Accessibility navigation


Spectral theory of some non-selfadjoint linear differential operators

Pelloni, B. and Smith, D. A. (2013) Spectral theory of some non-selfadjoint linear differential operators. Proceedings of the Royal Society of London A, 469 (2154). 20130019. ISSN 1471-2946

[img]
Preview
Text (article) - Accepted Version
· Please see our End User Agreement before downloading.

418kB

To link to this item DOI: 10.1098/rspa.2013.0019

Abstract/Summary

We give a characterisation of the spectral properties of linear differential operators with constant coefficients, acting on functions defined on a bounded interval, and determined by general linear boundary conditions. The boundary conditions may be such that the resulting operator is not selfadjoint. We associate the spectral properties of such an operator $S$ with the properties of the solution of a corresponding boundary value problem for the partial differential equation $\partial_t q \pm iSq=0$. Namely, we are able to establish an explicit correspondence between the properties of the family of eigenfunctions of the operator, and in particular whether this family is a basis, and the existence and properties of the unique solution of the associated boundary value problem. When such a unique solution exists, we consider its representation as a complex contour integral that is obtained using a transform method recently proposed by Fokas and one of the authors. The analyticity properties of the integrand in this representation are crucial for studying the spectral theory of the associated operator.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
ID Code:31801
Publisher:Royal Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation