Accessibility navigation


Interpreting the response of a dryland river system to Late Quaternary climate change

Candy, I., Black, S. and Sellwood, B. W. (2004) Interpreting the response of a dryland river system to Late Quaternary climate change. Quaternary Science Reviews, 23 (23-24). pp. 2513-2523. ISSN 0277-3791

Full text not archived in this repository.

To link to this article DOI: 10.1016/j.quascirev.2004.06.009

Abstract/Summary

A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300 +/- 4400 year BP and 12,140 +/- 360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800 +/- 1100 year BP and 9,600 +/- 530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories. (C) 2004 Elsevier Ltd. All rights reserved.

Item Type:Article
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science > Department of Archaeology
Faculty of Science > School of Archaeology, Geography and Environmental Science > Scientific Archaeology
ID Code:3343
Additional Information:

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation