Accessibility navigation


Spatial covariation of Azotobacter abundance and soil properties: A case study using the wavelet transform

Barnes, R. J., Baxter, S. J. and Lark, R. M. (2007) Spatial covariation of Azotobacter abundance and soil properties: A case study using the wavelet transform. Soil Biology & Biochemistry, 39 (1). pp. 295-310. ISSN 0038-0717

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.soilbio.2006.08.001

Abstract/Summary

The soil microflora is very heterogeneous in its spatial distribution. The origins of this heterogeneity and its significance for soil function are not well understood. A problem for understanding spatial variation better is the assumption of statistical stationarity that is made in most of the statistical methods used to assess it. These assumptions are made explicit in geostatistical methods that have been increasingly used by soil biologists in recent years. Geostatistical methods are powerful, particularly for local prediction, but they require the assumption that the variability of a property of interest is spatially uniform, which is not always plausible given what is known about the complexity of the soil microflora and the soil environment. We have used the wavelet transform, a relatively new innovation in mathematical analysis, to investigate the spatial variation of abundance of Azotobacter in the soil of a typical agricultural landscape. The wavelet transform entails no assumptions of stationarity and is well suited to the analysis of variables that show intermittent or transient features at different spatial scales. In this study, we computed cross-variograms of Azotobacter abundance with the pH, water content and loss on ignition of the soil. These revealed scale-dependent covariation in all cases. The wavelet transform also showed that the correlation of Azotobacter abundance with all three soil properties depended on spatial scale, the correlation generally increased with spatial scale and was only significantly different from zero at some scales. However, the wavelet analysis also allowed us to show how the correlation changed across the landscape. For example, at one scale Azotobacter abundance was strongly correlated with pH in part of the transect, and not with soil water content, but this was reversed elsewhere on the transect. The results show how scale-dependent variation of potentially limiting environmental factors can induce a complex spatial pattern of abundance in a soil organism. The geostatistical methods that we used here make assumptions that are not consistent with the spatial changes in the covariation of these properties that our wavelet analysis has shown. This suggests that the wavelet transform is a powerful tool for future investigation of the spatial structure and function of soil biota. (c) 2006 Elsevier Ltd. All rights reserved.

Item Type:Article
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science
Interdisciplinary centres and themes > Soil Research Centre
ID Code:3225
Uncontrolled Keywords:Azotobacter spatial variability geostatistics wavelet transforms GEOSTATISTICAL ANALYSIS N MINERALIZATION SCALE VARIANCE LOCATION PATTERNS BACTERIA
Additional Information:

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation