Accessibility navigation


Sugar signaling in root responses to low phosphorus availability

Hammond, J. P. and White, P. J. (2011) Sugar signaling in root responses to low phosphorus availability. Plant Physiology, 156 (3). pp. 1033-1040. ISSN 0032-0889

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1104/pp.111.175380

Abstract/Summary

Over the last decade, major advances have been made in our understanding of how plants sense, signal, and respond to soil phosphorus (P) availability (Amtmann et al., 2006; White and Hammond, 2008; Nilsson et al., 2010; Yang and Finnegan, 2010; Vance, 2010; George et al., 2011). Previously, we have reviewed the potential for shoot-derived carbohydrate signals to initiate acclimatory responses in roots to low P availability. In this context, these carbohydrates act as systemic plant growth regulators (Hammond and White, 2008). Photosynthate is transported primarily to sink tissues as Suc via the phloem. Under P starvation, plants accumulate sugars and starch in their leaves. Increased loading of Suc to the phloem under P starvation primarily functions to relocate carbon resources to the roots, which increases their size relative to the shoot (Hermans et al., 2006). The translocation of sugars via the phloem also has the potential to initiate sugar signaling cascades that alter the expression of genes involved plant responses to low P availability. These include optimizing root biochemistry to acquire soil P, through increased expression and activity of inorganic phosphate (Pi) transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use (Hammond and White, 2008). Here, we provide an Update to the field of plant signaling responses to low P availability and the interactions with sugar signaling components. Advances in the P signaling pathways and the roles of hormones in signaling plant responses to low P availability are also reviewed, and where possible their interactions with potential sugar signaling pathways.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Centre for Food Security
Faculty of Life Sciences > School of Agriculture, Policy and Development > Biodiversity, Crops and Agroecosystems Division > Crops Research Group
Interdisciplinary centres and themes > Soil Research Centre
ID Code:33865
Uncontrolled Keywords:plant root sugar signalling regulation phosphate phosphorus gene expression
Publisher:American Society of Plant Biologists

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation