. 59, no. 11, pp. 2655–2668, Nov. 2012.
[70] I. Tomovski and L. Kocarev, “Simple algorithm for virus spreading
control on complex networks,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 59, no. 4, pp. 763–771, Apr. 2012.
[71] C. M. Ionescu, J. A. T. Machado, and R. De Keyser, “Modeling of the
lung impedance using a fractional-order ladder network with constant
phase elements,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp.
83–89, 2011.
[72] A. G. Radwan and K. N. Salama, “Passive and active elements using
fractional circuit,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 58, no. 10, pp. 2388–2397, 2011.
[73] I. Petras, “Fractional-order memristor-based Chua’s circuit,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 12, pp. 975–979, 2010.
[74] Z. Biolek, D. Biolek, and V. Biolková, “Analytical solution of circuits
employing voltage- and current-excited memristors,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2619–2628, Nov. 2012.
[75] F. Cortino and A. Ascoli, “A boundary condition-based approach to
the modeling of memristor nanostructures,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 59, no. 11, pp. 2713–2726, Nov. 2012.
[76] W. Cai, T. Schmidt, U. Jörges, and F. Ellinger, “A feedback spin-valve
memristive system,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,
no. 10, pp. 2405–2412, Oct. 2012.
[77] A. G. Radwan, A. S. Elwakil, and A. M. Soliman, “Fractional-order
sinusoidal oscillators:Design procedure and practical examples,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 2051–2063,
2008.
[78] H. Kim, M. P. Sah, C. Yang, S. Cho, and L. O. Chua, “Memristor emulator
for memristor circuit applications,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 59, no. 10, pp. 2422–2431, Jul. 2012.
[79] S. P. Adhikari and H. Kim, “Why arememristor andmemistor different
devices,” IEEE Trans.Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp.
2611–2618, Nov. 2012.
[80] M. de Magistris, M. di Bernardo, E. Di Tucci, and S. Manfredi, “Synchronization
of networks of non-identical Chua’s circuits: Analysis and
experiments,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 5,
pp. 1029–1041, May 2012.
[81] M. S. Tavazoei, “On monotonic and nonmonotonic step responses in
fractional order systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 58, no. 7, pp. 447–451, 2011.
[82] A. S. Elwakil, “Fractional-order circuits and systems: An emerging Interdisciplinary
research area,” IEEE Circuits Syst. Mag., vol. 10, no. 4,
pp. 40–50, 2010.
University Staff: Request a correction | Centaur Editors: Update this record |